ETS| ES 201 873-1 V4.9.1 (2017-05)

<. —

ETSI STANDARD

Methods for Testing and Specification (MTS);
The Testing and Test Control Notation version 3;
Part 1: TTCN-3 Core Language

2 ETSI ES 201 873-1 V4.9.1 (2017-05)

Reference
RES/MTS-201873 -1 T3ed491

Keywords
language, methodology, testing, TTCN-3

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +334 93 6547 16

Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

The present document can be downloaded from:
http://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any
existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the
print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying
and microfilm except as authorized by written permission of ETSI.
The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2017.
All rights reserved.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members.
3GPP™and LTE™ are Trade Marks of ETSI registered for the benefit of its Members and
of the 3GPP Organizational Partners.
oneM2M logo is protected for the benefit of its Members
GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.

ETSI

http://www.etsi.org/standards-search
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

3 ETSI ES 201 873-1 V4.9.1 (2017-05)

Contents

Intellectual Property RIGNES.... ..o 13
01 Yo (o SR 13
Modal VErDS tEMINOIOQYciveieeciicieeie sttt re e et e s ae e e e s aeeaeestesraesesreeanensenrens 13
1 o0 SRS 14
2 L= £ 101 R 14
21 NOIMBLTVE FEFEIEICESe.vveitiecierti ettt r et n et nrenene 14
22 INFOIMELIVE FEFEIENCES.ttt 15
3 Definitions and abbreViationS...........cceveiririniiesee e 16
31 D= T 0Tl (0] P 16
3.2 F Y o] 1= V7= (0] 1SS 21
4 100 [Tox A o] o ST 22
40 LT 0T USRS 22
41 The core language and presentation FOrMALSccuiveiee e e sre e e enee s 22
4.2 Unanimity of the SPECITICALIONccuv ettt e eeene e 24
4.3 CONTOIMAINCEcve ettt sttt et r e et r e et r e s e e e r e s R e e R e e R e e e Rt e R e neeb e sr e e erenr e e erenrennenenrennes 24
5 BasiC 1angUagE ElEMENTSooi et s rer e e ans 24
5.0 LT 07 PSR SRPR 24
51 [AENtifiers AN KEYWOITSceeiiriiieiertiee et bbbt b et st n e b 25
52 SCOPE FUIES ...ttt b bbbt b bt e bt e bt e e b e e b e s e e b e e b e se bt e b e seeb e sb et eb e et e e ebenbeneenenreneas 25
5.2.0 LT 1 R SPRR 25
521 SCOPE Of FOrMEl PAFBMELEN'Seiueeiiitieeiertee ettt eb et b b s enes 28
5.2.2 UNIQUENESS OF IABNEITIEIS ...eueeee ettt ettt te e ee e e saeesneenneenes 28
5.3 Ordering of [anNQUAgE ElEMENLS..........cciiieiiee ettt re e e et e e e sraesre e teenreeeeennas 29
5.4 PaIAMELEITZBLION........ceeeeeiieeeerie ettt n et r et r e et r e n et r e nene 29
5.4.0 GENEFAL ...ttt b E R R R R R R e R R e R R e bt R Rt n et ns 29
54.1 FOrMEl PAIAIMIELETSeveeieeiee ettt e st et e e e saeess e e s ae e teen e estessaesaeesreensesneesneesneenneenes 30
5410 GENETA ...t e R R Rt n e 30
5411 Formal parameters of Kind VBIUE...........cceiiiriiiiiieerere s 30
5412 Formal parameters of Kind tempPlate...........cvvieiiriiiereeree s 33
54.1.3 Formal parameters of Kind tIMEr...........ooeiiiieiieerer s 35
5414 Formal parameters Of Kind POr..........coiieeiineireiesere e 35
542 ACTUBl PBIBIMELEISccveteeeteite ettt ettt ettt b et b e bt b e bt b e s bt e bt s b et bt s b et e b e ne et et e s b e st ebe e 36
55 ([0 Lo T 1 a1 o] =S 41
6 TYPES ANA VBIUES ..ottt sttt st et e st eeaa e beeaeenbesaeenaestesaseseesteeneentesreas 42
6.0 (€T 1< - PSP PR S PRPTSTRPN 42
6.1 BaSIC tYPES @MU VAIUES..........ocueieeietieiietee et s s te ettt e et e st e te e e e ntessaesseesaeesseenseenseenseeneessanssanas 43
6.1.0 SimMple DasiC tYPES N VAIUES........c.couiieiiiiieeirteeet e 43
6.1.1 BasiC StriNg tyPES @N0 VBIUESc.eiuiiiiiieieciete ettt ettt ebesne e 43
6.1.1.0 LC T 0T | PSSR SRPTR 43
6.1.1.1 Accessing individual StHiNG ElEMENLS.........coiiiiiie e 46
6.1.2 SUBLYPING OF DASIC LYPES ...ttt 46
6.1.2.0 GENETA ...t e R R Rt n e 46
6.1.2.1 (RS E Y0 = .10 = =S 47
6.1.2.2 B ES 0 1Y/ 0= USRS 47
6.1.2.3 REINGES. ...ttt e be e b e e be e b et be et e e ae e e bee e nne e ees 47
6.1.2.4 S T T= 10 [T =S 1T o] 48
6.1.2.5 Pattern subtyping of charaCter StHiNg tYPES ...ccvvcieeece e 48
6.1.2.6 Mixing SUBLYPING MECNANISIMIS.........cueitiieiiitirieesie sttt b e b e neenes 49
6.1.2.6.1 MiXing patterns, liStS and FANGEScviirieiriiieier bbb 49
6.1.2.6.2 Using length restriction with other CONSLraiNtS...........cocureeerireireeere e 49
6.2 StruCtUred tYPES NG VAIUBS.c.ccuiiieieiiitee ettt b et se et b e et b e b e b b neebesre e 50
6.2.0 LT 1 SRS 50
6.2.1 RECOId tYPE AN VAIUES......c.eeeieeeeeet ettt ettt et b e st b e st b e et eb e e e e b sne e 51

ETSI

4 ETSI ES 201 873-1 V4.9.1 (2017-05)

6.2.1.0 LC T o1 oSS PSR 51
6.2.1.1 Referencing fields Of @reCord tYPevivuviei i 54
6.2.1.2 Optional elementSiN @rECONU........c.viiuieieiieriese e e st e e e te e tesraesaeesreesaeenseenes 55
6.2.1.3 Nested type definitions for fleld tYPESccveeeeeeece e s 56
6.2.2 SELLYPE BN VAIUBS ...ttt sttt et a et e st e e teenteeaesneesaeesseeseenseensennennnenss 56
6.2.2.0 LC T o1 SOOI 56
6.221 Referencing fields Of & S8t TYPE.....c.ciiiiecer s 56
6.2.2.2 Optional ElEMENES TN ASELieeiieeeee e b 56
6.2.2.3 Nested type definition fOr field tYPES........ccvi s 57
6.2.3 Records and SEtS Of SINGIE LYPEScouiiiiii ittt sne e 57
6.2.3.0 LT 0T PR SRSRPTR 57
6.2.3.1 Nested type defiNITIONS. ..o et re e reere e 59
6.2.3.2 Referencing elements of record of and Set Of tYPEScccvveieieiee e 60
6.2.4 Enumerated tyPe @and VBIUEScooeeiieii ettt ettt e et nte e snaesnnesneenneenes 61
6.2.5 UDEONIS. ...ttt ettt bbbt h e a e st e e e b e e e bt R e eh e h e e s e a b e £H e eE e AR e SR £ e RE e e e b e eE e bt nheeh e e e e e e nnenre e e 62
6.2.5.0 LC T o1 oSS PSR 62
6.25.1 Referencing fields Of @ UNION TYPEcveevie et 63
6.252 OPLION @NO UNION. ...ttt b et b st b et b et s bbbt et b et sbe e 64
6.25.3 Nested type definition fOr field tYPES........ccei i s 65
6.2.6 TRE BNYLYPE ..ottt bbbt b e b bR b e b et bRt b et b nne 65
6.2.7 N 1 = Y TP 65
6.2.8 THE AEFAUIT EYPE ...ttt b et bbb s et b 67
6.2.9 COMMUNI CALION POIT LYPES......cveeeueetereeeetestee ettt sttt se et b e b b s b b e s b e e s s b s s e b s ese s nnenes 67
6.2.10 COMPONENT LYPES ..ttt ittt sttt st e st e st e et e et e e et e e be e e be e e e beeebe e e sbeeebeeebeeebeeennes 69
6.2.10.1 Component type defiNItiON..........cccui e e nne s 69
6.2.10.2 Reuse Of COMPONENT LYPESeeeieeeiieiece ettt se st ee e ste e steesteeaeeneeeneessaesseeseesneenneens 70
6.2.11 COMPONENE FEFEIEINCESc.ve ettt st s ettt et e st esbe e e estessaesaeesaeesseeseenseansennannsenss 72
6.2.12 Addressing entitieSiNSIAE the SUTccueiiecieceee e nne s 74
6.2.13 SubtypiNg Of SHUCIUrE tYPESeveeieeieeie sttt ettt e e st e st e teenteeaesneesreasseenneensesnaenneess 76
6.2.13.0 LT 0T SRRSO 76
6.2.13.1 Length subtyping of record ofSand SEt OFScoeirireiiire e 76
6.2.13.2 List subtyping of structured types and anyLyPe..........ccoveererereeeriereeesieseee st 77
6.2.13.3 Subtyping of the iterated type of record ofs and set OfS.........cociiiierieieren e 80
6.2.13.4 Mixing SUBLYPING MECNANISIMS.........cueiiiieiiitiieier ettt eb e neenes 81
6.3 QIR 0= o g0 7= 1 oL S 8l
6.3.0 (€= 0T o TS 81
6.3.1 Compatibility Of NON-SLIUCLUIEA tYPESeveeieeeeee e ettt reente e snaesraenneens 8l
6.3.2 Compatibility Of SHUCLUIEA tYPES.......veieeieeieeste et et e eee st es et e e st te e sre e saeesreeaeenneensesnannneess 83
6.3.2.0 LC T o1 OSSPSR 83
6.3.2.1 Compatibility Of eNUMErated tYPEScceiieree ettt e e eene e 83
6.3.2.2 Compatibility of record and record Of TYPEScccerireirireee e 83
6.3.2.3 Compatibility Of Set and SEt Of TYPES......cuiiiiieirie e 84
6.3.24 Compatibility Of UNION TYPES.......oiviiiiiiieieee e 85
6.3.25 Compatibility Of ANYLYPE TYPESvieeeiieiei e 86
6.3.2.6 Compatibility DEtWEEN SUD-SEFUCLUIES.........couiiiiriieecree e 87
6.3.3 Compatibility Of COMPONENE LYPES......civieriirieeetereeest ettt sb e enes 87
6.34 Type compatibility of communication and coONNECtion OPEralioNS..........ccccveveeeeevceeveeseese e 88
6.3.5 BN/ ¢S e 1Y/ £ o] o TS 88
6.4 LY 135V 10014 1 PSRRI 88
7 (0TS0 1SS 89
7.0 LT 0T USRS 89
7.1 L0707 - 0] £ J R TSSO P PSP SPPTPRTRO 89
7.1.0 LT 1 R SRPRR 89
711 ATTENMELIC OPEIEEOIS ...ttt ettt et b et b e bbbt b e b et b et b e bt bene e 91
712 (I E oo = = (o OO P ST PO PSP RTPOSPPRPTSURPN 92
7.1.3 e 0] 7= R0 0= = (o 92
7.1.4 (0T Lo] 1= =1 0] £ 94
7.15 TR 0] 1= o) 95
7.1.6 S TN 0] = 0] PSSP 96
7.1.7 (R l0 1= (0] 0 = o] £ T PSPPSR 96
7.2 Field references and liSt BlEMENTS..........ooiiiieeee e 97

ETSI

7.3

8

8.0

8.1

8.2
8.2.0
821
8.2.2
8.2.3
8.23.0
8231
8232
8.233
8234
8.235
8.2.3.6
8.2.3.7
8.2.3.8
8.24
8.2.5
8.3

9

9.0
9.1
9.2

10

11

11.0
111
11.2

12
13
14

15
15.0
151
15.2
15.3
154
155
15.6
15.6.0
156.1
156.2
15.6.3
1564
15.6.5
15.7
15.7.0
1571
15.7.2
15.7.3
15.7.4
15.8
159
15.10

5 ETSI ES 201 873-1 V4.9.1 (2017-05)

Decoded fIEld FEFEIBINCE.eiui ettt ettt b e bbbt e e e b b 97

1Y 00 1= 3SR 98
GBNENEL ...t b b b h e a e e R e Rt E R R e R e e e e R R e R e Re Rt b e e e et e e e nbe b eneas 98
DefiNition Of @MOAUIEoueieieeee ettt st ae et e e e eeseesee e e 98
MOAUIE AEFINITIONS PAITc.evieeeeiieteiert ettt bbbt bt sb et nbe e 99
LT 1 R SPR 99
MOTUIE PAIBIMELEN'S ...tttk ettt sttt e b et b e et b e et b e s e e st b e s bt ebesb et sbena et b e b 100
GrouPS OF AEfINITIONSc.eitieeiiieee bbb et b e et b e b b e b b e 102
IMPOrting fromM MOTUIESc.couiieiete ettt bbb et b e 103
GBNETEL ...ttt e bR R R e e bRt R e Rt bt bt e e e e r e e 103

General format Of IMPOITooieee e e reeae e 103
IMporting SINGIE AEfiNITIONSeciece e re e sne e ee s 109

IMPOTING GrOUDS. ...c.veeieeeieeeiteeie et eteesteestee e e teetestesseesseesseesseenseenseessessensseesseesaeesseanessneesseensennes 110

Importing definitions of the SAMe Kind ..o 111

Importing al definitions of @MOUIE...........c.ccceeieeie e e 112

Import definitions from other TTCN-3 editions and from non-TTCN-3 modules..................... 112

Importing of import statements from TTCN-3 MOAUIES.........ccveeiiriineneene e 114
Compatibility of language Specifications in iMPOITS..........ooeeririeeriee s 115
Definition of friend MOAUIES............eoi e 116
VisiDility Of dEfiNitiONS.........cociiriiiiie bbb 116

1Y/ Koo (BT = N oo 11 o] I o= o AR 118
Port types, component types and test CoNfigUIationS..........ccccceeveieevnnecie s 118
(€T 0T O P PR OT TR P PP 118
(0] 00] 0108 1T o= 1 o g I o0 K= SRS 119
TESE SYSEEM INEEITACE ...t bbb et eb b e sre e 121
DECIANTNG CONSLANLSeevertitestestet ettt sa bt b et e e e se s ene e anenennas 123
DEClaring VAl ES..........oiiieeiiisie e e 123
GBNENEL ...ttt E e h bR a e E R R eh R R e e e e R R nR e bt Rt ehe e et nre b e ene 123
VAlUB VAITBIIES. ... bbb b b et b et e se e e e be b sbeeaeeaean 124
LIE 000 Y= o] (=SS 125
(= o = 1o I (0= £ 126
DECIANNG MESSAGES.....cvevertete sttt ettt b ettt e et s bt sk s bt b e s e et e e e e e e ese e bt ereanenbeanennennas 127
Declaring proCedUre SIGNALUIES...........ccveiieieesie e ecee et et e e e te e st sreestesteenaesreere e besaeenenresneens 128
DEClaring tEMPIALES.........ccieceecie ettt e st e s e b e s reere e besreenresaeeaeensenneens 129
LT 0T RSP 129
Declaring MeSSage tEMPIEEESc.eieiiirieireieeri ettt bbbt b e sbe e 130
Declaring SIgNature tEMPIBEEScoveeriireeirieieere ettt b et e et b bbb 131
Global and [0CEl LEMPIBLESc.eiteieieieeeet ettt sttt b e sbenne 133

T TSR I 00T = 1S 134
MOAITIEA tEMPIALES. ... ee et et r e te e te e teentesnaesanesneesneenseenes 135
Referencing elements of templates or template fields.........ccovevv i 138
GBINENAL ...t E bt h e R R e e R Rt R e Rt Rt b e et et e e e benaeeneennen 138
Referencing individual String €leMENtS..........ccveiieeiie i s 138
Referencingr ecor d and Set fieldS......ccooveiecice e s 138
Referencingr ecor d of andset of elements........cccocvie e 139
Referencing SIgNature ParamELErS..........oieeerereee ettt sttt sb e et b e s b se e sb e e 143
Referencing UNi 0N alterNaliVES.... ..o e 143
Template matChing MECHANISMSc.occuieiece e e e e e sreesreereeneennas 144
GBINENAL ...t b bbb e b bR R £ R R et R e Rt Rt bt e e et e e e benheeneennen 144
SPECITIC VAIUBS ...ttt s te et e et e e e e a e ete et e et e e teentesneesneesneenneenseenes 145
Special symbolsthat can be used instead of VAIUES...........coociiiiiiiinie e 146
Special symbolsthat can be used iNSIde VAIUESc..ccoiiriiii i 147
Special symbols which describe attributes of VAlUES.............cooiiiiiiiiie e 147
TEMPIAEE RESIITTCIIONS. ...t e ettt ettt bbbt b e b b e e bt e e e eb e b e e enesre e 148
IVIBECH OPEIBLION......eeeteeeieete ettt bbbt b et b bbb bt b e e st bbb b 150
= U o) O o 1= o] o R 152

ETSI

6 ETSI ES 201 873-1 V4.9.1 (2017-05)

15.11 Concatenating templates of String and liSt tYPES ...cvevieeieee e 152
16 Functions, altSepS AN LESICASESocuieeeciiiieie ettt st sbe e et saeen e resneens 154
16.0 LC T o1 =SS 154
16.1 L Tox 0] ST 154
16.1.0 (€71 TSP 154
16.1.1 [NVOKING FUNCLIONS ...ttt s b et e 156
16.1.2 Predefined fFUNCLIONS ..ot e e seeenas 157
16.1.3 = = 0 o o T 159
16.1.4 Invoking functions from SPECITIC PlACES.......cccoi i 160
16.2 = 1= o LTSRS 161
16.2.0 (€= 0T - OSSPSR 161
16.2.1 10V 0 g0 = L= oL 163
16.3 QLIS 0TSPTSRO 164
2V o o S 165
18 Overview of program statements and OPEIaLiONS...........coeruerrerrereriereresieseesre e 165
19 BasiC Program SIAEIMENTS.ccerrerrerrereeeeeeeeieese st sse s e s e e se st ss e b b se e s e e e e e e e esessennennenes 167
19.0 LC T o1 -SSR 167
19.1 S T 10 1S 168
19.2 THE IT-E1SE STAIEIMENLeeeeeeeee et eb ettt et et s e e se e e e b e neesne s 170
19.3 THE SEIECE STALEIMENESeeeieieeee ettt ettt e e st et st esaeeb e et e s e e neeseesbeseesteeneeneensensesaesneas 170
19.31 The SElECt CSE STALEIMENLccueieieeee ettt see et s ae s e e e e e e neesseseesneas 170
19.3.2 The SEleCt UNION SEALEMENLoeiieieiieie ettt ettt se et seeseesseese e e e e eneeneesseseenneas 171
194 THE FOF SEBEEMENT ...ttt sttt e e st et e s beeaeese e e eneeseesbesbeeeeeteeneeneensensesaenneas 172
195 THe WHhIl@ SEEEEIMENL.......c.eeeeeree ettt sttt a et e e e teseeebesaeesenbeeneeneeneeneesneeneas 173
19.6 The DO-WhIl@ SEBEEMENL ..ottt e e et e besaeese e e e nee e eneesneeneas 173
19.7 The LaDE] STAIEIMENLoouiieiieieeee ettt b et e bt se e e e b naesne s 174
19.8 TNE GOLO SEALEIMIENL ...ttt ettt a et e e e se e eb e s bt e s e se e e et e se e et e e aeenee e e nbeneesneas 174
19.9 The StOP EXECULTION SLALEIMENLccveeeeeeeeieesteeieeie e see s e s e ste et e s e e sseesseeseesseesseesaesseesseesseenseenseennan 175
19.10 THE RELUIN SEBEEMIBNT.c.eeiee ettt re bbbt b et se e b e bt sbe b e s ae e e e e e nbenaeene s 176
19.11 QLIS a0 R = =11 | S 177
19.12 THE Break SLAOMENTottt bbbttt e e bbbt e b e s e e e e ne et e naeene s 178
19.13 The CONtINUE SEBEEIMENTeceeeeeieee et e et se et et et e besaeebeeseeneeneessesbesaesteeneeneensensesaesreas 179
19.14 SEAEEMENT DIOCK ...ttt ettt st ese et e e e e naeseesbesneeneeneens 180
20 Statement and operations for aternative behaviours...........cccoiveierinieie e 180
20.0 LC T o1 - SRS 180
20.1 The SNaPShOt MECHANISIM........eeiieie e ettt eesa e e saeste e re e seenreenneennan 181
20.2 TNE AIT SEAEEIMENT ...ttt b bbbt e st et e e e nb e b e seeeb e eae e e e ne e benreeneas 181
20.3 The REPEAL SLALEIMENTecveeieeieeee ettt ettt e e st e s e saeesae e aeeneeesseeseesseensaesseesseenseeseenean 185
204 The INtErTEAVE SLALEMENT ...ttt se b bbbt st e e e e b seesne s 186
20.5 [0 1 =10 =T g 188
20.5.0 (€= 0T - TSRS 188
20.5.1 The default MEChANISIM ..o et e e e e besae e e e neeseeseesneas 189
20.5.2 ThE ACHVELE OPEIALION.ttt bbbt b et bbb b 189
20.5.3 The DEACIVALE OPEIELIONcueivieietireeeeiert ettt bbbt b bbb st nbe e 190
21 Configuration OPEIaliONS..........ceicuerereereseeeesteseereeseeeseeseeeseesteseeeeessesseessesseensessesnsessesseessessessens 191
210 LC T o1 - S 191
21.1 CONNECLION OPEIALIONS. ... i eiieeieeeeesteeste et e seerte e se e st e s te e teeseesaesseesseesseeteesesseesseesseesseenseensennsesssnssenss 192
21.1.0 (€= 0T - TSRS 192
21.1.1 The Connect and Map OPEIAiONSccieierieieesiesiee e este e e tesaeseesreesreesseesaeseesseesseesseensessenssenss 193
2112 The Disconnect and UNMBap OPErationNScoueererierirereieesieieesie s 195
21.2 TESE CASE OPEIBLIONS. ...ttt ettt ettt sttt sttt b et bt b et et sb et et esb et eb e sh e e eb e eb e e eb e sb e e et e sbe e ebenreneenenre e 196
21.2.0 (€= 0T - TSRS 196
2121 TESE CASE SIOP OPEFBLIONc.eieiiitiieicet ettt bbbt bt b et b bbb 197
213 Test COMPONENT OPEIALTONS........ciuieeuiitereeiete sttt ettt st se et et se et be e et et e see e ebesee e ebesbeneenesreneas 197
21.3.0 (€= 0T - TSRS 197
21.3.1 THE Creale OPEIAliON......cc.eeciieieeie e eee st e st e ste st e st e e te e te e teeseessaesseesteesseeseeneesaeesseanseenseensenneesnensn 197
21.3.2 The Start test COMPONENE OPEIALIONcc.eeiierieeie e ettt e e ee e seesreenaeeseeneesneenneeas 198
21.3.3 The Stop test PENAVIOUr OPEraLIONccviiieece et e e reesaesnaesneeas 200

ETSI

7 ETSI ES 201 873-1 V4.9.1 (2017-05)

21.34 The Kill test COMPONENE OPEFELION..........cceieeieeseeeeete et e e et e e eee e seesteesseeeeseesseesseenseensesseesnenss 201
21.35 LS A LAY 0] = = 1 o o SRS 202
21.3.6 The RUNNING OPEIAIONccveeeiceiieteeseeseeseesestesee s et e e e e e tesstesseesaeesaeesseesseenseenseensenseansennensnensn 203
21.3.7 THE DONE OPEIALIONveeeeeee e et et e e e te st e s e s e e s te e teeteestessaessaesaeesseesseenseaneeaseesseenseensenneennensn 204
21.3.8 The Killed OPEIaliONcocieieeee ettt e e e s e s e e saeesseeteenseenseseenseensenneennnnss 206
21.3.9 Summary of the use of any and all with COMPONENEScocuiiiiiirieiiiee e 208
22 COMMUNI CALION OPEFATIONS.....c.ueteeeteeeeeseesesie st ste s e se e e ese st b e s e b nr e s e e e e eae e e enenb e b nee e e e ens 208
22.0 L= 1= TS 208
22.1 The commUNICatioN MECNANISMSuiieiieeeiieiee ettt ettt e e teseeseesaesaesseeneesnesaeas 209
22.1.0 (€1 0T o SRS 209
22.1.1 Principles of message-based COMMUNICALION.cccueiieiieiiie e 209
22.1.2 Principles of procedure-based COMMUNICELIONcceiieiieiiece e 210
22.1.3 Principles of unicast, multicast and broadcast COMMUNICALION.............ccceveereerieecese e, 210
22.1.4 General format of CoOmMMUNICation OPEratioNScceccueiieerieseere et nae s 211
22.1.4.0 LC T o1 - ST 211
22141 General format of the Sending OPEIaLiONScc.erveeririeirereee e 211
22.14.2 General format of the reCeiVing OPEratioNS............ccvviriirerieieeere s 212
22.2 Message-based COMMUNICALION.ciiriiriiieirieeeer ettt b e b 213
2220 (€= 0T - TSR TRS 213
2221 THE SENA OPEIELIONcvieeiertieei ittt b et bbb st b et be b 213
2222 THE RECEIVE OPEIBLION ...ttt bbb bbbt b et b st be b 214
22.2.3 L LS [=: e o 1= = (o] o TSP 218
22.3 Procedure-based COMMIUNICALION.citiieieieie ettt se et st b et ne e sre e 221
2230 (€1 0T - SRS 221
22.3.1 THE Call OPEILIONccueeceeecieee et e et et e e tesaaessaesteesteeseeneesanesseeseenseensenneesnensn 221
22.3.2 The GELCAll OPEIALION.........eciecieeieee et e e st e e e st e steeteeeesaeesreenseenseensenneesnensn 225
22.33 THhE REPIY OPEIEIION.c.ecuiitieieetit ettt bbbt b bt ne et b bbb 228
2234 The GEtreply OPEFALIONc.eiuieeeiitee bbbt e et b et bbb b 229
22.35 THE REISE OPEIGLHION ...ttt bt b et b et b bbb 232
22.3.6 The CalCh OPEIELION.eeeeiereieet ettt bt b et b et b bbb 233
224 The ChECK OPEIALTON ..ottt ettt st b e e et b e s bt et se e e eb e sbe e eneere e 236
225 Controlling COMMUNICALION POFTS.......cviuerieerrereee sttt sb et b e et b et sbe b e sbesnens 239
2250 (€1 0T - SRS 239
2251 The Clear POt OPEFBLIONcccveiieetieieeeee e st e s e seesee et e s eesseeste e teestessaesseesseesseesseenseenseensenseesnensn 239
2252 The Start POt OPEFELIONccveevieeieeeiesteesteese e e see e s e st e ete e e e e reeste e be e teessesseesseesaeesseenseenseensenneesnensn 239
22.5.3 R LLCRS (o] o] olo g ae o = 1 o o OSSPSR 240
2254 The Halt POIt OPEIaLION.ccuieiiceieetieeee e s e te e e st e st e e e teestesseesseesaeeseenseenseenseeneesnensn 240
2255 The CheCKState POrt OPEFaLIONcceeiieeieeiesiesee st e steesteeee e et e e et e e tesaeseesaeesseenseenseensesneesnenss 241
22.6 Use Of any and all WIth POFTS........ooueiiiieiriecree bbbt 242
2 I N1 107 gel o = g 0] TSRSV PR PP 243
23.0 L 1= RS 243
231 THE TIMEN MECHANISIM ...ttt e bbbttt e e e b e b sheebesaeenee e e nbenresne s 243
23.2 LSRR 0= g0 o = 1o 243
23.3 The StOP LIMEr OPEIALION......cueeieecieeieeee et et e e e e e e e s esaeeste e aeeaeesseeeseesse e seenseentesreesseesseenseeseennes 244
234 The REad tiMEr OPEIELIONc..eeieiie ettt ee st e et e s e s e s e e s ae e teenteentesseessaesseesseeseenseennas 245
235 The RUNNING tIMEN OPEIELION.ccueeieeieese et eteetesee st e s e e e teestesaesaesseesseesseesseenseensesseesaeeseenseesennnen 245
23.6 The TIMEOUL OPEIBEIONcuveeeieeeieiee e st esteete e s e st e te e e e tesseessaesseesseesseenseaneesseesseeseensansseesseenseensennnen 246
23.7 Summary of use of any and all With tIMErs.........coo e 247
P == V= (ool 0] o = (] o] 1RO 247
240 LT 0T RSP 247
24.1 The VerdiCt MECHENISIM.........o.ii ettt et b e st n b snenne s 248
24.2 LI (SRS = Y= £ [0] o = 1 oo R 249
24.3 The GEVErQICE OPEIELION.........eeieeieeeie ettt et es e e se s sreeste e ae s e sreesse e seenseesseeseessaesseesseenseensennnen 250
P T A= g7 = o 0 ST 250
P2 T Y/ o LN L= oo 1 o USSR 250
26.0 L= 1= TSR 250
26.1 The EXECULE SALEIMENL.......coueeeieriee ettt sttt see bt et et e e e ne e beseeeteeneeneeneeneesaeereas 251
26.2 BN ST 11 0] N o7 1 253

ETSI

8 ETSI ES 201 873-1 V4.9.1 (2017-05)

27 SPECITYING GLIULES......c.viiuiceccte et sttt ae e e e s tesaeeseesreeaeenbesreas 255
27.0 GENMETAL ...ttt R R R R R e R R R Rt e Rt e n e 255
271 The AtribUte MEChENISM ..o e 255
27.10 (€71 S PRRRR 255
2711 SCOPE OF BLLITDULESeecveeeet ettt bbbt b e et b e b e ene b e 255
2712 Overwriting ruleS fOr @ITDULES............ooviiiiiierieet e 256
27120 LCTC 01 ST 256
27121 Additional default overwriting rulesfor variant attributes...........c.cooeiieiiinenneeeeeeee 259
27122 Overwriting rules for multiple enCOdiNGcviviieiriiieere e 260
27.1.3 Changing attributes of imported language elements............ccoeeveerierieeie e 260
27.2 The WIth SEEBIEMENTooriece e et r e e e nre e 261
27.3 [T o] K= VA= 1] 01U PR 262
27.4 ENCOUING BLLIOULES........eeeeee e e e e st e teentesnaesneesneenreenes 262
275 VarTaNt BEITDULES........c.eiriieciiireee e e n e r et nr s 263
27.6 EXIENSION SEIMDULES ...t 266
27.7 OPLIONE] BIIFTOULES...... ettt et b e bbbt b e bbb e ene e 266
27.8 RELriEVING LITDULE VBIUES.......c.ecuiiieeeieie bbb 268
27.9 Dynamic configuration of encoding USEd DY POFTS........c.coiirieirireineseesesie s 269
Annex A (normative): BNF and static SEMantiCS........ccccvveeieii e e 271
AL TTON-BBINF ettt et b e bt he e s ae e s et e e abe et e e sbe e sbeesaeesaeesabeeanas 271
A.10 LT 0T TSP 271
A.ll Conventions for the SYNtaX dESCHIPLIONc.eicue e e e e st e e enaesraenneens 271
A.l2 Statement termMiNaLor SYMDIOIS.........cociiie e e et e s e e se e sreesseenseenneeneesnaennenss 271
A.13 Lo 1= 0L E L= £ TSP PE RSP RRP 271
A.l4 COMMENES. ... s b bbb se b se e bbb e b e e se e b b e b e 272
A.15 TTON-BLEIMINAIS ...ttt b bbb bbbt ne bt e bt nn s 272
A.15.0 GENENAL ...ttt E R h R R R R R R et Ren e n e 272
A.151 Use of WhitespaceS and NEWHINES..........coeiiiieeee ettt e 274
A.16 TTCN-3 syntaX BNF PrOQUCLIONScoveuiiiieeiiiierieiesie sttt be e 274
A.16.0 TTON-3MOUUIE.......eeeeeeeeeee ettt ettt e te s e e st e e e eeseeseesbesseeneeneenseneensessesnens 274
A.1l6.1 MOdUIE dEfiNITIONS PAIT......ceeueiteieeiete ettt b et b e 274
A.1.6.1.0 LT 0T T 274
A.1l6.11 Typedef AEfiNITIONSc.oiiii bbb 275
A.16.1.2 CoNStant AEFINITIONSc.eivieeiiieeire e et eaes 277
A.1.6.1.3 Template defiNItIONS........coi e re e reereennas 277
A.1.6.14 FUNCE ON AEFINITIONS ...ttt r e e ere e 279
A.1.6.1.5 Lo g U1 =0 L= T 0] 280
A.1.6.1.6 TESICASE AEfINITIONS.c.eivieceiirieer et 280
A.1.6.1.7 F N LS (= oI L= 1T o] 280
A.16.1.8 IMPOIt AEfINITIONS.citeieeee ettt et b bbb et b e sbenene 280
A.1.6.19 GrOUP EFINITIONSveeieeetee ettt bbb e ene b 281
A.1.6.1.10 External function definitionS............coooiiiiiie s 281
A.16.1.11 External constant definitionS...........c.ooeierireie e 281
A.16.1.12 Module parameter defiNitioNScooiiiiiiier e 281
A.1.6.1.13 Friend module defiNitioNScccoereiiereen e 281
A.16.2 (@0 011 (o) o o OSSR 281
A.1.6.3 LOCEAl EFINITIONS.......ceeirereciere ettt r e et e rne 282
A.1631 Variabl@ INSLANTIALTIONccveeererreeee ettt 282
A.1.6.3.2 TIMEr INSEANLIAEION ...t n et 282
A.164 (001 10 Tt 282
A.164.1 COMPONENE OPEFELTIONSe.eeeeetereeieetert ettt ettt e bt se et b et b bbb e e b s e e e be s senaesrenes 282
A.1.6.4.2 POIT OPEIBLIONS ...ttt sttt et b e e b e et b e et b e se e st eb e e e e et e s b e e ebenre e 283
A.1.6.4.3 THMEE OPEFATONS ...ttt bbbt b b s e b et b bt be et 285
A.1644 TESICASE OPEIELION........eveeeeeetetee ettt bbbt b et b ettt b et b e 285
A.16.5 I3/ T TR U TR PP 285
A.16.6 W BIUB. ...ttt ettt sttt ae ettt n e et e e e Rt eReehe Rt Rt et e teeeeeEeebeeaeene et entenaeatenrenneas 286
A.16.7 R = 01= (= 4= o] o TS U TSR PT SR 287
A.1.6.8 SEBLEIMENTS. ...t bbb e bbb sa e 287
A.16.8.1 WWIth SEBEEIMIENT ...tttk 287
A.1.6.8.2 BENAVIOUN SEAEEMENEScovieceiiriieecere et r e s r e s re e renre e 288

ETSI

9 ETSI ES 201 873-1 V4.9.1 (2017-05)

A.1.6.8.3 BaSIC SEAEMENTS. ..ottt ettt b ettt et bbbttt b e e b et ea e e e e nr e 288
A.16.9 YRSl T F=Ta 1 o0 LS oo LN o o L 291
Annex B (normative): MatChING VAIUBSooiiiiieieieeee e 292
B.1 Template matching MECNANISIMScciiiieie e e s re e ne e 292
B.1.0 LC T o1 - SR 292
B.1.1 MatChing SPECITIC VEAIUES.......cceieee ettt ae st e st e st e e teenaesaaesneesneenneenes 292
B.1.2 Matching mechanisms instead Of VAIUESccueieeiiiiece e 292
B.1.2.0 (©1= 0T - RSSO 292
B.1.21 TOMPIAIE TSE .ttt bbbt bbbt bbb bbb 292
B.1.2.2 Complemented tEMPIALE TS ..o e ebe e 293
B.1.2.3 ANY VBIUB. ...ttt b et bbbt b e bt b e e b e e bt b e et et b e e e bt b 294
B.1.24 ANY VBIUE OF NONE......cuitiiietirtiiettrt ettt ettt ettt b et e e s st e e st b e s st eb e b et s b e e e st eb et et nbe b 295
B.1.25 B2 LU S =TSP 296
B.1.2.6 IS 0= TP 296
B.1.2.7 SUBSEL ...t ettt e Rt bt r e b et et e et be et e e nente st ereereneas 297
B.1.2.8 (@ p Tl gle e o 0 Te =!I = o S 299
B.1.29 V= o 1T gTo o (= oo (<o oo o | 299
B.1.2.10 Matching enumerated value With VaIUE TiStccueeivrie e 301
B.1.3 Matching MechaniSMS INSIAE VBIUEScoiuiiririeieic bbb 301
B.1.3.0 (€71 S 301
B.1.3.1 ANY BLOIMIENE. ...ttt b b a bt b e bRt b bbb et b bt rns 301
B.1.3.1.0 LT 0T | ST 301
B.1.3.1.1 Using single charaCter WilACArdS...........co.ceririeiririeiieneeiesereee et 301
B.1.3.2 Any number of elementS Or NO ElEMENT ..o e 302
B.1.3.2.0 LC T o1 - ST 302
B.1.3.2.1 Using multiple charaCter WildCards............occuveieieeiieeee et 302
B.1.33 PEIMNULBLION ...ttt et b bt e h e st et et se e eb e s bt e bt eb e saeese e e e b e seesrennis 302
B.1.4 Matching attribDULES Of VAIUESocueeieicec ettt s sne e e ne s 304
B.1.4.0 (€= 0T - SRRSO 304
B.1.4.1 (=10 |1 === o oL 304
B.1.4.2 The IfPreSent INAICAEONcoiiieeie ettt e et e e ee s e e e eneesaeneeseenneas 305
B.1.5 MaLChiNG CAraCLEr PELLEI......c.eeuiieieeere bbbt b et sbenne 306
B.1.5.0 (€71 PR 306
B.1.5.1 SEL EXPIESSION ...tttk sttt b et b e e he bt e bt b e seeh e b se ek e e b e se b e eh e ee Rt b e e bt bt R e e bt R e ene b e 308
B.1.5.2 REFEIENCE EXPIESSION ...ttt ettt b et b e bbb e bt b s e e st b e st et b e se et sb e ae e nbe e 308
B.1.5.3 Ve o = o= o) N T 0= 310
B.1.54 Match areferenCed CharaCter SEL....... ..o e e sr s 310
B.1.55 Type compatibility ruleS fOr PaLLEINS.cccveiiieie e esaesnaeenee s 311
B.1.5.6 Case insensitive pattern MatChiNg..........cocveieeieie e eae e sre e sneenne s 311
Annex C (nor mative): Predefined TTCN-3 fUNCLIONS.......ccoieieirinereeeee e 312
C.0 Generd exception handling ProCRAUNESccoiriririierere et 312
(O3 A @700 V= = oo I U o1 Lo 0 ST 312
Cl1 INEEGEY TO CNBIBCLENeceieeece bbbttt bbb b e 312
Cl1l2 INnteger 10 UNIVErSal CharaCterco.ciiiieieiee e 312
C.13 INEEGEN L0 DITSIIINGeveteee ettt bbbt bbb b e 312
Cl4 10 e e (= 180T (o 313
C.15 R 100 = (o =6 1 o USSP 313
C.l6 RIS e = (o0 (= K= 1 o TSP 313
Cl1l7 R 10 e =g (o e 7= 1 o T 314
C.18 100 = (o 1 [0 314
C.19 L L0z 0 (0N = 314
O e (O O 1= = ot (= O (el 101 = = TSRO PUPRSRORN 314
C.111 CharaCter t0 OCLEISIIINGeveueetereeieetereeieete sttt sttt se ettt b e e bt bt b e sb e e b e b e e ebesb e e et e sb e e ebesbeneebeene e 314
C.112 UNIVersal CharaCler tO INTEOENcoiieietereeeete sttt b e b b e b et et se e e ebesbeneebeene e 315
C.1A3 BItSHING IO IMEEOEN ..ottt ettt sttt ettt b et b e e bt e e bt b e se e bt e b e se e bt sbenb e e eb e sb e e ebesbeneebenneneas 315
C.114 BitStNG t0 NEXSLIINGcitiietiitirieiiiteseeeet ettt b et b e bt b e et b et se b b e e b b e e st nean 315
C.115 BitStriNG t0 OCLEISIIING ...t eveuertereeiertirteieet sttt b et b bbbt b et b et bt e bt e e s eneneas 316
L3050 G =1 €= T 0o (o e 7= =1 o 316

ETSI

10 ETSI ES 201 873-1 V4.9.1 (2017-05)

O 0t A o =TS (1 (o111 = 316
LT 0 S o =TS (1T I (o o1 €= 1 o 316
C.119 HeXSIING 10 OCLELSIIING ...euviieeeeeieieete et e s ee s s e ste et e e te e te et eestessaesseesteesteensesneesaeesaeenseenseensesnsnsnenss 317
C.1.20 HeXSIHNG 1O CRAISIIING .. .ccveieeeetiesie e ee et s ettt st et te e teestesreesteesreesteeeesseesseenseenseensesneesnenss 317
O30 2 R @ Tox = £ g To (o 1T 1= = 317
L% 2272 © Tox = = 1 1 g To [(o J o1 = 1 1 o T 318
C.1.23 OCLEtSLIING tO NEXSIITNG ...veveueetireeieete ettt sttt et e e b et bbb sb e e ebesbe e ebeene e 318
C.1.24 OCtetstring tO ChAraCter SIITNQcveverveiererieieterteie ettt sttt b et b e et eb e et sb e e ebesbeneebesne e 318
C.1.25 Octetstring to character String, VEISION [lc.cooiieiiiiiciiieiseeeeeeee et 318
C.1.26 CharStrinNg 10 INTEOEN .. .c.eitiieeeietert ettt ettt b et b et b bbbt e bt st e e bt s e st e bt s b e e eb e s b e s enenean 319
C.1.27 Character String t0 NEXSIINGcoueiuiieierieiet ettt st b e e eb e et sb e eb e b e ebesne e 319
C.1.28 Character String t0 OCLELSIIINGccveeveeieeieiiesee st esteesteeeeseeestees e e e estesseesseesreesseenseassesseenseenseensesnsnssenss 319
C.1.29 Character StriNG L0 flOBL.......ccceeie e s st e s e e sa e e e e s reenteereenreenensneens 320
LT 0 B = o 1W< = 1o (o I 1= PSSP 320
C.1.31 Octetstring to UNiversal CharaCler StHNQG.......coioveiieereerie e eiee e e e s e e e reeeeeneesnaesreeas 321
C.1.32 Universa character string tO OCLELSIIING ... cccueioueieereesieeeeeeee e ee e e e re e e e e e nteeeeenaeenaesreeas 321
C.1.33 Value or template to UNiversal CharString.........ccoooiriiiieeeeee e 322
C.2 Length/SIZE FUNCHIONScoeiieiiietiitieie ettt n e nn e 322
c21 Length Of StNGS @GN0 TISES ...ttt 322
C22 Number of elementsin a StruCtUred VBIUE..........ccoiiiiiiieieee e s 324
C.3 Presence CheCking fUNCHIONS ..o 325
C31 TNE ISPrESENT FUNCLION....c..eitiitieeeiee sttt b et b et e e bbbt et e st e ae e e e benbeene s 325
C3.2 THE ISCNOSEN FUNCLION. ...ttt b et e e et bttt s e e se e e e b e nnesne s 326
C33 TRE ISV AIUE FUNCLION ...ttt b bbbt e e b b sb e b st e e e e e benneene s 327
c34 I L K5t =To 0 g o 1070 Tox (o] o 1TSS 328
C35 Matching MeChani SM AELECTIONciiieiiree bbb 329
C.4 String/list handling fUNCLIONSc..oiuiieieieeees et 330
c41 QLI LS (=0 T2 oI 11 o 1 o o S 330
c4.2 I LSS T oS T o N 0 o) o R 332
Cc43 The REPIACE FUNCLION.ciieeee et este e e e e e stasteesteesreenseeeeennas 333
C.5 COUEC TUNCLIONS......uetiieieieieice sttt sttt et se s b e s aeabe st e s et e e e e e neesensesbeneens 333
C51 The encodiNg FUNCLION ..ottt et et r e eb b e b nre e 333
C5.2 The decodiNg FUNCLION..........ci ittt et b e et eb e b e ne b 334
C53 The encoding to universal charstring fUNCLIONccoiiiiiiine e 334
C54 The decoding from universal charstring fUNCLION............cooeiiiiiiic e 335
C55 The encoding t0 OCLELSIIING FUNCHION ..ot eb e 337
Cb56 The decoding from OCLELSIIING FUNCLIONovieiecece e 337
C57 Retrieving the type of String €NCOOINGc.vcieiieiierieceee e s sne e nae e 337
Cb538 Removing BOMs of UCS encoding SCHEMES..........cccviiiiie e 338
C.6 Oher fUNCLIONS.ccueiiiieieieece ettt sttt se st e nbe st e sbe e e neesenseenenrens 338
c6.1 The random number generator FUNCLIONc.oiiiiiiirc e 338
C6.2 The testCaseNamME fUNCLIONcc.oii ettt s a e e e st e eesneene s 339
C6.3 B 1= 01 o I 10 T 1 g TSRS 339
Annex D (normative): Preprocessing MACT OS........cccueiviieeiieieeeeste et se e st saee e sreeaesresaeenns 341
2O T = o1 S 341
D.1 Preprocessing Mmacro _ MODULE__ ..o 341
D.2 Preprocessingmacro FILE oottt e e 341
D.3 Preprocessing Macro _ BFILE_ ..ot s 341
D.4 Preprocessing Macro _ LINE .ot 341
D.5 Preprocessing macro SCOPE. ..ottt ettt st st sre e e ne e 342
Annex E (informative): Library of USEfUl TYPESccccoieeeieiiisierese et 344
R I 10 = 0TSSP 344

ETSI

11 ETSI ES 201 873-1 V4.9.1 (2017-05)

E.2 USEfUl TTCN-BIYPES.....oiiticiiiteitieste sttt te st et e st st e ae s beeae e besaeesesteensestesreentesreeaeensenneens 344
E21 USEfUl SIMPIE DASIC LYPES ... e ieee ettt st e e re et e e e e snteentesaeesneesneenseenes 344
E.2.1.0 Signed and unsigned SiNgIe DYLE INLEJEISccveieiie e 344
E211 Signed and UNSIGNE SNOM INEEJEIS.....c.eivireeeeierieeet ettt sb e et b e et n e ebesre e 344
E212 Signed and UNSIgNEd 10N INTEJETSc.coviiiiieieieeet ettt ettt ebesre e 345
E213 Signed and unsigned 10NGIONG INEEJENSc.eitirieiiireeere ettt s eb e e 345
E214 [EEE 754 FIOBLS. ... eiteiteeteeeeuieseenese st ste st e e eeseeste et et e e e e e e seesbesseeaeeneensaneeseeebesaeeneeneensesseseennes 345
E.2.2 USeful CharaCter StHNG TYPESottt sb e e 346
E.220 UTF-8 character String "ULFBSIING"covciiirieiie e 346
E221 BMP character string "DmPStrinNg™cooeeee ettt ne e 346
E.2.2.2 UTF-16 character String "UtFLBSLING"ccveiveeieeie et ne s 346
E.2.2.3 ISO/IEC 10646 character string "iSO8859SIIING"cvvevieierie et e st eae e 346
E.2.24 Status values fOr TTCN-3 ODJECLS.......ociieie et s 347
E.2.25 Template Kinds Of TTCN-3 OBJECEScveeciieiice e 347
E.2.3 USEFUI SETUCIUMEA LY PES......veeee sttt sttt ettt e et e et e e e ene et e e te e teentesnaesanesneesneenseenes 347
E.2.30 Fixed-point deCimal [ITEIalcccoieiieiees et 347
E24 USEFUL BEOMIC SLING TYPES. ...ttt ettt bbb et b et b nnne 348
E241 Single Recommendation I TU-T T.50 CharaCter type........cccoeeeereneneese e 348
E24.2 Single UNiVErsal CharaCter TYPE.......coiiiiieerieeeie ettt b e e ebe e 348
E.243 SINGIE DI LY .ttt b et bbbt b E et bbb e bt r e e ne b e 348
E244 SINGIE NEX LY .ttt bbb et b et h e b st a b ekt b e b r e ene b e 348
E.245 ST Te = o B Y o= S 348
Annex F (informative): Operationson TTCN-3 active ODj ECtS.........ccveerererereneneeeeeeee 349
O T = o= o ST 349
e O = 0] .00 = 1TSS 349
F.1.1 TSt COMPONENE FEFEIEINCES. ...ttt ettt ettt bbbt b e et b e b ne et s b e e b e b neenesre e 349
F.1.2 Dynamic DENAVIOUN Of PTCS.......ciuiieiiiiieieitie ettt 350
F.1.3 Dynamic behaviour Of the MTC........coiiice e 352
A I 00T £ ST 352
G T o KOTSRS 353
F.3.0 GENEIEL ...ttt bbb b bbb bR e bbbttt b bbb en s 353
F.3.1 CoNfigUIAtion OPEIELIONS.c.couireeuirtereeieete ettt ettt sttt sttt st st b e bt et sb et b e s b et besa et ebenee e b nnens 353
F.3.2 POrt CONrolliNG OPEIELIONSceeueitiietirteietest ettt sb bt b e bbbt e s e b e e eae e enes 354
F.3.3 COMMUNICALION OPEIALTIONS.c.ve ettt sttt sttt sttt b et b e e bt bese et s b et e b b et be b neebe s e e e b nnens 355
Annex G (informative): Deprecated language fEatUres.........covvveceeveceese s 356
G.1 Group style definition of MOdUIE PAraMELEN'S............coiiirierieee e 356
G.2 RECUISIVE IMPONT .ttt ss bt e et e bbbt e b e s et e s e e e e e aeeb e b nn e e e e 356
G.3 Usingal | inport type defiNitiONS.........ccccuriririrenereriee s nee s 356
G.4 SIZeof TOr 1eNGN OF [ISES....ccuiiiiieiiee e 356
G.5 sizeoftype predefined FUNCLIONcoe et 356
LT T\ 1= o I oo TS 356
G.7 EXEEINGl CONSLANTS ...ttt sttt sttt sttt b et st e bt et e e st nb e benee e e e 357
G.8 Prefixing enUMErated VAIUBS ..ot 357
G.9 Record of/arrays not compatible to record; set of not compatible with Set...........cccooveiinieninnene 357
G.10 The"UCS-2" predefined variant attribute StriNg.........cccoeieeiiiii et 357
G.11 Prefixing identifiers of local definitions with module identifiers...........ooovveieieiiiiiieneie 357
G.12 Matching expressions Of iNCOMPALIDIE LYPESevuiiiriirireieee e 357
Annex H (informative): Bibliographyooceeeeee e 358

ETSI

12 ETSI ES 201 873-1 V4.9.1 (2017-05)

ETSI

13 ETSI ES 201 873-1 V4.9.1 (2017-05)

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential |PRs, if any, ispublicly available for ETSI member s and non-member s, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards', which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (https://ipr.etsi.org/).

Pursuant to the ETSI IPR Palicy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given asto the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword

ThisETSI Standard (ES) has been produced by ETSI Technical Committee Methods for Testing and Specification
(MTS).

The present document is part 1 of a multi-part deliverable covering the Testing and Test Control Notation version 3, as
identified below:

Part 1: "TTCN-3 CorelLanguage";

Part2: "TTCN-3 Tabular presentation Format (TFT)";
NOTE: Part 2 of this multi-part deliverable isin status "historical” and is not maintained.
Part3: "TTCN-3 Graphical presentation Format (GFT)";
Part 4: "TTCN-3 Operational Semantics';

Part5: "TTCN-3 Runtime Interface (TRI)";

Part 6: "TTCN-3 Control Interface (TCI)";

Part 7: "Using ASN.1 with TTCN-3";

Part8: "ThelDL to TTCN-3 Mapping";

Part9: "Using XML schemawith TTCN-3";

Part 10: "TTCN-3 Documentation Comment Specification”;
Part 11: "Using JSON with TTCN-3";

Part 12: "Using WSDL with TTCN-3".

Modal verbs terminology

In the present document “shall”, "shall not", "should", “should not", "may", "need not", "will", "will not", "can" and
"cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of
provisions).

"must” and "must not" are NOT alowed in ETSI deliverables except when used in direct citation.

ETSI

https://ipr.etsi.org/
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx

14 ETSI ES 201 873-1 V4.9.1 (2017-05)

1 Scope

The present document defines the Core Language of TTCN-3. TTCN-3 can be used for the specification of al types of
reactive system tests over avariety of communication ports. Typical areas of application are protocol testing (including
mobile and Internet protocols), service testing (including supplementary services), module testing, testing of CORBA®
based platforms, APIs, etc. TTCN-3 is not restricted to conformance testing and can be used for many other kinds of
testing including interoperability, robustness, regression, system and integration testing. The specification of test suites
for physical layer protocolsis outside the scope of the present document.

TTCN-3isintended to be used for the specification of test suites which are independent of test methods, layers and
protocols. In addition to the textual format defined in the present document, while GFT (ETSI ES 201 873-3 [i.2])
defines a graphical presentation format for TTCN-3. The specification of these formatsis outside the scope of the
present document.

While the design of TTCN-3 has taken the eventual implementation of TTCN-3 translators and compilersinto
consideration the means of realization of Executable Test Suites (ETS) from Abstract Test Suites (ATS) is outside the
scope of the present document.

2 References

2.1 Normative references

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected |ocation might be found at
http://docbox.etsi.org/Reference.

NOTE: While any hyperlinksincluded in this clause were valid at the time of publication ETSI cannot guarantee
their long term validity.

The following referenced documents are necessary for the application of the present document.

[1] ETSI ES 201 873-4: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 4: TTCN-3 Operational Semantics®.

2] I SO/IEC 10646 (2014): "Information technology -- Universal Coded Character Set (UCS)".

[3] Recommendation ITU-T X.292: "OSl| conformance testing methodology and framework for
protocol Recommendations for ITU-T applications - The Tree and Tabular Combined Notation
(TTCN)".

NOTE: The corresponding | SO/IEC standard is I|SO/IEC 9646-3: "Information technology -- Open Systems
Interconnection -- Conformance testing methodology and framework -- Part 3: The Tree and Tabular
Combined Notation (TTCN)".

[4] Recommendation ITU-T T.50: "International Reference Alphabet (IRA) (Formerly International
Alphabet No. 5 or IA5) - Information technology - 7-bit coded character set for information
interchange”.

NOTE: The corresponding |SO/IEC standard is | SO/IEC 646: "Information technology -- SO 7-bit coded
character set for information interchange'.

[5] Recommendation ITU-T X.290: "OSl conformance testing methodology and framework for
protocol Recommendations for ITU-T applications - General concepts’.

NOTE: The corresponding ISO/IEC standard is | SO/IEC 9646-1: "Information technology -- Open Systems
Interconnection -- Conformance testing methodology and framework; Part 1: General concepts'.

[6] |IEEE 754™: "|EEE Standard for Floating-Point Arithmetic".

ETSI

http://docbox.etsi.org/Reference

2.2

15 ETSI ES 201 873-1 V4.9.1 (2017-05)

Informative references

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

NOTE:

While any hyperlinksincluded in this clause were valid at the time of publication ETSI cannot guarantee
their long term validity.

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1]
[i.2]

[i.3]

[i.4]

[i.5]

[i.6]

[i.7]

[i.8]

[i.9]
[i.10]

[i.11]

[i.12]

[i.13]

[i.14]

[i.15]
[i.16]

Void.

ETSI ES 201 873-3: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 3: TTCN-3 Graphica presentation Format (GFT)".

ETSI ES 201 873-5: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 5: TTCN-3 Runtime Interface (TRI)".

ETSI ES 201 873-6: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 6: TTCN-3 Control Interface (TCI)".

ETSI ES 201 873-7: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 7: Using ASN.1 with TTCN-3".

ETSI ES 201 873-8: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 8: The IDL to TTCN-3 Mapping".

ETSI ES 201 873-9: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 9: Using XML schemawith TTCN-3".

ETSI ES 201 873-10: "Methods for Testing and Specification (MTS); The Testing and Test
Control Notation version 3; Part 10: TTCN-3 Documentation Comment Specification".

Void.

Object Management Group (OMG) (2001): "The Common Object Request Broker: Architecture
and Specification - IDL Syntax and Semantics'. Version 2.6, FORMAL/01-12-01.

ETSI ES 202 781: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; TTCN-3 Language Extensions: Configuration and Deployment Support".

ETSI ES 202 784: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; TTCN-3 Language Extensions: Advanced Parameterization”.

ETSI ES 202 785: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; TTCN-3 Language Extensions. Behaviour Types".

ETSI ES 202 782: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; TTCN-3 Language Extensions. TTCN-3 Performance and Real Time Testing".

I SO/IEC 10646 (2003): "Information technology -- Universal Coded Character Set (UCS)".

ETSI ES 201 873-2: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 2: TTCN-3 Tabular presentation Format (TFT)".

ETSI

16 ETSI ES 201 873-1 V4.9.1 (2017-05)

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in Recommendation ITU-T X.290 [5],
Recommendation I TU-T X.292 [3] and the following apply:

actual parameter: value, expression, template or name reference (identifier) to be passed as parameter to the invoked
entity (function, test case, atstep, etc.) as defined at the place of invoking

assignment notation: notation that can be used for record, set, record of and set of values, where the fields or the
elemens to which avalueis assigned are identified explicitly within apair of curly brackets ("{" and "}") by the field
names or the positions of the elements

basic types: set of predefined TTCN-3 types described in clauses 6.1.0 and 6.1.1 of the present document
NOTE: Basictypes are referenced by their names.

behaviour definition: Definition of dynamic test behaviour. Behaviour definitions are either t est case, f uncti on,
al t st ep or modulecont r ol part definitions.

communication port: abstract mechanism facilitating communication between test components

NOTE: A communication port is modelled as a FIFO queue in the receiving direction. Ports can be
message-based or procedure-based.

compatibletype: TTCN-3 isnot strongly typed but the language does require type compatibility
NOTE: Variables, constants, templates, etc. have compatible typesif conditionsin clause 6.3 are met.

completely initialized: Value or template is completely initialized if it is not uninitialized and, if itstypeis a structured
type, al itsrequired parts are completely initialized. Additionally, templates are completely initialized if they are
assigned a matching mechanism all parts of which are completely initialized. If a value or template is completely
initialized, it fulfills the requirement of being "at least partially initialized".

NOTE: A vaueor template of asimple, conponent or def aul t typeiscompletely initialized if anything but
the unchanged symbol "-" has been assigned to it.
A value or template of auni on or anyt ype typeiscompletely initialized if one of its variants has been
completely initialized.
A value or template of ar ecor d or set type with only optional fields and the opt i onal
"inplicit omt" attribute attached, is completely initialized if the value"{ } " isassigned, as all
fieldsareimplicitly settoomi t .
A value or template of ar ecor d or set type with no fields is completely initialized with assignment of
thevaue"{}".
A value or template of ar ecor d of , set of or array typeis completely initialized if at |east the first n
elements are completely initialized, where n is the minimal length imposed by the type length restriction
or array definition. Thusin case of n equals 0, the assignment of the value "{}" also completely initializes
sucharecord of,set of orarray.

component constant: constant defined in a component type
component port: port defined in a component type
component template: template defined in a component type
component timer: timer defined in a component type
component variable: variable defined in a component type

data types: common name for simple basic types, basic string types, structured types, the special data type anytype and
all user defined types based on them

NOTE: Seetable 3 of the present document.

ETSI

17 ETSI ES 201 873-1 V4.9.1 (2017-05)

defined types (defined TTCN-3 types): set of al predefined TTCN-3 types (basic types, al structured types, the type
anytype, the address, port and component types and the default type) and all user-defined types declared either in the
module or imported from other TTCN-3 modules

deterministic function: function that for the same input in the in and inout parameters always yields the same output
both for the return result as well as the inout and out parameters

NOTE 1. A non-deterministic function is one that is not deterministic.

NOTE 2: Ingenerdl, it cannot be decided if afunction is deterministic or not. However, a function can be specified
to be deterministic, i.e. the function is supposed to be deterministic. In this case, aviolation of the
determinism can be detected and handled accordingly. The handling however is tool-specific.

dynamic parameterization: form of parameterization, in which actual parameters are dependent on runtime events

EXAMPLE: The value of the actual parameter is a value received during runtime or depends on a received
value by alogical relation.

exception: in cases of procedure-based communication, an exception (if defined) israised by an answering entity if it
cannot answer a remote procedure call with the normal expected response

formal parameter: typed name or typed template reference (identifier) not resolved at the time of the definition of an
entity (function, test case, atstep, etc.) but at the time of invoking it

NOTE: Actual vaues or templates (or their names) to be used at the place of formal parameters are passed from
the place of invoking the entity (see also the definition of actual parameter).

fuzzy value or template: If avalue or template instance is declared to be fuzzy, the expression, initializing or partly
initializing it (including actual parameters passed to in formal parameters), is subject to lazy evaluation. During
execution, this expression is re-evaluated each time when the fuzzy object is referenced, except when at the left hand
side of an assignment or passing it to afuzzy or lazy formal parameters. The result of this (re)evaluation is used as the
actual value or template of the fuzzy instance. When new content is assigned to a fuzzy instance or to its subpart, the
right hand side of the assignment is subject to lazy eval uation again.

global visibility: attribute of an entity (module parameter, constant, template, etc.) whose identifier can be referenced
anywhere within the module where it is defined including all functions, test cases and altsteps defined within the same
module and the control part of that module

I mplementation Confor mance Statement (ICS): See Recommendation ITU-T X.290 [5].
Implementation eXtra Information for Testing (IXI1T): See Recommendation ITU-T X.290 [5].
Implementation Under Test (IUT): See Recommendation ITU-T X.290 [5].

in parameterization: kind of parameterization where the value of the actual parameter (the argument) is assigned to the
formal parameter when the parameterized object isinvoked, but the value of the formal parameter is not passed back to
the actual parameter when the invoked object completes

NOTE 1: Ini n parameterization, parameters are passed by value.
NOTE 2: The arguments are eval uated before the parameterized object is entered.

NOTE 3: Only the values of the arguments are passed and changes to the arguments within the invoked object have
no effect on the arguments as seen by the invoking object.

index notation: notation to access individual elements of record of, set of, array and string values or templates, where
the element to be accessed isidentified explicitly by an index value enclosed in square brackets ("[" and "]") which
specifies the position of that element within the referenced value or template and the index value is either an integer
value, array of integers or record of integers

NOTE: Integer values used for indexing (either directly or as elements of the record of or array values) awayslie
within the index range of the type of the referenced value or template. Except for those arrays which are
defined with an explicit index range, the index range always has 0 as the index for the first element.

ETSI

18 ETSI ES 201 873-1 V4.9.1 (2017-05)

initialization: value or template, or avalue or template field isinitialized when a content isfirst assigned to it

NOTE: The assignment may be explicit at the declaration of the given object, in which case the same restrictions
apply as for the right-hand side of the assignment operation, or at first use on the left-hand side of an
assignment, or may be implicit. Implicit initialization occurs when a yet uninitialized object is passed as
actual parameter to an out formal parameter of adirectly called testcase, function or altstep returns with a
non-uninitialized value or template that is assigned to the actual parameter; or when modul e parameters
not initialized in the TTCN-3 code get their runtime values before test suite execution.

inout parameterization: kind of parameterization that uses passing by reference, i.e. when the parameterized object is
invoked, the formal parameter is linked with the actual parameter and gets direct access to the same data content that is
currently represented by the actual parameter.

NOTE 1. Theinvoked object uses the actual parameter directly, so that all changes made in the formal parameter
become immediately effective on the actual parameter. If the same actual parameter is passed to two
distinct formal parameters, a change in one formal parameter becomes immediately effective in the other
one (and in the actual parameter).

NOTE 2: Inout parameters can be used for functions, atsteps, and test cases only, if not restricted by further rules,
e.g. dtsteps activated as defaults.

known types: set of all TTCN-3 predefined types, types defined in a TTCN-3 module and types imported into that
module from other TTCN-3 modules or from non-TTCN-3 modules

lazy evaluation: Lazy evaluation means that evaluation of an expression is delayed during execution until the value or
template instance, to which the result of the evaluation should have been assigned or passed to as actual parameter, is
first referenced at an other place than the left hand side of an assignment or an actual parameter passed to afuzzy or
lazy formal parameter. During execution, this delayed evaluation is carried out at the first actual reference, even when
the result isto be used in an expression that is also subject to lazy evaluation. For the evaluation the actual values at the
time of the evaluation are to be used (not the actual values at the time of the assignment or parameter passing). This
implies that components of the expression may be uninitialized at the time, when execution reaches the assignment or
parameter passing, but may be initialized by the time of the evaluation that can lead to successful evaluation. If, by the
time of the evaluation, execution has |eft the scope unit, in which one or more components of the expression is defined,
the actual values of the component(s) at the time of leaving the scope unit are to be stored for the purpose of the delayed
evaluation (but only for that, i.e. the values are not accessible for the user).

lazy value or template: A value or template instance is called lazy, when the expression, initializing or partly
initializing it (including actual parameters passed to in formal parameters), is subject to lazy evaluation. When, during
execution, the delayed (lazy) evaluation is taking place, itsresult is stored in the lazy value or template and the lazy
instance is used further on like ordinary values and templates, until the next use of the lazy variable or parameter on the
left hand side of an assignment. When a new content is assigned to alazy instance or to its subpart, the right hand side
of the assignment is subject to lazy evaluation again. If, during execution, no expression referencing the lazy object is
evaluated, the lazy value or template instance is never evaluated.

left hand side (of assignment): value or template variable identifier or afield name of a structured type value or
template variable (including array index if any), which stands left to an assignment symbol (:=)

NOTE: A constant, module parameter, timer, structured type field name or a template header (including template
type, name and formal parameter list) standing left of an assignment symbol (:=) in declarations and or a
modified template definitions are out of the scope of this definition as not being part of an assignment.

local visibility: attribute of an entity (constant, variable, etc.) that itsidentifier can be referenced only within the
function, test case or atstep whereit is defined

Main Test Component (MTC): See Recommendation ITU-T X.292 [3].

out parameterization: kind of parameterization where the actual parameter's content (the argument) is not passed to
the formal parameter when the parameterized object is invoked, but the content of the formal parameter is passed back
to the actual parameter when the invoked object completes, if the formal parrameter has been initialized during the
invocation. The actual parameter is the reference evaluated at the time of the invocation

NOTE 1: Inout parameterization, parameters are passed by value.

ETSI

19 ETSI ES 201 873-1 V4.9.1 (2017-05)

NOTE 2: Out parameters can be used for functions, altsteps, and test cases only, if not restricted by further rules,
eg. al t st epsactivated as defaults.

NOTE 3: Anout formal parameter is uninitialized (unbound) when the invoked object is entered.
Parallel Test Component (PTC): See Recommendation ITU-T X.292[3].

partially initialized: value or template is partialy initialized if initialization has taken place on it or to at least one of its
fields or elements

NOTE: A template variableisinitialized if a matching mechanism has been assigned to it or to at least one of its
fields or elements, directly or indirectly via expansion (see clause 15.6). A templateisinitialized if a
matching mechanism has been assigned to it, directly or indirectly via expansion (see clause 15.6).

passing by reference: ability to link an actual parameter with aformal parameter of afunction, altstep or test case and
to control its actual value within the function, altstep or test case by using the formal parameter reference, i.e. no copy
of the data content is made and the actual and formal parameters share the same data content

passing by value: ability to make a copy of a data content of an actual or formal parameter before passing it to a formal
or actual parameter, i.e the actual and formal parameters do not share the same data content

port parameterization: ability to pass aport as an actual parameter into a parameterized object viaa port parameter
NOTE: Thisactua port parameter is added to the specification of that object and may completeit.
qualified name: TTCN-3 elements can be identified unambiguously by qualified names

NOTE: For modules, the qualified name is the <module name>. For global definitions such as testcases,
functions, etc., the qualified name is <module name>.<definition name>. For control, the qualified name
is <module name>.control. For local definitions, such as variables, local templates, etc. within a global
definition, the qualified name is <module name>.<global definition name>.<local definition name>.

right hand side (of assignment): expression, template reference or signature parameter identifier which stands right to
an assignment symbol (:=)

NOTE: Expressions and template references standing right of an assignment symbol (:=) in constant, module
parameter, timer, template or modified template declarations are out of the scope of this definition as not
being part of an assignment.

root type: root types of types derived from TTCN-3 basic types are the respective basic types

NOTE 1. Theroot type of user defined record typesisr ecor d, the root type of user defined record of and array
typesisrecord of, theroot type of user defined set typesisset , the root type of user defined set of
typesisset of . Theroot type of user defined union typesis union and the root type of anytypesis
anyt ype. Theroot types of special configuration types are def aul t or conponent , respectively.
Port types do not have aroot type.

NOTE 2: Asaddr ess ismore a predefined type name than a distinct type with its own properties, the root type of
an addr ess type and all of its derivatives are the same as the root type was, if the type was defined with
aname different from addr ess.

static parameterization: form of parameterization, in which actua parameters are independent of runtime events;
i.e. known at compile time or in case of module parameters are known by the start of the test suite execution

NOTE 1. A static parameter isto be known from the test suite specification, (including imported definitions), or the
test system is aware of its value before execution time.

NOTE 2: All types are known at compiletime, i.e. are statically bound.
strong typing: strict enforcement of type compatibility by type name equivalence with no exceptions

System Under Test (SUT): See Recommendation ITU-T X.290 [5].

ETSI

20 ETSI ES 201 873-1 V4.9.1 (2017-05)

template: TTCN-3 data objects are values or templates by definition. A TTCN-3 template identifies a subset of the
values of itstype (where the subset may contain a single instance of the type, several instances or al instances) or the
matching mechanism omi t . Templates are defined by global and local templates, template variable definitions, or
formal template parameters. Any of those are templates from the point of view of their usage, irrespective of their actual
content; for example, atemplate variable containing a specific value is atemplate.

template parameterization: ability to pass atemplate as an actual parameter into a parameterized object via atemplate
parameter

NOTE 1. Thisactual template parameter is added to the specification of that object and may completeit.
NOTE 2: Values passed to formal template parameters are considered to be in-line templates (see clause 15.4).

test behaviour: (or behaviour) test case, function or altstep started on atest component when executing an execut e
or ast art component statement and all functions and atsteps called recursively

NOTE: During atest case execution each test component has its own behaviour and hence several test behaviours
may run concurrently in the test system (i.e. atest case can be seen as a collection of test behaviours).

test case: See Recommendation ITU-T X.290 [5].
test case error: See Recommendation ITU-T X.290 [5].

test suite: set of TTCN-3 modules that contains a completely defined set of test cases, optionally supplemented with
one or more TTCN-3 control parts

test system: See Recommendation ITU-T X.290 [5].

test system interface: test component that provides a mapping of the ports available in the (abstract) TTCN-3 test
system to those offered by the SUT

timer parameterization: ability to pass atimer as an actual parameter into a parameterized object via a timer
parameter

NOTE: Thisactua timer parameter is added to the specification of that object and may completeit.

type compatibility: language feature that allows to use values, expressions or templates of a given type as actual values
of another type

EXAMPLE: At assignments, as actual parameters at calling afunction, referencing atemplate, etc. or asa
return value of afunction.

type context: "In the context of atype" meansthat at |east one object involved in the given TTCN-3 action (an
assignment, operation, parameter passing, etc.) identifies a concrete type unambiguously

NOTE: Either directly (e.g. an in-line template) or by means of atyped TTCN-3 object (e.g. via a constant,
variable, formal parameter, etc.).

uninitialized: value or templateis uninitialized as long as no initialization of it or at least one of its parts has occurred
unqualified name: unqualified name of a TTCN-3 element isits name without any qualification
user-defined type: type that is defined by subtyping of a basic type or declaring a structured type
NOTE: User-defined types are referenced by their identifiers (names).
value: TTCN-3 data objects are values or templates by definition. A TTCN-3 valueis an instance of itstype

NOTE: Vauesare defined by module parameters, constants, value variables, or formal value parameters. Any of
those are value objects from the point of view of their usage. A template containing only specific value
matching - though referring to a single instance of its type - is not a value object, but is atemplate object.

valuelist notation: notation that can be used for record, set, record of and set of values, where the values of the
subsequent fields or elements are listed within apair of curly brackets ("{" and "}"), without an explicit identification of
the field name or element position

ETSI

21 ETSI ES 201 873-1 V4.9.1 (2017-05)

value notation: notation by which an identifier is associated with a given value or range of a particular type

NOTE: Vaues may be constants or variables.

value parameterization: ability to pass avalue as an actual parameter into a parameterized object viaavalue

parameter

NOTE: Thisactua value parameter is added to the specification of that object and may complete it.

3.2 Abbreviations

For the purposes of the present document, the following abbreviations apply:

AP
ASN
ASP

Application Programming Interface
Abstract Syntax Notation
Abstract Service Primitive

NOTE: See Recommendation ITU-T X.290 [5].

ATS
BER
BMP
BNF
BOM
CORBA®
ETS
FIFO
GFT
ICS
IDL
IRV
ITU-T
uT
IXIT
MTC
PDU

Abstract Test Suite

Basic Encoding Rules

Basic Multilingual Plane

Backus-Nauer Form

Byte Order Mark

Common Object Request Broker Architecture
Executable Test Suite

First In First Out

Graphical presentation Format

I mplementation Conformance Statement
Interface Definition Language

International Reference Version

International Telecommunication Union Telecommunication Standardization Sector
Implementation Under Test

Implementation eXtra Information for Testing
Main Test Component

Protocol Data Unit

NOTE: See Recommendation ITU-T X.290 [5].

PTC
RHS
SDL
SUT
TCl
TE

Parallel Test Component

Right Hand Side (of assignment)
Specification and Description Language
System Under Test

TTCN-3 Control Interfaces

TTCN-3 Executable

NOTE: Seealso ETSI ES201873-5[i.3].

TFT
TRI

TS
TTCN-3
ucs
uID

Tabular presentation Format

TTCN-3 Runtime Interfaces

Test System Interface

Testing and Test Control Notation version 3
Universal Character Set

Short identifier for character code point

NOTE: SeelSO/IEC 10646 [2], clauses 6.5 and 6.6.

usl

UTF
UTF-8
UTF-16
UTF-16BE
UTF-16LE

UCS Short Identifier

UCS Transformation Format

Unicode Transformation Format-8

Unicode Transformation Format-16

Unicode Transformation Format-16 big-endian
Unicode Transformation Format-16 little-endian

ETSI

22 ETSI ES 201 873-1 V4.9.1 (2017-05)

UTF-32 Unicode Transformation Format-32
UTF-32BE Unicode Transformation Format-32 big-endian
UTF-32LE Unicode Transformation Format-32 little-endian
XML eXtensible Markup Language

4 Introduction

4.0 General

TTCN-3isaflexible and powerful language applicable to the specification of al types of reactive system tests over a
variety of communication interfaces. Typical areas of application are protocol testing (including mobile and Internet
protocols), service testing (including supplementary services), module testing, testing of CORBA® based platforms,
API testing, etc. TTCN-3is not restricted to conformance testing and can be used for many other kinds of testing
including interoperability, robustness, regression, system and integration testing.

NOTE 1: CORBA® isthe trade name of a product supplied by Object Management Group®. Thisinformation is
given for the convenience of users of the present document and does not constitute an endorsement by
ETSI of the product named. Equivalent products should be used if they can be shown to lead to the same
results.

TTCN-3 includes the following essential characteristics:
e theability to specify dynamic concurrent testing configurations;
. operations for procedure-based and message-based communication;
o theability to specify encoding information and other attributes (including user extensibility);
. the ability to specify data and signature templates with powerful matching mechanisms;
. value parameterization;
e theassignment and handling of test verdicts;
. test suite parameterization and test case selection mechanisms;
. combined use of TTCN-3 with other languages;
. well-defined syntax, interchange format and static semantics;
. different presentation formats (e.g. tabular and graphical presentation formats);
. a precise execution algorithm (operational semantics).

NOTE 2: The present document uses the following model of concept description: concepts, principles and
mechanisms are explained in (introductory) text at the beginning of a clause. For every concept having
concrete syntax, the syntactical structure of that concept is presented afterwards. The syntactical structure
follows the conventions for the TTCN-3 syntax description in clause A.1.1 and uses rules of the TTCN-3
BNF given in clause A.1. A semantic description follows the syntactic structure. The restrictions on the
concept are listed subsequently. Finally, examples on the usage of the concept are given.

In case of a contradiction between the body of the present document (clauses 5 to 27) and annex A of the present
document, annex A has the priority.

4.1 The core language and presentation formats

The TTCN-3 specification is separated into several parts (seefigure 1).
Thefirst part, defined in the present document, is the core language.

The third part, defined in ETS| ES 201 873-3 [i.2], isthe graphical presentation format.

ETSI

23 ETSI ES 201 873-1 V4.9.1 (2017-05)

The fourth part, ETSI ES 201 873-4 [1], contains the operational semantics of the language.
Thefifth part, ETSI ES 201 873-5[i.3], defines the TTCN-3 Runtime Interface (TRI).
The sixth part, ETSI ES 201 873-6 [i.4], defines the TTCN-3 Control Interfaces (TCI).
The seventh part, ETSI ES 201 873-7 [i.5], specifies the use of ASN.1 definitions with TTCN-3.
The eight part, ETSI ES 201 873-8[i.6], specifies the use of IDL definitions with TTCN-3.
The ninth part, ETSI ES 201 873-9 [i.7] specifies the use of XML definitions with TTCN-3.
The tenth part, ETSI ES 201 873-10 [i.8] specifies documentation tags for TTCN-3.
The core language serves three purposes:

a) asageneralized text-based test language in its own right;

b) asastandardized interchange format of TTCN-3 test suites between TTCN-3 toals;

c) asthe semantic basis (and where relevant, the syntactical basis) for various presentation formats.

The core language may be used independently of the presentation formats. However, neither the tabular format nor the
graphical format can be used without the core language. Use and implementation of these presentation formats will be
done on the basis of the core language.

The tabular format and the graphical format are the first in an anticipated set of different presentation formats. These
other formats should be standardized presentation formats or they may be proprietary presentation formats defined by
TTCN-3 users themselves. These additional formats are not defined in the present document.

TTCN-3 may optionally be used with TTCN-3 packages, which define additional concepts for specific purposes.

TTCN-3 may optionally be used with other type-value notations in which case definitions in other languages may be
used as alternative data type and value syntax. Other parts of the TTCN-3 standard specify use of some other languages
with TTCN-3. The support of other languagesis not limited to those specified in the ETSI ES 201 873 series of
documents but to support languages for which combined use with TTCN-3 is defined, rules given in the present
document apply.

Deployment Advanced Behavior TTCN-3
and Parameteri- Types e Packages
Configuration zation
Support ™
TTCN-3 &
ASN.1 Types .| Core b
& Values "| Language Tabular
format -
IDL Types o
LT Graphical P
ypes format -
> === TTCN-3 User
Other Types . Presentation | The shaded boxes are not
& Values,, i format ., < defined in this document

Figure 1. User's view of the core language, its packages and the various presentation formats
The core language is defined by a complete syntax (see annex A) and operational semantics (ETSI ES 201 873-4 [1]). It

contains minimal static semantics (provided in the body of the present document and in annex A) which do not restrict
the use of the language due to some underlying application domain or methodology.

ETSI

24 ETSI ES 201 873-1 V4.9.1 (2017-05)

4.2 Unanimity of the specification

The language is specified syntactically and semantically in terms of atextual description in the body of the present
document (clauses 5 to 27) and in aformalized way in annex A. In each case, when the textual descriptionis not
exhaustive, the formal description completesit. If the textual and the formal specifications are contradictory, the | atter
shall take precedence.

4.3 Conformance

For an implementation claiming to conform to this version of the language, al features specified in the present
document shall be implemented consistently with the requirements given in the present document and in ETSI
ES 201 873-4[1].

) Basic language elements

50 General

The top-level unit of TTCN-3 isamodule. A module cannot be structured into sub-modules. A module can import
definitions from other modules. Modules can have module parameters to allow test suite parameterization.

A module consists of adefinitions part and a control part. The definitions part of a modul e defines test components,
communication ports, data types, constants, test data templates, functions, signatures for procedure calls at ports, test
cases, etc.

The control part of amodule calls the test cases and controls their execution. The control part may also declare (local)
variables, etc. Program statements (such asi f -el se and do- whi | e) can be used to specify the selection and
execution order of individual test cases. The concept of global variablesis not supported in TTCN-3.

TTCN-3 has a number of predefined basic data types as well as structured types such as records, sets, unions,
enumerated types and arrays.

A specia kind of data structure called atemplate provides parameterization and matching mechanisms for specifying
test datato be sent or received over the test ports. The operations on these ports provide both message-based and
procedure-based communication capabilities. Procedure calls may be used for testing implementations which are not
message based.

Dynamic test behaviour is expressed as test cases. TTCN-3 program statements include powerful behaviour description
mechanisms such as alternative reception of communication and timer events, interleaving and default behaviour. Test
verdict assignment and logging mechanisms are also supported.

Finally, TTCN-3 language elements may be assigned attributes such as encoding information and display attributes. It is
also possible to specify (non-standardized) user-defined attributes.

The TTCN-3 language elements are summarized in table 1.

ETSI

25

ETSI ES 201 873-1 V4.9.1 (2017-05)

Table 1: Overview of TTCN-3 language elements

Language element Associated | Specified in | Specified in | Specified in | Specified in
keyword module module functions/ test
definitions control altsteps/ test| component
cases type
TTCN-3 module definition module
Import of definitions from other module |[import Yes
Grouping of definitions group Yes
Data type definitions type Yes
Communication port definitions port Yes
Test component definitions component Yes
Signature definitions signature Yes
External function definitions external Yes
Constant definitions const Yes Yes Yes Yes
Data/signature template definitions template Yes Yes Yes Yes
Function definitions function Yes
Altstep definitions altstep Yes
Test case definitions testcase Yes
Value variable declarations var Yes Yes Yes
Template variable declarations var template Yes Yes Yes
Timer declarations timer Yes Yes Yes
NOTE: The notions "definition" and "declaration” of variables, constants, types and other language elements are
used interchangeably throughout the present document. The distinction between both notions is useful only
for implementation purposes, as it is the case in programming languages like C and C++. On the level of
TTCN-3, the notions have equal meaning.
5.1 |dentifiers and keywords

TTCN-3 identifiers are case sensitive. TTCN-3 keywords shall be written in all lowercase |etters (see annex A).
TTCN-3 keywords shall neither be used as identifiers of TTCN-3 objects nor as identifiers of objects imported from
modules of other languages. The same rules apply to names of predefined TTCN-3 functions (see annex C).

Specia TTCN-3 modifiers are identifiers prefixed with the @-symbol (see annex A). They modify the default
semantics of the language element they are applied to in the specified way. If more than one modifier is applied to a
language el ement, they may be applied in any order.

These modifiers are useful for refining or modifying existing language features, for example in the

context of the optional extension packages of TTCN-3 since they cannot lead to backward incompabilities
with existing reserved keywords or identifiers.

NOTE:
5.2 Scope rules
5.2.0 General

TTCN-3 provides nine basic units of scope:

a) module definitions part;
b) control part of amodule;

C) component types,

d) functions;
e atseps,
f) testcases;

g) statement blocks;

h) templates;

ETSI

26 ETSI ES 201 873-1 V4.9.1 (2017-05)

i) user defined named types.
NOTE 1: Additional scoping rule for groupsis givenin clause 8.2.2.
NOTE 2: Additional scoping rule for counters of f or loopsisgivenin clause 19.4.

NOTE 3: Statement blocks may include declarations. They may occur as stand-al one statement blocks, embedded
in another statement block or within compound statements, e.g. as body of awhile loop.

NOTE 4: Builtin TTCN-3 typeslikei nt eger, char st ri ng, anyt ype, etc. are not scope units, but all nhamed
user defined types are scope units, independent of their kinds.

Each unit of scope consists of (optional) declarations. The scope units: control part of a module, functions, test cases,
atsteps and statement blocks may additionally specify some form of behaviour by using the TTCN-3 program
statements and operations (see clause 18).

Definitions made in the modul e definitions part but outside of other scope units are globally visible, i.e. may be used
elsewhere in the module, including all functions, test cases and atsteps defined within the module and the control part.
Identifiers imported from other modules are also globally visible throughout the importing module.

Definitions made in the module control part have local visibility, i.e. can be used within the control part only.

Definitions made in atest component type may be used in a component type extending this component type definition,
and in functions, test cases and atsteps referencing that component type or a compatible test component type (see
clause 6.3.3) by ar uns on clause.

Test cases, altsteps and functions are individual scope units without any hierarchical relation between them,

i.e. declarations made at the beginning of their body have local visibility and shall only be used in the given test case,
altstep or function (e.g. adeclaration made in atest caseis not visiblein afunction called by the test case or in an
altstep used by the test case).

Stand-alone statement blocks and statements within compound statements, likee.g. i f - el se, whi | e, do-whi | e, or
al t statements may be used within the control part of a module, test cases, altsteps, functions, or may be embedded in
other statement blocks or compound statements, e.g. ani f - el se statement that is used within awhi | e loop.

Statement blocks and embedded statement blocks have a hierarchical relation both to the scope unit including the given
statement block and to any embedded statement block. Declarations made within a statement block have local visibility.

The hierarchy of scope unitsis shown in figure 2. Declarations of a scope unit at a higher hierarchical level are visible
in all units at lower levels within the same branch of the hierarchy. Declarations of a scope unit in alower level of
hierarchy are not visible to those units at a higher hierarchical level.

ETSI

27 ETSI ES 201 873-1 V4.9.1 (2017-05)

module
definitions part

user defined

module

function without altstep without

component type
runs on-clause runs on-clause

1 lat
control part emplate

named type

statement block statement block statement block

testcase with

runs on-clause
and optional

system-clause

function with
runs on-clause

altstep with
runs on-clause

nested nested

statement block

nested
statement block

statement block

statement block statement block statement block

nested nested nested

statement block statement block statement block

Figure 2: Hierarchy of scope units

EXAMPLE 1: Local scopes

nodul e MyModul e

{ :
const integer c_nyConst := 0; // c_nyConst is visible to f_nyBehavi our A and f_nyBehavi our B
functi on f _nmyBehavi our A()
{ :
const integer c_a := 1; /1 The constant c_a is only visible to f_nyBehavi our A
}
function f_nyBehavi our B()
{ :
const integer c_b :=1; /1 The constant c_b is only visible to f_myBehavi ourB
}
}

EXAMPLE 2: Component type scopes

type conponent MyConponent Type {
const integer cc_myConst := 1;

}

type conponent MyExt endedConponent Type extends MyConponent Type {
var integer vc_nyVar:= 2 * cc_nyConst; // using cc_nyConst of My/Conponent Type

ETSI

28 ETSI ES 201 873-1 V4.9.1 (2017-05)

5.2.1 Scope of formal parameters

The scope of formal parameters in a parameterized object (e.g. in afunction definition) shall be restricted to the
definition in which the parameters appear and to the lower levels of scope in the same scope hierarchy. That isthey
follow the scope rules for local definitions (see clause 5.2).

5.2.2 Uniqueness of identifiers

TTCN-3 requires uniqueness of identifiers, i.e. al identifiersin the same scope hierarchy shall be distinctive. This
means that a declaration in alower level of scope shall not re-use the same identifier as a declaration in a higher level of
scope in the same branch of the scope hierarchy.

The identifier of amodule (its module name) or of an imported module belongs to the scope unit of the module and
cannot be used as identifier for other definitions inside this module. Identifiers for fields of structured types, enumerated
values and groups do not have to be globally unique, however in the case of enumerated values the identifiers, within
the same module, they shall only be reused for enumerated values within other enumerated types or asidentifiers for
fields of structured types. In addition, enumeration values shall not be used as names of value or template definitions of
imported enumeration types, defining the given enumeration value (see also clause 8.2.3.1, example 4). The rules of
identifier uniqueness shall also apply to identifiers of formal parameters.

EXAMPLE 1. Nested scopes

nodul e MyModul e

{ :
const integer c_a := 1;
functi on f _nyBehavi our A()
const integer c_a :=1; // |Is NOT allowed: clash with global constant c_a
if(.)
{ _
const boolean c_a :=true; // |s NOT allowed: clash with |ocal constant c_a
}
}
}

EXAMPLE 2: Independent scopes

/1 The following IS allowed as the constants are not declared in the sane scope hierarchy
/1 (assuming there is no declaration of c_a in nodul e header)
function f_nyBehavi our A()

{ :
const integer c_a := 1;
}

function f_nyBehavi our B()

{ .

.const integer c_a := 1;
}
EXAMPLE 3: Module scopes

nodul e MyModul eB {
import from MyModul eA { ...}

function f_nyFunction() {
var integer MyModuleB:= 1; // |Is NOT allowed: class with nodul e nane

}

type bool ean MyModul eA; // |Is NOT allowed: class with inported nodul e nane

ETSI

29 ETSI ES 201 873-1 V4.9.1 (2017-05)

5.3 Ordering of language elements

Generally, the order in which declarations can be made is arbitrary. Inside a statement block, such as a function body or
abranch of ani f - el se statement, all declarations (if any), shall be made at the beginning of the statement block only.

EXAMPLE:
/1 This is a legal mxing of TTCN-3 decl arations

Var MyVar Type v_nyVar2 : = 3;
const integer c_nyConst:= 1;
if (v_myVar2+c_myConst > 10)
{

var integer v_nyVarl:= 1;

v_nyVarl:= v_nyVarl + 10;

Declarations in the module definitions part and in a component type definition may be made in any order. However
inside the module control part, test case definitions, functions, altsteps, and statement blocks, al required declarations
shall be given beforehand. This meansin particular, local variables, local timers, and local constants shall never be used
before they are declared. The only exceptionsto thisrule are labels. Forward references to a label may be used in got o
statements before the label occurs (see clause 19.8).

54 Parameterization

540 General

TTCN-3 alowsto parameterize modules, templates, functions, altsteps and testcases. Vaues, templates, timers, and
ports may be used as actual parameters. A summary of which language elements can be parameterized and what can be
passed to them as parametersis given in table 2.

NOTE: Type parameterization for TTCN-3 is defined in the optional package [i.12].

Table 2: Overview of parameterizable TTCN-3 objects

Keyword Allowed kind of Allowed form of Allowed types in formal parameter lists
Parameterization Parameterization
module Value parameterization Static at start of runtime |all basic types, all user-defined types and addr ess
type.
template Value and template Dynamic at runtime |all basic types, all user-defined types, addr ess type
parameterization and t enpl at e.
function Value, template, port and Dynamic at runtime |all basic types, all user-defined types, addr ess
timer parameterization type, conponent type, port type, def aul t,
tenplateandtiner.
altstep Value, template, port and Dynamic at runtime |all basic types, all user-defined types, addr ess
timer parameterization type, conponent type, port type, def aul t,
tenplateandtiner.
testcase Value, template, port and Dynamic at runtime |all basic types and of all user-defined types,
timer parameterization address typeandtenpl ate.

NOTE: Signatures are not shown in the table, because a signature declares parameters only. The templates for the
signatures can be parameterized, however.

ETSI

30 ETSI ES 201 873-1 V4.9.1 (2017-05)

541 Formal parameters

5410 General

TTCN-3 modules, structured types, templates, functions, altsteps, and testcases may be defined incompletely, i.e. some
entities (variables, templates, ports, timers, etc.) used by the above objects may not be resolved in the definition of the
object. These objects are called parameterized objects. Formal entities replacing the unresolved entitiesin the
parameterized object's definition are called formal parameters.

Formal parameters of parameterized templates, functions, altsteps, and testcases are defined in formal parameter lists.
Formal parameters of modules are defined in module parameter definitions (see clause 8.2.1).

Formal parametersshall bei n, i nout or out parameters (see definitionsin clause 3.1). If not stated otherwise, a
formal parameter isani n parameter. For all these three sorts of parameter passing, the formal parameters can both be
read and set (i.e. get new values being assigned) within the parameterized object. Formal parameters can be used
directly as actual parameters for other parameterized objects, e.g. as actual parametersin function invocations or as
actual parametersin template instances.

If parameters are passed by value (i.e. in case of i n and out parameters), type compatibility rules specified in
clause 6.3 apply. When parameters are passed by reference, strong typing is required. Both the actual and formal
parameter shall be of the same type.

Formal i n parameters may have default values. This default value is used when no actual parameter is provided.

NOTE 1. Although out parameters can be read within the parameterized object, they do not inherit the value of
their actual parameter; i.e. they should be set before they are read.

Formal value or template parameters may be declared lazy using the @ azy modifier. The behaviour of lazy
parametersis defined in clause 3.1, definition of lazy values or templates. See examplesin clause 5.4.1.1.

Formal value or template parameters may be declared fuzzy using the @ uzzy modifier. The behaviour of lazy
parametersis defined in clause 3.1, definition of fuzzy values or templates. See examplesin clause 5.4.1.1.

NOTE 2: The actual values of component variables used in the delayed evaluation of alazy or fuzzy parameter may
differ from their values at the time, when the parameterized function or alstep was called.

Assigning default values for lazy and fuzzy formal parameters does not change the parameters semantics: when the
default values are used as actual values for the parameters, they shall be evaluated the same way (i.e. delayed) asif an
actual parameter was provided.

Lazy and fuzzy properties are valid only in the scope, where the parameters' names are visible. For example, if afuzzy
parameter is passed to aformal parameter declared without a modifier, it losts its fuzzy feature inside the called
function. Similarly, if it is passed to alazy formal parameter, it becomes lazy within the called function.

5.4.1.1 Formal parameters of kind value

Values of all basic types, all user-defined types, address type, component type, and default can be passed as value
parameters.

Syntactical Structure

[(in] inout | out)] [@azy | @uzzy] Type ValueParldentifier [":=" (Expression -ty]
Semantic Description

Value formal parameters can be used within the parameterized object the same way as values, for examplein
expressions.

Value formal parameters may bein, inout or out parameters. The default for value formal parametersisi n
parameterization which may optionally be denoted by the keyword i n. Using of inout or out kind of parameterization
shall be specified by the keywordsi nout or out respectively.

ETSI

31 ETSI ES 201 873-1 V4.9.1 (2017-05)

In parameters may have a default value, which is given by an expression assigned to the parameter. Formal parameters
of modified templates may inherit the default values from the corresponding parameters of their parent templates; this
shall explicitly be denoted by using a dash (don't change) symbol at the place of the modified template parameters
default value.

NOTE 1: If functions are used for theinitialization of default values of i n parameters, it is strongly advised to
avoid side effects during the evaluation of default values. Side effects may cause non-deterministic test
executions. They can be avoided, e.g. by adhering to the rules defined in clause 16.1.4.

TTCN-3 supports val ue parameterization according to the following rules:

e thelanguage element nodul e allows static value parameterization to support test suite parameters, i.e. this
parameterization may or may not be resolvable at compile-time but shall be resolved by the commencement of
runtime (i.e. static at runtime). This means that, at runtime, module parameter values are globally visible but
not changeable (see more detailsin clause 8.2);

. the language elementst enpl at e, t est case, al t st ep andf unct i on support dynamic value
parameterization (i.e. this parameterization shall be resolved at runtime).

NOTE 2: Component and default references are also handled as value parameters. In the case of component
references, the corresponding component type is the type of the formal parameter. In the case of default
referencesthe TTCN-3 typedef aul t isthe type of the formal parameter.

Restrictions

a) Language elements which cannot be parameterized are: const ,var, ti nmer,control, record of,
set of, enunerated, port, conponent and subtype definitions, group andi nport.

b) Formal value parameters of templates, and of altsteps activated as defaults (see clause 20.5.2) shall always be
i n parameters.

¢) Restrictions on module parameters are given in clause 8.2.
d) Default values can be provided for i n parameters only.

e) Theexpression of formal parameter's default val ue has to be compatible with the type of the parameter. The
expression may be any expression that is well-defined at the beginning of the scope of the parameterized
entity, but shall not refer to other parameters of the same parameter list.

f) Default values of component type formal parameters shall be one of the special valuesnul |, ntc, self,
or system

g) Default values of default type formal parameters shall be the special valuenul | .

h) The dash (don't change) symbol shall be used with formal parameters of modified templates only (see also
clause 15.5).

i) For formal value parameters of templates the restrictions specified in clause 15 shall apply.
i) Only in parameters can be declared lazy or fuzzy.

k) When parameters are referenced (e.g. in assignments, expressions, template bodies, etc.), the rules for
variables shall apply.

Examples

EXAMPLE 1: In, out and inout formal parameters

function f_nyFunctionl(in bool ean p_nyReferenceParaneter){ ...};

/'l p_nyReferenceParaneter is an in value paraneter. The parameter can be read. It can al so be
/'l set within the function, however, the assignnent is local to the function only

function f_nyFunction2(inout bool ean p_nyReferenceParaneter){ ...};

/1 p_nyReferenceParaneter is an inout value paraneter. The paranmeter can be read and set

/1 within the function - the assignment is not |ocal

function f_nyFunction3(out tenplate bool ean p_nyReferenceParaneter){ ...};

ETSI

32 ETSI ES 201 873-1 V4.9.1 (2017-05)

/'l p_nyReferenceParaneter is an out value paraneter. The paraneter can be set within the
// function, the assignnent is not local. It can also be read, but only after it has been set.

EXAMPLE 2: Reading and setting parameters

type record MyMessage {
integer f1,
integer f2

}

function f_nmyMessage (integer p_int) return MyMessage {
var integer v_f1, v_f2;
v fl:=f_mult2 (p_int);
/] paraneter p_int is passed on; as the paraneter of the called function f_nmult2 is
/1 defined as an inout paraneter, it passes back the changed value for p_int,
v_f2 := p_int;
return {v_f1, v_f2};

}
function f_mult2 (inout integer p_integer) return integer {
p_integer := 2 * p_integer;
/1 the value of the formal paraneter is changed; this new value is passed back when
/1 f_mult2 conpl etes
return p_integer-1
}

testcase TC 01 () runs on MIC _PT {

pl.send (f_nyMessage(5))
/Il the value sent is { f1:=9, f2 := 10}

EXAMPLE 3: Function with default value for parameter

function f_conp (in integer p_intl, ininteger p_int2 := 3) return integer {
var integer v_v := p_intl + p_int2;
return v_v;

}

function f_f () {
var integer v_w,
v_w:= f_conp(1l); /'l same as calling f_conp(1,3);
v_w:=f_conmp(l,2); // value 2 is taken for parameter p_int2 and not its default value 3

type conponent Conp { var integer i := 0}

function g(integer x := f_conp(i)) runs on Conp return integer {
/'l reference to i fromConp is allowed in default value of parameter x
return x;

}

function h(integer y := g()+i) runs on Conp {
Il reference to g is allowed because it has a conpatible runs on clause as h
}

EXAMPLE 4: Direct passing of formal parametersto functions

function f_nyFunc2(in bitstring p_refParl, inout integer p_refPar2) return integer {

function f_nyFuncl(inout bitstring p_refParl, out integer p_refPar2) return integer {
:ret urn f_myFunc2(p_refParl, p_refPar2);
/1 p_refParl and p_refPar2 can be passed directly to a function invocation
EXAMPLES: Lazy and fuzzy parameters
type conponent MyConp { var integer vc_int }

function f_MLazyFuzzy(in @azy integer p_lazy, in @uzzy integer p_fuzzy) runs on MyConp {

ETSI

33 ETSI ES 201 873-1 V4.9.1 (2017-05)

//When called from MyCal I'i ng:

v_int = 1;

log(p_lazy); //will log 2 as function double with actual paranmeter vc_int equals 1 is called
/lhere; 2 is stored in p_lazy (also, function double stores 2 in v_int)

log(p_lazy); //will log 2 again as p_lazy is not re-eval uated

log(p_fuzzy);//will log 4 as function double with actual paraneter vc_int equals 2 is called
/1 here (also, function double stores 4 in vc_int)

log(p_fuzzy) //will log 8 as function double is re-evaluated with actual paraneter 4

}

function f_double (in integer p_in) runs on M/Conp return integer{
p_in := 2% p_in;

v_int := p_in;
return p_in
}
testcase TC MyCalling() runs on MyConmp {
vc_int 1= 0;
f _nylLazyFuzzy (f_doubl e(vc_int), f_double(vc_int))
}

EXAMPLE 6: Difference between passing by value and passing by reference

function f_byValue (in integer p_intl, in integer p_int2) {
p_int2 :=p_int2 + 1;
log(p_intl);
log(p_int2);

}

function f_byReference (inout integer p_intl, inout integer p_int2) {
p_int2 := p_int2 + 1;
log(p_intl);
log(p_int2);

function f_f () {
var integer v_int := 1;
f_byValue(v_int, v_int); // prints 1 and 2
log(v_int); // prints 1
f_byReference(v_int, v_int); // prints 2 and 2
log(v_int); // prints 2

54.1.2 Formal parameters of kind template
Template kind parameters are used to pass templates into parameterizable objects.

Syntactical Structure

[in] inout | out] tenplate [Restriction] Type Val ueParldentifier
":=" (Tenplatelnstance | "-")]

Semantic Description
Template parameters can be defined for templates, functions, altsteps, and test cases.

To enable a parameterized object to accept templates or matching symbols as actual parameters, the extra keyword

t enpl at e shall be added before the type field of the corresponding formal parameter. This makes the parameter a
template parameter and in effect extends the allowed actual parameters for the associated type to include the appropriate
set of matching attributes (see annex B) as well as the normal set of values.

Formal template parameters can be used within the parameterized object the same way as templates and template
variables.

Formal template parameters may bein, inout or out parameters. The default for formal template parametersisi n
parameterization.

In parameters may have a default template, which is given by atemplate instance assigned to the parameter. Formal
template parameters of modified templates may inherit their default templates from the corresponding parameters of
their parent templates; this shall explicitly be denoted by using a dash (don't change) symbol at the place of the
modified template parameter's default template. If a default template is used, it is evaluated in the scope of the
parameterized entity, not the scope of the actual parameter list.

ETSI

34 ETSI ES 201 873-1 V4.9.1 (2017-05)

Formal template parameters can be restricted to accept actual parameters containing a restricted set of matching
mechanisms only. Such limitations can be expressed by the restrictionsormi t , pr esent , and val ue. Therestriction
tenpl ate (onit) canbereplaced by the shorthand notation omi t . The meaning of the restrictionsis explained in
clause 15.8.

Restrictions
a Onlyfunction,testcase,altstepandtenpl at e definitions may have formal template parameters.

b) Formal template parametersof t enpl at es, of f uncti onsoral t st eps started as test component
behaviour (see clause 21.3.2) and of al t st eps activated as defaults (see clause 20.5.2) shall alwaysbei n
parameters.

c¢) Default templates can be provided for in parameters only.

d) The default template instance has to be compatible with the type of the parameter. The template instance may
be any template expression that is well-defined at the beginning of the scope of the parameterized entity, but
shall not refer to other parametersin the same parameter list.

e) Default templates of component type formal parameters shall be built from the special valuesnul |, nt c,
sel f,orsystem

f) Restrictions specified in clause 15 shall apply.

g) Thedash (don't change) symbol shall be used with formal parameters of modified templates only (see also
clause 15.5).

h) Only intemplate parameters can be declared lazy or fuzzy.

i) When template parameters are referenced (e.g. in assignments, expressions, template bodies, etc.), the rules for
template variables shall apply.

Examples

EXAMPLE 1. Template with template parameter

/1 The tenplate
tenpl ate MyMessageType mw_nyTenpl ate (tenpl ate integer p_nyFormal Param: =

{ fieldl : = p_nyFornal Param
field2 := pattern "abc*xyz",
field3 :=true

}

/1 could be used as follows

pcol.recei ve(mv_nyTenpl ate(?));

/1 or as follows

pcol.recei ve(nw nyTenpl ate(omt)); // provided that fieldl is declared in M/MessageType as
/1 optional

EXAMPLE 2: Function with template parameter

function f_nyBehavi our(tenpl ate MMsgType p_nyFor mal Par anet er)
runs on MyConponent Type
{ .

pé:ol. recei ve(p_nyFor mal Paraneter);
} :
EXAMPLE 3: Template with restricted parameter

/1 The tenplate
tenpl ate MyMessageType mw_nyTenpl atel (tenplate (omt) integer p_nyFormal Param: =

{ fieldl : = p_nyFornal Param
field2 := pattern "abc*xyz",
field3 := true

}

/1 could be used as follows

pcol.recei ve(mv_nyTenpl atel(onit));

/1 but not as follows

pcol. recei ve(nw_nyTenpl atel(?)); // AnyValue is not within the restriction

ETSI

35 ETSI ES 201 873-1 V4.9.1 (2017-05)

/'l the sane tenplate can be witten shorter as
tenpl ate MyMessageType mwnv_nyTenpl ate2 (onmit integer p_mnyFornal Paran): =

{ fieldl : = p_nyFornal Param
field2 := pattern "abc*xyz",
field3 := true
}
54.1.3 Formal parameters of kind timer

Functions and altsteps can be parameterized with timers.

Syntactical Structure

[inout] tiner TinerParldentifier
Semantic Description

Timers passed into a parameterized object are known inside the behaviour definition of that object. Timer parameters
can be used within the parameterized object like any other timer, i.e. they need not to be declared inside the
parameterized object.

Timer parameters shall preserve their current state, i.e. only the timer is made known within the parameterized object.
For example, also a started timer continuesto run, i.e. it is not stopped implicitly. Thereby, possible timeout events can
be handled inside the function or atstep to which the timer is passed.

Formal timer parameters are identified by the keyword t i mer .
Restrictions
a) Formal timer parameters shall be inout parameters, which can optionally be indicated by the keyword i nout .

b) Onlyfunctionandaltstep definitions may have formal timer parameters, with the exception of
functions or altsteps started as test component behaviour (see clause 21.3.2).

Examples

/1 Function definition with a timer in the formal paraneter |ist
function f_nyBehaviour (timer p_nyTiner)
{ :

p_nyTimer.start;

}

/1 could be used as foll ows
function f_nyBehaviour2 ()

{ t imer t_t;
f _nmyBehavi our (t_t);
;o
5414 Formal parameters of kind port

Functions and altsteps can be parameterized with ports.
Syntactical Structure

[inout] PortTypeldentifier PortParldentifier
Semantic Description

Ports passed into a parameterized object are known inside the behaviour definition of that object. Port parameters can be
used within the parameterized object like any other port, i.e. they need not to be made visible by ar uns on clause.

Ports passed in as parameters shall preserve their current state, only the port is made known within the parameterized
object's body. For example, a started port continues to send/receive messages, i.e. it is not stopped implicitly; thereby,
possible port events can be handled inside the function or altstep to which the port is passed to.

ETSI

36 ETSI ES 201 873-1 V4.9.1 (2017-05)

Restrictions
a) Formal port parameters shall be inout parameters, which can optionally be indicated by the keyword i nout .

b) Onlyfunctionandaltstep definitions may have formal port parameters, with the exception of functions
or altsteps started as test component behaviour (see clause 21.3.2).

Examples

/Il Atstep definition with a port in the formal paraneter |ist
al t step a_nyBehavi our (M/Port Type p_nyPort)

t] p_nyPort.receive { setverdict(fail); stop; }

54.2 Actual parameters

Values, templates, timers and/or ports can be passed into parameterized TTCN-3 objects as actual parameters. Actual
parameters can be provided both asalist in the same order as the formal parameters as well asin an assignment
notation explicitly using the associated formal parameter names or in a mixed notation where the first parameters are
given in list notation and additional parameters in assignment notation.

Syntactical Structure

(Expression | /1 for value paraneter
Tenpl at el nst ance | /1 for tenplate paraneter
Ti mer Ref | /1 for timer paraneter
Por t | // for port paraneter
-t /1 to skip a paranmeter with default
Parameterld ":=" (Expression | Tenplatelnstance | TimerRef | Port))

Semantic Description

Actual parameters that are passed by valueto i n formal value parameters shall be variables, literal values, module
parameters, constants, val ue variables, invocations of value returning (external) functions, formal value parameters (of
in, inout or out parameterization) of the current scope or expressions composed of the above.

Actual parametersthat are passed to out formal value parameters shall be (template) variables, formal (template)
parameters (of in, inout or out parameterization) or references to elements of (template) variables or formal (template)
parameters of structured types. Furthermore it is allowed to use the dash symbol "-" as an actual out parameter,
signifying that a possible result for that parameter will not be passed back.

Actual parametersthat are passedtoi nout formal value parameters shall be variables or formal value parameters (of
in, inout or out parameterization) or references to elements of variables or formal value parameters of structured types.

NOTE 1: Referenceto astring element cannot be passed by reference as string types are not structured types.

Actual parametersthat are passed toi n formal template parameters shall be literal values, module parameters,
constants, variables, invocations of value or template returning (external) functions, formal value parameters (of in,
inout or out parameterization) of the current scope or expressions composed of the above, as well as templates, template
variables or formal template parameters (of in, inout or out parameterization) of the current scope.

Actual parametersthat are passed to out formal template parameters shall be template variables, formal template
parameters or references to elements of template variables or formal template parameters of structured types.
Furthermore it is allowed to use the dash symbol "-" as an actual out parameter, signifying that a possible result for
that parameter will not be passed back.

Actual parametersthat are passed toi nout formal template parameters shall be template variables or formal template
parameters (of in, inout or out parameterization) of the current scope or references to elements of template variables or
formal template parameters of structured types.

When actual parameters that are passed to i n formal value or template parameters contain a value or template
reference, rules for using references on the right hand side of assignments apply. When actual parameters that are
passed toi nout and out formal value or template parameters contain a value or template reference, rules for using
references on the left hand side of assignments apply.

ETSI

37 ETSI ES 201 873-1 V4.9.1 (2017-05)

The values of out formal parameters are passed to the actual parametersin the same order asis the order of formal
parameters in the definition of the parameterized TTCN-3 object. The value is passed back to the actual parameter only
if within the invoked object avalue isassigned to it. If no value is assigned, the actual parameter remains unchanged
when the invoked object completes.

Actual parameters that are passed to formal timer parameters shall be component timers, local timers or formal timer
parameters of the current scope.

Actual parameters that are passed to formal port parameters shall be component ports or formal port parameters of the
current scope.

It isallowed to pass elements of structured values or templates (record, set, record of, set of, union and anytype values
or templates) by reference. Modification of parameters passed this way affects the original structured value or template.
Before passing the actual parameter, the rules for referencing the element on the left hand side of assignments are
applied, expanding the structured value so that the referenced element becomes accessible (see clauses 6.2 and 15.6 for
more details).

NOTE 2: Because inout parameters are passed by reference and component variables are effectively also accessed
by reference within a called function or altstep, passing parts of a structured component variable as an
actual inout parameter may have confusing effects inside the parameterized behaviour: changing either
the inout parameter or the component variable may also change the other simultaneously, which might
break the intended algorithm. For this reason, such situations should be avoided.

When aformal parameter isan out parameter or has been defined with a default value or template, respectively, then it
is not necessary to provide an actual parameter. In such a case the default value or template is taken as actual parameter.

The actual parameters are evaluated in the order of their appearance. If for some formal parameters, no actua parameter
has been provided, if they are out parameters, the dash symbol "-" and for i n parameterstheir default values are taken.
Default values are evaluated after the evaluation of the actual parameters and the order of their eval uation corresponds
to their order in the formal parameter list.

NOTE 3: If assignment notation has been used for the actual parameter list, the order of the evaluation of actual
parameters may differ from the order of the parametersin the formal parameter list.

The empty brackets for instances of parameterized templates that have only parameters with default values are optional
when no actual parameters are provided, i.e. all formal parameters use their default values.

Restrictions

a) Whenusing list notation, the order of elementsin the actual parameter list shall be the same as their order in
the corresponding formal parameter list. For each formal i nout parameter and for eachi n parameter without
adefault there shall be an actual parameter. The actual parameter of aformal out parameter or i n parameter
with default value can be skipped by using dash "-" as actual parameter. An actual parameter can also be
skipped by just leaving it out if no other actual parameter followsin the actual parameter list - either because
the parameter islast or because all following formal parameters are out parameters or have default values and
are left out. The number of actual parametersin the list notation shall not exceed the number of parametersin
the formal parameter list.

b) Either list notation or assignment notation shall be used in a single parameter list. They shall not be mixed.

¢) When using assignment notation, each formal parameter shall be assigned an actual parameter at most once.
For each assigned actual parameter there shall exist a corresponding formal parameter of the same name. For
each formal parameter without default value, there shall be an actual parameter. In order to use the default
value of aformal parameter, no assignment for this specific parameter shall be provided.

d) Fori n formal parameters, the type of the actual parameter shall be compatible with the type of the formal
parameter. For out formal parameters, the type of the formal parameter shall be compatible with the type of
the actual parameter. Strong typing isrequired for i nout formal (parameters passed by reference). For i n
formal template parameters, the template restriction of the actual parameter shall not be less restrictive than the
one of the formal parameter. For out formal template parameters, the template restriction of the actual
parameter shall not be more restrictive than the one of the formal parameter. For i nout formal template
parameters, the template restriction of the actual and the formal parameter shall be the same.

ETSI

38 ETSI ES 201 873-1 V4.9.1 (2017-05)

€) Actua parameters passed to restricted formal template parameters shall obey the restrictions given in
clause 15.8.

f) All parameterized entities specified as an actual parameter shall have their own parameters resolved in the
top-level actual parameter list.

g) If theformal parameter list of TTCN-3 objectsf uncti on,t est case, al t st ep or ext er nal
functi on isempty, then the empty parentheses shall be included both in the declaration and in the
invocation of that object. In al other cases the empty parentheses shall be omitted.

NOTE 4: si gnat ur e objects also have formal parameters, see clauses 15.2 and 22.3 for their handling.
h) Void.
i) Restrictions on parameters passed to altsteps are given in clauses 16.2.1 and 20.5.2.

i) Unless specified differently in the relevant clause(s), actual parameters passedtoi n or i nout formal
parameters shall be at least partialy initialized (for an exemption see e.g. clause 16.1.2 of the present
document).

k) Functions, called by actual parameters passed to fuzzy or lazy formal parameters of the calling function, shall
not have inout or out formal parameters. The called functions may use other functions with inout or out
parametersinternally.

[) Actual parameters passed to out and inout parameters shall not be references to lazy or fuzzy variables.

m) Whenever avalue or template of arecord, set, union, record of, set of, array and anytype type is passed as an
actual parameter to an inout parameter, none of the fields or elemetns of this structured value or template shall
be passed as an actual parameter to another inout parameter of the same parameterized TTCN-3 object. This
restriction applies recursively to al sub-elements of the structured value or template in any level of nesting.

n) If two or more actual parameters passedto i nout parameters of the same parameterized TTCN-3 object
contain areference to distinct aternatives of the same union or anytype value, an error shall be produced.

0) If the mixed notation is used, no value list notation shall be used following the first assignment notation and
the parameters given in assignment notation shall not assign parameters that already have an actual parameter
given in list notation.

Examples

EXAMPLE 1. Formal and actual parameter lists have to match

/1 A function definition with a formal parameter |ist
function f_nyFunction(integer p_formal Parl, boolean p_formal Par2, bitstring p_formal Par3) { ...}

/1 A function call with an actual paranmeter |ist
f _myFunction(123, true,'1100'B);

/1 A function call with assignnent notation for actual paraneters
f_nyFunction(p_formal Parl := 123, p_fornalPar3 := '1100'B, p_fornal Par2 := true);

EXAMPLE 2: In parameters

function f_nyFunction(in tenplate MyTenpl ateType p_nyVal ueParaneter){ ...};
/'l p_nyVal ueParaneter is in paraneter, the in keyword is optional

/1 A function call with an actual paraneter
f _myFuncti on(m_nyd obal Tenpl ate);

EXAMPLE 3: Inout and out parameters

function f_nyFunction(inout bool ean p_nyReferenceParaneter){ ...};
/'l p_nyReferenceParaneter is an inout paraneter

/1 A function call with an actual paraneter
f _myFuncti on(v_nyBool eanVari abl e) ;
/1 The actual paraneter can be read and set within the function

function f_myFunction(out tenpl ate bool ean p_nyRef erenceParameter){ ...};

ETSI

39 ETSI ES 201 873-1 V4.9.1 (2017-05)

/'l p_nyReferenceParaneter is an out paraneter

/1 A function call with an actual paraneter

f _nyFuncti on(v_nyBool eanVari abl e) ;

/1 The actual paraneter is initially unbound, but can be set and read within the function.
f_nyFunction(-); // the outcoming value is not assigned to a variable

type record of integer Rol;
function f_swapEl enents (inout integer p_intl, inout integer p_int2) {

var integer v_tnp := p_intl;
p_intl := p_int2;

p_int2 := v_tnp;
}
function f_testReferences (inout Rol p_roi, inout integer p_elem { ...}
var Rol v_roi :={ 0, 1, 2, 3, 4, 5}:

f _swapEl enents(v_roi[0], v_roi[5]); // after the function call, v_roi is { 5 1, 2, 3, 4, 0}
f_testReferences(v_roi, v_roi[2]); // produces an error as elenments of v_roi are not allowed
/1l to be passed by reference if the parent structure (v_roi) is passed by reference too.

function f_changeAndl ncrenent (out integer p_e, in integer p_v, inout integer p_i) {
p_i = p_i + 1;
p_e := p_v;

)

;/ar integer v_i := 0;
f _changeAndl ncrement (v_roi[v_i], 3, v_i); // increments p_i, but still assigns 3 to v_roi[0]

EXAMPLE 4: A side effect caused by passing part of a component variable as inout parameter

type conponent MyConp {
var RO v_rec :={ 0, 1}
}

testcase TC() runs on MyConp {
f_test(v_rec[1]) // passing 2nd el enent of conponent variable as inout paraneter
log(v_rec); //will log { 2, 2}

}

function f_test(inout integer p_int) runs on MyConmp {
v_rec :={ 2 }; /Il now, isbound(p_int) == false
p_int 2, Il now, v_rec == { 2, 2}

}
EXAMPLES5: Empty parameter lists

/1 A function definition with an enpty paraneter list shall be witten as
function f_nyFunction(){ ...}

/1 and shall be called as

f _nmyFunction();

/Il A tenplate definition with a default value for a fornal paraneter witten as
tenmpl ate MyRecord mnytenplate (integer p_nyValue:= 1):={ ...}

/1 may be used wi thout actual paraneter list (i.e. the default value is used)
nmyPCO. send(m_nyt enpl at e)

EXAMPLE 6: Nested parameter lists

/1 G ven the nessage definition
type record MyMessageType

{
i nt eger fieldl,
charstring field2,
bool ean field3
}

/1 A nessage tenplate mght be
tenpl ate MyMessageType mw_nyTenpl ate(i nteger p_nyVal ue) : =

fieldl := p_nyVal ue,
field2 := pattern "abc*xyz",
field3 := true

ETSI

40 ETSI ES 201 873-1 V4.9.1 (2017-05)

/1 A test case paraneterized with a tenplate m ght be
testcase TC 001(tenpl ate MyMessageType p_rxMsg) runs on PTCL system TS1 {

ﬁyPCO recei ve(p_rxMsg);
}

/1 When the test case is called in the control part and the paraneterized tenplate is
/] passed as an actual paraneter, the tenplate's actual paraneters shall be provided
control

éxecut e(TC 001(nw_nyTenpl ate(7)));
}
EXAMPLE 7: A typical use case for lazy parameterization
nodul epar bool ean PX_LOG MESSAGE : = true;
function f_|l ogMsg(@azy charstring p_conpl ex) {
if (PX_LOG MESSAGE) {
| og(p_conpl ex) ;
}
}

function f_conput eConpl exMessage() return charstring {
/] sone conplicated conputation
}

f _| ogMsg(f _conput eConpl exMessage()); // f_conputeConpl exMessage() is only invoked if
/1 PX_LOG MESSAGE is true

EXAMPLE 8: Actua parameters passed to lazy and fuzzy formal parameters
type record M/Message { integer id, float nunber }
type port MyPort Type nessage { inout MyMessage }

type conponent MyMIC {
var integer vc_id;
port MyPortType p;

testcase TC shooti ngMessages () runs on MYMIC {
connect (sel f:p,self:p);
f_sendLazy({vc_id, rnd()}
f_sendFuzzy({vc_id, rnd()

); //note that at this point vc_id is unintialized yet
b
}
function f_sendLazy(@azy MyMessage p_pdu) runs on MyMIC {
for (vc_id :=1; vc_id<9; vc_id:=vc_id+l){
p.send(p_pdu); // the actual paraneter passed to the formal paraneter p_pdu is evaluated only
/1 in the first loop;let say rnd() returns 0.924946;
/1 the nessage { 1, 0.924946 } is sent out 8 tines

setverdi ct (pass, "nessages has been sent out")

}

function f_sendFuzzy(@uzzy MyMessage p_pdu) runs on MyMIC {
for (vc_id :=1; vc_id<9; vc_id:=vc_id+l){
p.send(pdu); // the actual paraneter passed to the formal paraneter p_pdu is evaluated in each
/'l loop; let say rnd() returns 0.924946, 0.680497, 0.630836, 0.648681, 0.428501,
/1 0.262539, 0.646990, 0.265262 in subsuent calls; the nmessages 1, 0.924946 },
/1 {{ 2, 0.680497 }, { 3, 0.630836 }, { 4, 0.648681 }, { 5, 0.428501 },
/1 { 6, 0.262539 }, { 7, 0.646990 } and { 8, 0.265262 } are sent out in sequence

setverdi ct (pass, "nessages has been sent out")

}
EXAMPLE9: Order of out parameters

itValues (out integer p_parl, out integer p_par2) {

function f_ini
p_parl := 1;
p_par2 := 2;

function f_f(){
var integer v_varl;

ETSI

41 ETSI ES 201 873-1 V4.9.1 (2017-05)

f_initValues(p_par2 := v_varl, p_parl := v_varl);

/Il After this function call, v_varl will contain 2, as paraneters are assigned in
/'l the same order as in the definition of the f_initValues function. Thus p_parl is
I/ assigned first to v_varl and p_par2 after that overwiting the previous val ue.

}
EXAMPLE 10: Skipped actual parameters

function f_skip (out integer p_parl, in integer p_par2 := 2) {
p_parl := 1 + p_par?2;
}

function f_f(){
/1 the follow ng statenents all have the sane senantics :
f_skip (-,-); // p_par2 is initialized with default value 2 and
/'l the result of p_parl is not assigned to any variable

f_skip (p_parl := -, p_par2 := -);

f_skip (p_par2 :=-); /Il skip p_parl

f_skip (-) ; [// skip p_par2 because it is the |ast

f_skip () ; /'l skip p_parl because all followi ng are al so skipped

}
EXAMPLE 11: Mixed notation

function f_m xed (out integer p_parl, in integer p_par2 := 2, inout integer p_par3) {
p_parl := 1 + p_par2;

function f_f(){
var integer v := 0;
/1 the followi ng statenents all have the sane senantics:
f_mixed(-,2,v);

f_mxed(-,p_par2 := 2, p_par3 :=v);
f_mxed(-,-,p_par3 :=v);
f_mxed(-,p_par3 := v, p_par2 := 2);

/1 not all owed:
f_mxed(-,2,p_par3 :=v, p_par2 :=5); // p_par2 is already assigned in list notation

5.5 Cyclic Definitions
Direct and indirect cyclic definitions are not allowed with the exception of the following cases:
a) for recursive type definitions (see clause 6.2);
b) function and atstep definitions (i.e. recursive function or altstep calls);
c) cyclicimport definitions, if the imported definitions only form allowed cyclic definitions.

NOTE 1: Indirect cyclic definitions may be aresult of imports of definitions that are needed for the usage of a
definition but do not need to be known in the importing module (see clause 8.2.3.1).

NOTE 2: For the detection of cycles only the main identifiers of the definition are used. For example, field
identifiers are not used.

Examples
EXAMPLE 1. Module with cyclic constant definition that is not allowed
nodul e MyModul e {
éype record ARecordType { integer a, integer b };
I/ The following two lines include a cycle that is not allowed

const ARecordType c_cConst :={ 1, c_dConst.b}; // c_cConst refers to c_dConst
const ARecordType c_dConst :={ 1, c_cConst.b}; // c_dConst refers to c_cConst

ETSI

42 ETSI ES 201 873-1 V4.9.1 (2017-05)

EXAMPLE 2: Modules with cyclic import that is allowed

nmodul e MyModul eA {
import from MyModul eB { type Myl nteger }
type record of Myl nteger Myl ntegerlList;

}

modul e MyModul eB {
type integer Myl nteger;
import from MyModul eA { type Myl ntegerlList }

6 Types and values

6.0 General

TTCN-3 supports a number of predefined basic types. These basic types include ones normally associated with a
programming language, such asi nt eger, bool ean and string types, as well as some TTCN-3 specific ones such as
verdi ct t ype. Structured typessuch asr ecor d types, set typesand uni on types can be constructed from these
basic types. enuner at ed types are specific structured types being constructed of enumerated values.

The specia datatype anyt ype isdefined as the union of all known data types and the addr ess type defined within a
TTCN-3 module. In any specific module context, only the known types can be accessed in avalue or template of type

anyt ype.

Specia types associated with test configurations such asaddr ess, port and conmponent may be used to define the
architecture of the test system (see clause 21).

The specia typedef aul t may be used for the default handling (see clause 20.5).

The TTCN-3 types are summarized in table 3.

Table 3: Overview of TTCN-3 types

Class of type Keyword Subtype
Simple basic types integer range, list
float range, list
boolean List
verdicttype List
Basic string types bitstring list, length
hexstring list, length
octetstring list, length
charstring range, list, length, pattern
universal charstring range, list, length, pattern
Structured types record list (see note)
record of list (see note), length
set list (see note)
set of list (see note), length
enumerated list (see note)
union list (see note)
Special data type anytype list
Special configuration types address
port
component
Special default type default
NOTE: List subtyping of these types is possible when defining a new constrained type
from an already existing parent type but not directly at the declaration of the first
parent type.

NOTE: Behaviour typesfor TTCN-3 are defined in the optional package[i.13].

ETSI

43 ETSI ES 201 873-1 V4.9.1 (2017-05)

6.1 Basic types and values

6.1.0 Simple basic types and values
TTCN-3 supports the following basic types:

a) i nteger: atypewith distinguished values which are the positive and negative whole numbers, including
zero.

Values of integer type shall be denoted by one or more digits; the first digit shall not be zero unless the
value is 0; the value zero shall be represented by a single zero.

b) fl oat: atypeto describe floating-point numbers and special float values.
In general, floating point numbers can be defined as:<mantissa> x <base><exponent>

where <mantissa> is apositive or negative integer, <base> a positive integer (in most cases 2, 10 or 16)
and <exponent> a positive or negative integer.

In TTCN-3, the floating-point number val ue notation is restricted to a base with the value of 10. Floating
point val ues can be expressed by using two forms of value notations:

L] the decimal notation with a dot in a sequence of numbers like, 1.23 (which represents 123x102),
2.783 (i.e. 2783 x 10°3) or -123.456789 (which represents -123 456 789 x 10°); or

L] by two numbers separated by E where the first number specifies the mantissa and the second
specifies the exponent, for example 12.3E4 (which represents 123 x 103) or -12.3E-4 (which
represents -123 x 10°).

NOTE 1: In contrast to the general definition of float values, the mantissa of in theT TCN-3 value notation, beside
integers, allows decimal numbers as well.

The special values of the float type consist of i nfi ni ty (positiveinfinity), - i nfi ni ty (negativeinfinity) and the
valuenot _a_nunber . For the ordering of specia values see clauses 7.1.1 and 7.1.3.

NOTE 2: - not _a_nunber (i.e. minusnot a number) is not to be used.
¢) bool ean: atype consisting of two distinguished values.
Values of boolean type shall be denoted by t r ue and f al se.
d) verdicttype: atypefor use with test verdicts consisting of 5 distinguished values. Va ues of

ver di ct t ype shal be denoted by pass,fail,i nconc,none anderror.

6.1.1 Basic string types and values

6.1.1.0 General
TTCN-3 supports the following basic string types:

NOTE 1: The general term string or string typein TTCN-3 referstobi t stri ng, hexstri ng,octetstring,
charstring anduni versal charstring.

a) bitstring: atypewhose distinguished values are the ordered sequences of zero, one, or more bits.

Vaues of typebi t st ri ng shal be denoted by an arbitrary number (possibly zero) of the bit digits:
01, preceded by asingle quote (') and followed by the pair of characters 'B.

ETSI

44 ETSI ES 201 873-1 V4.9.1 (2017-05)

Within the quotes any number of whitespaces or any sequence of the following CO control characters: LF(10),
VT(11), FF(12), CR(13) which constitutes a newline (see Recommendation ITU-T T.50 [4]) (jointly called
newline characters, see clause A.1.5.1) may be included. The newline shall be preceded by a backdash ("\").
Such whitespaces, control characters and backslash will be ignored for the value and length calculation.

EXAMPLE 1: 'o1101'B
‘0110 1001'B
'0110\
1001'B

b) hexstri ng: atype whose distinguished values are the ordered sequences of zero, one, or more hexadecimal
digits, each corresponding to an ordered sequence of four bits.

Values of type hexst ri ng shal be denoted by an arbitrary number (possibly zero) of the hexadecimal
digits (uppercase and lowercase letters can equally be used as hex digits):

0123456789abcdefABCDEF

preceded by a single quote (') and followed by the pair of characters 'H; each hexadecimal digit is used to
denote the value of a semi-octet using a hexadecimal representation.

Within the quotes any number of whitespaces or any sequence of the following CO control characters: LF(10),
VT(11), FF(12), CR(13) which constitutes a newline (see Recommendation ITU-T T.50 [4]) (jointly called
newline characters, see clause A.1.5.1) may be included. The newline shall be preceded by abackslash ("\").
Such whitespaces, control characters and backslash will be ignored for the value and length calculation.

EXAMPLE 2: ' AB0O1D H
"ab01d' H
' Ab01D H
"Ab 01 DH
' Ab\
01\
D H

c) octetstring: atypewhose distinguished values are the ordered sequences of zero or a positive even
number of hexadecimal digits (every pair of digits corresponding to an ordered sequence of eight bits).

Values of typeoct et st ri ng shall be denoted by an arbitrary, but even, number (possibly zero) of the
hexadecimal digits (uppercase and lowercase letters can equally be used as hex digits):

0123456789abcdefABCDEF

preceded by asingle quote (') and followed by the pair of characters' O; each hexadecimal digit is used to
denote the value of a semi-octet using a hexadecimal representation.

Within the quotes any number of whitespaces or any sequence of the following CO control characters: LF(10),
VT(11), FF(12), CR(13) which constitutes a newline (see Recommendation ITU-T T.50 [4]) (jointly called
newline characters, see clause A.1.5.1) may be included. The newline shall be preceded by a backdash ("\").
Such whitespaces, control characters and backslash will be ignored for the value and length calculation.

EXAMPLE3: 'FF96' O
'ff96' O
' Ff96' O
"Ff 96' O
=
96' O

d) charstring: aretypeswhose distinguished values are zero, one, or more characters of the version of
Recommendation ITU-T T.50 [4] complying with the International Reference Version (IRV) as specified in
clause 8.2 of Recommendation ITU-T T.50 [4].

NOTE 2: ThelRV version of Recommendation ITU-T T.50 [4] is equivalent to the IRV version of the International
Reference Alphabet (former International Alphabet No.5 - 1A5), described in Recommendation
ITU-T T.50[4].

ETSI

45 ETSI ES 201 873-1 V4.9.1 (2017-05)

Vauesof char st ri ng type shall be denoted by an arbitrary number (possibly zero) of non-control
characters from the relevant character set, preceded and followed by double quote (*). Graphical characters
include the range from SP(32) to TILDE (126). Vaues of char st ri ng type can also be calculated using the
predefined conversion function int2char with the positive integer value of their encoding as argument (see
clause C.1).

NOTE 3: The predefined conversion function is able to return single-character-length values only.

In cases where it is necessary to define strings that include the character double quote () the character is
represented by a pair of double quotes on the same line with no intervening space characters.

EXAMPLE 4: The charstring "ab"cd" iswritten in TTCN-3 code as in the following constant declaration. Each of

the 3 quote characters that are part of the string is preceded by an extra quote character and the

whole character string is delimited by quote characters, e.g.
const charstring c_char:= """ab""cd""";

The character string type preceded by the keyword uni ver sal denotes types whose distinguished values are
zero, one, or more characters from 1SO/IEC 10646 [2].

uni ver sal char stri ng values can aso be denoted by an arbitrary number (possibly zero) of characters
from the relevant character set, preceded and followed by double quote ("), calculated using a predefined
conversion function (see clause C.1.2) with the positive integer value of their encoding as argument, by a
"quadruple” or using the USI-like notation.

NOTE 4: If applying the double quote format all characters from any character set defined in 1SO/IEC 10646 [2]

are alowed. Users should be aware of the character set capabilities of their editing tool and the TTCN-3
module transfer syntax UTF-8 (see clause 8).

NOTE 5: The predefined conversion function is able to return single-character-length values only.

In cases where it is necessary to define strings that include the character double quote (") the character is
represented by a pair of double quotes on the same line with no intervening space characters.

The "quadruple” is only capable to denote a single character and denotes the character by the decimal values of
its group, plane, row and cell according to ISO/IEC 10646 [2], preceded by the keyword char included into a
pair of brackets and separated by commas (e.g. char (0, 0, 1, 113) denotesthe Latin small letter u with
double acute: "i"). In cases where it is necessary to denote the character double quote (") in a string assigned
according to the first method (within double quotes), the character is represented by a pair of double quotes on
the same line with no intervening space characters. The two methods may be mixed within a single notation for
a string value by using the concatenation operator.

EXAMPLES: Theexpression: "the Braille character" & char (0, 0, 40, 48) & "looks like this' represents the

literal string: the Braille character & looks like this.

The UCS sequence identifier-like (USI-like) notation (see also clause 6.6 of 1SO/IEC 10646 [2]) can be used to
denote 1..N characters, using their short identifiers of code point (similar to UIDs described in clause 6.5 of
ISO/IEC 10646 [2]). The USI-like notation is composed of the keyword char followed by parentheses. The
parentheses enclose a comma-separated list of short identifiers .. Each short identifier represents asingle
character and it shall be composed of aletter U or u followed by an optional "+" PLUS SIGN character,
followed by 1..8 hexadecimal digits. The hexadecimal digits represent the numeric code point of the character.
(e.g.char (U0171) denotesthe Latin small letter u with double acute: "i"). In the USI-like notation, the
leading zeroes can be omitted, (i.e. char (U171) isequa tochar (U0171)).

EXAMPLE 6: The expression: char (U4E2D, U56FD) representsthe literal string: H[E.

NOTE 6: Control characters can be denoted by using the predefined conversion function, the quadruple form or the

USl-like notation.

By default, uni ver sal char st ri ng shall conform to the UTF-32 encoding specified in clause 9.3 of
ISO/IEC 10646 [2].

ETSI

46 ETSI ES 201 873-1 V4.9.1 (2017-05)

NOTE 7: UTF-32 isan encoding format, which represents any UCS character on afixed, 32 bits-length field.

This default encoding can be overridden using the defined variant attributes (see clause 27.5). The useful
character string types utf8string, bmpstring, utf16string and iso8859string using these attributes are defined in
annex E.

6.1.1.1 Accessing individual string elements

Individual elementsin a string type may be accessed using an array-like syntax.

Units of length of different string type elements are indicated in table 4.

For accessing individual string elements the following rules apply:

. Only single elements of the string may be accessed. Trying to assign strings with length O or morethan 1to a
string element using the array-like syntax shall cause an error.

o Indexing shall begin with the value zero (0).

. The index shall be between zero and the length of the string minus one for retrieving an element from a string.
Trying to retrieve an element from a string with an index outside this range shall cause an error.

. For assigning an element to the end of a string, the length of the string should be used asindex. Trying to
assign an element to the end of a string with an index larger than the length of the string shall cause an error.

. For initializing an uninitialized string with a single element, the index value zero (0) can be used as index.
Trying to assign a single element to an uninitialized string with an index which is not zero (0) shall cause an
error.

EXAMPLE 1: Accessing an existing element

/1 Gven

v_nyBitString := '11110111' B;
/1 Then doi ng
v_nyBitString[4] :="'1'B;

// Results in the bitstring '11111111'B

EXAMPLE 2: Specific cases

var bitstring v_nyBitStringA v_nyBitStringB, v_nyBitStringC v_nyBitStringD,

v_nyBitStringA := '010' B;

v_nyBitStringAl 1] := '11'B; //causes an error as only individual elenents can be accessed
v_nyBitStringB := '1'B;

v_nyBitStringB[4] :='1"B; //causes an error index is larger than the length of v_nyBitStringB
v_nyBitStringC :="''B

v_nyBi t Stringd 0]
v_nyBitStringd 1]

:1'B; /1 value of v_nyBitStringCis '1'B
'0'B; // value of v_nyBitStringCis '10'B

/1l v_nyBitStringDis not initialized
v_nyBi t StringD[0] '0'B; // value of v_nyBitStringDis '0'B

v_nyBit StringDf 1]

'"1'B; // value of v_nyBitStringDis '01'B

var charstring v_nyChar String;

v_nyChar String[0] "a" /linitializing v_nyCharString with a single character

v_mnyChar String[1] " //causes an error as the length of the to-be-assigned string is O

v_nyChar St ring[1] "bc" [//causes an error as the length of the to-be-assigned string is
//more than 1

6.1.2 Subtyping of basic types

6.1.2.0 General

User-defined types shall be denoted by the keyword t ype. With user-defined typesit is possible to create subtypes
(such aslists, ranges and length restrictions) on basic types, structured types and anytype according to table 3.

ETSI

a7 ETSI ES 201 873-1 V4.9.1 (2017-05)

6.1.2.1 Lists of templates

TTCN-3 permits the specification of alist of distinguished templates as listed in table 3. The templatesin the list shall
be instances of the type being constrained and the set of values matching at least one of these templates shall be a subset
of the values defined by the type being constrained. The subtype defined by this list restricts the allowed values of the
subtype to those values matching at least one of the templatesin the list. The templatesin the list shall only (directly or
indirectly) reference other templates or constant expressions. Constant expressions used (directly or indirectly) in the
template expressions shall meet with the restrictionsin clause 10 for constant expressions used in type definitions.

EXAMPLE:

type bitstring MListOFBitStrings ('01'B, '10'B, '11' B);
type float Pl (3.1415926);
type charstring MyStringList ("abcd", "rgy", "xyz");
type universal charstring Special Letters
(char(0, 0, 1, 111), char(0, O, 1, 112), char(0, 0, 1, 113));

6.1.2.2 Lists of types

TTCN-3 permits the specification of alist of subtypesaslisted in table 3 for value lists. The typesin the list shall be
subtypes of the root type. The subtype defined by thislist restricts the allowed values of the subtype to the union of the
values of the referenced subtypes.

EXAMPLE:

type bitstring BitStringsl ('0'B, '1'B);
type bitstring BitStrings2 ('00'B, '01'B, '10'B, '10' B);
type bitstring BitStrings_1_2 (Bitstringsl, Bitstrings2);

6.1.2.3 Ranges

TTCN-3 permits the specification of range constraints for the typesi nt eger, charstring, uni versal
charstringandfl oat (or derivations of thesetypes). Fori nt eger andf | oat, the subtype defined by the
range restricts the allowed values of the subtype to the valuesin the range including or excluding the lower boundary
and/or the upper boundary. The upper boundary shall be greater than or equal to the lower boundary.

In order to specify an infinite integer range, the keyword -i nfi ni ty ori nfi ni ty can beused instead of avalue
indicating that there is no lower or upper boundary; - i nf i ni t'y shall not be used asthe upper bound andi nfi nity
shall not be used as the lower bound for integer ranges.

Alsoforfl oat,-infinityorinfinity canbeusedastheboundsin range restrictions. Using the special

value- i nfi ni ty asthelower bound shall indicate that the allowed numerical values are not restricted downward and
the special value- i nf i ni ty isalsoincluded. If both the lower and upper bounds denote - i nf i ni ty, no numerical
values are included, only the special value- i nfi ni t y. Using the specia valuei nf i ni t y asthe upper bound shall
indicate that the allowed numerical values are not restricted upward and the special valuei nf i ni ty isaso included.
If both the lower and upper bounds denotei nf i ni t y, no numerical values are included, only the special value

i nfinity.Ifexclusvebounds(!i nfinityor!-infinity) isusedinstead, only the respective numerical float
values areincluded in therange. In case of f | oat , the special valuenot _a_nunber isnot alowed in arange
constraint.

Inthecaseof char string anduni versal charstring types, the rangerestricts the allowed values for each
separate character in the strings. The boundaries shall evaluate to valid character positions according to the coded
character set table(s) of the type (e.g. the given position shall not be empty). Empty positions between the lower and the
upper boundaries are not considered to be valid values of the specified range.

Constants used in the constant expressions defining the values shall meet with the restrictionsin clause 10.

EXAMPLE 1:
type integer Myl ntegerRange (0 .. 255); /1 range fromO0..255
/1 (with inclusive boundaries)
type integer Myl ntegerRange (0 .. !256); /1 the sanme range as above (with left
/1 inclusive and right exclusive boundary)
type integer Myl ntegerRange (!-1 .. 255); /1 the same range as above(with |eft

/1 exclusive and right inclusive boundary)

ETSI

48 ETSI ES 201 873-1 V4.9.1 (2017-05)

type integer MylntegerRange (!-1 .. !256); /1 the sane range as above
/1 (with exclusive boundaries)
type integer MylntegerRange (-infinity .. -1); // all negative integer nunbers

type float PiRange (3.14 .. 3142E-3);
type float LessThanPi (-infinity .. 3142E-3);
type float Nunbers (-infinity .. infinity); /lincludes all float values but not_a_nunber
type float Wong (-infinity .. not_a_nunber); /] causes an error as not_a_nunber is not
/1 allowed in range subtyping

EXAMPLE 2:

type charstring MyCharString ("a" .. "z");

/1 Defines a string type of any length with each character within the specified range
type universal charstring MyUCharStringl ("a" .. !"z");

/Il Defines a string type of any length with each character within the range froma to y
/1 (character codes from97 to 121), I|ike "abxy";

/1 strings containing any other character (including control characters), like

/1 "abc2" are disall owed.

type universal charstring MyUCharString2 (char(0, 0, 1, 111) .. char(0, 0, 1, 113));

/1 Defines a string type of any length with each character within the range specified using
/1 the quadruple notation

6.1.2.4 String length restrictions

TTCN-3 permits the specification of length restrictions on string types. The length boundaries are based on different
units depending on the string type with which they are used. In al cases, these boundaries shall be inclusive boundaries
only and evaluate to non-negative i nt eger values (or derivedi nt eger values).

EXAMPLE:

type bitstring M/Byte | ength(8); /1 Exactly length 8

type bitstring M/Byte length(8 .. 8); /1 Exactly length 8

type bitstring M/N bbl eToByte I ength(4 .. 8); /1 Mninmumlength 4, naxi numlength 8

Table 4 specifies the units of length for different string types.

Table 4: Units of length used in field length specifications

Type Units of Length
bitstring bits
hexstring hexadecimal digits
octetstring octets
character strings characters

For the upper bound the keyword i nfi ni ty should also be used to indicate that there is no upper limit for the length.
The upper boundary shall be greater than or equal to the lower boundary.

6.1.2.5 Pattern subtyping of character string types

TTCN-3 alows using character patterns specified in clause B.1.5 to constrain permitted values of char st ri ng and
uni ver sal char stri ng types. Thetype constraint shall usethe pat t er n keyword followed by a character
pattern. All values denoted by the pattern shall be a subset of the type being sub typed. Constants used in the constant
expressions defining the values shall meet with the restrictions in clause 10.

NOTE: Pattern subtyping can be seen as a special form of list constraint, where members of thelist are not
defined by listing specific character strings but via a mechanism generating elements of the list.

ETSI

49 ETSI ES 201 873-1 V4.9.1 (2017-05)

EXAMPLE:

type charstring MyString (pattern "abc*xyz");
/1 all permitted values of MyString have prefix abc and postfix xyz

type charstring MyStringCaseAgnostic (pattern @ocase "abc*xyz");
/1 all permitted values of MyStringCaseAgnostic have a
/1 prefix abc or Abc or aBc or abC or ABc or aBC or AbC or ABC, and a
/] postfix xyz or Xyz or xYz or xyZ or XYz or XYZ or XyZ or XYZ

type universal charstring MUString (pattern "*\r\n")
/1 all permtted values of MyUString are term nated by CR/ LF

type charstring MyString2 (pattern "abc?\q{0,0, 1, 113}");
/] causes an error because the character denoted by the quadruple {0,0,1,113} is not a
/Il legal character of the TTCN-3 charstring type

type MyString MyString3 (pattern "d*xyz");

/'l causes an error because the type MyString does not contain a value starting with the
/'l character d

6.1.2.6 Mixing subtyping mechanisms

6.1.2.6.1 Mixing patterns, lists and ranges

Withini nt eger andf | oat (or derivations of these types) subtype definitionsit is allowed to mix lists and ranges. It
is possible to mix both template list and type list subtyping with each other and with range subtyping. Overlapping of
different constraintsis not an error.

EXAMPLE 1:

type integer MylntegerRange (1, 2, 3, 10 .. !20, 99, 100);
type float LessThanPi AndNaN (-infinity .. 3142E-3, not_a_nunber);

Withinchar stri ng and uni versal charstring subtypedefinitionsit isnot allowed to mix pattern, template
list, type list, or range constraints.
EXAMPLE 2:

type charstring MyCharStr0O ("gr", "xyz");
/1 contains character strings gr and xyz;

type charstring M/CharStrl ("a".."z");
/1 contains character strings of arbitrary |ength containing characters a to z.

type charstring MyCharStr2 (pattern "[a-z]#(3,9)");
/1 contains character strings of length from3 to 9 characters containing characters a to z

6.1.2.6.2 Using length restriction with other constraints

Withinbi t stri ng, hexstring, oct et st ri ng subtype definitions lists and length restriction may be mixed in
the same subtype definition.

Withincharstring and uni versal charstring subtype definitionsit isallowed to add alength restriction
to constraints containing list, range or pattern subtyping in the same subtype definition.

When mixed with other constraints the length restriction shall be the last element of the subtype definition. The length
restriction takes effect jointly with other subtyping mechanisms (i.e. the value set of the type consists of the common
subset of the value setsidentified by the list, range or pattern subtyping and the length restriction).

EXAMPLE:

type charstring MyCharStr5 ("gr", "xyz") length (1..9);
/1 contains the character strings gr and xyz;

type charstring MyCharStr6 ("a".."z") length (3..9);

/1 contains character strings of length from3 to 9 characters and containing characters
/1 atoz

ETSI

50 ETSI ES 201 873-1 V4.9.1 (2017-05)

type charstring M/CharStr7 (pattern "[a-z]#(3,9)") length (1..9);
/1 contains character strings of length from3 to 9 characters containing characters
/1 atoz
type charstring MyCharStr8 (pattern @ocase "[a-z]#(3,9)") length (1..8);
/'l contains character strings of length from3 to 8 characters containing characters
/[l atoz and Ato Z
type charstring MyCharStr9 (pattern "[a-z]#(1,8)") length (1..9);
// contains any character strings of length from1 to 8 characters containing characters
/1 ato z

type charstring MyCharStr10 ("gr", "xyz") length (4);
/! causes an error as it contains no val ue

6.2 Structured types and values

6.2.0 General

Thet ype keyword is also used to specify structured types such asr ecor d types, r ecor d of types, set types, set
of types, enurrer at ed typesand uni on types.

Values of these types may be given using an explicit assignment notation or a short-hand value list notation.

EXAMPLE 1:

const MyRecordType c_nyRecordVal ue: // assi gnnent notation

fieldl := "11001"B,
field2 := true,
field3 := "A string"
}
/I O

const MyRecordType c_nyRecordVal ue: = {' 11001' B, true, "A string"} //value list notation

The assignment notation can be used for record, record of,set,set of anduni on vaue notations and for
arrays. In this notation each field shall not appear more than once. The value list notation can be used for r ecor d,
record of,set andset of value notations and for arrays. The index notation can be used forr ecord of and
set of value notations and for arrays. In this notation each index shall not appear more than once and shall conform to
the range of indices alowed by the type definition. See more details in the subsequent clauses.

EXAMPLE 2:
var MyRecordType v_nyVari abl e: = // assi gnnent notation
{
fieldl := "11001"B,
/1 field2 inmplicitly unspecified
field3 := "A string"
}
/1l or
var MyRecordType v_nyVari abl e: = // assi gnnent notation
fieldl := "11001"B,
field2 := -, /] field2 explicitly unspecified
field3 := "A string"
}
/1 or
var MyRecordType v_nyVariable:= {'11001'B, -, "A string"} //value list notation

It isnot allowed to mix the two value notations in the same (immediate) context.

EXAMPLE 3:

/1 This is disallowed
const MyRecordType c_nyRecordVal ue: = {c_nylntegerValue, field2 :=true, "A string"}

Where applicable TTCN-3 type definitions may be recursive. The user, however, shall ensure that all type recursionis
resolvable and that no infinite recursion occurs.

ETSI

51 ETSI ES 201 873-1 V4.9.1 (2017-05)

In case of record and set types, to avoid infinite recursion, fields referencing to its own type, shall be optional.

EXAMPLE 4:

/1 Valid recursive record type definition
type record MyRecordl

Fi el dTypel field1,
M/Recordl field2 optional,
Fi el dType3 field3

}

/1 Invalid recursive record type definition causing an error
type record MyRecord2

Fi el dTypel field1,

M/Record2 field2,
Fi el dType3 field3

}

In case of union types, to avoid infinite recursion, at least one of the alternatives shall not reference its own type.

EXAMPLE 5:

/1 Valid recursive union type definition
type union MyUni onl
{

MyUni onl choi cel,
charstring choice2

}

/1 Invalid recursive union type definition causing an error
type uni on MyUni on2

MyUni on2 choi cel,
MyUni on2 choi ce2

6.2.1 Record type and values

6.2.1.0 General

TTCN-3 supports ordered structured types known asr ecor d. Thefieldsof ar ecor d type may be any of the basic
types or user-defined data types (such as other records, sets or arrays). The values of ar ecor d shall be compatible
with the types of ther ecor d fields. Thefield identifiers are local to ther ecor d and shall be unique within the
recor d (but do not have to be globally unique).

EXAMPLE 1:

type record MyRecordType

i nt eger fieldl,
M/Q her RecordType fiel d2 optional,
charstring field3

}

type record MyQ her Recor dType
bitstring fieldl,
bool ean field2

}
Records may be defined with no fields, i.e. as empty records.
EXAMPLE 2:
type record MyEnptyRecord {}

A record vaueisassigned on an individual field basis. The order of field valuesin the value list notation shall be the
same as the order of fieldsin the related type definition.

ETSI

52 ETSI ES 201 873-1 V4.9.1 (2017-05)

EXAMPLE 3:
var integer v_nylntegerValue := 1,
const MyQ her RecordType c_nmyQt her Recor dVal ue: =

fieldl :
field2 :

'11001' B,
true

}
var MyRecordType v_nyRecordVal ue : =

fieldl := v_nyl ntegerVal ue,
field2 := c_nyQ her Recor dVal ue,
field3 := "A string"

}
The same val ue specified with avalue list.

EXAMPLE 4:

v_nyRecordVal ue: = {v_nyl nteger Val ue, {'11001'B, true}, "A string"};

When the assignment notation is used for r ecor d-s, fields wished to be changed shall be identified explicitly and a
value, the not used symbol "-" or theom t keyword can be associated with them. The omi t keyword shall only be
used for optional fields. Itsresult isthat the given field is not present in the given value. Mandatory fields, not explicitly
referred to in the notation or explicitely unspecified using the not used symbol "-", shall remain unchanged. In
particular, when specifying partial values (i.e. setting the value of only a subset of the fields) using the assignment
notation, at initialization, only the fieldsto be assigned values shall be specified. Fields not mentioned are implicitly left
uninitialized. When re-assigning a previoudly initialized value, using the not used symbol or just skipping afield in an
assignment notation, will cause that field to remain unchanged. Even when specifying partia values each field shall not
appear more than once.

NOTE: Please note the difference between omitted and uninitialized fields. Omitted optional fields are not present
in the record or set value intentionally, i.e. the field isinitialized and it does not prevent the whole record
or set from being completely initialized.

EXAMPLE 5:
type record MyRecordType
{
bitstring fieldl,
bool ean field2 optional,
charstring field3
}
var MyRecordType v_nyVariable : =
{
fieldl :="111' B,
field2 := fal se,
field3 := -
}
v_nyVariable := { '10111'B, -, - };

/Il after this, v_nyVariable contains:
/1 { '10111'B, false /* unchanged */, <undefined> /* unchanged */ }

v_nyVariable : =
field2 := true

/1 after this, v_nyVariable contains:
/1 { '10111'B /* unchanged */, true, <undefined> /* unchanged */ }

v_nyVariable : =
fieldl :

field2 :
field3 :

fal se,

}
/1 after this, v_nyVariable contains:
/1 { '10111' B /* unchanged */, fal se, <undefined> /* unchanged */}

ETSI

53 ETSI ES 201 873-1 V4.9.1 (2017-05)

When the assignment notation is used in a scope, wherethe opt i onal attribute isimplicitly or explicitly set to
"explicit omt", optiona and mandatory fields, not directly referred to in the notation shall remain unchanged.
When optional fields of variables are not assigned explicitly, they are uninitialized (i.e. the optional attribute shall not
have any effect on variables as described in clause 27.7 restriction a)).

When the assignment notation is used in a scope, wherethe opt i onal attributeissetto"inplicit omit",
optional fields, not directly referred to in the notation, shall implicitly be set to omit, while mandatory fields shall
remain unchanged (see also clause 27.7).

EXAMPLE 6:

type record MyRecordType
{

bitstring fieldl,
bool ean field2 optional,
charstring field3

}

const MyRecordType c_nyConstl : =

fieldl :="111' B,
field3 := “A string”
Yy 1/ { '10111' B, <undefined>, “A string"}

const MyRecordType c_nyConst2 : =

fieldl :="'111'B,
field3 := “A string”
} with { optional "inplicit omt" }
/1 { '10111'B, omt /* because of the optional attribute */, “A string”}

When using the value list notation, all fieldslisted in the notation shall be specified either with a value, the not used
symbol "-" or the onmi t keyword. The oni t keyword shall only be used for optional fields. Its result is that the given
field is not present in the given value. The first component of thelist (avalue, a”-" or oni t) is associated with the first
field, the second list component is associated with the second field, etc. No empty assignment is allowed (i.e. two
commas, the second immediately following the first or only with white space between them). Fields to be left
unchanged, but followed by fields to which a value or template is assigned explicitly, shall be skipped by using the not
used symbol "-".

When using value list notation in a scope where the opt i onal attributeisimplicitly or explicitly setto" expl i ci t
om t ", al remaining fields at the end of the type definition, missing from the value list notation,are left unchanged.

When using value list notation in a scope wherethe opt i onal attributeissetto"inplicit omit", optional fields
wished to be omitted by the implicit mechanism, but followed by fields to which a value or template is assigned
explicitly, shall be skipped by using the not used symbol "-". When all remaining fields at the end of the type definition
are optional and they are wished to be omitted by the implicit mechanism, either the not used symbol "-" can be used for
some or al of them or they can simply be left out from the notation.

ETSI

54 ETSI ES 201 873-1 V4.9.1 (2017-05)

EXAMPLE 7:

type record R {
integer f1,
integer f2 optional,
i nteger f3,
integer f4 optional,
integer f5 optional

}

const Rc x :={ 1, -, 2} with { optional "inplicit omt" }

/] after the assignnent v_x contains { 1, omt, 2, ont, onit }
constRc_x2 :={ 1, 2, 3, - }) with { optional "inplicit omt" }
/1 after the assignnent v_x2 contains { 1, 2, 3, onmt, omt }

When using direct assignment notation in a scope wherethe opt i onal attributeissetto"inplicit onmit",the
uninitialized optional fields in the referenced value, shall implicitly be set to omit after the assignment in the new value,
while mandatory fields shall remain unchanged (see also clause 27.7).

EXAMPLE 8:

const Rc x3 :={ 1, -, 2}

/1 after the assignnent c_x3 contains { 1, <undefined>, 2, <undefined> <undefined>}
const Rc_x4 :=c_x3 with { optional "inplicit omt" }

/Il after the assignnent c_x4 contains { 1, omt, 2, omt, omt }

6.2.1.1 Referencing fields of a record type

Elements of ar ecor d shall be referenced by the dot notation Typel dOr Expr essi on. El enent | d, where
Typel dOr Expr essi on resolves to the name of a structured type or an expression of a structured type such as
variable, formal parameter, module parameter, constant, template, or function invocation. El ermrent | d shall resolve to
the name of afield in the structured type. Fields of record type definitions shall not reference themselves.

EXAMPLE 1:
v_nyVarl : = v_nyRecordl. nyEl enent 1;

/1 If arecord is nested within another type then the reference nay | ook like this
v_nyVar2 : = v_nyRecordl. nyEl enent 1. nyEl enent 2;

EXAMPLE 2:
type record MyType
{

integer fieldl,

M/ Type. fi el d2 field2 optional, // this circular reference is NOT ALLONED
bool ean fiel d3

}

If afield in arecord type or asubtype of arecord type is referenced by the dot notation, the resulting type is the set of
values allowed for that field imposed by the constraints of the field declaration itself (i.e. any constraints applied to the
record type itself are ignored).

EXAMPLE 3:

type record MyType2
{

integer fieldl (1 .. 10),
charstring field2 optional

}

type WType2 MyType3d ({1, omt}, {2, "foo"}, {3, "bar"}) ;

type MyType3.fieldl MyType4; /'l MyTyped is the integer type constrained to
/1 the values 1..10

type MyType3.field2 MyType5; /1 MyType5 is the charstring type

type MyType2.fieldl MyType6; /1l MyType6 is the integer type constrained to
/1 the values 1..10

type MyType2.field2 MyType7; /'l MyType7 is the charstring type

ETSI

55 ETSI ES 201 873-1 V4.9.1 (2017-05)

Referencing a subfield of an uninitialized or omitted record field or value on the right hand side of an assignment shall
cause an error.

EXAMPLE 4:
type record MyType4d
{

integer fieldl optional,
record
{
i nteger subfieldl,
i nteger subfield2
} field2 optional

}
var M/ Typed v_rec :={ fieldl := 1, field2 := onmit }
var integer v_int := v_rec.field2. subfieldl;

/1 causes an error as v_rec.field2 is omtted

When referencing afield of an uninitialized record value or field or omitted field (including omitting afield at a higher
level of the embedding hierarchy) on the left hand side of an assignment, the reference shall recursively be expanded up
to and including the depth of the referenced subfield as follows:

a When expanding avaue or value field of record type, the subfield referenced in the dot notation shall be set to
present and all unreferenced mandatory subfields shall be left uninitialized; when the assignment isused in a
scope wherethe opt i onal attributeisequal to"explicit omt", al unreferenced optional subfields
shall be left undefined. When the assignment is used in a scope where the optional attribute is equal to
"inplicit omt",al unreferenced optional subfields shall besettooni t .

b) Expansonofrecord of/set of/array,uni onandset vauesand intermediate fields shall follow the
rules of item &) in clauses 6.2.3 and 6.2.5.1 and clause 6.2.2.1 correspondingly.

At the end of the expansion, the value at the right hand side of the assignment shall be assigned to the referenced
subfield.

EXAMPLE 5:
var MyType4 v_rec;
v_rec.field2.subfieldl :=5;

/Il after the assignnent v_rec is { fieldl := <undefined>, field2 := { subfieldl := 5,
/] subfield2 := <undefined> } }

6.2.1.2 Optional elements in a record
Optional elementsinar ecor d shall be specified using the opt i onal keyword.

EXAMPLE 1:
type record MyMessageType

Fi el dTypel fieldi,
Fi el dType2 field2 optional,

Fi el dTypeN fiel dN
}

Optional fields shall be omitted using the omit symbol.
EXAMPLE 2:
v_nyRecordVal ue: = {v_nyl ntegerVal ue, omt , "A string"};
/'l Note that this is not the sane as witing,

/1 v_nyRecordVal ue: = {v_nyl ntegerValue, -, "A string"};
/1 which would nean the value of field2 is unchanged

ETSI

56 ETSI ES 201 873-1 V4.9.1 (2017-05)

6.2.1.3 Nested type definitions for field types

TTCN-3 supports the definition of types for record fields nested within the r ecor d definition. Both the definition of
new structured types (r ecor d, set , enurrer at ed, set of ,record of ,and uni on) and the specification of
subtype constraints are possible.

EXAMPLE:

Il record type with nested structured type definitions
type record MyNest edRecordType

{

record

{

i nt eger nestedFi el d1,
float nestedFiel d2
} outerFieldi,
enuner at ed {
nest edEnum,
nest edEnung
} outerField2,
record of bool ean outerField3

}

/1 record type with nested subtype definitions
type record MyRecor dTypeW t hSubt ypedFi el ds
{

i nt eger fieldl (1 .. 100),
charstring field2 length (2 .. 255)

6.2.2 Set type and values

6.2.2.0 General

TTCN-3 supports unordered structured types known as set . Set types and values are similar to records except that the
ordering of theset fieldsis not significant.

EXAMPLE:
type set M/Set Type
{
i nt eger fieldl,
charstring field2
}

Thefield identifiers are local to the set and shall be unique within the set (but do not have to be globally unique).
NOTE: Whenthevauelist notation is used for values of set types, the values are assigned to the fieldsin the
sequential order of the fieldsin the type definition.
6.2.2.1 Referencing fields of a set type

Elements of aset shall be referenced by the dot notation (see clause 6.2.1.1). Elements of set type definitions shall not
reference themselves. For referencing field types of set types, the samerules apply asin clause 6.2.1.1 for fields of
record types.

EXAMPLE:

v_nyVar3 : = v_nySet 1. nyEl enent 1;

/1 1f a set is nested in another type then the reference may | ook like this

v_nyVar4 : = v_nyRecordl. nyEl enent 1. nyEl enent 2;

/'l Note, that the set type, of which the field with the identifier 'nyElenent2' is referenced,
/l is enbedded in a record type

6.2.2.2 Optional elements in a set

Optional elementsinaset shall be specified using the opt i onal keyword.

ETSI

57 ETSI ES 201 873-1 V4.9.1 (2017-05)

6.2.2.3 Nested type definition for field types

TTCN-3 supports the definition of types for set fields nested within the set definition, similar to the mechanism for
record types described in clause 6.2.1.3.

6.2.3 Records and sets of single types

6.2.3.0 General

TTCN-3 supports the specification of records and sets whose elements are all of the same type. These are denoted using
the keyword of . These records and sets do not have element identifiers and can be considered similar to an ordered
array and an unordered collection respectively.

NOTE 1: For the subtyping of record of and set of types seein clause 6.2.13.
EXAMPLE 1:

type set of boolean MySetOf Type; // is an unlinmited set of bool ean val ues

When the assignment notation isused for r ecord of -sand set of -s, elements wished to be changed are identified
explicitly and either avalue or the not used symbol "-" can be assigned to them. Other elements, not referred to in the
notation, shall remain unchanged. In particular, when specifying partial values (i.e. setting the value of only a subset of
the fields) using the assignment notation, for example, at initiaization, only the elements to be assigned values shall be
specified: elements not mentioned are implicitly left uninitialized. It is also possible to leave fields explicitly
unspecified using the not used symbol "-". When re-assigning a previoudly initialized value, using the not used symbol
or just skipping afield or element in an assignment notation, will cause that field or element to remain unchanged.

EXAMPLE 2:

var MyRecordOf Type v_nyVariable : = {
= "111' B,
'101' B,

—_
=
—

1o

v_nyVariable := { '10111'B, -, - };
[/l after this, v_nyVariable contains:
/1 { '10111'B, '101'B /* unchanged */, <undefined> /* unchanged */ }
v_nyVariable : =
[1] :='010'B,

/1 after this, v_nyVariable contains:
/1 { '10111' B/ * unchanged */, '010'B, <undefined>/* unchanged */ }

v_nyVariable : =
{

[0] :
[1] :
[2] :

/1 after this, v_myVariable contains:
/1 { '10111' B/ * unchanged */, '001' B, <undefined> /* unchanged */}

' 001' B,

When using the value list notation, all elementsin the structure shall be specified either with a value or the not used
symbol "-". The first member of the list is assigned to the first element, the second list member is assigned to the second
element, etc. No empty assignment is allowed (e.g. two commas, the second immediately following the first or only
with white space between them). Elements to be left out of the assignment shall be explicitly skipped in the list by use
of the not-used-symbol "-". Already initialized elements left without a corresponding list member in avalue list notation
(i.e. a the end of alist) are becoming uninitialized. In this way, a value with initialized elements can be made empty by
using the empty value list notation ("{}").

Index notation can be used on both the right-hand side and | eft-hand side of assignments. The index notation, when used
on the right-hand side, refersto the value of the identified element of ar ecord of oraset of . Whenitisused at
the left-hand side, only the value of the identified single element is changed, val ues assigned to other elements already
remain unchanged. The index of the first element shall be zero and the index value shall not exceed the limitation
placed by length subtyping.

ETSI

58 ETSI ES 201 873-1 V4.9.1 (2017-05)

If the value of the element indicated by the index at the right-hand of an assignment is undefined (uninitialized), this
shall cause a semantic or runtime error. Referencing an identified element of an uninitialized or omitted record of or set
of field or value on the right-hand side of an assignment shall cause an error.

If an indexing operator at the left-hand side of an assignment refers to a non-existent element, the value at the
right-hand side is assigned to the element and all elements with an index smaller than the actual index and without
assigned value are created with an uninitialized value.

For nested record of or set of types, an array or record of integer restricted to a single size can be used as a short-hand
notation for a nested index notation.

When referencing an element of an uninitialized record of or set of value or field or omitted field (including omitting a
field at a higher level of the embedding hierarchy) on the left-hand side of an assignment, the reference shall recursively
be expanded up to and including the depth of the referenced element as follows:

a When expanding avalue or valuefield of recor d of orset of type, the element referenced by the index
notation shall be set to present and all elements with a smaller index shall be created with an uninitialized
value.

b) Expansionof recor d, uni on and set valuesand intermediate fields shall follow the rules of item a) in
clauses 6.2.1.1 and 6.2.5.1 and clause 6.2.2.1 correspondingly.

c) Attheend of the expansion, the value at the right-hand side of the assignment shall be assigned to the
referenced element.

Uninitialized elements are permitted only in transient states (while the value remainsinvisible). Sending ar ecor d of
orset of valuewith uninitialized elements shall cause an error.

NOTE 2: When using on the right-hand side of an assignment for r ecor d of - sor set of - s, the assignment
notation and the indexed notation have similar effect, with the exception that the assignment notation is
able to address multiple elements in one notation, while the index notation is able to address asingle
element only.

EXAMPLE 3:

/1 Gven

type record of integer MyRecorddf;

type record of MyRecordO RoRol;

var integer v_nyVar;

/1 Using the value list notation

var MyRecorddf v_nyRecordOfvar := { 0, 1, 2, 3, 4 };

/'l The sane record of, defined with the assignnent notation
var MyRecordOf v_mnyRecor dOf Var Assi gnment @ = {
[0]
[1]
[2]
[3]
[4]

vér RoRol v_recof;

TR TRN TR
pPONEO

/1 Using an index notation
v_nyVar := v_nyRecordO'Var[0]; // the first elenent of the "record of" val ue (integer 0)
/1 is assigned to v_nyVar

/1 Index notations are pernitted on the left-hand side of assignments as well:
v_nyRecordOf Var[1] := v_nyVar; // v_nyVar is assigned to the second el enent
/1 value of v_nyRecordOiVar is { 0, 0, 2, 3, 4}

/1 The assi gnnent

v_nyRecordOfVar :={ 0, 1, -, 2 };

/1 will change the value of v_myRecordOfVar to{ 0, 1, 2 <unchanged>, 2};

/1 Note, that the 3¢ el ement woul d be undefined if had no previous assigned val ue.

/1 The assi gnment

v_nyRecordOf Var[6] : = 6;

/1 will change the value of v_nyRecordOf Var to

/1 {0, 1, 2, 2, <uninitialized> <uninitialized> 6 };

/1 Note the 5'" and 6t" el enents (with indexes 4 and 5) had no assigned val ue before this
/1 last assignnent and are therefore undefined.

ETSI

59 ETSI ES 201 873-1 V4.9.1 (2017-05)

v_nyRecordCf Var[4] := 4; v_nyRecordOfVar[5] := 5;
/'l will conplete v_nyRecordOfVar to the fully defined value { 0, 1, 2, 2, 4, 5, 6 };

/] Expansion of uninitialized record of val ue:
v_recof[1][2] := O;
/'l after the assignnment v_recof is { <undefined> { <undefined> <undefined> 0 } }

/1 Pls. Note the difference between the two i ndex assignment notations in
/1 the followi ng exanple:

var M/Recorddf v_ix :={ 0,1,2 }

v_ix :={ [3] :=2*v_ix[2]+1 }

/1 the value of v_ix is: {0, 1, 2, 5}

/1 The same result can be achi eved by using an index notation on the left hand side of
/1 the assignnent:

var MyRecordOf v_ix :={ 0,1,2 }

v_ix[3] :=2*v_ix[2]+1

/1 the value of v_ixis: {0, 1, 2, 5}

NOTE 3: Theindex notation makesit possible e.g. to copy r ecor d of values element by element in afor loop.
For example, the function below reverses the elements of ar ecor d of vaue:

function reverse(in MyRecordOXf p_src) return MyRecordO

{
var MyRecordOf v_dest;

var integer v_i, v_srcLength := I engthof (p_src);

for(v_i :=0; v_i <v_srcLength; v_i :=v_i + 1) {
v_dest[v_srcLength - 1 - v_i] := p_src[v_i];

}

return v_dest;

}

Embedded r ecord of andset of typeswill result in a data structure similar to multidimensional arrays
(seeclause 6.2.7).

EXAMPLE 4:

/1 Gven
type record of integer MyBasi cRecordOf Type;
type record of MyBasicRecordOf Type My2DRecordOf Type;

/1 Then, the variable nyRecordOfArray will have sinmilar attributes to a two-dinensional array:
var My2DRecor dOf Type v_myRecordOf Array;

/1 and reference to a particular elenent would | ook like this

/1 (value of the second el enment of the third ' MyBasi cRecordOf Type' construct)

v_nyRecordOf Array [2][1] := 3;

//with the short-hand notation this could al so have been witten as
var integer v_i[2] :={ 2, 1};

v_nyRecordOf Array [v_i] := 3;
/1 is the same as assigning element v_nyRecordOFArray[v_i[O]][v_i[1]]

6.2.3.1 Nested type definitions

TTCN-3 supports the definition of the aggregated type nested withther ecor d of orset of definition. Both the
definition of new structured types (r ecor d, set , enuner at ed, set of andr ecor d of) and the specification of
subtype constraints are possible.

EXAMPLE:
type record of enunerated { red, green, blue } ColorlList;

type record length (10) of record I ength (10) of integer Matrix;
type set of record { charstring id, charstring val } GenericParaneters;

ETSI

60 ETSI ES 201 873-1 V4.9.1 (2017-05)

6.2.3.2 Referencing elements of record of and set of types

It isalso alowed to reference theinner typeof r ecor d of andset of typesby using theindex notation but with a
dash. The notation Typel d[-] , where Typel d resolvesto the nameof ar ecor d of orset of type, references
the inner type of Typel d. If the type definition restricts the element type of the record of or set of type, referencing
the inner type of that type yields a type which contains all values from the constrained type.

EXAMPLE:

/1 Provided the definitions bel ow
type record of integer MyRecordOf I nt;
type record of record {

integer f1,

set { integer sl1, boolean s2 } f2
} MyRecor dOf Recor d;
type record of record of integer MyRecordOf RecordOf I nt;
type record of record {

integer f1,

record of boolean f2
} MyRecor dOf Recor d2;

/'l Referencing the inner integer type
type MyRecordOInt[-] Ml nteger;
const MyRecordOfInt[-] c_Mylnteger:= 5;

/'l Referencing the nested record type
type MyRecordOf Record[-] Myl nnerRecord;
const MyRecordOfRecord[-] ¢c_MRecord :={ f1 =5; f2 :={ s1 :=0; s2 :=true }}

/'l Referencing the set type nested in the inner record
type MyRecordOf Record[-].f2 MyNestedSet;
const MyRecordORecord[-].f2 c_MWSet :={ s1 :=0; s2 :=true }

/'l Referencing the innernost bool ean
type MyRecordOf Record[-].f2.s2 MyBool ean;
const MyRecordOf Record[-].f2.s2 c_MyBool := fal se;

/1 Referencing the inner record of
type MyRecordOf RecordOf I nt[-] Myl nnerRecordCfInt;
const MyRecordO RecordOfInt[-] c_MylnnerRecordOfInt :={ 0, 1, 2, 3 };

/'l Referencing the integer type within the inner record of
type MyRecordOf RecordOrInt[-][-] Ml nteger?2;
const MyRecordO RecordOfInt[-][-] c_Mylnteger2 := 1;

/'l Referencing the boolean type within the nested record
type MyRecordOf Record2[-].f2[-] Ml nnernostBool ean;
const MyRecordO Record2[-].f2[-] c_MylnnernostBool ean : = true ;

type record length (5) of record of integer Constrai nedRecordOfInt (1 .. 10);
type Constrai nedRecordOInt[-] Constrainedlnt;

/] defines the type record of integer, where the integer values are restricted
/!l to the range 1 .. 10 but the record of has no length restriction

ETSI

61 ETSI ES 201 873-1 V4.9.1 (2017-05)

6.2.4 Enumerated type and values

TTCN-3 supports enuner at ed types. Enumerated types are used to model types that take only a distinct named set of
values. Such distinct values are called enumerated values. Each enumerated value shall have an identifier and
referencing the values shall only use these identifiers. The identifiers of enumerated values shall be unique within the
enumerated type (but do not have to be globally unique) and are consequently visible in the context of the given type
only. This means that for any instantiation or value reference of an enurrer at ed type, the given type shall be
implicitly or explicitly identified.

NOTE 1: For example, if the enumerated type is an element or field of a user defined structured type, the
enumerated type isimplicitly referenced viathe given element/field (i.e. by the identifier of the field or
the position of the value in avalue list notation) at value assignment, instantiation, etc. Another example
is passing an enumerated value as actual parameter, in which case the type of the corresponding formal
parameter establishes the type context needed to make the enumeration value visible. The third example
isthe comparision operators: if the type of one of the operandsis uniquely identified, it is used as atype
context for the other operand (see example 2 below). The fourth example is the match operation, where
the type of the template parameter establishes the type context for the operation, if the type of the value
parameter is not identified (see example 2 in clause 15.9).

Theidentifiers of enumerated values, within the same module, shall only be reused within other structured type
definitions and shall not be used for identifiers of local or global visibility at the same or alower level of the same
branch of the scope hierarchy (see scope hierarchy in clause 5.2).

EXAMPLE 1. Declaration of enumerated types and values

type enunerated MyFirstEnunType {
Monday, Tuesday, Wednesday, Thursday, Friday
b

type integer Monday;
/1 This definition does not clash with the previous one
/1 as Monday in MyFirstEnunType is of |ocal scope

type enunerated MySecondEnuniype {
Saturday, Sunday, Monday

/} This definition is legal as it reuses the Monday identifier within
/1 a different enunerated type

type record MyRecordType {
i nt eger Monday

/} This definition is legal as it reuses the Monday identifier within
I/l a distinct structured type as identifier of a given field of this type

type record MyNewRecordType {
M/Fi rst Enunifype firstField,
i nt eger secondFi el d

}s

var MyNewRecor dType v_newRecordVal ue := { Monday, 0 }
/1 MyFirstEnunType is inplicitly referenced via the firstField el enent of MyNewRecordType

EXAMPLE 2: Using enumerated types (see also example 4 of clause 8.2.3.1)

/1 Valid instantiations of MyFirstEnunType and MySecondEnunType woul d be
var MyFirst EnunType v_today := Tuesday;
var MySecondEnunilype v_t onorrow : = Monday;

/1 The followi ng statenents however cause an error as the two variables are instances
/1 of different enuneration types

v_today := v_tonorrow,

v_today == v_tonorrow,

/1 The followi ng operation is correct

if (v_today == Monday) {...}

/1 the type of variable v_today identifies the type context of MFirstEnunType for the
/1 equality operator

/1 But the foll owi ng causes an error

if (Tuesday == Wednesday) {...}
/1 there is no TTCN-3 type(d) object to establish the type context for the equality operator

ETSI

62 ETSI ES 201 873-1 V4.9.1 (2017-05)

/1 Please note that the values Tuesday and Wednesday are defined within the type
/'l MyFirstEnuniType only, but this is not sufficient to establish the type context

Each enumerated value may optionally have a user-assigned integer value or non-empty list of integer literal values or
ranges of integer literal values, which is defined after the name of the enumerated value in parenthesis. Each user-
assigned integer number shall be distinct within asingle enuner at ed type, all ranges of al the valueslists shall be
digoint and shall not include any of the used single integer values. For each enumerated value without an assigned
integer val ue, the system successively associates an integer number in the textual order of the enumerated val ues,
starting at the left-hand side, beginning with zero, by step 1 and skipping any number occupied by any of the
enumerated values with a manually assigned value or value list. These values are only used by the system to allow the
use of relational operators. Enumerated names with an associated value list shall only be used as val ues together with a
specific integer value, which shall be one from the associated list, in parenthesis after the name. They can be used asa
template of the enumerated type by adding alist of integer template(s) in parenthesis after the name. For enumerated
values with no value assigned or with a specific integer value assigned, the user shall not directly use associated integer
values but can access them and convert integer values into enumerated values by using the predefined functions
enun®i nt andi nt 2enum (see clauses 16.1.2, C.1.30 and C.1.4).

NOTE 2: Theinteger value also may be used by the system to encode/decode enumerated values. This, however is
outside the scope of the present document (with the exception that TTCN-3 allows the association of
encoding attributes to TTCN-3 items).

EXAMPLE 3: Enumeration example with associated integers

type enunerated MyThirdEnuniType {
Bl ue(0),
Yel l om(1),
Green(3),
O her (2, 4..255)
}

var MyThirdEnunType v_color := Qher(5);
if (v_color == Other(4)) { // is false

}
if (v_color > Gher(4)) { /] is true
i}f (match(v_color, Qher(?))) { // is true

}
if (match(v_color, Gher(6..10))) { // is false

}

v_color := Blue(0) //causes an error as enunerated values with a specific integer val ue assigned
//shall not use the associated integer value

When a TTCN-3 module parameter, formal parameter, constant, variable, non-parameterized template or parameterized
template with al formal parameters having default values of an imported enumerated type is defined, the name of that
definition shall not be the same as any of the enumerated values of that type.

6.2.5 Unions

6.25.0 General

TTCN-3 supportsthe uni on type. The uni on typeisacollection of aternatives, each one identified by an identifier.
Only one of the specified aternatives will ever be present in an actual union value. Union types are useful to model data
which can take one of afinite number of known types.

EXAMPLE 1:
type uni on MyUni onType
{

i nt eger nunber,
charstring string

}s

/1 Avalid instantiation of MyUnionType woul d be
var MyUni onType v_age, v_oneYeard der;
var integer v_agel nMont hs;

v_age. hunber := 34; /1 value notation by referencing the field. Note, that this
/1 notation nmakes the given field to be the chosen one
v_oneYear O der := {nunber := v_age. nunber+1};

ETSI

63 ETSI ES 201 873-1 V4.9.1 (2017-05)

v_agel nMont hs : = v_age. nunber * 12;

The assignment notation shall be used for uni on-s, and the notation shall assign avalue to one field only. Thisfield
becomes the chosen field. Neither the not used symbol "-" nor ommi t isalowed in union value notations.

The value list notation shall not be used for setting values of uni on types.

At most one of the union alternatives can be declared as the default alternative by using the @lef aul t modifier before
the type of the aternative. For unions with a default alternative, special type compatibility rules apply (see

clause 6.3.2.4) which allow using the union value as compatible with the type of the default alternative. Therefore, the
assignment notation does not have to be used to denote a value of the union type if the union's default alternative isto
be chosen. Also, the default alternative selection does not have to be used to access the default alternative, if it is
chosen.

EXAMPLE 2:
type uni on MyUni onTypeW t hDef aul t

@lef aul t i nteger nunber,
charstring string

b

/1 Avalid instantiation of MyUnionTypeWthDefault would be
var MyUni onTypeW t hDef aul t v_age, v_oneYear d der;

v_age := 34; /Il inmplicit usage of the default alternative: the integer type is
/] conpatible with the default alternative; this is a shorthand notation
/1 for v_age.nunber := 34 or v_age := { nunber := 34}

v_oneYearO der := v_age+l; // inplicit selection of the default alternative: the union
/1 default alternative is conpatible with integer, so that it
/1 can be used as an integer expression; this is equivalient to:
/'l v_oneYear d der. nunber := v_age. nunber +1;

type uni on MyDefaul t Uni onType2 {
@lef aul t
My Def aul t Uni onType agel nYears,
i nt eger agel nDays

}

var MyDef aul t Uni onType2 v_age2 := 3; /1 nested default usage: 3 is conpatible with
/1 both alternatives, but only alternative agel nYears
/'l has @efault, so this is equivalent to
/1l v_age2 := { agelnYears := 3 } which is equival ent

/1l to v_age2 := { agelnYears := { nunber := 3} }
var integer v_result := v_age + v_age2; // v_result is 37 as the expression is equival ent
/1 to v_age.nunber + v_age2. agel nYears

v_age := {string := "1 feel young"};
v_result := v_age + v_agez; /] test case error: v_age would be treated as
/1 v_age.nunber, which is not the selected alternative
6.2.5.1 Referencing fields of a union type

Alternatives of auni on type shall be referenced by the dot notation Typel dOr Expr essi on. Al t er nati vel d,
where Typel dOr Expr essi on resolves to the name of a union type or an expression of a union type such as variable,
formal parameter, module parameter, constant, template, or function invocation. Al t er nat i vel d shall resolve to the
name of an alternative in the union type or in case of an anytype value or template Al t er nat i vel d shall resolveto
a known type name or a known type name qualified with a module name. Alternatives of union type definitions shall

not reference themsel ves.

EXAMPLE 1.

v_nyVar5 : = v_nyUni onl. nyChoi cel;

/1 If a union type is nested in another type then the reference nay | ook like this

v_nyVar6 : = v_nyRecordl. nyEl enent 1. nyChoi ce2;

/1 Note, that the union type, of which the field with the identifier 'nyChoice2' is referenced,
// is enbedded in a record type

ETSI

64 ETSI ES 201 873-1 V4.9.1 (2017-05)

If an alternative in a union type or a subtype of a union type is referenced by the dot notation, the resulting typeis the
set of values allowed for that alternative imposed by the constraints of the alternative declaration itself (i.e. any
constraints applied to the union type itself are ignored).

When an alternative of a union type isreferenced on the right hand side of an assignment an error shall occur if the
referenced alternative is not the currently chosen aternative or if the referenced union field or value is omitted or
uninitialized.
EXAMPLE 2:
type uni on MyUni on2
{

i nt eger choi cel,
charstring choice2

}
type record MyRecor dEnbedsUni on

MyUni on2 fieldl optional
}

var MyUnion2 v_un2 := { choicel := 1}

var charstring v_char := v_un2.choice2; // causes an error as v_un.choice2 is not chosen
var MyRecor dEnbedsUnion v_rec := { fieldl := omt }

var integer v_int := v_rec.fieldl. choicel; // causes an error as v_rec.fieldl is onmtted

When referencing an aternative of a union type on the left hand side of an assignment, the referenced alternative shall
become the chosen one. Thisrule shall apply recursively if the reference contains alternatives of nested unions,
choosing all the referenced alternatives.

When referencing an aternative of an uninitialized union value or field or omitted field (including omitting afield at a
higher level of the embedding hierarchy) on the left hand side of an assignment, the reference shall recursively be
expanded up to and including the depth of the referenced alternative as follows:

a When expanding avaue or value field of uni on type, the alternative referenced in the dot notation becomes
the chosen one.

b) Expansonofrecord,record of,set,set of,and array vauesandintermediate fields shall follow
therules of item a) in clauses 6.2.1.1 and 6.2.3, and clause 6.2.2.1 correspondingly.

c) Attheend of the expansion, the value at the right hand side of the assignment shall be assigned to the
referenced aternative.

EXAMPLE 3:
type uni on MyUni on3
{

i nt eger choi cel,
uni on

bitstring subchoicel,
charstring subchoi ce2
} choice2

}

var MyUnion3 v_un3 := { choicel :=1 };
var MyRecor dEnbedsUnion v_rec2 := { fieldl := onmit };

v_un3. choi ce2. subchoice2 := "Hello!";
/1 after the assignnent v_un3 equals to { choice2 := { subchoice2 := "Hello!" } }
v_rec2.fieldl.choicel := 10; // after the assignnent v_rec2 equals to

/1 { fieldl := { choicel := 10 } }

6.2.5.2 Option and union

Optional fields are not allowed for the uni on type, which means that the opt i onal keyword shall not be used with
uni on types.

ETSI

65 ETSI ES 201 873-1 V4.9.1 (2017-05)

6.2.5.3 Nested type definition for field types

TTCN-3 supports the definition of types for union alternatives nested within the union definition, similar to the
mechanism for record types described in clause 6.2.1.3.

6.2.6 The anytype

The specia type anyt ype is defined as a shorthand for the union of all known data types and the addresstypein a
TTCN-3 module. The definition of the term known typesis given in clause 3.1, i.e. the anytype shall comprise all the
known data types but not the port, component, and default types. The address type shall be included if it has been
explicitly defined within that module.

The fieldnames of the anyt ype shall be uniquely identified by the corresponding type names.

NOTE 1: Asaresult of this requirement imported types with clashing names (either with an identifier of a
definition in the importing module or with an identifier imported from athird module) cannot be reached
viathe anytype of the importing module.

EXAMPLE:

/1 A valid usage of anytype woul d be
var anytype v_nyVar One, v_nyVar Two;
var integer v_nyVarThree;

v_nyVar One. i nteger := 34,
v_nyVarTwo : = {integer := v_nyVarOne.integer + 1};

v_mnyVar Three : = v_nyVarOne.integer * 12;

Theanyt ype isdefined locally for each module and (like the other predefined types) cannot be directly imported by
another module. However, a user defined type of the type anyt ype can be imported by another module. The effect of
thisisthat all types of that module are imported.

NOTE 2: The user-defined type of anyt ype "contains' all types imported into the module where it is declared.
Importing such a user-defined type into a module may cause side effects and hence due caution should be
given to such cases.

6.2.7 Arrays

Arrays can be used in TTCN-3 as a shorthand notation to specify record of types. They may be specified also at the
point of avariable declaration. Arrays may be declared as single or multi-dimensional. Array dimensions shall be
specified using constant expressions, which shall evaluate to a positivei nt eger vaues. Constants used in the
constant expressions shall meet with the restrictionsin clause 10.

EXAMPLE 1:

type integer MyArrayTypel[3]; /1 Atype with 3 integer elenents
type record length (3) of integer MyRecordOf Typel; // The correspondi ng record of

var MArrayTypel v_al:={ 7, 8, 9 };
var MyRecordOf Typel v_rl:= v_al; /'l MArrayTypel and MyRecordOf Typel are conpati bl e

var integer v_nyArrayl[3]:= v_r1; /1 Instantiates an integer array of 3 elenents
/1 with the index 0 to 2
/1 being conpatible to MArrayTypel and MyRecor dOf Typel

var integer v_nyArray2[2][3]; /1 Instantiates a two-di mensional integer array of 2 x 3
/1 elements with indexes from(0,0) to (1,2)

Array elements are accessed by means of the index notation ([1), which shall specify avalid index within the array's
range. Individual elements of multi-dimensional arrays can be accessed by repeated use of the index notation. An array
or record of integer restricted to a single size can be used in the index notation as a short-hand for the repeated index
notation. Accessing elements outside the array's range will cause a compile-time or test case error.

ETSI

66 ETSI ES 201 873-1 V4.9.1 (2017-05)

EXAMPLE 2:

v_nyArrayl[1] := 5;
v_nyArray2[1][2] := 12;

v_nyArrayl[4] := 12; /] ERROR index shall be between 0 and 2
v_nyArray2[3][2] := 15; // ERROR first index shall be 0 or 1

Array dimensions may also be specified using ranges (with inclusive boundaries only). In such cases, the lower and
upper values of the range syntax define the lower and upper index values. The upper value shall not be lesser than the
corresponding lower value. Such an array is corresponding to arecord of with afixed length restriction computed as the
difference between upper and lower index bound plus 1 and indexing starting from the lower bound of the array
definition.

EXAMPLE 3:

type integer MyArrayType2[2 .. 5]; // Atype with 4 integer elenents, indices starting with 2
type record length (4) of integer MyRecordOf Type2; // The correspondi ng record of

var integer v_nyArray3[1 .. 5]; // Instantiates an integer array of 5 elenents
/1l with the index 1 to 5

10; // Lowest index

50; // Hi ghest index

v_nyArray3[1]
v_nyArray3[5]

var integer v_nyArray4[1 .. 5][2 .. 3]; /1 Instantiates a two-di mensional integer array of
/1 5 x 2 elements with indexes from(1,2) to (5,3)

NOTE: Itisnot possible to define an array type with a variable amount of elements. Neither isit possible to
define an unlimited array with alower bound on the array index.

The values of array elements shall be compatible with the corresponding variable or type declaration. Values may be
assigned individually by avalue list notation or index notation or more than one or all at once by avalue list notation or
index assignment notation. For using the value list or assignment notation for arrays, the rules described in clause 6.2.3
arevalid for arrays as well.

Index notation can be used on both the right-hand side and left-hand side of assignments. The index of the first element
shall be zero or the lower bound if an index range has been given. The index shall not exceed the limitations given by
either the length or the upper bound of the index. If the value of the element indicated by the index at the right-hand of
an assignment is undefined or if the index notation is applied to an uninitialized or omitted array value on the right hand
side of an assignment, error shall be caused. Sending an array value with undefined elements shall cause an error. All
elementsin an array value that are not set explicitly are undefined. When referencing an e ement of an uninitialized
array value or field or omitted field on the left hand side of an assignment, the rules for record of values specified in
clause 6.2.3 apply.

For assigning values to multi-dimensional arrays, each dimension that is assigned shall resolve to a set of values
enclosed in curly braces. When specifying values for multi-dimensional arrays, the leftmost dimension corresponds to
the outermost structure of the value, and the rightmost dimension to the innermost structure. The use of array slices of
multi-dimensional arrays, i.e. when the number of indexes of the array value is less than the number of dimensionsin
the corresponding array definition, is allowed. Indexes of array slices shall correspond to the dimensions of the array
definition from left to right (i.e. the first index of the slice corresponds to the first dimension of the definition). Slice
indexes shall conform to the related array definition dimensions.

EXAMPLE 4:
v_nyArrayl[0]:= 10;
v_nyArrayl[1]:= 20;
v_nyArrayl[3]:= 30;

/1 or using an value |ist
v_nmyArrayl: = {10, 20, -, 30};

v_nyArray4d: = {{1, 2}, {3, 4}, {5, 6}, {7, 8, {9, 10}};
/1 the array value is conpletely defined

var integer v_nyArray5[2][3][4] :=

{
{
{1, 2, 3, 4}, /] assigns a value to v_nyArray5 slice [0][O0]
{5, 6, 7, 8, // assigns a value to v_nyArray5 slice [0][1]
{9, 10, 11, 12} // assigns a value to v_nyArray5 slice [0][2]
}, /1 end assignnents to v_nyArray5 slice [O]

ETSI

67 ETSI ES 201 873-1 V4.9.1 (2017-05)

{13, 14, 15, 16}, {17, 18, 19, 20}, {21, 22, 23, 24}
} // assigns a value to v_nyArray5 slice [1]

}s

v_nyArray4[2] := {20, 20};
/1 yields {{1, 2}, {3, 4}, {20, 20}, {7, 8}, {9, 10}};
v_nyArray5[1] :={ {0, O, O, 0}, {O, O, O, 0}, {O, O, O, O}};
/1l yields {{{1, 2, 3, 4}, {5 6, 7, 8, {9, 10, 11, 12}},
/1 {{o, o, o, 0}, {0, O, O, O}, {O, O, O, O}}};

v_nyArray5[0][2] := {3, 3, 3, 3};
/Il yields {{{1, 2, 3, 4}, {5, 6, 7, 8},
/1 {{o, o, o, 0}, {0, O, O, 0O},

~~——
o w
ow
o w
o W
— =
—
-

var integer v_nyArraylnvalid[2][2];
v_nmyArraylnvalid := { 1, 2, 3, 4}

/] causes an error as the dinension of the value notation

/1 does not correspond to the dinmensions of the definition
v_nyArraylnvalid(2] :={ 1, 2}

/1l causes an error as the index of the slice should be 0 or 1

6.2.8 The default type

TTCN-3 alows the activation of altsteps (see clause 16.2) as defaults to capture recurring behaviour. Default references
are unigue references to activated defaults. Such a unique default reference is generated by a test component when an
altstep is activated as a default, i.e. adefault referenceisthe result of anact i vat e operation (see clause 20.5.2).

Default references have the special and predefined type def aul t . Variables of type def aul t can be used to handle
activated defaults in test components. The special value nul | represents an unspecific default reference, e.g. can be
used for the initialization of variables of default type.

Default referencesare used in deact i vat e operations (see clause 20.5.3) in order to identify the default to be
deactivated.

Default references have meaning only within the test component instances they are activated, i.e. a default reference
assigned to a default variable in test component instance "al" of type "A" has no meaning in test component instance
"a2" of type"A".

The actual data representation of thedef aul t type shall be resolved externally by the test system. This allows abstract
test cases to be specified independently of any real TTCN-3 runtime environment, in other words TTCN-3 does not
restrict the implementation of atest system with respect to the handling and identification of defaults.

6.2.9 Communication port types
Ports facilitate communication between test components and between test components and the test system interface.

TTCN-3 supports message-based and procedure-based ports. Each port shall be defined as being message-based or
procedure-based. Message-based ports shall be identified by the keyword nessage and procedure-based ports shall be
identified by the keyword pr ocedur e within the associated port type definition.

Ports are bidirectional. The directions are specified by the keywordsi n (for the in direction), out (for the out
direction) and i nout (for both directions). Directions shall be seen from the point of view of the test component
owning the port with the exception of the test system interface, where i n identifies the direction of message sending or
procedure call and out identifies the direction of message receive, get reply or catch exception from the point of view
of the test component connected to the test system interface port.

Each port type definition shall have one or more lists indicating the allowed collection of (message) types or procedure
signatures together with the allowed communication direction.

For configuration purposes the port type may have one map param and one unmap param declaration indicating the
allowed additional parameters for the respective operation. These formal parameters shall be value parameters.

ETSI

68 ETSI ES 201 873-1 V4.9.1 (2017-05)

Whenever a signature (see also clause 14) is defined in the out direction of a procedure-based port, the types of al its

i nout and out parameters, itsreturn type and its exception types are automatically part of thei n direction of this
port. Whenever asignature is defined inthei n direction for a procedure-based port, the types of al itsi nout and out
parameters, its return type and its exception types are automatically part of the out direction of this port.

Ports used for the communication with the SUT may need to address specific entities within the SUT. In addition,
several address schemes may be supported by one SUT at different ports. To support such addressing schemes, TTCN-3
alowsto bind an addr ess type to aport. Vaues of thistype may be used for addressing purposes in communication
operations (see clause 22.1) and be stored in variables. The handling of address types bound to different ports by means
of the dot notation is explained in clause 6.2.12.

Syntactical Structure

M essage-based port:
type port PortTypeldentifier message "{"
{ (address Type ";") |
(map param " (" { Formal ValuePar [","] }+ ")") |
(unmap param " (" { Formal Val uePar [","] }+ ")") |
((in] out | inout) { MessageType [","]
Procedure-based port:
type port PortTypeldentifier procedure "{"
{ (address Type ";") |
(map param " (" { Fornual Val uePar [","] }
(unmap param " (" { Formal Val uePar [","]
((in] out | inout) { Signature [","]
"y
Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) At most one address type shall be bound to a port type.
b) At most one map parameter list shall be defined for a port type.
c) At most one unmap parameter list shall be defined for a port type.

d) Formal parameters of map param and unmap param declarations shall be value parameters and not be of
port, component, timer or default type or of structured types having fields of port, component, timer or
default type.

€) MessageType shall beadatatype asdefined in clause 3.1.
Examples

EXAMPLE 1. Message-based port

/'l Message-based port which allows types MsgTypel and MsgType2 to be received at, MsgType3 to be
/1 sent via and any integer value to be send and received over the port

type port MyMessagePort TypeOne nessage

{

in MsgTypel, MsgType2;
out MsgType3;
i nout i nt eger

}

EXAMPLE 2: Procedure-based port

/'l Procedure-based port which allows the renote call of the procedures Procl, Proc2 and Proc3.
/1 Note that Procl, Proc2 and Proc3 are defined as signatures

type port MyProcedurePort Type procedure
{

out Procl, Proc2, Proc3

ETSI

69 ETSI ES 201 873-1 V4.9.1 (2017-05)

EXAMPLE 3: Message-based port with address type definition
type port MyMessagePort TypeTwo nessage

addr ess integer; /] if addressing is used on ports of type M/MessagePort TypeTwo
/1 the addresses have to be of type integer
i nout MsgTypel, MsgType2;
}

NOTE: Theterm message is used to mean both messages as defined by templates and actual values resulting
from expressions. Thus, the list restricting what may be used on a message-based port issimply alist of
type names.

EXAMPLE 4: Usage of param in port declaration

/1 Message based port which allows MsgType4 to be send and received over the port
/1 and MsgType5 and MsgType6 as configuration paraneter type

type port MyMessagePort Type nessage

{

i nout MsgType4,
map param (in MsgType5 p_pl, out MsgType6 p_p2);

/1 Procedure based port which allows the renote call of the procedure Procl
/1 and MsgType5 as configuration paraneter type
type port MyProcedurePort Type procedure

out Procil;
unmap param (MsgType5 p_pl);

6.2.10 Component types

6.2.10.1 Component type definition

The component type defines which ports are associated with a component (see figure 3). The port namesin a
component type definition are local to that component type, i.e. another component type may have ports with the same
names. Port names in the same component type definition shall all have unique names.

PCO2 PCO3
MyMTC MyPTC p—
/I of MyMTCType = lof MyPTCType |
PCO4
PCO1 PCO1

Figure 3: Typical components

Itisalso possible to declare constants, variables, templates and timerslocal to a particular component type. These
declarations are visible to all testcases, functions and altsteps that run on an instance of the given component type. This
shall be explicitly stated using ther uns on keyword (see clause 16) in the testcase, function or altstep header.
Component type definitions are associated with the component instance and follow the scope rules defined in

clause 5.2. Each new instance of a component type will thus have its own set of constants, variables, templates and
timers as specified in the component type definition (including any initial values, if stated). Constants used in the
constant expressions of type declarations for variables, constants or ports shall meet with the restrictions in clause 10,
however constants used in the constant expressions of initial values for variables, constants, templates or timers do not
have to obey these restrictions.

ETSI

70 ETSI ES 201 873-1 V4.9.1 (2017-05)

Syntactical Structure

type conponent Conponent Typeldentifier "{"
{ (Portlnstance
| Varlnstance
| Tinerlnstance
| Const Def
| Tenpl ateDef) }

"y
Semantic Description

Component type definitions specify the creation, declaration and initialization of ports and component constants,
variables, templates and timers during the creation of an instance of a component type. These instances can be used as
the main test component, as the test system interface or as a parallel test component. Every instance of a component
type has its own fresh copy of the port, constant, variable, template and timer instances defined in the component type
definition.

Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.
Examples

EXAMPLE 1: Component type with port instances only
type conponent M/PTCType
{

port MyMessagePort Type pCQaL, pCHA,;
port M/ProcedurePort Type pCC2;
port M/AI | MesssagesPort Type pCO3

}
EXAMPLE 2. Component type with variable, timer and port instance
type conponent MyMICType

var integer vc_nylLocal | nteger;
timer tc_nyLocal Tiner;
port MyMessagePort Type pCOL

}
EXAMPLE 3: Component type with port instance arrays

type conponent MyConpType
{

port MyMessagel nterfaceType pCJ 3]

port M/Procedurel nterfaceType pCO 3][3]

/1 Defines a conponent type which has an array of 3 nessage ports and a two-di nensi onal
/Il array of 9 procedure ports.

6.2.10.2 Reuse of component types
It is possible to define component types as the extension of other component types, using the ext ends keyword.

Syntactical Structure

type conponent Conponent Typel dentifier extends Conponent Typel dentifier
{ "," ConponentTypeldentifier} "{"
{ (Portlnstance
| Varlnstance
| Tinerlnstance
| Const Def
| Tenpl ateDef) }

"y
Semantic Description

In such a definition, the new type definition is referred to as the extended type, and the type definition following the
ext ends keyword isreferred to as the parent type. The effect of this definition is that the extended type will implicitly
also contain all definitions from the parent type. It is called the effective type definition.

ETSI

71 ETSI ES 201 873-1 V4.9.1 (2017-05)

It is allowed to have one component type extending several parent types in one definition, which have to be specified as
acomma-separated list of typesin the definition. Any of the parent types may aso be defined by means of extension.
The effective component type definition of the extended type is obtained as the collection of all constant, variable,
template, timer and port definitions contributed by the parent types (determined recursively if a parent typeisalso
defined by means of an extension) and the definitions declared in the extended type directly. The effective component
type definition shall be name clash free.

NOTE 1: Itisnot considered to be a different declaration and hence causes no error if a specific definitionis
contributed to the extended type by different parent types (via different extension paths).

The semantics of component types with extensions are defined by simply replacing each component type definition by
its effective component type definition as a pre-processing step prior to using it.

NOTE 2: For component type compatibility, this means that a component reference ¢ of type CT1, which extends
CT2, is compatible with CT2, and test cases, functions and altsteps specifying CT2 in their r uns on
clauses can be executed on ¢ (see clause 6.3.3).

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) When defining component types by extension, there shall be no name clash between the definitions being
taken from the parent type and the definitions being added in the extended type, i.e. there shall not be a port,
variable, constant or timer identifier that is declared both in the parent type (directly or by means of extension)
and the extended type. It is not considered to be a name clash if a specific definition is contributed to the
extended type via different extension paths.

b) When defining component types by extending more than one parent type, there shall be no name clash
between the definitions of the different parent types, i.e. there shall not be a port, variable, constant or timer
identifier that is declared in any two of the parent types (directly or by means of extension). It is not
considered to be aname clash if a specific definition is contributed to the extended type via different extension
paths.

c) Itisallowed to extend component types that are defined by means of extension, aslong as no cyclic chain of
definition is created.

Examples

EXAMPLE 1: A component type extension and its effective type definition
type conponent MyMICType
{

var integer vc_nylLocal |l nteger;
timer tc_nyLocal Tiner;
port MyMessagePort Type pCOLl

type conponent MyExt endedMICType ext ends MyMICType

var float vc_nyLocal Fl oat;
timer tc_myQtherLocal Tiner;
port MyMessagePort Type pCQO2;

/1 effectively, the above definition is equivalent to this one:
type conponent MyExt endedMICType
{

/* the definitions from MyMICType */
var integer vc_nyLocal | nteger;

timer tc_nyLocal Tiner;

port MyMessagePort Type pCOL

/* the additional definitions */
var float vc_nyLocal Fl oat;

timer tc_nmyQtherlLocal Tiner;

port MyMessagePort Type pCQ2;

ETSI

72 ETSI ES 201 873-1 V4.9.1 (2017-05)

EXAMPLE 2: A component type extension chain and forbidden cyclic extensions

type conponent MICTypeA extends MICTypeB { /* ...*/ };
type conponent MICTypeB extends MICTypeC { /* ...*/ };
*/ }; I/ ERROR - cyclic extension
*/ }; I/ ERROR - cyclic extension

type conponent MICTypeC extends MICTypeA { /* ...
type conponent MICTypeD extends MICTypeD { /* ...

EXAMPLE 3: Component type extensions with name clashes
type conponent MyExt endedMICType ext ends MyMICType
{

var integer vc_nylLocal |l nteger; /1l ERROR - already defined in M/\MICType (see above)
var float tc_nyLocal Tiner; /]l ERROR - tiner with that nane exists in M/MICType
port MyQt her MessagePort Type pCOL; // ERROR - port with that name exists in MyMICType

type conponent MyBaseConponent { tiner tc_nyLocal Tiner };
type conponent Myl nterinConponent extends MyBaseConponent { tiner tc_nyCQherTiner };
type conponent M/Ext endedConponent extends Myl nteri mConponent

timer tc_nyLocal Tiner; // ERROR - already defined in Myl nterinConponent via extension
}

EXAMPLE 4: Component type extension from several parent types

type conponent MyConpB { tiner tc_t };
type conponent MyConpC { var integer tc_t };
type conponent MyConpD extends MyCompB, MyConmpC {}
/1 ERROR - nane clash between MyConpB and MyConpC

/1 MyConpB is defined above

type conponent MyConpE extends MyConpB {
var integer vc_nyVarl := 10;

}

type conponent MyConpF extends MyConpB {
var float vc_nyVar2 := 1.0;
}

type conponent MyConpG extends MyCompB, MyConmpE, MyConpF {
/1 No nane cl ash.
/1 Al three parent types of MyConpG have a tiner tc_t, either directly or via extension of
/1 MyConpB; as all these stem (directly or via extension) fromtiner tc_t declared in
/1 MyConpB, which make this formof collision |egal.
/* additional definitions here */

6.2.11 Component references
Component references are unique references to the test components created during the execution of atest case.
Syntactical Structure
system| ntc | self | VariableRef | Functionlnstance
Semantic Description

A unigue component reference is generated by the test system at the time when a component is created. It is the result of
acr eat e operation (see clause 21.2.1). In addition, component references are returned by the predefined operations
syst em(returns the component reference of the test system interface, which is automatically created when testcase
execution is started), nt ¢ (returns the component reference of the MTC, which is automatically created when testcase
execution started) and sel f (returns the component reference of the component in which sel f iscalled).

Component references are used in the configuration operations such asconnect , map and st art (see clause 21) to
set-up test configurationsandinthef r omt o and sender parts of communication operations of ports connected to
test components other than the test system interface for addressing purposes (see clause 22 and figure 6).

In addition, the specia value nul | isavailable to indicate an undefined component reference, e.g. for the initialization
of variables to handle component references.

ETSI

73 ETSI ES 201 873-1 V4.9.1 (2017-05)

The actual data representation of component references shall be resolved externally by the test system. This allows
abstract test cases to be specified independently of any real TTCN-3 runtime environment, in other words TTCN-3 does
not restrict the implementation of atest system with respect to the handling and identification of test components.

A component reference includes component type information. This means, for example, that a variable for handling
component references shall use the corresponding component type name in its declaration.

The configuration operations (see clause 21) do not work directly on arrays of components. Instead a specific element
of the array shall be provided as the parameter to these operations. For components, the effect of an array is achieved by
using an array of component references and assigning the relevant array element to the result of the cr eat e operation.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Theonly operations allowed on component references are assignment, equality and non-equality.

b) The variable associated with VariableRef (being a component type variable, a component type parameter, etc.)
or the return type associated with Functionlnstance shall be of component type.

Examples

EXAMPLE 1. Component references with component type variables
/1 A conponent type definition
type conponent MyConpType {

port Port TypeOne pCOL;
port PortTypeTwo pCO2

}

/1 Declaring one variable for the handling of references to conponents of type MyConpType
/1 and creating a conponent of this type

var MyConpType v_mnyConpl nst := MyConpType. creat e;

EXAMPLE 2: Usage of component referencesin configuration operations

/1 referring to the conponent created above

connect (sel f: myPCOL, v_nyConplnst: pCOL) ;

map(nyConpl nst: pCO2, system ext PCOL) ;
nyConpl nst. start (f_nyBehavi or (sel f)); Il self is passed as a paraneter to f_nyBehavior

EXAMPLE 3: Usage of component referencesin from- and to- clauses
M/PCQOL. r ecei ve from v_nyConpl nst;
l\/:yPC@. receive(integer:?) -> sender v_nyConplnst;
lVi/PCOl. recei ve(mv_nyTenpl ate) from v_nyConpl nst;
l\/:yPC(I. send(integer:5) to v_nyConplnst;
EXAMPLE 4: Usage of component references in one-to-many connections
/1 The followi ng exanpl e expl ains the case of a one-to-many connection at a Port PCOL
/1 where values of type ML can be received fromseveral conponents of the different types
/'l MyConpTypel, MyConpType2 and MyConpType3 and where the sender has to be retrieved.

/1 In this case the followi ng schene nay be used:

vér ML v_nyMessage, v_nyResult;

var MyConpTypel v_nylnstl := null;
var MyConpType2 v_nylnst2 := null;
var MyConpType3 v_nylnst3 := null;

al't {
[1 pCOL.receive(M:?) from MyConpTypel: ? -> val ue v_nyMessage sender v_nylnstl {}
[T pCOL. receive(M:?) from MyConpTypel: ? -> value v_nyMessage sender v_nylnst2 {}
[T pCOL. receive(M:?) from MyConpTypel: ? -> value v_nyMessage sender v_nylnst3 {}

}
v'_rTyResult .= f_nyMessageHandl i ng(v_nyMessage); // sone result is retrieved froma function

i f (v_nylnstl !'= null) {pCOL. send(v_mnmyResult) to v_nylnst1l};
if (v_nylnst2 !'= null) {pCOL. send(v_nyResult) to v_nylnst2};

ETSI

74 ETSI ES 201 873-1 V4.9.1 (2017-05)

if (v_nylnst3 !'= null) {pCOL.send(v_nyResult) to v_nylnst3};

EXAMPLES: Usage of self

var MyConponent Type v_nyAddress;
v_nyAddress := self; // Store the current conponent reference

EXAMPLE 6: Usage of component arrays

/1 This exanpl e shows how to nodel the effect of creating, connecting and running arrays of
/1 conmponents using a |loop and by storing the created conponent reference in an array of
/1 conponent references.

testcase TC MyTest Case() runs on MM cType system MyTest Systemnl nterface
{

vér integer v_i;
var MyPTCTypel v_nyPtc[11];

fbr (v_i:=0; v_i<=10; v_i:= v_i+1)
v_nyPtc[v_i] := MyPTCTypel. create;
connect (sel f: ptcCoordi nati on, v_nyPtc[v_i]:ntcCoordination);

v_nyPtc[v_i].start(MPtcBehaviour());

6.2.12 Addressing entities inside the SUT

An SUT may consist of several entities which can be addressed individually. The global addr ess data type may be used
if only one datatype is needed. If several datatypes at different ports are needed for addressing SUT entities, the type
used for addressing via a port instance shall be declared in the corresponding port type definition.

Syntactical Structure

Tenpl at el nst ance
Semantic Description

The actual data representation of the global addr ess typeisresolved either by an explicit global address type
definition within the test suite, address type definitions within port definitions, or externally by the test system (i.e. the
addr ess typeisleft as an open type within the TTCN-3 specification). This allows abstract test cases to be specified
independently of any real address mechanism specific to the SUT.

If an addr ess typeisbound to a port type definition, addressing of SUT instances (i.e. t o- and f r omdirectivesin
communication operations) viainstances of that port type shall be restricted to values of the bound addr ess type.

If several address types exist within atest suite, ambiguities shall be resolved by means of the dot notation. For
example, atype reference within a variable definition used to store an SUT address may be prefixed by a port type
identifier or amodule identifier. If both a globa address type definition and port definitions with an address type
definition exist in a module, the global address type shall only affect ports without an explicit address type definition.
The consistent use of explicit address type definitions within port definitions is recommended over the use of global
address type definitions.

Explicit SUT addresses for a globally defined address type shall only be generated inside a TTCN-3 module if the type
is defined inside the module itself. If the type is not defined inside the module, explicit SUT addresses for a global
address type shall only be passed in as parameters or be received in message fields or as parameters of remote
procedure calls.

In addition, the specia value nul | isavailable for theaddr ess type to indicate an undefined address, e.g. for the
initialization of variables of the address type.

If a port type definition includes the declaration of atype that shall be used for addressing SUT entities, only values of
that type shall beusedint o, f r omand sender parts of receive and send operations of port instances of that type
mapped to the test system interface.

ETSI

75 ETSI ES 201 873-1 V4.9.1 (2017-05)

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Templatelnstance shall be of type addr ess or of the type of the address declaration in a port type definition.
If Templatelnstance is of type addr ess, it may be an address type value, an address type variable, etc.

b) For addressing purposes, the addr ess datatype shall only be used inthet o, f r omand sender parts of
receive and send operations of ports mapped to the test system interface.

¢) Theaddress datatype shall not beusedinthet o, f r omand sender parts of receive and send operations
of connected ports, i.e, ports used for the communication among test components.

Examples

EXAMPLE 1: Global addresstype

/1 Associates the type integer to the open type address
type integer address;

/) new address variable initialized with null
var address v_nySUTentity := null;

/) recei ving an address value and assigning it to variable MySUTentity
pCO recei ve(address: ?) -> value v_nySUTentity;

/) usage of the received address for sending tenplate mnyResult
pCO send(m nyResult) to v_mySUTentity;

/'l usage of the received address for receiving a confirnation tenplate
pCO. recei ve(mv_myConfirmation) fromv_nySUTentity;

EXAMPLE 2: Port type-specific address type

type record MyAddressType { /'l user-defined type
integer fieldi;
bool ean fiel d2;

type port MyPort Type nessage {
address MyAddr essType; /1 address decl aration
i nout i nt eger;

}

type conponent M Conponent Type
port MyPort Type pCG

}
function f_nyFunction () runs on MyConponent Type {
var MyPort Type. address v_sUT_Address := {5, true}; // address value for addressing
/1 via ports of MyPort Type

bCO. send(integer: 5) to v_sUT_Address; /'l use of address value in to

bCO. receive(integer: ?) fromv_sUT_Address; /'l use of address value in from

}
EXAMPLE 3: Elaborated address example
type AddressTypel address; /'l address type definition on nodule I|evel

type port MyPort Typel nessage {
i nout MsgTypel;
}

/] address types bound to port types
type port MyPortType2 nessage {
addr ess AddressType2; /1 val ues of type AddressType2 can be
/] used to address SUT entities.
i nout MsgType2;

}
type port MyMessagePort3 nessage {
address AddressType3; /'l values of type AddressType3 can be
/1 used to address SUT entities.
i nout MsgTypes3;
}

ETSI

76 ETSI ES 201 873-1 V4.9.1 (2017-05)

/] conponent type definition
type conponent MyConponent Type

port MyPort Typel pCOL;
port MyPort Type2 pC2;
port MyPort Type3 pCa3

/1l The follow ng behaviour is considered to be executed on an instance of MyConponent Type.
/'l Furthernore, it is considered that the ports PCOL, PCO2 and PCO3 are napped ports, i.e.
/1 used for the communication with the SUT.

/1l new address variable initialized with null

var MyPort Typel. address v_nySUTentityl := null; // type of v_nySUTentityl is AddressTypel
var MyPort Type2. address v_nySUTentity2 := null; // type of v_nySUTentity2 is AddressType2
var MyPort Type3. address v_nySUTentity3 := null; // type of v_nySUTentity3 is AddressType3

/'l receiving address val ues and assigning themto variabl es

pCOL. recei ve(MsgTypel: ?) from address: ? -> sender v_nySUTentityl,;
/1 Address type of nodul e scope,
/1 no prefix needed

pC2. recei ve(MsgType2: ?) from MyPort Type2. address: ? -> sender v_nySUTentity2;
/! Resolution of address type
/1 by neans of a prefix

pCCB. recei ve(MsgType3: ?) from MyPort Type3. address: ? -> sender v_nySUTentity3;

/) usage of the received address val ues for addressing purposes
pCOL. send(v_nyResult) to v_nmySUTentityl;

pbOZ. recei ve(myv_nyConfirmation) fromv_mnySUTentity2;

pbOB. send(m_nmyRequest) to v_nySUTentity3;

6.2.13 Subtyping of structured types

6.2.13.0 General

TTCN-3 alows subtyping of structured types as givenin table 3.

6.2.13.1 Length subtyping of record ofs and set ofs
TTCN-3 permits constraining the number of elementsin instancesof r ecord of andset of types.

Thel engt h keyword followed by a value or arange (with inclusive boundaries only) within brackets and used
betweenther ecord orset andtheof keywords, restrictsthe allowed number of elementsfor the givenr ecord
of orset of type. The vaue or the bounds within the brackets shall be non-negative integer val ues, except when the

i nfinity keywordisused at the place of the upper bound, in which case the maximum number of the elementsis not
constrained. In case of the range syntax the upper bound shall not be lesser than the lower bound val ue.

Record of and set of type definitions may be used to definenew r ecord of orset of subtypes. Inthiscasethe
rules of the previous paragraph apply, except that the | engt h keyword and the value or range defining the allowed
number of iterations (within brackets) shall be placed following the identifier of the new type.

Constants used in the constant expressions of length subtyping shall meet with the restrictionsin clause 10.

EXAMPLE 1: Length restrictions of record of and set of types

type record | ength(10) of integer MyRecordOf TypelO;
/1 is arecord of exactly 10 integers

type record | ength(0..10) of integer MyRecordOf TypeO_10;
/1 is a record of a maxinum of 10 integers

type record |l ength(10..infinity) of integer M/RecordO TypelOup;
/1 record of at |east 10 integers

type record length(O..infinity) of integer MyRecordO TypeOup;
/'l an unrestricted record of integer type

ETSI

77 ETSI ES 201 873-1 V4.9.1 (2017-05)

EXAMPLE 2: Length subtyping of referenced record of types

type record of charstring StringArray;
// is an unlinmited record of, each elenent shall be a charstring

type StringArray StringArray34 length(4 .. 5);

I/l is arecord of 4 or 5 elenents, each elenent is a charstring
/1 it is equivalent to

/1 type record length(4 .. 5) of charstring StringArray34a;

type StringArray34 StringArray34again length(4 .. 5);
/1 the same as StringArray34

type StringArray34 StringArray6 | ength(6);
/] causes an error as record ofs with 6 el ements are not |egal values of StringArray34

EXAMPLE 3: Length subtyping of referenced set of types

type record MyCapsul e {
set of integer nySet Of | nt

}

type MyCapsul e.nySetOf I nt MySet Of I nt Sub | engt h(5..10);
/1 unordered list of 5 to 10 integers

6.2.13.2 List subtyping of structured types and anytype

List subtyping is possible when defining a new type based on an existing parent type, but not directly at the declaration
of the first parent type (see table 3).

Subtypes defined by alist subtyping restrict the allowed values of the subtype to the values matched by at least one of
the constraintsin thelist. In case of list subtyping of r ecor d, set ,record of,set of,uni onandanytype
types, the list may contain both subtypes and possibly partial templates of the parent types. Subtype references shall be
resolved in arecursive way: the collection of templates denoted by the subtype(s) referenced in the list become
members of the new subtype definition with an expanded list containing only possibly partial templates. When
congtraining r ecord of ,set of,uni on and anyt ype types, all templates of the expanded list (i.e. after
resolving the subtype references) shall be valid (i.e. complete) templates of the first parent type. When constraining
record andset types, templates of the expanded list defined using the value list notation shall be valid (i.e.
complete) templates, while templates of the expanded list defined using the field assignment notation may be partial
(i.e. incomplete). In the latter case, the fields that are not explicitly present shall be considered as containing AnyValue
for mandatory fields and AnyValueOrNone for optional fields.

NOTE: Usersshould assign new valuesto single fields of values/templates based on types using list subtyping
cautioudly: it may happen that the new field value would be valid with other combination(s) of the rest of
the fields but causes an erroneous record/set value, when combining with the actual values of the other
fields. See example 1 below.

In case of enuner at ed types, the template list subtyping shall contain only values of the parent type.

EXAMPLE 1. List subtyping of record types

type record MyRecord {
i nt eger f1 optional,
charstring f2,
charstring f3

}

type MyRecord MyRecordSubl (
{ fl1:=omt, f2 := "user", f3 := "password" },
{fl1:=1, f2 :="User", f3 := "Password" }

) // a valid subtype of MyRecord containing 2 val ues

type MyRecord MyRecordSub2 (
MyRecor dSub1,
{ f1:=2, f2 := "unane", f3 := "pswd" },
{ f1:=3, f2 := "Uname", f3 := "Pswd" }
) /1 a valid subtype of MyRecord, containing 4 values; notice that val ues of
/1 MyRecordSubl are identified by referenci ng MyRecordSubl

ETSI

78 ETSI ES 201 873-1 V4.9.1 (2017-05)

type MyRecordSubl MyRecor dSub3 (
{f1:=1, f2 := "user", f3 := "password" },
{ f1:=1, f2 :="User", f3 := "Password" }
) // invalid type as { f1:=1, f2 := "user", f3 := "password" } is not a |egal value of

/1 MyRecordSubl (notice field f1)

type M/Record MyRecordSub4 (

{ f2 := "user", f3 := "password" },
{ f2 :="User", f3 := "Password" }
) // any valid value of MyRecord, where the conbination of f2 and f3 is
/] f2 := "user" AND f3 := "password" or f2 := "User" AND f3 : = "Password"

I/l i.e. field flis considered as if it was present and contai ned AnyVal ueOr None

type M/Record MyRecor dSub5 (

{ f2 := "user", f3 := pattern "password| Password" },
{ f1:=(1.. 10), f2 := "User" }
) /1 a valid subtype of MyRecord containing all values which match one of the given
/1 tenplates
/I { f1:=* f2 :="user", f3 := pattern "password| Password" } or
/1 {f1:=(1.. 10), f2 := "User", f3 := 2}
type record R { integer k, integer i, integer j }
type RR2 ({ ki=1, i :=2}, { ki=2, i :=3})

function f_inc(inout integer p_p) {
p_p :=p_p + 1

function f() {
var R v.x :={ 1, 2, 5}
v_Xx.k :=2; /] error, as the value {2,2,5} is not allowed
inc(v_x.i); /Il error, as the value {1,3,5} is not allowed

/'l (previous erroneous assignment is ignored here)
inc(v_x.j); // allowed

EXAMPLE 2: List subtyping of record of types
type record of charstring StringArray;

type StringArray StringArrayListl (
{ "aa" },
{ "bbb", "cc" },
{ "ddd", "ee", "ff" }

); /1 valid subtype of StringArray

type StringArrayListl StringArrayList2 (
{ "aa" },
{ "bbb", "cc" }

); /1 valid subtype of StringArrayListl

type StringArrayListl StringArrayList3 (
StringArraylLi st 2,
{ "ddd", "ee", "ff" }

); // valid, but equivalent to StringArrayListl

type StringArraylListl StringArraylList4 (
StringArraylList2,
{ "ddd", "ee", "fff" }

); Il enpty type as { "ddd", "ee", "fff" } is not a value of StringArrayListl
/'l (notice the extra character f in the third el ement)

EXAMPLE 3: List subtyping of union types

type uni on MyUnion {
i nt eger cl,
charstring c2,
charstring c3

b

type MyUni on MyUni onSubl (
{ cl:=01},
{ cl:=11}

); /1 a valid subtype of MyUnion containing tw val ues

ETSI

79 ETSI ES 201 873-1 V4.9.1 (2017-05)

type MyUni on MyUni onSub2 (

MyUni onSub1,
{ c2 :="nine" },
{ ¢c3 :="yours" }

); /1 a valid subtype of MyUnion containing four values; notice that val ues of
/1 MyUni onSubl are identified by referenci ng M/Uni onSubl

type MyUni onSubl MyUni onSub3 (

{ cl:=01},
{cl:=2}
); /] causes an error as { cl := 2} is not a value of MyUnionSubl

EXAMPLE 4: List subtyping of enumerated types
type enunerated MyEnum{ e_first, e_second, e_third, e fourth, e fifth };

type MyEnum Enuntubl (e_first, e_second, e_third);
/1 a valid subtype of MyEnum

type EnunBSubl EnuntSub2 (e_first, e_second);
/1 a valid subtype of EnunSubl

type EnunBubl EnuntBub3 (e_first, e_second, e_fourth);
/] causes an error as e_fourth is not a value of EnunfSubl

type MyEnum EnuntBub4 (EnunBubl, e_fourth);

/] causes an error as type references are not allowed in the tenplate |ist
/1 of enumerated types

EXAMPLES5: List subtyping of anytype

type anytype MyAnySubl (

{ integer := 51},

{ boolean := false },

{ bitstring := '0011'B },
{ charstring := "mne" },

{ MYEnum := first }
); // a valid subtype of anytype, consisting of 5 values

type MyAnySubl MyAnySub2 (

{ integer :=5 1},
{ boolean := false },
{ bitstring := '0011'B }

); /1l a valid subtype of MyAnySubl, consisting of 3 val ues

type anytype MyAnySub3 (
MyAnySub2,
{ octetstring := "FF O}

); /1l a valid subtype of anytype, consisting of 4 values, 3 of which are defined
/Il by referring to MyAnySub2

type M/AnySubl MyAnySub4 (
{ integer := 5},
{ boolean := fal se },
{ MyEnum : = second }
); /1 causes an error as { MyEnum:= second } is not a value of MyAnySubl

type MyAnySubl MyAnySub5 (

MyAny Sub3,
{ MJEnum:= first }
); I/ causes an error as { octetstring :="'FF O} (defined via referencing M/AnySub3) is

/1 not a value of MyAnySubl

type record R { integer k, integer i, integer j }
type RR2 ({ ki=1, i :=2}, { ki=2, i :=3})

function f_g() {
var R v.x :={ 1, 2}
v_Xx.k :=2; /] error

}

ETSI

80 ETSI ES 201 873-1 V4.9.1 (2017-05)

6.2.13.3 Subtyping of the iterated type of record ofs and set ofs

A typerestriction following the identifier of anewly definedr ecord of orset of type(i.e. when the keywords
record and of orset andof areused inthe definition) shall constrain the innermost type. The newly defined
iterated type shall be a subset of the innermost type. If the innermost type is a basic type, the subtyping rulesin

clause 6.1.2 shall apply. If the innermost type is referencing a structured type or anyt ype, therulesin clauses 6.2.13.1
and 6.2.13.2 shall apply.

EXAMPLE 1: Subtyping of basic innermost types of record ofs and set ofs

type record of charstring String23Array length(2 .. 3);
/1 is an unlimted record of, each elenent shall be a charstring of 2 or 3 characters

type record | ength(0..10) of charstring Stringl2Arrayl10 | ength(12);
/1 is a record of a maxinumof 10 strings each with exactly 12 characters

type record of record of charstring Stringl2Array2D | ength(12);
/1 is a two-dinensional unlinmted array of strings each with exactly 12 characters

type set length(5) of set length(6) of charstring String23Array2D56 | ength(2..3);
/1 is an unordered two-dinensional array of the size 5*6 strings, each conposed
/1 of 2 or 3 characters

const String23Array c_str23arr_a :={ "aa", "bbb", "cc", "ddd", "ee", "ff" };
/1 valid, all charstrings are 2 or 3 characters |ong

const String23Array c_str23arr_b :={ "a", "bbbb", "cc", "ddd", "ee", "ff" };
/'l causes an error as "a" and "bbbb" are not 2 or 3 characters Iong

const String23Array2D56 c_strl2arr2D56_a := {

{ "aa", "aaa", "bb", "bbb", "cc", "ccc" },

{ "dd" "ddd", "ee", "eee", "ff", "fff" },

{" gg , "ggg", "hh", "hhh", "ii", "iii" },

{" R T O ¢ UG I I I N B

{" “mm{, "nn", "nnn", "oo", "ooo" }
Y, o1/ valld, a 5*6 matrix of charstrings being 2 or 3 characters |ong
const String23Array2D56 c_strl2arr2D56_b := {

{ "a", "aaa", "bb", "bbbb", "cc", "ccc" },

{ "dd" "ddd", "ee", "eee", "ff", "fff" },

{" gg , “ggg“ “hh", "hhh", "ii", "iii" },

{" N T O UG I E I N B

{" rmm‘ , "nn", "nnn", "oo", "ooo", "pp" }

Yo o1 causes an error as "a" and "bbbb" are not 2 or 3 characters |ong and
/1 the 5th inner record of has 7 elenents

EXAMPLE 2: Length subtyping of structured innermost types of record ofs

type record of String23Array String23Array45 length(4 .. 5);

/1 is a two-dinensional array, the first dinension is unlinited,

/1 the second dinmension is restricted to 4 or 5 elenents and each el ement

Il is a charstring of 2 or 3 characters. It is equivalent to:

/1 type record of record length(4 .. 5) of charstring String23Array45 length(2 .. 3);

const String23Array45 c_str23arr45_a : = {
{ "aa", "bbb", "cc", "ddd" },
{ "ee". "fff". "gg". "hhh", "ii" }
}; /1 valid, 4 or 5 elements in the inner record of, all containing 2 or 3 characters

const String23Array45 c_str23arr45 b :={
{ "aa" , "bbb", "cc" }
}; //lcauses an error as there are only 3 elenments in the inner record of

const String23Array45 c_str23arr45 c :={
{ "aa", "bbbb", "cc", "dd" }
}; //causes an error as "bbbb" contains 4 characters

type record length(O .. 1) of String23Array String23Array0145 length(4 .. 5);

I/l is a two-dinensional array, the first dinension is linmted to O or 1 elenents,
/1 the second dinmension is restricted to 4 or 5 elenents, each elenent is a

/1 charstring of 2 or 3 characters.

const String23Array0145 c_str23arr0145 a : = {
{ "aa", "bbb", "cc", "ddd" },
}; /1 avalid 1*4 array of charstrings, each of 2 or 3 characters

ETSI

81 ETSI ES 201 873-1 V4.9.1 (2017-05)

const String23Array0145 c_str23arr0145_a : = {
{ "aa", "bbb", "cc", "ddd" },
{ "ee", "fff", "gg", "hhh", "ii" }
}; /1 causes an error as there are two elenments in the outer record of

const String23Array0145 c_str23arr0145_b : = {
{ "aa" , "bbb", "cc" }
}; /1 causes an error as there are only 3 elenents in the inner record of
const String23Array0145 c_str23arr0145_ c : = {
{ "aa", "bbbb", "cc", "dd" }
}; /1 causes an error as "bbbb" contains 4 characters
type record of String23Array45 String23Array6 | ength(6);

/] enpty type as String23Array45 is restricted to 4 or 5 el enents,
/1 thus length restriction 6 is outside the allowed range

6.2.13.4 Mixing subtyping mechanisms

In the case of structured types and the special type anyt ype, itisforbidden to mix different subtyping mechanisms
(e.g. list and length) in the same definition.

6.3 Type compatibility

6.3.0 General

Generally, TTCN-3 requires type compatibility of values at assignments, instantiations and comparison.

For the purpose of this clause the actual value to be assigned, passed as parameter, etc., is called value "b". The type of
value"b" iscalled type "B". The type of the formal parameter, which isto obtain the actual value of value "b" is called
type"A".

NOTE: Asaddress ismore apredefined type name than a distinct type with its own properties, the same type
compatibility rules apply to an addr ess type and to its derivatives as the rules were if the type was
defined with a name different from addr ess.

6.3.1 Compatibility of non-structured types

For variables, constants, templates, etc. of simple basic types and basic string types the value "b" is compatible to type
"A" if type"B" resolves to the same root type astype "A" (e.g. i nt eger) and it does not violate subtyping

(e.g. ranges, length restrictions) of type "A". Compatibility between charstring and universal charstring is defined
below.

EXAMPLE 1. Compatibility of integers

/1 Gven
type integer MyInteger(1l .. 10);

var integer v_x;
var Myl nteger v_y,;

/1 Then
v_y :=5; // is a valid assignnment
V_X 1= V_y;

/1 is a valid assignnent, because v_y has the sanme root type as v_x and no subtyping is violated

v_x :=20; // is a valid assignnent

V_Y 1= V_X;

/1 is NOT a valid assignment, because the value of v_x is out of the range of Ml nteger
v.x :=5; /] is a valid assignnment

V_Y 1= V_X;

/7 is avalid assi gnhnent, because the value of v_x is now within the range of M/ nteger

ETSI

82 ETSI ES 201 873-1 V4.9.1 (2017-05)

EXAMPLE 2. Compatibility of floats

/1 Gven
type float PositiveFloats(0.0 .. infinity);

var PositiveFloats v_x;
var float v_y;

/1 Then
v_y :=5.0; // is a valid assignnent

y;
/1 is a valid assignnent, because v_y has the same root type as v_x and no subtyping is violated

v_y :=-20.0; // is a valid assignnent

V_X 1= V_y;

/] causes an error, because the value of v_y is out of the range of PositiveFl oats
v_y := not_a_nunber; // is a valid assignnent

V_X 1= V_y;

/] causes an error, because the value not_a_nunber is out of the range of PositiveFl oats

EXAMPLE 3: Compatibility of charstrings

/1 G ven

type charstring MyChar length (1);

type charstring MySingleChar length (1);

var MyChar v_nyCharacter;

var charstring v_nyCharString;

var MySingl eChar v_nySingleCharString := "B";

/1 Then

v_mnyCharString := v_nySingl eChar Stri ng;

/lis a valid assignnent as charstring restricted to length 1 is conpatible with charstring.
v_nyCharacter := v_nySingl eCharString;

/lis a valid assignnent as two single-character-length charstrings are conpati bl e.

/1 dven
v_nyChar String : = "abcd";

/] Then
v_myCharacter := v_nyCharString[1];
/lis valid as the r.h.s. notation addresses a single element fromthe string

/1 G ven
var charstring v_nyCharacterArray [5] := {"A", "B", "C', "D, "E'}

/] Then
v_myCharString := v_nyCharacterArray[1];
/lis valid and assigns the value "B" to v_nyChar String;

For variables, constants, templates, etc. of char st ri ng type, value 'b' is compatible with auni ver sal
char stri ng type'A' unlessit violates any type constraint specification (range, list or length) of type "A".

For variables, constants, templates, etc. of uni ver sal char st ri ng type, value'b' is compatible with a

char st ri ng type'A'if al characters used in value 'b' have their corresponding characters (i.e. the same control or
graphical character using the same character code) in the type char st r i ng and it does not violate any type constraint
specification (range, list or length) of type "A".

EXAMPLE 4: Compatibility of character and universal character strings

/1 G ven
type charstring MyChar length (1);

var MyChar v_nyCharacter;

var charstring v_nyCharString;
var universal charstring v_nyUnivCharString;

/1 Gven
v_nyChar String : = "abcd";

ETSI

83 ETSI ES 201 873-1 V4.9.1 (2017-05)

/1 Then

v_nyUni vChar String := v_nyCharString

/lis valid as charstring and universal charstring are conpatible
v_nyCharacter := v_nyUnivCharString [1];

// is valid as the r.h.s. notation addresses a single elenent of the string,
/1 containing a character conpatible with charstring

/1 Gven
v_nyUni vChar String := "bet" & char (0, 0, 1, 113);

/1 Then
v_myCharString := v_nyUni vChar Stri ng;
/1 is invalid as v_nyUnivCharString contains a character not in | SO 646.

/1 Gven
var charstring v_nyCharacterArray [5] := {"A", "B", "C', "D, "E"}

/1 Then

v_nyCharString := v_nyCharacterArray[1];
/1 is valid and assigns the value "B" to v_mnyChar String;

6.3.2 Compatibility of structured types

6.3.2.0 General

This clause defines compatibility rules for structured types. In subsequent clauses, "value "b"" is called the value to be
assigned, e.g. when passed as parameter, to an object of type "A".

6.3.2.1 Compatibility of enumerated types

Enumerated types are only compatible with other enumer ated types. An enumerated value "b" of an enumerated type
"B" is compatible with enumerated type "A" if the identifier of the value "b" is also defined in "A" and the integer(s)
associated with value "b" are also associated with the same identifier in "A".

6.3.2.2 Compatibility of record and record of types

r ecor d types are compatible if the number, and optional aspect of the fields in the textual order of definition are
identical, the types of each field are compatible and the value of each existing field of the value "b" is compatible with
the type of its corresponding field in type "A". The value of each field in the value "b" is assigned to the corresponding
field in the value of type "A".

EXAMPLE 1.

/1l Gven

type record AType {
i nt eger a(0..10) optional ,
i nt eger b(0..10) optional,
bool ean c

}

type record BType {
i nt eger a optional,
i nt eger b(0..10) optional ,
bool ean c

}

type record CType { /1 type with different field names
i nt eger d optional,
i nt eger e optional,
bool ean f

}

type record DType { /Il type with field c optional
i nt eger a optional,
i nt eger b optional,
bool ean c optional

}

ETSI

84 ETSI ES 201 873-1 V4.9.1 (2017-05)

type record EType { /1 type with an extra field d
i nt eger a optional,
i nt eger b optional,
bool ean c,
fl oat d optional
}

var AType v_nyVarA :
var BType v_nyVarB :
var CType v_nyVarC :
var DType v_nyVarD :
var EType v_nyVarE :

-, 1, true};
omt, 2, true};
3, omt, true};
4, 4, true};

5, 5, true, omt};

I u

/1 Then

v_nyVar A : = v_nyVar B; /1 is a valid assignnent,
/'l new value of MyVarAis (a :=omt, b:= 2, c:= true)

v_nyVarC : = v_nyVarB; /1 is a valid assignnent
/'l new value of M\VarCis (d :=omt, e:= 2, f:=true)

v_nyVar A : = v_nyVar D, /1 is NOT a valid assignment because the optionality of fields does not
/1 match

v_nyVarA : = v_nyVarE; /1 is NOT a valid assignnent because the nunber of fields does not natch

v_nyVar C :

{ d:=201}; // actual value of MVarCis { d:=20, e:=2,f:=true }
v_nyVarA := v

_myVarC /1 is NOT a valid assignment because field 'd of MyVarC violates
/] subtyping of field "a' of AType

recor d of typesand arrays are compatible if their element types are compatible and value "b" does not violate any
length subtyping of ther ecor d of type"A" or dimensions of the array type. Vaues of elements of the value "b" shall
be assigned sequentially to the instance of type "A", including undefined elements.

Two array types are compatible if their correspondingr ecor d of typesare compatible.

EXAMPLE 2:

/1 Gven

type record of integer |Type;
type record of float HType;

var HType v_nyVarH := { 1, omt, 2};
var | Type v_nyVarl;
var integer v_nyArrayVar[2];

/1 Then

v_nyVarl :={ 3, 4 };

v_myArrayVvar = v_nyVarl;

/1 is a valid assignnent as elenent types are conpatible and the assigned val ue
/1 doesn't violate length restriction set by array di nension

v_nyVarl2 := v_nyArrayVar;
/1 is a valid assignnent as elenent types are conpatible and the target variable type has
/1 no length restriction

v_nyVarl[2] :=5; // the value of v_nyVarl is { 3, 4, 5} now

v_nyArrayVar := v_nyVarl;

/1 is NOT a valid assignment as v_nyVarl contains nore elenents than the array di mension
/1 allows

v_nyVarH := v_nyVarl;
/1 is NOT a valid assignment as el enent types are not conpatible

6.3.2.3 Compatibility of set and set of types

set typesare only compatible with other set typesand set of typesare only compatible with other set of types.
For set typesthe same compatibility rules shall apply astor ecor d typesand for set of typesthe same
compatibility rules shall apply astor ecor d of types.

NOTE 1. Thisimpliesthat though the order of elements at sending and receipt is unknown, when determining type
compatibility for set types, the textual order of the fieldsin the type definition is decisive.

ETSI

85 ETSI ES 201 873-1 V4.9.1 (2017-05)

NOTE 2: Inset valuesthe order of fields may be arbitrary, however this does not affect type compatibility asfield

names unambiguoudly identify, which fields of therelated set type correspond to which set value
fields.

EXAMPLE:

/1 Gven

type set FType {
integer a optional,
integer b optional,
bool ean ¢

}

type set Glype {
integer d optional ,
integer e optional ,
bool ean f

}

var FType v_nyVarF :
var GIype v_nyVarG :

{ a:
{ f:
/1 Then

v_nyVarF := v_nyVarG /1l is a valid assignnent as types FType and Glype are conpatible

v_nyVarF := v_nyVarA; /1 is NOT a valid assignment as v_nyVarA is a record type

6.3.2.4 Compatibility of union types
The compatibility rulesfor uni on types are are the following:

e A unionvalue"b" of union type"B" is compatible with union type "A" if the alternative selected in "b" has a
corresponding alternative with identical namein"A" and the value of the selected alternativein "b" is
compatible to the type of the corresponding alternativein"A".

e Otherwise, the following rules apply. A union value "b" of union type "B" with a default alternative of type
"C" is compatible with an arbitrary type "A" if the alternative selected in "b" is the default alternative and the
value of the default alternative is compatibleto "A". A value "a" of an arbitrary type "A" is compatible with a
union type "B" with adefault aternative of type"C" if value"a" is compatibleto "C".

When considering the compatibility of two union types, initially the first rule (which is not dependent on the existence
of adefault alternative) shall be applied. The second rule shall only be used to check compatibility, when - using the
first rule - no compatibility has been determined. This order shall avoid ambiguity in case that a default alternative
would otherwise a so be compatible with the union itself.

NOTE 1: Itispossibleto have nested unions with default aternatives. The rules above make type compatibility
aong the default alternatives alternatives transitive, i.e. the outermost union type is compatible with the
type of the innermost default union alternativeif all containing alternatives are also default alternatives.

NOTE 2: When aunion with adefault aternativeis used in an expression it will be resolved to itslong notation,
before the expression is eval uated.

EXAMPLE 1:

type union Ul {integer i};

type union U2 {integer i, boolean b};

var Ul v_ul := {i := 1};

var W2 v_u2 := v_ul; /1 correct

v_ul:= v_u2; /] correct as the alternative i is selected in v_u2 and is

/] conpatible toi in Ul
v_u2:={b := true};
v_ul:= v_u2; /'l incorrect as v_ul has no alternative b
var anytype v_x := v_ul; /1 incorrect as the anytype is not a union type.

EXAMPLE 2: Using union values of unions with default alternatives

type union U3 { @lefault integer i, boolean b }
type union W { integer i, @lefault boolean b }
var U3 v_u3 := 3 /] correct as i in U3 is declared with @efault

ETSI

86 ETSI ES 201 873-1 V4.9.1 (2017-05)

V_u3 = v_u2; /1 correct because all alternatives in U2 exist in U3
/1 and are conpatible

v_u2 = 3; /1 incorrect as 3 is not of a union type and there is
/1 no field in U2 declared with @lefault

vV_u2 1= v_u3; /1 also correct

v_u2 :=v_ul.i; /'l incorrect

v_u3d :=v_ul.i; /1 correct

var integer v_int :=v_u3 * 2 /1l v_int is 6 as v_u3 is treated as v_u3.i

var U3 v_u32 := {b := true};

var U4 v_u4 := true;
v_int := v_ud *2; /1 incorrect as v_u4 is treated as a bool ean, and can not be multiplied
v_int := v_u32 *2; /] test case error as “v_u32” would be treated as v_u32.i,
/1 which is not the selected alternative
log(v_u4); /1 results in “{ b:=true}” |ogged; for backward conpatibility when
/1 a union value is used in a log statenent directly, no conversion
/1l is perforned.
6.3.2.5 Compatibility of anytype types

anytype types are only compatible with other anytype types. An anytype value "b" of anytype type "B" is compatible
with anytype type "A" if the alternative selected in "b" is also contained in "A".

NOTE: Only anytype types that are constrained to afixed set of types vialist subtyping can be a potential cause
for anytype incompatihility, i.e. if the set of types contained in type "A" does not contain the type selected
in"b".

EXAMPLE:

nmodul e A {
type integer | (0..2);

type float F;
type anytype Atype ({I:=?},{F:=?},{integer:=?});

[anytype conposed of TTCN-3 built-in basic type integer, I, and F
}
nodul e B {
type integer | (0..2);
type anytype Atype ({l:=?},{integer:=?},{float:=?});
}
nodul e C {
import fromA all;
import fromB all;
type union U {
integer | (0..2)
control {
var A Atype v_aa;
var A Atype v_aal :={ Al :=11} // typel is is inported fromA and B
var A.Atype v_aaF := { F:= 1.0} // type Fis only inported fromA
var B.Atype v_ba := { integer := 11}
var B.Atype v_bal :={ B.l :=11} // typel is inported fromA and B
var Uv_u:={ I :=1}// | is afield nane in U
v_aa := v_ba; /'l correct, the value of aal becones { integer := 1}
v_aa := v_bal; /1 incorrect, type B.l is not present in the anytype A Atype
v_aa := v_u; Il incorrect, type of u is not anytype but a user defined union type
v_ba :={ float := 1.0 }; /1 correct, assigning a literal value
v_ba := v_aal; /1 incorrect, type Al is not present in the anytype B. Atype
v_ba := v_aaF; /'l incorrect, type A F is not present in the anytype B. Atype
}
}

ETSI

87 ETSI ES 201 873-1 V4.9.1 (2017-05)

6.3.2.6 Compatibility between sub-structures
The rules defined in this clause for structured types compatibility are also valid for the sub-structure of such types.
EXAMPLE:
/1 Gven
type record JType {
AType a,
integer b optional,
integer c

}

var JType v_nyVarJ;

/1 If considering the declarations above, then

v_nyVarJ.a := v_nyVarA,
I/l is a valid assignnent as the type of field a of JType and AType are conpati bl e

v_nyVarB : = v_nyVarJ. a;
/1 is a valid assignnent as BType and the type of field a of JType are conpati bl e

6.3.3

Compatibility of component types

Type compatibility of component types has to be considered in different conditions:

1)

2)

3)

4)

Compatibility of acomponent reference value with a component type (e.g. when passing a component
reference as an actual parameter to afunction or an atstep or when assigning a component reference valueto a
variable of different component type): a component reference "b" of component type "B" is compatible with
component type "A" if al definitions of "A" have identical definitionsin"B".

Runs on compatibility: afunction or altstep referring to component type A" in its runs on clause may be
called or started on a component instance of type 'B' if al the definitions of "A™ have identical definitionsin
"B".

Mtc compatibility: afunction or altstep referring to component type "A" in its mtc clause may be called or
started in any context that has a mtc clause of type "B" or atestcase with aruns on clause of type "B" if al the
port definitions of "A" haveidentical definitionsin "B". If the type of the mtc is unknown in the calling
function, this can lead to runtime errorsif the component type "A" is not mtc-compatible with the type of the
running mtc.

System compatibility: afunction or altstep referring to component type " A" in its system clause may be called
or started in any context that has a system clause of type "B" or atest case with aruns on clause of type "B"
and no system clause if al the port definitions of "A" have identical definitionsin "B". If the type of the
system is unknown in the calling function, this can lead to runtime errors if the component type "A" is not
system-compatible with the type of the system the current test case was started on.

Identity of definitionsin"A" with definitions of "B" is determined based on the following rules:

a)

b)

c)

d)

For port instances, both the type and the identifier shall be identical.

For timer instances, identifiers shall be identical and either both shall have identical initial durations or both
shall have no initial duration.

For variable instances and constant definitions, the identifiers, the types and initialization values shall be
identical (in case of variables this means that either the values are missing in both definitions or are the same).

For local template definitions, the identifiers, the types, the formal parameter lists and the assigned template or
template field values shall be identical.

ETSI

88 ETSI ES 201 873-1 V4.9.1 (2017-05)

6.3.4 Type compatibility of communication and connection operations

The communication operations (see clause 22) send, recei ve,trigger,call,getcal |l ,reply,getreply
and r ai se and connection operationsconnect, map, di sconnect and unmap (seeclause 21.1) are exceptions
to the weaker rule of type compatibility and require strong typing. The types of values or templates directly used as
parameters of the operationssend, r ecei ve andt ri gger shall also be explicitly defined in the associated port type
definition. The signature type of the parameter list given to the operationscal | ,get cal | ,repl y,getrepl y and
the signature type given to the operationscat ch and r ai se shall also be explicitly defined in the associated port type
definition. The types of values or templates directly used as exceptions to the operations catch and raise shall be
explicitly defined intheexcept i ons part of the definition of the signature given to the operation.

EXAMPLE:
type record MRec {...} /'l user defined type
type M/Rec MyRecAl i as; /Il a type alias

type port MyPort nmessage { inout MyRec, MyRecAlias; } /1 port that can transport both types
type conponent MyConponent { port MyPort p; }

tenpl ate MyRecAlias mnyRecAlias:= {...} /1l a tenplate of the alias type
var MyConponent v_myConmpl : = MyConponent.create, v_nyConp2 := MyConponent. create,;
connect (v_nyConpl:p, v_nyConp2:p) /1 two connected PTCs via ports that can

/1 transport the user-defined and the alias type

/1 in v_nyConpl:

p.send (m.nyRecAlias); /1 sending of tenplate of alias type
/1 in v_nyConp2:

p.receive (M/Rec:?);

/1 shall not nmatch as the transnitted tenplate is of the alias type and

/1l not of the user-defined type

/Il in v_nyConp2:

var MyRec v_x;

p.receive (M/RecAlias:?) -> value v_x;

/'l shall not cause an error since storing the value requires no strong typing

6.3.5 Type conversion

If it is necessary to convert values of one type to values of another type, because their types have different root types,
then either one of the predefined conversion functions defined in clause 16.1.2 or a user defined function shall be used.

EXAMPLE:

/1 To convert an integer value to a hexstring value use the predefined function int2hex
MyHstring : = int2hex(123, 4);
6.4 Type synonym

A type can be defined as a synonym to another type. Type synonyms can be defined for al kinds of types. Synonym
types are compatible.

EXAMPLE:

type My Typel MyType2; // MyType2 is synonymto M/Typel

ETSI

89 ETSI ES 201 873-1 V4.9.1 (2017-05)

7 Expressions

7.0 General

TTCN-3 alows the specification of expressions. TTCN-3 expressions may be template references, val ue references or
literals (i.e. no operation isinvolved), and may be composed of the operators defined in clause 7.1.

NOTE: Templates can be used at the RHS of assignment, parameter passing and (predefined) functions where
template passing is explicitly allowed.

Syntactical Structure

Si ngl eExpression |

"{" { (FieldReference ":=" (Expression | "-")) [","] } "}" | [/l conpound expression

“{" [{ (Expression | "-") [","T } 1 "}" /1 conpound expression
Semantic Description

Expressions may be built from other (simple) expressions. Functions used in expressions shall have areturn clause. The
operands of the operators used in an expression shall be values and their root types shall be the types specified for the
appropriate operator in the subsequent clauses.

Assignment or list notations are used for expressions of record, set, record of, set of, array, union and anytype types.
Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Atthepoint, when an expression is evaluated, the evaluated values of the operands used in expressions shall
be completely initialized except where explicitly stated otherwise in the specific clause of the operator.

b) Theroot types of the operands shall be the types specified for the appropriate operand.

c) With the exception of the equality and non-equality operators, the specia value nul | shall not be used as an
operand of expressions (see clause 7.1.3).

This means also that all fields and elements of structured types referenced in an expression shall contain completely
initialized values, while other fields and elements, not used in the expression, may be uninitialized or containomi t .

Examples
(c_x + c_y —f_increnment(c_z))*3 /'l single expression
{ aa=1, b:=true} /1 conpound expression, assignnent notation
{ 1, true} /1 conpound expression, list notation

7.1 Operators

7.1.0 General

TTCN-3 supports a number of predefined operators that may be used in the terms of TTCN-3 expressions. The
predefined operators fall into seven categories:

a) arithmetic operators;
b) list operator;

c) relational operators;
d) logical operators;

€) bitwise operators;

f) shift operators;

ETSI

90 ETSI ES 201 873-1 V4.9.1 (2017-05)

g) rotate operators.
Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) When an expression is evaluated, the evaluated val ues used as the operands of operators shall be completely
initialized, except for those operands for which it is explicitly allowed to be partially initialized (see
clause 11.1).

These operators are listed in table 5.

Table 5: List of TTCN-3 operators

Category Operator Symbol or Keyword
Arithmetic operators addition +
subtraction -
multiplication *
division /
modulo mod
remainder rem
String operators concatenation &
Relational operators equal ==
less than <
greater than >
not equal 1=
greater than or equal >=
less than or equal <=
Logical operators logical not not
logical and and
logical or or
logical xor xor
Bitwise operators bitwise not not4b
bitwise and and4b
bitwise or ordb
bitwise xor xordb
Shift operators shift left <<
shift right >>
Rotate operators rotate left <@
rotate right @>

The precedence of these operatorsis shown in table 6. Within any row in this table, the listed operators have equal
precedence. If more than one operator of equal precedence appears in an expression, the operations are evaluated from
left to right. Parentheses may be used to group operands in expressions, in which case a parenthesized expression has
the highest precedence for evaluation.

ETSI

91 ETSI ES 201 873-1 V4.9.1 (2017-05)

Table 6: Precedence of Operators

Priority Operator type Operator
highest (...)
Unary +, -
Binary * [, mod, rem
Binary + - &
Unary not4b
Binary and4b
Binary xor4b
Binary ordb
Binary <, >> <@, @>
Binary <, >, <=, >=
Binary ==, 1=
Unary not
Binary and
Binary xor
Lowest Binary or

7.1.1 Arithmetic operators

The arithmetic operators represent the operations of addition, subtraction, multiplication, division, modulo and
remainder. Operands of these operators shall be of i nt eger values (including derivations of i nt eger) or
floating-point numbers (including derivations of f | oat , containing numeric values only), except for nrod andr em
which shall be used with i nt eger (including derivations of i nt eger) typesonly.

The usage of the specia float valuesi nfi nity,-infinityandnot_a_nunber inarithmetic operators shall
follow the rules defined in IEEE 754™ [6].

Withi nt eger types, the result type of arithmetic operationsisi nt eger . With float types, the result type of
arithmetic operationsisf | oat .

In the case where plus (+) or minus (-) is used as the unary operator the rules for operands apply as well. The result of
using the minus operator is the negative value of the operand if it was positive and vice versa. The result of using the

plus operator is the value of the operand, i.e. a positive value if the operand value was positive and a negative value if
the operand value was negative.

The result of performing the division operation (/) on two:

a) integer vauesgivesthewholei nt eger part of the value resulting from dividing the first i nt eger by
the second (i.e. fractions are discarded);

b) numericf | oat valuesgivesthef | oat valueresulting from dividing thefirst f | oat by the second
(i.e. fractions are not discarded).

The operators r emand nod compute on operands of typei nt eger and have aresult of typei nt eger . The
operationsx remy andx nod y compute the rest that remains from an integer division of x by y. Therefore, they
are only defined for non-zero operandsy . For positivex and y, both x r emy and x nod y have the same result but for
negative arguments they differ.

Formally, mod and r emare defined as follows:

X remy =x -y * (xly)

x mod y = x rem|y| when x >= 0
=0 when Xx <0 and xrem|y|l =0
=|y] + xrem]y| when X <0 and x rem|y| <0

ETSI

92 ETSI ES 201 873-1 V4.9.1 (2017-05)

Table 7 illustrates the difference between the mod and rem operator.

Table 7: Effect of mod and rem operator

X -3 -2 -1 0 1 2 3
x mod 3 0 1 2 0 1 2 0
xrem3 0 -2 -1 0 1 2 0

7.1.2 List operator

The predefined list operator (&) performs concatenation of values of string types, r ecord of ,set of,orarray of
the same root types. The operation is a simple concatenation from left to right. No form of arithmetic addition is
implied. The result type is the root type of the operands.

NOTE 1: Incase of the list types, both the outer type (i.e.r ecord of ,set of orarray) andtheiterated inner
type need to have the same root type in arecursive manner.

NOTE 2: Itisalso possible to concatenate two or more value list notation expressions if the result isto be used as a
record of orarray of the sameroot type as the concatenated expressions.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Whenthelist concatenation operator is used for record of-s, set of-s and arrays, its operands shall be at least
partially initialized.

EXAMPLE:

'1111'B & '0000'B & '1111'B gives '111100001111'B
{1,2} & {3,4} & {5,6} gives the followi ng record of integer {1,2,3,4,5, 6}

7.1.3 Relational operators

The predefined relational operators are equality (==), less than (<), greater than (>), non-equality to (! =), greater than
or equal to (>=) and less than or equal to (<=). Theresult type of all these operationsisbool ean.

Therelational operators less than (<), greater than (>), greater than or equal to (>=), and less than or equal to (<=) shall
have only operands of type i nt eger (including derivationsof i nt eger), f | oat (including derivationsof f | oat),
or instances of the same enuner at ed type. It is not allowed to compare instances of different root types.

Theaddr ess typeisalowed for the equality (==) and non-equality (=) operators, independent of its actual type, but
when its actua type differs from the types specified above, it can be compared to the literal specia valuenul | only.

Operands of equality (==) and non-equality (!=) shall be completely initialized values or field references of type
compatible root types and the values or field references being compared shall obey the following rules. Thisimplies that
instances of types not mentioned below shall not be operands of equality and non-equality.

e Twofield references are equal if the referenced fields are both opt i onal fields and both fields are set to
oni t orif both referenced fields (regardlessif they are optional or not) are initialized with values and these
values are equal. A field referenceis equal to avalueif the referenced field isinitialized with avalue and both
values are equal.

e Twointeger values are equal if and only if they contain the same value. Otherwise, normal mathematical
ordering is applied.

. Two enumerated values are equal if and only if they are associated with the same integer value. Otherwise,
they are ordered using the mathematical order on the associated integer values.

ETSI

93 ETSI ES 201 873-1 V4.9.1 (2017-05)

Two floating-point numbers are equal if and only if they contain the same value. The values minus zero and
plus zero are two distinct values (e.g. they are encoded differently in some standardized languages) and minus
zero isless than plus zero, which represents zero. Otherwise, normal mathematical ordering is applied. The
specia values-i nfinity, infinityandnot_a number areequa tothemselves only. The special
value-i nfinity islessthan any other float value. The special valuei nf i ni ty isgreater than any
numerical float valuesand - i nfi ni ty. The special valuenot _a_nunber isgreater than any other float
value (including i nfi ni ty).

Two charstring or two universal charstring values are equal if and only if they have equal lengths and the
characters at al positions are the same.

For values of bitstring, hexstring or octetstring types, the same equality rule applies as for charstring values
with the exception, that fractions which shall equal at all positions are bits, hexadecimal digits or pairs of
hexadecimal digits accordingly.

Two record values, or set values are equal respectively if and only if they are mutually compatible with the
type of the other operand (see clause 6.3), the actual values of all present fields are equal to their
corresponding fields and all fields corresponding to omitted fields are also omitted in the peer value.

Two record of values, set of values or array values, respectively, are equal if and only if they are mutually
compatible with the type of the other operand (see clause 6.3), they both have the same length, and and each
element of one valueis equal to the corresponding element of the other value. Record of values and array
values may also be compared, in which case the corresponding record of type of the array is being considered.

Values of the same union type, and values of different union typesin which at least one of the alternativesis
compatible with the other type (see clause 6.3.2.4) can be compared (independent if a compatible aternative is
the selected one or not). Two values of union types are equal if and only if in both values the name of the
selected alternative isidentical, they are compatible with the type of the other value, and the actual values of
the chosen fields are equal.

Values of the same or any two anytype types can be compared. For anytype values the same rule apply asto
union values, with the addition that names of user-defined types defined with the same name in different
modules do not denote the same type name of the selected alternatives.

Two default or two component values are equal if and only if they contain the same value (i.e. they designate
the same default or test component, independent of the actual state of the denoted object).

It isalso possible to use compound expressions (field assignment or value list notation) directly as operands of
comparison operations of structured types. If thereis a compound expression on both sides of the comparison
operator, they shall both be value list notation expressions where the elements shall be of the same root type
and they shall be compared like record of values with elements of that root type. If only one operand of the
comparison operation is a compound expression it shall be compatible with the root type of the other operand
and they shall be compared like values of that root type.

EXAMPLE:

/1 Gven

type set S1 {
integer al optional,
integer a2 optional,
integer a3 optional
H

type set S2 {
integer bl optional,
integer b2 optional,
integer b3 optional
b

type set S3 {
integer c1 optional,
integer c2 optional,
h

type set of integer SI;

type

uni on Ul {

i nteger di,

ETSI

94 ETSI ES 201 873-1 V4.9.1 (2017-05)

i nteger d2,
h
type uni on 2 {
i nteger el,
i nteger e2,
h
type uni on U3 {
i nteger di,
i nteger d2,
bool ean d3
b
/1 And
const S1 c_sl = { al :=0, a2 :=omt, a3 := 2 };
/1 Notice that the order of defining values of the fields does not matter
const S2 c_s2?a = { bl:=0, b3:=2, b2 :=omt };
const S2 c¢_s2b = { b2:=0, b3 :=2, bl :=omt };
const S3 c_s3 = {cl:=0, c2:=2}%;
var Sl v.si:= {0 -, 2};
const Sl c_si = {0 2};
const Ul c_ul = { dl:=0 };
const U2 c_u2 = { el:=01};
const U3 c_u3; = { dl:= 0 };
/1 Then
c_sl == c_s2a;

/'l returns true
c_sl == c_s2b;
/'l returns fal se, because neither al nor a2 are equal to their counterparts
/1 (the corresponding elenment is not omitted)
c_sl == c_s3;
/'l returns fal se, because the effective value structures of sl and s3 are not conpati bl e
c_sl == v_si;
/| causes test case error as v_si is not conpletely initialized
/1 (2nd elenment is left uninitialized)
c_sl == c_si;
/1 returns false, as the counterpart of the onmtted a2 is 2,
/1 but the counterpart of a3 is undefined

c_s3 == c_si;

/1 returns true
c_ul == c_u2;

/] causes error as Ul and U2 have no common subset of alternatives
c_ul == c_us3;

/] returns true, as alternatives with the sane nanes are chosen and
/'l the actual values in the selected alternatives are equal
{ 0, omt, 2} ==c_sl;
/1 returns true
c_s2a =={ bl :=0, b2:=omt, b3 :=2};
/'l returns true
{ c_sl, c_s2b} == { c_s2a, c_sl};
/'l returns fal se because c_s2b != c_sl
{ c_s1, c_s2b, c_s2a} == { c_sl1};
/'l returns fal se because of different |ength
c_sl.al == c_s2a.bil;
Il returns true, both fields are initialized with values and the values are equal
c_sl.a2 == c_s2a.b2;
/'l returns true, both fields are omt
c_sl.al == c_s2a.h2;
/1l returns false, value vs. omt

c_sl.al == onit;
/1 error, omt is neither a value nor a field reference
c_sl.a2 == 3;

/1 false, omt vs. value

7.1.4 Logical operators

The predefined bool ean operators perform the operations of negation, logical and, logical or and logical xor . Their
operands shall be of root type bool ean. The result type of logical operationsisbool ean.

Thelogical not isthe unary operator that returnsthe valuet r ue if its operand was of valuef al se and returnsthe
valuef al se if the operand was of vauet r ue.

Thelogical and returnsthe valuet r ue if both its operands are t r ue; otherwiseit returnsthe valuef al se.

ETSI

95 ETSI ES 201 873-1 V4.9.1 (2017-05)

Thelogica or returnsthevaluet r ue if at least one of itsoperandsist r ue; it returnsthe valuef al se only if both
operandsaref al se.

Thelogical xor returnsthevaluet r ue if one of itsoperandsist r ue; it returnsthe value f al se if both operands are
f al se orif both operandsaret r ue.

Short circuit evaluation for boolean expressionsis used, i.e. the evaluation of operands of logical operators is stopped
once the overall result is known: in the case of the and operator, if the left argument evaluatesto f al se, then theright
argument is not evaluated and the whole expression evaluatesto f al se. In the case of the or operator, if the left
argument evaluatesto t r ue, then the right argument is not evaluated and the whole expression evaluatestot r ue.

7.1.5 Bitwise operators

The predefined bitwise operators perform the operations of bitwise not , bitwise and, bitwise or and bitwise xor .
These operators are known as not 4b, and4b, or 4b and xor 4b respectively.

NOTE: Toberead as"not for bit", "and for bit", etc.

Their operands shall be of root type bi t string, hexstringoroctetstring.Inthecaseof and4b, or4b and
xor 4b the operands shall be of the same root types.The result type of the bitwise operators shall be the root type of the
operands.

The bitwise not 4b unary operator inverts the individual bit values of its operand. For each bit in the operand a1 bit is
settoOand aObitissetto 1. That is:
not4b '1'B gives '0'B
not4b '0'B gives '1'B
EXAMPLE 1:

not4b '1010'B gives '0101'B
not4b '1A5'H gives 'E5A'H
not4b ' 01A5' O gives ' FE5A' O

The bitwise and4b operator accepts two operands of equal length. For each corresponding bit position, the resulting
valueisalif both bits are set to 1, otherwise the value for the resulting bit is0. That is:

"1'B and4b "1'B gives '1'B
'"1'B and4b '0'B gives '0'B
'0'B and4b '1'B gives '0'B
'0'B and4b '0'B gives '0'B
EXAMPLE 2:

'1001' B and4b '0101'B gives '0001'B
"B'Hand4b '5'H gives '1'H
"FB'O and4b '15'O gives '11'0O

The bitwise or 4b operator accepts two operands of equal length. For each corresponding bit position, the resulting
valueis 0 if both bits are set to 0, otherwise the value for the resulting bit is 1. That is:

'"1'Bordb "1'Bgives '1'B
'"1'Bordb '0'Bgives '1'B
'0'Bor4b "1'Bgives '1'B
'0'Bor4b '0'B gives '0'B
EXAMPLE 3

'1001' B or4b '0101'B gives '1101'B
"9'Hor4b '5Hgives 'DH
"A9'Oordb '"F5'O gives 'FD O

The bitwise xor 4b operator accepts two operands of equal length. For each corresponding bit position, the resulting
valueis 0 if both bits are set to 0 or if both bits are set to 1, otherwise the value for the resulting bitis 1. That is:

1'B xor4b '1'B gives '0'B
'0'B xord4b '0'B gives '0'B
'0'"B xor4b "1'B gives '1'B

1'B xor4b '0'B gives '1'B

ETSI

96 ETSI ES 201 873-1 V4.9.1 (2017-05)

EXAMPLE 4:

'1001' B xor4b '0101'B gives '1100'B
"9"H xor4b '5'H gives 'CH

'39'0O xor4b '15' O gives '2C O

7.1.6 Shift operators

The predefined shift operators perform the shift left (<<) and shift right (>>) operations. Their left-hand operand shall
be of root type bi t string, hexstringoroctetstring. Their right-hand operand shall be a non-negative
i nt eger . Theresult type of these operators shall be the same as the root type of the left operand.

The shift operators behave differently based upon the type of their left-hand operand. If the type of the left-hand
operand is:

a) bitstring thenthe shift unit applied is1 bit;
b) hexstri ng then the shift unit applied is 1 hexadecimal digit;
Cc) oct et stri ng thenthe shift unit applied is 1 octet.

The shift left (<<) operator accepts two operands. It shifts the left-hand operand by the number of shift units to the left
as specified by the right-hand operand. Excess shift units (bits, hexadecimal digits or octets) are discarded. For each
shift unit shifted to the left, a zero ('0'B, '0'H, or '00'O determined according to the type of the left-hand operand) is
inserted from the right-hand side of the left operand.

EXAMPLE 1:
'111001'B << 2 gives '100100'B

'12345'H << 2 gives '34500'H
'1122334455' O << (1+1) gives '3344550000'O

The shift right (>>) operator accepts two operands. It shifts the left-hand operand by the number of shift unitsto the
right as specified by the right-hand operand. Excess shift units (bits, hexadecimal digits or octets) are discarded. For
each shift unit shifted to the right, a zero ('0'B, '0'H, or '00'O determined according to the type of the |eft-hand operand)
isinserted from the left-hand side of the left operand.

EXAMPLE 2:

'111001'B >> 2 gives '001110'B
'12345'H >> 2 gives '00123' H
'1122334455' O >> (1+1) gives '0000112233' O

7.1.7 Rotate operators

The predefined rotate operators perform the rotate left (<@ and rotate right (@) operators. Their left-hand operand
shall be of root typebi t stri ng, hexstring,octetstring,charstring,universal charstring,
record of,orset of.Ther right-hand operand shall be anon-negativei nt eger . The result type of these
operators shall be the same as the root type of the left-hand operand.

NOTE 1: Please note that the root types of arraysisr ecor d of , therefore arrays are allowed as | eft-hand
operands of rotate operators.

The rotate operators behave differently based upon the type of their left-hand operand. If the type of the left-hand
operand is:

a) bitstring thentherotate unit appliedis 1 bit;
b) hexst ri ng thentherotate unit applied is 1 hexadecimal digit;
C) oct et string thentherotate unit applied is 1 octet;

d) charstringoruniversal charstring thentherotate unit applied is one character;

ETSI

97 ETSI ES 201 873-1 V4.9.1 (2017-05)

e) record of, set of, or array thentherotate unit applied is one element.

The rotate left (<@ operator accepts two operands. It rotates the left-hand operand by the number of shift unitsto the
left as specified by the right-hand operand. Excess shift units (bits, hexadecimal digits, octets, characters, or elements)
are re-inserted into the left-hand operand from its right-hand side.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) When therotate operator isused for r ecor d of -s, set of -sand arrays, itsleft hand operand shall be at
least partialy initialized.

NOTE 2: Please note that for the right hand operand restriction a) in clause 7 further on applies.
EXAMPLE 1:

'101001'B <@2 gives '100110'B

'12345'H <@2 gives '34512'H

'1122334455' O <@ (1+2) gives '4455112233' 0
"abcdefg" <@3 gives "defgabc"

Therotateright (@) operator accepts two operands. It rotates the left-hand operand by the number of shift unitsto the
right as specified by the right-hand operand. Excess shift units (bits, hexadecimal digits, octets, characters, or elements)
arere-inserted into the left-hand operand from its left-hand side.

EXAMPLE 2:

'100001'B @ 2 gives '011000'B

'12345'H @ 2 gives '45123'H

'1122334455' O @ (1+2) gives '3344551122'0
"abcdefg" @ 3 gives "efgabcd"

7.2 Field references and list elements

Within expressions, fields of record and set types are referenced with the dot notation " . f i el d" . Elements of record
of, set of, array and string types are referenced with the index notation " [i ndex] " . Dot and brackets have the same
binding power. Field references and list elements are evaluated from left to right.

7.3 Decoded field reference

Decoded field reference is a specific notation that can be applied to expressionsof bi t stri ng, hexstri ng,
octetstring,charstringoruniversal charstring types. Itisused for accessing content of implicitly
decoded payload fields.

Syntactical Structure

Ref erencedVal ue "=>" (PredefinedType | Typeldentifier |
("(" Type ["," Expression] *)"))

The string value preceding the => operator shall be decoded into a value of the type following the => operator. Failure
of this decoding shall cause atest case error. In case the string operand is of theuni ver sal charstri ng typeand
the extended syntax with parenthesesis used, the type operand can be followed by an optional parameter defining the
encoding format. The parameter shall be of the char st ri ng type and it shall contain one of the strings allowed for
thedecval ue_uni char function (specified in clause C.5.4). Any other value shall cause an error. In case the string
operand isnot auni ver sal char stri ng, theoptional parameter shall not be present.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) If thetype operand is not enclosed into parentheses, only a built-in type or atype reference consisting of a
singleidentifier can be used. Extended type references shall always use the extended syntax with parentheses.

ETSI

98 ETSI ES 201 873-1 V4.9.1 (2017-05)

EXAMPLE:

type record PDU {
PduHeader header,
bi tstring outerPayl oad

}

type record CuterPayl oad {
Qut er Payl oadHeader header,
uni versal charstring innerPayl oad

}

type record | nnerPayl oad {
i nteger datal,
charstring data2

}

var PDU v_pdu;
var | nnerPayl oad v_i nner;
. /Il v_pduis filled with data;
v_inner := v_pdu. outerPayl oad=>Cut er Payl oad. i nner Payl oad=>(| nner Payl oad, "UTF-8");
/1 v_pdu.outerPayload field is first decoded into a value of the QuterPayl oad type
/1 the innerPayload field of the decoding result is subsequently decoded into a val ue
/1 of the InnerPayl oad type (using UTF-8 format for conversion into a bitstring)

8 Modules

8.0 General

The principal building blocks of TTCN-3 are modules. A module may define afully executable test suite or just a
library. A module may refer to the TTCN-3 language version and to package versions being used. A module consists of
a (optional) definitions part, and a (optional) module control part.

NOTE: Thetermtest suiteis synonymous with a complete TTCN-3 module containing test cases and a control
part.

The transfer syntax of TTCN-3 modules shall be UTF-8, i.e. each character of the module shall be individually encoded
and decoded according to the UCS Transformation Format 8 (UTF-8) as defined in annex R of ISO/IEC 10646 [2] and
no characters not corresponding to any character of the module shall be present.

8.1 Definition of a module
A module is defined with the keyword module.

NOTE 1: Thetreatment of TTCN-3 modulesin files, repositories and alike is outside the scope of the present
document.

Syntactical Structure
nodul e Modul el dentifier [|anguage FreeText { "," FreeText }] "{"

[Modul eDefinitionsPart]
[Modul eControl Part]

ETSI

99 ETSI ES 201 873-1 V4.9.1 (2017-05)

Semantic Description

A TTCN-3 module groups a set of (typically cohesive) TTCN-3 definitions. TTCN-3 modules have an explicit import
interface to use definitions from other TTCN-3 or non-TTCN-3 modules. It is possible to hide definitionsin a TTCN-3
module (see clause 8.2.5). TTCN-3 modules can be compiled/interpreted separately. They are reusable and
parameterizable.

Module names are of the form of a TTCN-3 identifier.
NOTE 2: The moduleidentifier istheinformal text name of the module.

In addition, a module specification can carry an optional attribute identified by the| anguage keyword that identifies
the edition of the TTCN-3 language, in which the module is specified. The following language strings are to be used:

"TTCN- 3: 2001" - to be used with modules complying with version 1.1.2 of the present document (see annex H).
"TTCN- 3: 2003" - to be used with modules complying with version 2.2.1 of the present document (see annex H).
"TTCN- 3: 2005" - to be used with modules complying with version 3.1.1 of the present document (see annex H).
"TTCN- 3: 2007" - to be used with modules complying with version 3.2.1 of the present document (see annex H).
"TTCN- 3: 2008" - to be used with modules complying with version 3.3.2 of the present document (see annex H).
"TTCN- 3: 2008 Amendnent 1" - to be used with modules complying with version 3.4.1 of the present document

(see annex H).
"TTCN- 3: 2009" - to be used with modules complying with version 4.1.1 of the present document (see annex H).
"TTCN- 3: 2010" - to be used with modules complying with version 4.2.1 of the present document (see annex H).
"TTCN 3: 2011" - to be used with modules complying with version 4.3.1 of the present document (see annex H).
"TTCN- 3: 2012" - to be used with modules complying with version 4.4.1 of the present document (see annex H).
"TTCN- 3: 2013" - to be used with modules complying with version 4.5.1 of the present document (see annex H).
"TTCN- 3: 2014" - to be used with modules complying with version 4.6.1 of the present document (see annex H).
"TTCN- 3: 2015" - to be used with modules complying with version 4.7.1 of the present document (see annex H).
"TTCN- 3: 2016" - to be used with modules complying with the present document.

Furthermore, the optiona attribute identified by the | anguage keyword may identify package versions being used by
this module. The package tags are defined in ETSI ES 202 781 [i.11], ETSI ES 202 782 [i.14], ETSI ES 202 784 [i.12],
and ETSI ES 202 785 [i.13]. The language identifier and the package identifier are to be written as a comma-separated
list.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) At most one language string per module shall be given to define the core language version in which the
module is defined.

b) Per extension package, at most one extension package string of that extension package shall be used by a
module.

Examples

modul e MyTest Suite | anguage "TTCN 3: 2003"
{ .1

8.2 Module definitions part

820 General

The module definitions part specifies the top-level definitions of the module and may import visible identifiers from
other modules. Visihility rules are given in clause 8.2.5. Scope rules for declarations made in the module definitions
part and imported declarations are given in clause 5.3. Those language elements which may be defined ina TTCN-3
module are listed in table 1. Every definition can be associated with attributes using the with statement defined in
clause 27. Visible module definitions may be imported by other modules.

ETSI

100 ETSI ES 201 873-1 V4.9.1 (2017-05)

Syntactical Structure

[Visibility] (
TypeDef |
Const Def |
Tenpl at eDef |
Modul ePar Def |
Functi onDef |
Si gnat ur eDef |
Test caseDef |
Al t st epDef |
| mpor t Def |
G oupDef |
Ext Functi onDef |
Fri endDef

) [WthStatenent]

["1

1+

Semantic Description
Definitions in the modul e definitions part may be made in any order.

Such definitions, i.e. top-level definitions outside of other scope units, are globally visible within the module. They may
be used elsewhere in the module. Thisincludes identifiersimported from other modules.

Declarations of dynamic language elements such as variables or timers shall only be made in the control part, test cases,
functions, altsteps or component types.

TTCN-3 does not support the declaration of variablesin the module definitions part, i.e. global variables cannot be
defined in TTCN-3. However, variables defined in a test component type may be used by all test cases, functions, etc.
running on components of that component type and variables defined in the control part provide the ability to keep their
values independently of test case execution.

Restrictions
No specific restrictions in addition to the genera static rules of TTCN-3 given in clause 5.

Examples

nodul e MyModul e
{ /1 This nodul e contains definitions only

éonst i nteger MyConstant := 1,
type record MyMessageType { ...}

functi on TestStep(){ ...}

8.2.1 Module parameters

Module parameters define a set of values that are supplied by the test environment at runtime. Module parameters do
not change their value during test execution. They can be used on right hand side of assignments, in expressions, in
actual parameters, and in template definitions, but not within type definitions.

Syntactical Structure
Single type, single module parameter form:
[Visibility] nodul epar Mdul ePar Type Modul eParldentifier [":=" ConstantExpression] ";"

Single type, multiple module parameter form:
[Visibility] nodul epar Mdul ePar Type

{ Modul eParldentifier [":=" ConstantExpression] "," }
Modul eParl dentifier [":=" Constant Expression] ";"

ETSI

101 ETSI ES 201 873-1 V4.9.1 (2017-05)

Semantic Description

Module parameters behave as global constants at runtime. For module parameterization, TTCN-3 only supports value
parameterization which has to be resolved static at start of runtime.

Module parameters alow to customize a TTCN-3 test suite for a specific IUT, test setup or test campaign. Module
parameters are declared by specifying the type and listing their identifiers following the keyword nmodul epar .

It isallowed to specify default values for module parameters. This shall be done by an assignment in the module
parameter list. A default value can merely be assigned at the place of the declaration of the module parameter.

If the test system does not provide an actual runtime value for a module parameter, the default value shall be used
during test execution, otherwise the actual value provided by the test system. Actual runtime values shall be literals
only.

If functions are used for the initialization of module parameters, it is strongly advised to adhere to the rules defined in
clause 16.1.4. Not following these rules may cause non-deterministic test executions.

Visible module parameters can be imported.

Optional fields of record and set module parameters or module parameter fields can beinitialized explicitly or
implicitly. For implicit initialization of the optional fields of a module parameter or a module parameter field, an

opti onal attribute withthevalue"i nplicit om t" (seeclause 27.7) shal be associated with it either directly or
viathe attribute distribution (scoping) mechanism (see clause 27.1.1).

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) During test execution these values shall be treated as constants.

b) Module parameters shall not be of port type, default type or component type and shall not be of a structured
type that contains a sub-element of por t type at any level of nesting.

¢) A module parameter shall only be of type addressif the address type is explicitly defined within the associated
module.

d) Module parameters shall be declared within the module definition part only.

€) Morethan one occurrence of module parameters declaration is allowed but each parameter shall be declared
only once (i.e. redefinition of the module parameter is not allowed).

f) The constant expression for the default value of a module parameter shall respect the limitations given in
clause 16.1.4.

g) Module parameters shall not be used in type or array definitions.

h) All sub-elements of conmponent or def aul t type of adefault value of a module parameter shall be
initialized with the special valuenul | .

Examples

modul e MyTest Sui t eWt hPar aneters

{
/'l single type, single nodule paraneter, which is per default public
nmodul epar bool ean PX Par0Q : = true;

/1 single type, nultiple nodule paraneters with an explicit public visibility
publ i c nodul epar integer PX Parl, PX Par2 := 1 + char2int("a");

ETSI

102 ETSI ES 201 873-1 V4.9.1 (2017-05)

8.2.2 Groups of definitions

In the modul e definitions part, definitions can be collected in named groups. Grouping is done to aid readability and to
add logical structure to the module if required. If necessary, the dot notation shall be used to identify sub-groups within
the group hierarchy uniquely, e.g. for the import of a specific sub-group.

Syntactical Structure

[public] group Goupldentifier "{"
{ Modul eDefinition [";"] }
"y

Semantic Description

A group of definitions can be specified wherever a single definition is allowed. Groups may be nested, i.e. groups may
contain other groups. This allows the test suite specifier to structure, among other things, collections of test data or
functions describing test behaviour.

Groups and nested groups have no scoping. Please note however, attributes given to a group by an associated with
statement apply to al elements of a group (see clause 27). Import statements may import groups so that al visible
elements of a group are imported (see clause 8.2.3.3).

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Group identifiers across the whole module need not necessarily be unique. However, top-level group
identifiersand all group identifiers of subgroups of a single group shall be unique.

b) Only publ i c visibility can be defined for groups as they are always public.

Examples
nodul e MyModul e {

)/ A collection of definitions

group nyGoup {
const integer c_myConst: = 1;

type record MyMessageType { ...};

group nmyG oupl { /1 Sub-group with definitions
type record Anot her MessageType { ...};
const bool ean c_nyBool ean : = fal se

}

/1 A group of altsteps
group nyStepLibrary {
group nyGoupl { /'l Sub-group with the sane nane as the sub-group with definitions
altstep a_nyStepll() { ...
altstep a_nyStepl2() { ...}

aitstep a_nyStepln() { ...}

}

group myG oup2 {
altstep a_nyStep21() { ...}
altstep a_nyStep22() { ...}

éltstep a_nmyStep2n() { ...}

}

/1 An inport statement that inports nyGoupl within nyStepLibrary
import from MyModul e {
group nyStepli brary. nyG oupl

ETSI

103 ETSI ES 201 873-1 V4.9.1 (2017-05)

8.2.3 Importing from modules

8230 General

It is possible to re-use visible definitions specified in different modules using the i mpor t statement. Every definition
in a TTCN-3 module has an associated visibility, which is by default publ i ¢ (see clause 8.2.5).

NOTE: Groupsarepubl i ¢ only. Importing a group means that only the visible elements of the group are being
imported.

8.2.3.1 General format of import
Animport statement can be used anywhere in the module definitions part.

Syntactical Structure
[Visibility] inport from Mduleld

(all [except "{" ExceptSpec "}"])
|("{" lnportSpec "}")
[":")]
Semantic Description

TTCN-3 supports the import of the following definitions. module parameters, user defined types, signatures, constants,
data templates, signature templates, functions, external functions, altsteps and test cases. Each definition has a name
(defines the identifier of the definition, e.g. afunction name), a specification (e.g. atype specification or asignature of a
function) and in the case of functions, altsteps and test cases an associated behaviour description. In addition, import
statements of one module can be explicitly imported by another module (see clause 8.2.3.7). Only definitions or import
statements visible from the importing module can be imported (see clause 8.2.5).

In contrast to module definitions, which are by default public, import statements are by default private.

EXAMPLE l1a
Name Specification Behaviour description
function |f_myFunction |[(inout MyTypel p_nyPar) return MType2 |{
runs on MyConpType const MyType3 c_nyConst := .;
: [/ further behaviour
}
Specification Name Specification
type record M/Recor dType [{
M/ Type4 fieldil,
integer field2
}
Specification Name Specification
template |MyType5 mnyTenplate |:= {
fieldl := 1,
field2 := c_nyConst, // c_nyConst is a nodul e constant
field3 := PX_Mdul ePar // PX Mdul ePar is nodul e paraneter

Behaviour descriptions have no effect on the import mechanism, because their internals are considered to beinvisible to
the importer when the corresponding functions, altsteps or test cases are imported. Thus, they are not considered in the
following descriptions.

ETSI

104

ETSI ES 201 873-1 V4.9.1 (2017-05)

The specification part of an importable definition contains local definitions (e.g. field names of structured type
definitions or values of enumerated types) and referenced definitions (e.g. references to type definitions, templates,
constants or module parameters). For the examples above, this means:

Name Local definitions Referenced definitions
function |f myFunction p_myPar MyType1, MyType2, MyCompType
type MyRecordType |[field1, field2 MyType4, integer
tenplate |m_myTemplate MyTypeb, field1, field2, field3, c_myConst, PX_ModulePar

NOTE 1. Theloca definitions column refersto identifiers only that are newly defined in the importable definition.
Values assigned to individual fields of importable definitions, e.g. in template definitions, may aso be
considered as local definitions, but they are not important for the explanation of the import mechanism.

NOTE 2: Thereferenced definitions fieldl, field2 and field3 of template MyTemplate are the field names of
MyTypeb, i.e. they are referenced via MyType5b.

Referenced definitions are al so importable definitions, i.e. the source of areferenced definition can again be structured
into a name and a specification part and the specification part also contains local and referenced definitions. In other
words, an importable definition may be built up recursively from other importable definitions.

The TTCN-3 import mechanism is related to the local and referenced definitions used in the specification part of the
importable definitions. Table 8 specifies the possible local and referenced definitions of importable definitions.

Table 8: Possible local and referenced definitions of importable definitions

Importable Definition

Possible Local Definitions

Possible Referenced Definitions

Module parameter

Module parameter type

User-defined type (for all)

e enumerated type

Concrete values

e structured type

Field names, nested type
definitions

Field types

port type

Message types, signatures

component type

Constant names, variable names,
timer names and port names

Constant types, variable types, port types

Signature

Parameter names

Parameter types, return type, types of exceptions

Constant

Constant type

Data Template

Parameter names

Template type, parameter types, constants, module
parameters, functions

Signature template

Signature definition, constants, module parameters
functions

Function

Parameter names

Parameter types, return type, component type
(runs on clause)

External function

Parameter names

Parameter types, return type

Altstep Parameter names Parameter types, component type (r uns
on clause)

Test case Parameter names Parameter types, component types (r uns on- and
syst emclause)

NOTE 1: For the import of import statements see clause 8.2.3.7.

NOTE 2: For the import of groups see clause 8.2.3.3.

The TTCN-3 import mechanism distinguishes between the identifier of a referenced definition and the information
necessary for the usage of a referenced definition within the imported definition. For the usage, the identifier of a
referenced definition is not required and therefore not imported automatically.

EXAMPLE 1b: Differentiation between information necessary for the usage and the identifier

nodul e A {
type record MyRecl {
i nt eger fieldl,
charstring field2
}

}

ETSI

105 ETSI ES 201 873-1 V4.9.1 (2017-05)

nodul e B {
import fromA all;
type record MyRec2 {
M/Recl nyFiel dil,
/1 "nyFieldl" is the local definition, "M/Recl" is a referenced definition;
/'l the name "M/Recl" shall be inmported in this case as is directly referenced
bool ean nyFi el d2

}
}

nodul e C {
import fromB all;
const MyRec2 c_nyRec2 := {
nyFieldl := { fieldl := 5, field2 := "A" },
/1 to define nyFieldl of M/Rec2 the nane "MyRecl" is not needed, the
/1 informati on necessary for the usage is its type information,
/1 i.e. names and types of its fields fieldl and field2
/1 which is enbeddded in the inported definition of M/Rec2
nyField2 := true

}
}

If an imported definition has attributes (defined by means of awi t h statement) then the attributes shall also be
imported. The mechanism to change attributes of imported definitionsis explained in clause 27.1.3.

NOTE 3: If the module has global attributes they are associated to definitions without these attributes.

Theuseof i nport on single definitions, groups of definitions, definitions of the same kind, etc. may lead to situations
where the same definition is referred to more than once. Such cases shall be resolved by the system and definitions shall
be imported only once.

NOTE 4: The mechanisms to resolve such ambiguities, e.g. overwriting and sending warnings to the user, are
outside the scope of the present document and should be provided by TTCN-3 tools.

All'i nport statements and definitions within import statements are considered to be treated independently one after
the other in the order of their appearance.

All TTCN-3 modules shall have their own name space in which all definitions shall be uniquely identified. Name
clashes may occur due to import, e.g. import from different modules. Name clashes shall be resolved using qualified
name(s) for the imported definition(s), i.e. prefixing the imported definition (which causes the name clash) by the
identifier of the module in which it has been defined; the prefix and the identifier shall be separated by adot ("."). If the
type of the component referenced in a connection operation is known (either when the component referenceisa
variable or value returned from a function or the type is defined the runs on, mtc or system clause of the calling
function), the referenced port declaration shall be present in this component type.

Thereis one exception to this rule: when in the context of an enumerated type (see clause 6.2.4), an enumerated value
is clashing with the name of a definition in the importing module, the enumerated value shall take precedence and the
definition in the importing module shall be referenced by using its qualified name (see example 4 below in this clause).

In cases where there are no ambiguities the prefixing need not (but may) be present when the imported definitions are
used. When the definition is referenced in the same module where it is defined, the module identifier of the module (the
current module) also may be used for prefixing the identifier of the definition. For the latter case, prefixing shall only be
used for definitions with global visibility for the module.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Animport statement shall only be used in the module definitions part and not be used within a control part,
function definition, and alike.

b) Only top-level visible definitions of a module may be imported. Definitions which are top-level but invisible
to the importing module or which occur at alower scope (e.g. local constants defined in afunction) shall not
be imported.

c) A definition isimported together with its name and all local definitions.

ETSI

106 ETSI ES 201 873-1 V4.9.1 (2017-05)

NOTE 5: A local definition, e.g. afield name of a user-defined record type or an enumerated value, has only

d)

meaning in the context of the definitionsin which it is defined, e.g. afield name of arecord type can only
be used to access afield of the record type and not outside this context.

In particular, importing an enumerated type does not impose the restriction given in clause 6.2.4 on global
names defined in the importing module.

A definition isimported together with al information of referenced definitions that are necessary for the usage
of the imported definition, independent of the visibility of the referenced definitions (see clause 8.2.5).

NOTE 6: If module C imports a definition from module B that uses a type reference defined in module A, the

€)

f)

Q)

h)

corresponding information necessary for the usage of that type is automatically imported into module C
(see example 5 below in this clause). Identifiers of referenced definitions are not automatically imported.

In particular, if module C imports global value or template definitions (e.g. constants, module parameters,
templates) or local definitions (e.g. formal parameters of templates, functions, etc., or constants and
variables of component types) of an enumerated type from module B, the enumerated values of thistype
(i.e. theidentifiers) are implicitly and automatically imported to module C. That is, the enumerated values
are known when an enumerated value or template is used in module C (e.g. when an actual parameter is
passed or avalue is assigned to a component variable). Note that thisimplicit importing does not impose
the restriction given in clause 6.2.4 on global names defined in module C.

If the referenced definitions are wished to be used in the importing module, they shall be explicitly imported
either directly from its source module or indirectly by importing the import statements of a module importing
it (see clause 8.2.3.7).

When importing a function, altstep or test case the corresponding behaviour specifications and al definitions
used inside the behaviour specifications remain invisible for the importing module.

The language specification (see clause 8.1) of the import statement shall not override the language
specification of the importing module.

The language specification of the import statement shall be identical to the language specification of the source
module from which definitions are imported (see clause 8.2.3.8) provided a language specification is defined

in the source module. If not, the language specification in the import statement is taken as the language
specification of the source module. If the source module uses however language concepts not being part of that
language specification, this causes an error for the import statement.

Examples

EXAMPLE 1. Selected import examples

nodul e MyModul eA

{

)/ Scope of the inported definitions is global to MyMdul eA

inmport from MyModuleB all; // inport of all definitions from MyMdul eB

i mport from MyMddul eC { /1 inport of selected definitions from M/Mdul eC
type M Typel, MyType2; [/ inport of types MyTypel and MyType2
tenpl ate all /1 import of all tenplates

}

functi on f_myBehavi our C()
{

/'l inmport cannot be used here
}
control

/1 inport cannot be used here

ETSI

107 ETSI ES 201 873-1 V4.9.1 (2017-05)

EXAMPLE 2: Use of imported definitions and visibility of definitions referenced by them
nmodul e Modul eONE {
nodul epar integer MddParl := .,

type record RecordType_ T1 {
integer Fieldl_T1,

}

type record RecordType_T2 {
Recor dType_T1 Field1_T2,

}

const integer c_nyConst := .

tenpl ate RecordType_T2 mt2 (RecordType_T1 p_tenpParT2):= { // paraneterized tenplate
Fieldl T2 := .,

}
} /1 end nodul e Modul eONE

nmodul e Modul eTWO {

i mport from Modul eONE {
tenplate mt2

/1l Only the nanes m T2 and p_tenpParT2 will be visible in Mdul eTWD. Please note, that

/1 the identifier p_tenpParT2 can only be used when nodifying mt2. Al infornation

/'l necessary for the usage of mt2, e.g. for type checking purposes, are inported

/1 for the referenced definitions RecordType_T1, Fieldl T2, etc., but their identifiers are
/1 not visible in Mdul eTW

/1 This neans, e.g. it is not possible to use the constant c_nyConst or to declare a

/1 variable of type RecordType T1 or RecordType_T2 in Mdul eTWD wi thout explicitly inporting
/'l these types.

i mport from Modul eONE {
nmodul epar MbdPar 2
}
/1 The nodul e paraneter MddPar2 of Mbdul eONE is inported from Mbdul eONE and

/1 can be used |ike an integer constant

} // end nodul e Modul eTWO

nmodul e Modul eTHREE {
import from Modul eONE all; // inports all definitions from Mdul eONE
type port MyPort Type nessage {
i nout RecordType_T2 /!l Reference to a type defined i n Mbdul eONE
}

type conponent MyConpType {
var integer v_nyConponentVar := MdPar?2;
/'l Reference to a nodul e paraneter of Mdul eONE

}
function f_myFunction () return integer {

return c_myConst /'l Reference to a nodul e constant of Mdul eONE
}

testcase TC MyTest Case (out RecordType_T2 p_nyPar) runs on MyConmpType {

M/Port .send(mt2); // Sending a tenplate defined in Mdul eONE

}
} /1 end Modul eTHREE

ETSI

108 ETSI ES 201 873-1 V4.9.1 (2017-05)

nodul e Modul eFOUR {
i mport from Modul eTHREE {
testcase TC _M/Test Case

/1 Only the nane TC MyTestCase will be visible and usable in Mdul eFOUR

/1 Type information for RecordType_T2 is inported via Mdul eTHREE from Mbdul eONE and

/1 Type information for MyConpType is inported from Modul eTHREE. Al definitions

/1 used in the behaviour part of TC MyTestCase remain hidden for the user of Mdul eFOUR

} // end Modul eFOUR
EXAMPLE 3: Handling of name clashes
nodul e MyModul eA {

t;/pe bitstring MTypeA;

i mport from SoneMdul eC {

type M/ TypeA, /1 Where MyTypeA is of type character string
M/ TypeB /1 Where MyTypeB is of type character string
}
cbntrol {
vér SomeMbdul eC. MyTypeA v_nyVarl := "Test String"; [/ Prefix shall be used
var MyTypeA v_nyVar2 := '10110011' B; /1 This is the original MTypeA
vér My TypeB v_nyVar3 := "Test String"; /1 Prefix need not be used ...
var SoneMdul eC. MyTypeB v_nyVar3 := "Test String"; // ..but it can be if w shed
}

NOTE 7: Definitions with the same name defined in different modules are always assumed to be different, even if
the actual definitionsin the different modules are identical. For example, importing atype that is aready
defined locally, even with the same name, would lead to two different types being available in the
module.

EXAMPLE 4: Name clash between enumerated values and global definitions

nodul e A {
type enunerated MyEnuniType {enumX, enuny}
type enunerated MyEnuniType2 {enuny, enunt}

nodul e B {
import fromA all;
const MyEnunilype enun¥ := enunX; // this is not allowed as enunerated val ues restrict
/1 gl obal nanes (see clause 6.2.4)
const MyEnunilype2 enunX := enun¥;// this is |ikew se not allowed

const MyEnuniType enunt :
}

nodul e C {
import fromA all;
import fromB all;

enunX; // allowed as MyEnunilype does not contain enun¥

const integer enunZ := 0;
const integer enuny := 1;
const MyEnunilype2 enunX : = enun;

nodul epar MyEnunTType PX_MyMdul eParl : = enun¥Y

/1 the default value of the nodule paraneter will be the value enun¥, as the type of

/1 PX_MyModul eParl creates the context of MyEnuniType and in this context enumnerated val ues
/'l take precedence over global definition names; note that for the same context reason there
/1 is no name clash between the enunerated val ues defined in MyEnunType and i n MyEnuniType2

nmodul epar MyEnuniType PX_MyModul ePar2 : = B. enun¥Z

/'l the default value of the npbdul e paraneter will be the value enunX, as the prefix
/1 identifies the constant definition enunZ unanbi guously, which has the val ue enunX

ETSI

109 ETSI ES 201 873-1 V4.9.1 (2017-05)

nodul epar integer PX_|ntegerPar := enuny;
/1 the default value of the nodule paraneter will be O as this assignnent is not in the
/1 context of an enunerated type, hence no nane clash occurs

nodul epar MyEnunTType PX_MyMdul ePar3 : = C. enunX
/] causes an error as PX_MyModul ePar3 and the constant enunX in nodule C has different types

}
EXAMPLES5: Importing local definitions transitively

nmodul e A {

type enunerated MyEnuniType { enunX, enuny, enunt}

type record M/Rec { integer a, integer b}

type conponent MyConp { var M/fRec v_rec :={ a:=51} }
}

nodul e B {
import fromA all;
nmodul epar MyEnuniType PX_MyModul ePar : = enun;
type conponent MyConpUser extends MyConp {}

modul e C {
import fromB all;
testcase TC() runs on MyConpUser {
if (PX_M/Mdul ePar == enun¥) {
/1 the enunerated value enunY¥ is knowin C w thout explicitly inmporting it fromA
set verdi ct (pass)

if (v_rec.a ==5) {
v_rec.b := v_rec. a;
/1 Both the variable name v_rec and the record field names are known in C w thout
/1l explicitly inmporting themfromA
setverdi ct (pass)

}

}
}

8.2.3.2 Importing single definitions

Single visible definitions can be imported by referring to the definition kind and the definition name(s). The import of
single definitions can be used in combination with imports of groups (see clause 8.2.3.3), with imports of definitions of
the same kind (see clause 8.2.3.4), and with imports of import statements (see clause 8.2.3.7).

Syntactical Structure

[Visibility] inport from Mduleld "{"
{
(

(type { TypeDefldentifier ["1 1Y) I
(tenplate { Tenplateldentifier [""131) 1
(const { Constldentifier [11) 1
(testcase { Testcaseldentifier ["1 1)
(altstep { Altstepldentifier [""1131) 1
(function { Functionldentifier [" 11) |
(signature { Signatureldentifier ["," 1 1}) |
(nmodul epar { Modul ePar | dentifier [""11)

)

["]

}
IS

Semantic Description

See clause 8.2.3. Import of an invisible definition shall cause an error.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) The definition to be imported shall be defined in the module from which it isto be imported and shall be visible
to the importing module.

ETSI

110 ETSI ES 201 873-1 V4.9.1 (2017-05)

b) Seetherestrictions givenin clause 8.2.3.

Examples
i mport from MyModul eA {
type MyTypel /1 inports one type definition from M/Mddul eA only
}
import from MyModul eB {
type My Type2, Mtype3, MType4; /1 inports three types,
tenpl ate mnyTenpl at el; /] inports one tenplate, and
const c_nyConstl, c_nyConst2 /] inports two constants
}
8.2.3.3 Importing groups

Groups of definitions may be imported. The import of groups can be used in combination with imports of single
definitions (see clause 8.2.3.2), with imports of definitions of the same kind (see clause 8.2.3.4), and with imports of
import statements (see clause 8.2.3.7).

It isallowed to import sub-groups (i.e. a group which is defined within another group) directly, i.e. without the groups
in which the sub-group is embedded. If the name of a sub-group that should be imported is identical to the name of
another sub-group in the same module (see clause 8.2.2), the dot notation shall be used to identify the sub-group to be
imported uniquely.

If some visible definitions of a group are wished not to be imported, their kinds and identifiers shall belisted in the
exception list within a pair of curly brackets following the except keyword. Theal | keyword isalso allowed to be
used in the exception list; thiswill exclude all definitions of the same kind from the import statement.

Syntactical Structure
[Visibility] inport from Mduleld "{"
{

(group { Qualifiedldentifier [except "{" ExceptSpec "}" 1 ["," 1 })
["]
}

B A
Semantic Description

The effect of importing agroup isidentical toani nmport statement that lists all visible definitions (including
sub-groups) of this group except of those that are listed in the except specification. See also clause 8.2.3. Import
statements contained in the group or in its subgroups are not part of thislist, only definitions are.

It isimportant to point out, that the except statement does not exclude the definitions listed from being imported in
general; all statements importing definitions of the same kind can be seen as a shorthand notation for an equivalent list
of identifiers of single definitions. The except statement excludes definitions from this singlelist only.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Thegroup to beimported shall be defined in the module from which it isto be imported.
b) Seetherestrictions givenin clause 8.2.3.

Examples

import from MyModule { group nmyGroup } // includes all visible definitions fromnmG oup

import from MyMddul e {
group nmyG oup except {
type My Type3, MyType5; [/ excludes the two types fromthe inport statenent,
tenplate all /'l excludes all tenplates defined in nyG oup
/1 fromthe inport statenent
/1 but inports all other visible definitions of nyG oup

ETSI

111 ETSI ES 201 873-1 V4.9.1 (2017-05)

i mport from MyModul e {

group nyG oup
except { type MyType3 };// inports all visible types of nmyGoup except MyType3
type MyType3 /] inports MyType3 explicitly

8.2.3.4 Importing definitions of the same kind

Theal | keyword may be used to import all visible definitions of the same kind of amodule. Theal | keyword used
withthe const ant keyword identifies all visible constants declared in the definitions part of the module the import

statement refersto. Similarly theal | keyword used withthef unct i on keyword identifies all visible functions and
al visible external functions defined in the module the import statement denotes.

If some visible declarations of akind are wished to be excluded from the given import statement, their identifiers shall
be listed following theexcept keyword.

The import of visible definitions of the same kind can be used in combination with imports of single visible definitions
(see clause 8.2.3.2), with imports of groups (see clause 8.2.3.3), and with imports of import statements (see
clause 8.2.3.7).

Syntactical Structure

[Visibility] inport from Mduleld "{"
{
(

(type all [except { TypeDefldentifier [""T1T3Yr1) I
(tenplate all [except { Tenplateldentifier [""1%Yy1) 1
(const all [except { Constldentifier [""" 13r1) 1
(testcase all [except { Testcaseldentifier [""" 13r1) 1
(altstep all [except { Altstepldentifier [""1%Yy1) 1
(function all [except { Functionldentifier [""1%ry1) 1
(signature all [except { Signatureldentifier ["," 11} 1) |
(modul epar all [except { Mdul eParldentifier ["," 1 1} 1)

["]

Semantic Description

The effect of importing definitions of the ssme kind isidentical to ani npor t statement that lists all visible definitions
of that kind except of those that are listed in the except specification. See also clause 8.2.3.

NOTE: If thelist of al visible definitions of that kind except of those that are listed in the except specification
is empty, the import statement has no effect. This case does not lead to an error.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Seetherestrictionsgivenin clause 8.2.3.

Examples
import from MyModul e {
type all; /1 inmports all types of MyMdul e
tenpl ate all /1 inmports all tenplates of MyMdul e

}
import from MyMoudul e {

type all except MyType3, M/Type5; /1 inports all types except MyType3 and MyTypeb
tenplate all Il inports all tenplates defined in Mynodul e

ETSI

112 ETSI ES 201 873-1 V4.9.1 (2017-05)

8.2.3.5 Importing all definitions of a module
All visible definitions of a module definitions part may be imported using theal | keyword next to the module name.

If some visible definitions are wished not to be imported, their kinds and identifiers shall be listed in the exception list
within a pair of curly brackets following the except keyword. Theal | keyword isalso allowed to be used in the
exception list; thiswill exclude all visible declarations of the same kind from the import statement.

NOTE 1: If thelist of al visible definitions of a module except of those that are listed intheexcept specification
is empty, the import statement has no effect. This case does not lead to an error.

NOTE 2: Importing all definitions of a module imports only definitions declared directly in that module, but does
not import the import statements of that module (see also clause 8.2.3.7).

Syntactical Structure

[Visibility] inport from Mduleld

al |
[
{
except "{"
(group { Qualifiedldentifier [", 13}] al)|
(type { TypeDefldentifier [", 13}] al)|
(tenplate { Tenplateldentifier """ 131 al)|
(const { Constldentifier """ 1%}l al)|
(testcase { Testcaseldentifier """ 131 al)|
(altstep { Altstepldentifier [", 131 al)|
(function { Functionldentifier [", 1%} al)|
(signature { Signatureldentifier """ 1%} al)|
(modul epar { Modul eParldentifier [","1%}| al)
"y
["]
}

]
["]

Semantic Description

The effect of importing al visible definitions of amoduleisidentical to ani nport statement that listsall importable
definitions of that module except of those that are listed in the except specification. See also clause 8.2.3.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) If al visible definitions of a module are imported by using the all keyword, no other form of import (import of
single definitions, import of the same kind, etc.) shall be used for the same import statement.

b) Inthe set of except statements for an all import, only one except statement per kind of definition (i.e. for a
group, type, etc.) is allowed.

Examples
import from MyModul e al | ; /1 includes all definitions from M/Mdul e

inmport from MyModul e all except {
type M Type3, MyType5; [/ excludes these two types fromthe inport statenent and
tenplate all /1 excludes all tenplates declared in M/Mdul e,
/1 fromthe inport statemnent
/1 but inports all other definitions of MyMdule

8.2.3.6 Import definitions from other TTCN-3 editions and from non-TTCN-3 modules

In cases when visible definitions are imported from modules from other TTCN-3 editions or from other sources than
TTCN-3 modules, the language specification (see clause 8.1) shall be used to denote the language (may be together
with a version number) of the source (e.g. module, package, library or even file) from which definitions are imported. It
consists of thel anguage keyword and a subsequent textual declaration of the denoted language.

ETSI

113 ETSI ES 201 873-1 V4.9.1 (2017-05)

The use of the language specification is optional when importing from a TTCN-3 module of the same edition as the
importing module. The TTCN-3 language identifiers defined in clause 8.1 are to be used. Package identifiers from ETSI
ES 202 781 [i.11], ETSI ES 202 782 [i.14], ETSI ES 202 784 [i.12] and ETSI ES 202 785 [i.13] can be used in addition.
Identifiers for other languages are defined in the language mapping parts of TTCN-3, i.e. in ETSI ES 201 873-7 [i.5],
ETSI ES 201 873-8i.6] and ETSI ES 201 873-9[i.7].

When an incompatibility is discovered between the language and/or package identification (including implicit
identification by omitting the language specification) and the syntax of the module from which definitions are imported,
tools shall provide reasonable effort to resolve the conflict.

Syntactical Structure

[Visibility] inport from Mdul eldentifier [LanguageSpec] ...[";"]
Semantic Description

TTCN-3 supports the referencing of elements defined in other TTCN-3 editions (versioned elements) or other languages
(foreign elements) from within TTCN-3 modules. Such elements can be used in a TTCN-3 module of a given edition
only if they have aTTCN-3 view in that TTCN-3 edition. The term TTCN-3 view can be best explained by considering
the case when the definition of a TTCN-3 element is based on another TTCN-3 element, the information content of the
referenced element shall be available and is used for the new definition. For example, when atemplate is defined based
on a structured type, the identifiers and types of fields of the base type shall be accessible and are used for the template
definition. In asimilar way, when abase typeis a versioned or foreign element it shall provide the same information
content as would be required from a TTCN-3 type declaration. The versioned or foreign element, naturally, may contain
more information than required by TTCN-3. The TTCN-3 view of a versioned or foreign element means that part of the
information carried by that element, which is necessary to useit in TTCN-3. Obviously, the TTCN-3 view of a
versioned or foreign element may be the full set or a subset of the information content of that element but never a
superset. There may be versioned or foreign element without a TTCN-3 view (zero TTCN-3 view), i.e. for some reason
no TTCN-3 definition in the given edition could be based on them.

To make declarations of versioned or foreign element visible in TTCN-3 modules, their names shall be imported just
like definitionsin other TTCN-3 modules of the given edition. When imported, only the TTCN-3 view of the versioned
or foreign element will be seen from the importing TTCN-3 module. There are two main differences between importing
TTCN-3 elements of the same editions and versioned or foreign elements:

e Toimport from a TTCN-3 module of another edition or from anon-TTCN-3 module, the import statement
shall contain an appropriate language identifier string.

e Only versioned or foreign elements with a TTCN-3 view of agiven edition areimportable into a TTCN-3
module of that edition.

Importing can be done automatically using the all directive, in which case all importable objects shall automatically be
selected by the testing tool, or done manually by listing names of elements to be imported. Naturally, in the second case
only importable elements are allowed in the list.

When importing definitions from a non-TTCN-3 language, two principle approaches exist:

e With animplicit language mapping, non-TTCN-3 definitions are mapped internally in the TTCN-3 tool to the
respective TTCN-3 definitions as defined by the language mapping; the importing module works with the
internal representations of the imported definitions.

e With an explicit language mapping, non-TTCN-3 definitions are mapped directly to separate TTCN-3
definitions; the importing module imports the generated TTCN-3 and works with the mapped TTCN-3
definitions.

These lead to three options when using non-TTCN-3 language modulesin a TTCN-3 specification:

e Theimport statement imports the non-TTCN-3 module; the tool uses the internal representation of the implicit
mapping of the non-TTCN-3 modul€e's definitions according to the language mapping specification of that
language.

e Theimport statement imports the non-TTCN-3 module; the tool imports from a TTCN-3 module whichisan
explicit mapping of the non-TTCN-3 modul€e's definitions according to the language mapping specification of
that language.

ETSI

114 ETSI ES 201 873-1 V4.9.1 (2017-05)

. The import statement imports the explicit TTCN-3 representation of the non-TTCN-3 module; the tool imports
the TTCN-3 module which is an explicit mapping of the non-TTCN-3 module according to the language
mapping specification of that language.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Thelanguage specification should only be omitted if the referenced module contains TTCN-3 notation and the
TTCN-3 version is known.

b) Definitionsimported from non-TTCN-3 language sources have by default public visibility provided that no
other rules are defined in the respective language mapping (see ETSI ES 201 873-7 [i.5], ETSI
ES 201 873-8[i.6] or ETSI ES 201 873-9[i.7], respectively).

Examples

nodul e MyNewivbdul e {
import from Myd dMbdul e | anguage "TTCN 3: 2003" {
type MyType
}

nodul e MyNewest Modul e {
i mport from MyNewhbdul e | anguage "TTCN 3: 2010" { inport all };
/'l the Il anguage specifications shall be identical, see clause 8.2.3.8

}

NOTE: Theimport mechanism is designed to allow the re-use of definitions from other TTCN-3 editions or from
other non-TTCN-3 language sources. The rules for importing definitions from specifications written in
other languages, e.g. SDL packages, may follow the TTCN-3 rules or may have to be defined separately.

8.2.3.7 Importing of import statements from TTCN-3 modules
Visibleimport statements of TTCN-3 modules can be imported by other TTCN-3 modules.

Syntactical Structure

[Visibility] inmport from Mddul eldentifier [LanguageSpec]
(" import all [t Uyt [

Semantic Description

TTCN-3 supports importing of visible import statements from other TTCN-3 modules. This means that import
statements of the module, from which the import statements are imported, are re-imported to the importing module. For
example, if module B imports the import statements of module A, everything that isimported by A using import
statements visible for module B, is also imported by B. If another module C imports al import statements from B, then
C importsall what A isimporting - provided that the import statements are visible to modules B and C.

It isnot possible to import individual import statements of another module.

The import of import statements can be used in combination with imports of single definitions (see clause 8.2.3.2), with
imports of groups (see clause 8.2.3.3), and with imports of definitions of the same kind (see clause 8.2.3.4).

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Therestrictionsgivenin clause 8.2.3.1 apply.
b) Therestrictionsgivenin clause 8.2.3.6 apply.

¢) Importing of import statementsis only possible from other TTCN-3 modules, i.e. the language specification
(see clause 8.1) shall denote a TTCN-3 edition only, not a non-TTCN-3 language.

ETSI

115 ETSI ES 201 873-1 V4.9.1 (2017-05)

Examples

EXAMPLE: Importing of visible import statements

nodul e A {
type integer T1;
type integer T2;
tenplate T1 nw t1l :
tenplate T2 nw t2 : ;

* .

modul e B {
public inport fromA { type T1 }
type charstring T2;
template T1 mtl :=(1, 2, 3);

}

nodul e C {
public inmport fromB { inport all } // inports the inport statenents only
public inmport fromB { type T2 } /1 inmports the type B. T2

import fromA { tenplate all }

}
nmodul e D {
private inport fromC { inport all } // inports the inport statenents only

nmodul e E {
import fromD{ inport all }

/1 yields the follow ng
/1 rmodul e A knows

/1 ATL (defined)

Il A T2 (defi ned)
/1 Amnv_tl (defined)

/1 Amw t2 (defined)

/1

/1 modul e B knows

Il ATl (i mported)

/1 B.T2 (defi ned)

/I Bmtl (defined)

/1

/1 modul e C knows

Il ATL (inmported fromB inporting it fromA)
/Il B.T2 (i mport ed)

/1 Amw_t1l (inported)
/1 Amw_t2 (inported)

/1

/1 nodul e D knows

/1 ATl (inmported fromC inporting it fromB inporting it fromA)

/1l B.T2 (inmported fromC inporting it from B)

/1 Amw_tl and A mw t2 are not inported as their inports are private to C
/1

/1 nodul e E "knows" not hi ng
/1 as the inmports of D are private and not visible to E

8.2.3.8 Compatibility of language specifications in imports

When importing into a TTCN-3 module, the language specification (see clause 8.1) of the importing module, the
language specification of the import statement and the language specification of the source module, where the imported
definitions are defined, have to be compatible according to the following rules.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a A TTCN-3 module of any TTCN-3 edition can import from a non-TTCN-3 language source provided that a
TTCN-3 view for the non-TTCN-3 language exists (see clause 8.2.3.6).

ETSI

116 ETSI ES 201 873-1 V4.9.1 (2017-05)

b) Definitions or import statements are imported according to the language specification in which the definition
or the import statement is defined. If no language specification is given in this module, the language
specification of the import statement with which those definitions or import statements are to be imported, is
used instead. If the module, within which the definitions or the import statements are defined, and the import
statement for these definitions or import statements provide both alanguage specification, then they shall be
identical. If none of the two has alanguage specification, the language specification has to be known from
other sources, which istool specific.

¢) A TTCN-3 module shall only import from earlier or same editions of TTCN-3 but not from later editions,
e.g. the TTCN-3 language specification in an import statement has to be lower or equal to the TTCN-3
language specification of the importing module.

824 Definition of friend modules

M odules can define other modules to be friends.
Syntactical Structure

[private] friend nodul e Modul eldentifier { "," Mduleldentifier } ";"
Semantic Description

Friendship to modulesis defined by the exporting modul e (the modul e that declares the definitions) not by the
importing module (the module that uses the module definitions of another module). Friendship can be cyclic.

If amoduleisfriend to a module from which it imports top-level definitions, al top-level definitions with public and
friend visibility are visible to the friend module. For non-friend modules, public top-level definitions are visible only.

Missing friend modules shall not cause an error.

NOTE: Friend modules can be checked by tools, however at most warning are to be issued if afriend module is
missing.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Only private visibility can be defined for friend definitions as they are always private.

Examples

nmodul e MyModul eA {
friend nodul e MyModul eB, MyModul eC;

}
/1 MyModul eB and MyModul eC are friends of MyMdul eA

modul e MyModul eB {
friend nodul e MyModul eA;

}
/1l MyModul eA is friend of MyMdul eB

nmodul e MyModul eC {
}

8.2.5 Visibility of definitions

Top-level module definitions and import statements have a visibility, which can be explicitly set. They are by default
publ i ¢ except for imported and friend definitions. Import definitions are by default pri vat e. Friend definitions are
pri vat e only. Group definitionsare publ i ¢ only.

Syntactical Structure

[public | friend | private]
Semantic Description

The visibility controls whether atop-level definition or an import statement isimportable by another module.

ETSI

117 ETSI ES 201 873-1 V4.9.1 (2017-05)

Three visibilities are distinguished:
e Atop-level definition or an import statement with publ i ¢ visibility isimportable by any other module.

e A top-level definition or an import statement with f r i end visibility isimportable by friend modules only
(seeclause 8.2.4).

e Atop-level definition or an import statement with pri vat e visibility cannot be imported at all.

NOTE: Asspecifiedin restriction €) of clause 8.2.3.1, this means that importable definitions are imported
together with all information of referenced definitions that are necessary for the usage of the importable
definition, even if the referenced definition is private. Only the identifier of the referenced definitionis

not visible in the importing TTCN-3 module.

The visibility of groupsisawayspubl i c. Thevisibility of imported definitionsis by default pri vat e. All other
module definitions are by default publ i c.

The visibility of atop-level definition or an import statement defines their importability by another module. If the
top-level definition or the import statement is part of a group, this has no effect on the importability of the module
definition. The importability of atop-level definition by another module is summarized in table 9, the importability of
import statementsin table 10.

Table 9: Visibility and import of module definitions

Visibility of Module definition [Module definition | Module definition | Module definition
module definition importable importable importable via importable via
directly by a directly by a |group import by a|group import by a
non-friend friend module non-friend friend module
module module
public yes yes yes yes
friend no yes no yes
private no no no no
Table 10: Visibility and import of import statements
Visibility of Import imported | Import imported
import by a non-friend by a friend
module module
public yes yes
friend no yes
private no no
Restrictions

No specific restrictions in addition to the genera static rules of TTCN-3 given in clause 5.

Examples

nmodul e MyModul eA {

friend nodul e MyModul eC;

private type integer M/ nteger;
/'l Mylnteger is not visible to other nodul es
friend type charstring MyString;
/1 MyString is visible to friend nodul es
public type bool ean MyBool ean;

/1 MyBoolean is visible to all

}
nmodul e MyModul eB {

import from MyModul eA al | ;
/1l MyString and Myl nteger are not visible and are not inported

/1 MyBoolean is i

nmported

nodul es

ETSI

118 ETSI ES 201 873-1 V4.9.1 (2017-05)

nodul e MyModul eC {
import from MyModul eA al | ;
/1 Mylnteger is not visible and is not inported
/1 MyString and MyBool ean are inported

8.3 Module control part

The module control part may contain local definitions (i.e. constants or templates), local instances (i.e. variables or
timers) and describe the selection, parameterization and execution order (possibly repetitive) of the actual test cases.
A test case shall be defined in the module definitions part or imported from another module, and called in the control
part.

The control part of amodule calls the test cases with actual parameters and controls their execution. Program statements
can be used to specify the selection and execution order of the test cases. Definitions made in the module control part
have local visibility, i.e. can be used within the control part only.

Thisis explained in more detail in clause 26.

EXAMPLE:

modul e MyTest Suite
{ /1 This nodul e contains definitions ...

.const integer c_nyConstant := 1;
type record MyMessageType { ...}
tenpl ate MyMessageType m nyMessage := { ...}

function f_nyFunctionl() { ...}
function f_nmyFunction2() { ...}

festcase TC MyTestcasel() runs on MyMICType { ...}
testcase TC MyTestcase2() runs on MyMICType { ...}

/1 ...and a control part so it is executable
control

var boolean v_nyVariable; // local control variable

éxecute(TC MyTest Casel()); // sequential execution of test cases
execute(TC MyTest Case2());

9 Port types, component types and test configurations

9.0 General

TTCN-3 alows the (dynamic) specification of concurrent test configurations (or configuration for short).
A configuration consists of a set of inter-connected test components with well-defined communication ports and an
explicit test system interface which defines the borders of the test system (see figure 4).

NOTE: Additional configuration and deployment support for TTCN-3 is defined in the optional package [i.11].

ETSI

119 ETSI ES 201 873-1 V4.9.1 (2017-05)

TTCN Test system

“«——»
MTC PTC,

‘l_, PTC, —T

+ Abstract Test SystemInterface V*

- -
Real Test System Interface

SUT

Figure 4: Conceptual view of a typical TTCN-3 test configuration

Within every configuration there shall be one (and only one) Main Test Component (MTC). Test components that are
not MTCs are called paralel test components or PTCs. The MTC shall be created by the system automatically at the
start of each test case execution. The behaviour defined in the body of the test case shall execute on this component.
During execution of atest case, other components can be created dynamically by the explicit use of thecr eat e
operation.

Test case execution shall end when the MTC terminates. All other PTCs are treated equally i.e. thereis no explicit
hierarchical relationship among them and the termination of a single PTC terminates neither other components nor the
MTC. When the MTC terminates, the test system has to stop al PTCs not terminated by the moment when the test case
execution is ended.

Communication between test components and between the components and the test system interface is achieved via
communication ports (see clause 9.1).

Test component types and port types, denoted by the keywords conponent and por t, shall be defined in the module
definitions part. The actual configuration of components and the connections between them is achieved by performing
creat e and connect operations within the test case behaviour. The component ports are connected to the ports of
the test system interface by means of the map operation (see clause 21.1.1).

9.1 Communication ports

Test components are connected via their ports, i.e. connections among components and between a component and the
test system interface are port-oriented. Each port is modelled as an infinite FIFO gueue which stores the incoming
messages or procedure calls until they are processed by the component owning that port (see figure 5).

NOTE: While TTCN-3 portsareinfinitein principlein areal test system they may overflow. Thisisto be treated
as atest case error (see clause 24.1).

MTC m‘— PTC

—_—>

Figure 5: The TTCN-3 communication port model

TTCN-3 connections are port-to-port and port-to-test system interface connections (see figure 6). There are no
restrictions on the number of connections a component may maintain. One-to-many connections are also allowed

(e.g. figure 6 (g) or (h)).

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Thefollowing connections are not alowed (see figure 7):

- A port owned by a component A shall not be connected with two or more ports owned by the same
component (figure 7 (a) and (€)).

ETSI

120 ETSI ES 201 873-1 V4.9.1 (2017-05)

- A port of atest system interface cannot have connection with more than one port owned by a
component A. This means, connections as shown in figure 7 (b) are not allowed.

- A port owned by a component A shall not be connected with two or more ports owned by a component B
(seefigure 7(c)).

- A port owned by a component A can only have a one-to-one connection with the test system interface.
This means, connections as shown in figure 7 (d) are not allowed.

- Connections within the test system interface are not allowed (see figure 7 (f)).

- A port that is connected shall not be mapped and a port that is mapped shall not be connected (see
figure 7 ().

b) Since TTCN-3 alows dynamic configurations and addresses, the restrictions on connections cannot always be
checked at compile-time. The checks shall be made at runtime and shall lead to atest case error when failing.

test system test component

test component
A

test component
B

test system interface

-0

@) (b)

test component
A

[—

—

-

1
-
-
test system interface /J\ A

(©) (d)

test system
test component

A

test component

B

test component
A

test component

A]

(e) ®

test system test tl | test t
test component est componen est componen
test component B A B
A
—] —

test component

C

test system interface \/

(9) (h)

Figure 6: Allowed connections

ETSI

121 ETSI ES 201 873-1 V4.9.1 (2017-05)

test system

test component test component

A

test system interface

(@) (b)

test system
test component test component
test component] B A
A]

i imN

test system interface

(©) (d)

test component
A

test system

test system interface KL A\

(e) U

s ey test component test component
A B
 — —]
= —

test system interface (\/
—
(9)

Figure 7: NOT allowed connections

9.2 Test system interface

TTCN-3 is used to test implementations. The object being tested is known as the Implementation Under Test or [UT.
The IUT may offer direct interfaces for testing or it may be part of system in which case the tested object isknown asa
System Under Test or SUT. Inthe minimal casethe IUT and the SUT are equivalent. In the present document the term
SUT isused in ageneral way to mean either SUT or [UT.

Inarea test environment test cases need to communicate with the SUT. However, the specification of the real physical
connection is outside the scope of TTCN-3. Instead, awell defined (but abstract) test system interface shall be
associated with each test case. A test system interface definition isidentical to a component definition, i.e. itisalist of
all possible communication ports through which the test case is connected to the SUT.

The test system interface statically defines the number and type of the port connections to the SUT during a test run.
However, the connections between the test system interface and the TTCN-3 test components are dynamic in nature and
may be modified during atest run by using map and unmap operations (see clause 21.1).

ETSI

122 ETSI ES 201 873-1 V4.9.1 (2017-05)

A component type definition is used to define the test system interface because, conceptually, component type
definitions and test system interface definitions have the same form (both are collections of ports defining possible
connection points). When used as test system interfaces, components cannot make use of any constants, variables and
timers declared in the component type.

Syntactical Structure
The same as a component type definition (see clauses 6.2.10 and 6.2.10.1).
Semantic Description

Generally, a component type reference defining the test system interface shall be associated with every test case using
more than one test component. The ports of the test system interface shall automatically be instantiated by the system
together with the MTC when the test case execution starts.

The operation returning the component reference of the test system interfaceissyst em This shall be used to address
the ports of the test system.

In the case where the MTC is the only component that is instantiated during test execution, atest system interface need
not be associated to the test case. In this case, the component type definition associated with the MTC implicitly defines
the corresponding test system interface.

Variables, timers and constants declared in component types, which are used as test system interfaces will have no
effect.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) The same asfor component type definitions (see clauses 6.2.10 and 6.2.10.1).

Examples

EXAMPLE 1. Explicit definition of atest system interface
type conponent MyMICType
{

var integer vc_nylLocal |l nteger;
timer tc_mnyLocal Tiner;
port MyMessagePort Type pCOLl

type conponent MyTest System nterface

port MyMessagePort Type pCaL, pC2;
port M/ProcedurePort Type pCcs

/'l MyTestSystem nterface is the test systeminterface
testcase TC MyTestcasel () runs on M/MICType system MyTest System nterface {
/] establishing the port connections
map(ntc: pCOL, system pCQ2);
/1 the testcase behaviour
...

}
EXAMPLE 2 Implicit definition of atest system interface

/'l MyMICType is the test systeminterface
testcase TC MyTestcase2 () runs on MyMICType {
/'l map statenents are not needed
/'l the testcase behavi our
...

ETSI

123 ETSI ES 201 873-1 V4.9.1 (2017-05)

10 Declaring constants

TTCN-3 constants are runtime constants. After value assignment, they do not change their value during test execution.
They can be used on the right hand side of assignments, in expressions, in actual parameters, and in template
definitions. Constants used within type definitions have to have values known at compile-time.

Syntactical Structure

const Type { Constldentifier [ArrayDef] ":=" ConstantExpression [","] } [";"]
Semantic Description

A constant assigns a name to a fixed value. A valueis assigned only once to a constant, at the place of its declaration.
The constant does not change its value during test execution. The constant is defined only once, but can be referenced
multipletimesin a TTCN-3 module.

If functions are used for the initialization of constants, it is strongly advised to adhere to the rules defined in
clause 16.1.4. Not following these rules may cause non-deterministic test executions.

Optiona fields of record and set constants or constant fields can be initialized explicitly or implicitly. For implicit
initialization of the optional fields of a constant or a constant field, an opt i onal attribute withthevalue™i npli cit
om t" (seeclause 27.7) shall be associated with it either directly or viathe attribute distribution (scoping) mechanism
(seeclause 27.1.1).

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Constants shall not be of port type.

NOTE: Theonly value that can be assigned to global constants or component constants of default or component
typesisthe specia valuenul | .

b) Constant expressionsinitializing constants, which are used in type and array definitions, shall only contain
literals, predefined functions except of r nd (see clause 16.1.2), operators specified in clause 7.1, and other
constants obeying the limitations of this clause.

¢) Using the dot notation (see clauses 6.2.1.1, 6.2.2.1 and 6.2.5.1) and index notation (see clauses 6.2.3 and 6.2.7)
for referencing afield, alternative or element of an addr ess value, which actual valueisnul | shall cause an
error.

Examples

1:

const integer c_nyConstl : ;
true, c_nyConst3 := fal se;

const bool ean c_nyConst2 :

11 Declaring variables

11.0 General

TTCN-3 variables are statically typed variables. Variables are either value variables to store values or template
variablesto store templates.

Variables can be of simple basic types, basic string types, structured types, special datatypes (including subtypes
derived from these types) as well as address, component or default types.

Variables can be declared and used in the module control part, test cases, functions and atsteps. Additionally, variables
can be declared in component type definitions. These variables can be used in test cases, altsteps and functions which
are running on a given component type.

Variables can be declared lazy using the @ azy modifier.

ETSI

124 ETSI ES 201 873-1 V4.9.1 (2017-05)

Alternatively, variables can be declared fuzzy using the @ uzzy modifier.

Lazy and fuzzy features are valid only in the scope, where the variables' names are visible. For example, if afuzzy
variable is passed to aformal parameter declared without a modifier, it losesits fuzzy feature inside the called function.
Similarly, if it is passed to alazy formal parameter, it becomes lazy within the called function.

Whenever alazy or fuzzy variable is assigned, the TE is reguired to save the lexical environment (the set of directly or
indirectly referenced values and templates) valid at the time of the assignment, so that it is possible to resolve the
expression at the time of evaluation of the lazy or fuzzy value or template. If the assignment was made on alower scope
than the evaluation, saving the lexical environment extends lifetime of the referenced variables defined on that lower
scope.

Example

var @uzzy integer v_fuzzy := 1,
var integer v_var;
var bool ean v_condition := true;
if (v_condition) {
var integer v_local := 0;
v_fuzzy := v_local;
v_local := 10;

/1 although v_local is no longer valid at this point, v_fuzzy still evaluates to 10 because
/1 the lexical environment is available to the fuzzy variabl e:
v_var := v_fuzzy;

11.1 Value variables

A TTCN-3 value variable stores values. It is declared by the var keyword followed by atype identifier and avariable
identifier. Aninitial value can be assigned at variable declaration.

It may be used at the right hand side as well as at the left hand side of assignments, in expressions, following the
r et ur n keyword in bodies of functions with areturn clause in their headers and may be passed to both value and
template-type formal parameters.

Syntactical Structure

var [@azy | @uzzy] Type Varldentifier [ArrayDef] [":=" Expression]
{[","] Varldentifier [ArrayDef] [":=" Expression] } [";"]

Semantic Description

A value variable associates a name with the location of avalue. A value variable may change its value during test
execution several times. A value can be assigned several timesto a value variable. The value variable can be referenced
multipletimesin a TTCN-3 module.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Expression shall be of type Type.
b) Vauevariablesshal store valuesonly.

c¢) Vauevariables shall not be declared or used in a module definitions part (i.e. global variables are not
supported in TTCN-3).

d) Useof uninitialized value variables at other places than the left hand side of assignments, in return statements,
or as actual parameters passed to formal parameters shall cause an error.

€) Theinitialization or assignment of afuzzy or lazy variable shall not contain function calls of functions with
inout or out parameters. The called functions may use other functions with inout or out parameters internally.

f) If lazy or fuzzy value variables are used in deterministic contexts (i.e. during the evaluation of a snapshot or
initialization of globa non-fuzzy templates), the same restrictions apply to all functions used in the value
assigned to the variable as for functions described in clause 16.1.4.

ETSI

125 ETSI ES 201 873-1 V4.9.1 (2017-05)

g) Theexpression assigned to alazy or fuzzy variable might contain adirect or indirect reference to this variable.
Evaluation of such an expression shall cause adynamic error.

h) Using the dot notation (see clauses 6.2.1.1, 6.2.2.1 and 6.2.5.1) and index notation (see clauses 6.2.3 and 6.2.7)
for referencing afield, alternative or element of an addr ess value, which actual valueisnul | shall cause an
error.

i) Theexpression shall evaluate to avalue, whichis at least partially initialized.

Examples

var integer v_nyVarO;

var integer v_nyVarl := 1;

var boolean v_nyVar2 := true, v_nyVar3 := fal se;

var @azy integer v_nylLazyVarl := v_nyVar1l+1,;

v_nyVarl := 2;

v_nyVarl := v_nylLazyVarl; // v_nylLazyVarl evaluates to 2 + 1

v_nylLazyVarl := v_nylLazyVarl + 1,

v_nyVarl := v_nylLazyVarl; // causes an error as v_mnylLazyVarl references itself

11.2 Template variables

A TTCN-3 template variable stores templates. They are declared by thevar t enpl at e keyword followed by atype
identifier and avariable identifier. Aninitial content can be assigned at declaration. In addition to values, template
variables may also store matching mechanisms (see clause 15.7).

Template variables may be used on the right hand side as well as on the left hand side of assignments, following the
r et ur n keyword in bodies of functions defining atemplate-type return value in their headers and may be passed as
actual parameters to template-type formal parameters. It is also allowed to assign a template instance to atemplate
variable or atemplate variable field.

Syntactical Structure

var tenplate [@azy | @uzzy] [restriction] Type Varldentifier [ArrayDef] ":=" Tenpl at eBody
{[","] Varldentifier [ArrayDef] ":=" TenplateBody } [";" 1]

Semantic Description

A template variable associates a name with the location of atemplate or avalue (as every value is also atemplate).
A template variable may change its template during test execution several times. A template or value can be assigned
several timesto atemplate variable. The template variable can be referenced multiple timesin a TTCN-3 module.

The content of atemplate variable can be restricted to the matching mechanisms specific value and omit in the same
way as formal template parameters, see clause 5.4.1.2. The restriction template (omit) can be replaced by the shorthand
notation omit.

NOTE 1: String and list type templates can be concatenated, see clause 15.11.
Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Template variables shall not be declared or used in a module definitions part (i.e. global variables are not
supported in TTCN-3).

b) When used on the right hand side of assignments template variables shall not be operands of TTCN-3
operators (see clause 7.1) and the variable on the left hand side shall be a template variable too.

¢) When accessing element of template variables either on the left hand side or on the right hand side of
assignments, the rules given in clause 15.6 shall apply.

NOTE 2: Whileitis not allowed to directly apply TTCN-3 operations to template variables, it is allowed to use the
dot notation and the index notation to inspect and modify template variable fields.

d) Useof uninitialized template variables at other places than the left hand side of assignments, in return
statements, or as actual parameters passed to formal parameters shall cause an error.

ETSI

126 ETSI ES 201 873-1 V4.9.1 (2017-05)

e Void.

f) If thetemplate variable is restricted, then the template used to initialize it shall contain only the matching
mechanisms as described in clause 15.8.

g) Template variables, similarly to global and local templates, shall be fully specified in order to be used in
sending and receiving operations.

h) Restrictions on templatesin clause 15 shall apply.

i) Theinitialization or assignment of afuzzy or lazy variable shall not contain function calls of functions with
inout or out parameters. The called functions may use other functions with inout or out parameters internally.

i) Iflazy or fuzzy template variables are used in deterministic contexts (i.e. during the eval uation of a snapshot or
initialization of globa non-fuzzy templates), the same restrictions apply to all functions used in the template
body assigned to the variable as for functions described in clause 16.1.4.

k) Using the dot notation (see clauses 6.2.1.1, 6.2.2.1 and 6.2.5.1) and index notation (see clauses 6.2.3 and 6.2.7)
for referencing afield, alternative or element of an addr ess value, which actual valueisnul | shall cause an
error.

) Thetemplate body at the right-hand side of the assignment symbol shall evaluate to a value or template,
which is type compatible with the variable being declared.

m) The template body at the right-hand side of the assignment symbol shall evaluate to an object that is at least
partialy initialized.

Examples

var tenplate integer v_nyVarTenpl := ?;
var tenplate M/Record v_nyVarTenp2 := { fieldl := true, field2 := * },
v_nyVarTenp3d := { fieldl :=?, field2 := v_nyVarTenpl };
var tenplate @uzzy float v_fuzzTenpl := rnd(); // evaluated on every usage
var tenplate @uzzy MyRecord v_fuzzTenp2 := { rnd() < 0.5, float2int(rnd()) };
var tenplate @azy float LazyTenpl := v_fuzzTenpl; // evaluates v_fuzzTenpl
var tenplate @azy MyRecord v_l azyTenp2 : =
{ v_lazyTenpl < 0.5, float2int(v_fuzzTenpl) }; // evaluates v_lazyTenpl and v_fuzzTenpl
v_lazyTenp2.fieldl := true; // evaluates v_lazyTenp2 and overwites fieldl with true

12 Declaring timers

TTCN-3 provides atimer mechanism. Timers can be declared and used in the module control part, test cases, functions
and altsteps. Additionally, timers can be declared in component type definitions. These timers can be used in test cases,
functions and altsteps which are running on the given component type.

A timer declaration may have an optional default duration value assigned to it. The timer shall be started with this value
if no other value is specified. The timer value shall be anon-negative f | oat value (i.e. greater than or equal to 0.0)
where the base unit is seconds.

In addition to single timer instances, timer arrays can aso be declared. Default duration(s) of the elements of atimer
array shall be assigned using avalue array. Default duration(s) assignment shall use the array value notation as specified
in clause 6.2.7. If the default duration assignment is wished to be skipped for some element(s) of the timer array, it shall
explicitly be declared by using the not used symbol (*-").

Syntactical Structure

timer { Tinmerldentifier [ArrayDef] ":=" TinervValue ["," 1 } [";" 1]

ETSI

127 ETSI ES 201 873-1 V4.9.1 (2017-05)

Semantic Description

Timers are local to components. A component can start and stop atimer, check if atimer is running, read the elapsed
time of arunning timer and process timeout events after timer expiration. The timer value is interpreted with a base unit
of seconds.

NOTE 1: Timers declared and started in scope units such as functions cease to exist when the scope unit is left.
They do not contribute to the test behaviour once the scope unit is left.

NOTE 2: Itisnot possible to define atimer array as type.
Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Incaseof asingletimer, the default duration value shall resolve to a non-negative numerical float value
(i.e. the value shall be greater or equal 0.0, infinity and not_a _number are disallowed).

b) Incaseof atimer array, it shall resolve to an array of float values obeying to restriction @) above of the same
size asthe size of the timer array.

Examples

EXAMPLE 1: Singletimer

timer t_nyTinerl := 5E-3;
/'l declaration of the tinmer t_nyTinerl with the default value of 5ns

timer t_nyTiner2; /1 declaration of t_nyTiner2 without a default tiner value i.e. a value has
/1 to be assigned when the tiner is started

EXAMPLE 2: Timer array

timer t_nytinmerl[5] :={ 1.0, 2.0, 3.0, 4.0, 5.0}
/1 all elenments of the tiner array get a default duration.

timer t_nytinmer2[5] :={ 1.0, -, 3.0, 4.0, 5.0}
/1 the second tinmer (t_nytiner2[1]) is left without a default duration.

13 Declaring messages

One of the key elements of TTCN-3 is the ability to send and receive simple or complex messages over message-based
ports defined by the test configuration (see clauses 9 and 21). These messages may be those explicitly concerned with
testing the SUT or with the internal co-ordination and control messages specific to the relevant test configuration.

Messages are instances of types declared in the infout/inout clauses of message port type definition.

Any type can be declared as type of a message in a message port type definition, i.e. values of any basic or structured
type (see clauses 6.1 and 6.2) can be sent or received. Received messages can also be declared as a combination of
value and matching mechanisms (see clause 15.5). Instances of messages can be declared by global, local or in-line
templates (see clause 15) or being constructed and passed via variables or template variables (see clause 11) and
parameters or template parameters (see clause 5.4).

Syntactical Structure

See syntactical structure of types (see clause 6).
Semantic Description

See semantic description of types (see clause 6).
Restrictions

No specific restrictions in addition to the genera static rules of TTCN-3 given in clause 5.

ETSI

128 ETSI ES 201 873-1 V4.9.1 (2017-05)

Examples

/1 a structured, ordered nessage with two fields
type record ARecord { integer i, float f }

14 Declaring procedure signatures

Procedure signatures (or signatures for short) are needed for procedure-based communication. Procedure-based
communication may be used for the communication within the test system, i.e. among test components, or for the
communication between the test system and the SUT. In the latter case, a procedure may either be invoked in the SUT
(i.e. the test system performsthe call) or in the test system (i.e. the SUT performs the call).

Syntactical Structure

signature Signatureldentifier

"("{ [in] inout | out] Type ValueParldentifier [","] } ")"
[(return Type) | noblock]

[exception "(" ExceptionTypelList ")"]

Semantic Description

For al used procedures, i.e. procedures used for the communication among test components, procedures called from the
SUT and procedures called from the test system, a procedure si gnat ur e shall be defined in the TTCN-3 module.

TTCN-3 supports blocking and non-blocking procedure-based communication. By default, signature definitions without
the nobl ock keyword are assumed to be used for blocking procedure-based communication.

Signature definitions may have parameters. Parameters shall be of datatype only, i.e. of abasic type, a structured type
thereof or a subtype thereof. Within asi gnat ur e definition the parameter list may include parameter identifiers,
parameter types and their direction, i.e. i n, out , ori nout . Thedirectioni nout and out indicate that these
parameters are used to retrieve information from the remote procedure.

NOTE 1. Thedirection of the parametersis as seen by the called party rather than the calling party.

A remote procedure may return a value after its termination. The type of the return value shall be specified by means of
ar et ur n clausein the corresponding signature definition.

Exceptions that may be raised by remote procedures are represented in TTCN-3 as val ues of a specific type. Therefore
templates and matching mechanisms can be used to specify or check return values of remote procedures.

NOTE 2: The conversion of exceptions generated by or sent to the SUT into the corresponding TTCN-3 type or
SUT representation is tool and system specific and therefore beyond the scope of the present document.

The exceptions are defined in the form of an exception list included inthe si gnat ur e definition. Thislist defines all
the possible different types associated with the set of possible exceptions (the meaning of exceptions themselves will
usually only be distinguished by specific values of these types).

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Signature definitions for non-blocking communication shall use the nobl ock keyword, shall only havei n
parameters and shall have no return value but may raise exceptions.

b) Signature parameters shall not be of port, component, timer or default type or of structured types having fields
of port, component, timer or default type.

Examples
si gnature MyRenoteProcOne (); /'l MyRenoteProcOne will be used for bl ocking
/'l procedure-based conmunication. It has neither
/] paraneters nor a return val ue.
si gnature MyRenoteProcTwo () nobl ock; /! MyRenoteProcTwo will be used for non bl ocking

/] procedure-based comunication. It has neither
/] paraneters nor a return val ue.

ETSI

129 ETSI ES 201 873-1 V4.9.1 (2017-05)

signature MyRenoteProcThree (in integer Parl, out float Par2, inout integer Par3);

/1 MyRenoteProcThree will be used for blocking procedure-based comuni cati on. The procedure
/1 has three paraneters: Parl an in paranmeter of type integer, Par2 an out paraneter of

/1 type float and Par3 an inout paraneter of type integer.

signature MyRenoteProcFour (in integer Parl) return integer;

/'l MyRenot eProcFour will be used for bl ocking procedure-based comuni cation. The procedure
/1 has the in parameter Parl of type integer and returns a value of type integer after its
/1 term nation

si gnature MyRenoteProcFive (inout float Parl) return integer

exception (ExceptionTypel, ExceptionType2);
/1 MyRenoteProcFive will be used for bl ocking procedure-based comunication. It returns a
I/l float value in the inout paraneter Parl and an integer value, or nmay raise exceptions of
/'l type ExceptionTypel or ExceptionType2

signature MyRenoteProcSix (in integer Parl) nobl ock

exception (integer, float);
/1 MyRenoteProcSix will be used for non-bl ocking procedure-based comruni cation. In case of
/1 an unsuccessful termnation, M/RenoteProcSix raises exceptions of type integer or float.

15 Declaring templates

15.0 General

Templates are used to either transmit a set of distinct values or to test whether a set of received values matches the
template specification. Templates can be defined globally or locally.

Templates provide the following possibilities:
a) they are away to organize and to re-use test data, including a simple form of inheritance;
b) they can be parameterized;
c) they allow matching mechanisms;
d) they can be used with either message-based or procedure-based communications.

Within atemplate values, ranges and matching attributes can be specified and then used in both message-based and
procedure-based communications. Templates may be specified for any TTCN-3 type or procedure signature. The
type-based templates are used for message-based communications and the signature templates are used in
procedure-based communications.

A template can be declared fuzzy using the @ uzzy modifier.

NOTE 1: Using afuzzy template from a non-fuzzy template causes evaluation of the fuzzy template. Thus, for
unparameterized non-fuzzy templates, the result of the used fuzzy templates will stay the same for every

usage.

A modified template declaration (see clause 15.5) specifies only the fields to be changed from the base template, i.e. it
isapartia specification.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Templatesshal not be of def aul t or port type.

b) Templates shall not be of a structured type that contains fields of def aul t or port type on any level of
nesting.

NOTE 2: Theanyt ype type does not include the def aul t type nor port types (see clause 6.2.6), so that
restriction b) does not apply to anytype templ ates.

ETSI

130 ETSI ES 201 873-1 V4.9.1 (2017-05)

¢) Theexpression or template body initializing a template shall evaluate to avalue or template, which istype
compatible with the template being declared.

d) Theexpression or template body initializing atemplate shall evaluate to a value or atemplate that is at least
partially initialized or to a matching mechanism.

€) Thebody of afuzzy template shall not contain function calls of functions with inout or out parameters. The
called functions may use other functions with inout or out parametersinternally.

f) Fuzzy features are valid only in the scope, where the templates names are visible. For example, if afuzzy
template is passed to aformal template parameter declared without a modifier, it losesits fuzzy feature inside
the called function.

Examples

type record MyRecord {
defaul t def

}

type uni on MyUnion {
i nt eger choi cel,
MyRecord choi ce2

}

tenpl ate MyUni on m.integerChosen := { choicel := 5}
/1 shall cause an error as the type MyUnion contains MyRecord, which includes
I/l a field of default type.

external function fx_garble(charstring p_str) return p_str;

tenplate @uzzy charstring mfuzzy := fx_garble("foobar"); // every usage of mfuzzy re-
/'l evaluates the function call

15.1 Declaring message templates

I nstances of messages with actual values may be specified using templates. A template can be thought of as being a set
of instructions to build a message for sending or to match a received message.

Syntactical Structure
See syntactical structure of global and local templates (see clause 15.3) and of in-line templates (see clause 15.4).
Semantic Description

A template used in asend operation defines a complete set of field values comprising the message to be transmitted
over aport.

NOTE: For sending templates, omitting an optional field is considered to be a value notation rather than a
matching mechanism.

Atemplateusedinar ecei ve, t ri gger or check operation defines a data template against which an incoming
message is to be matched. Matching mechanisms, as defined in clauses 15.7 and 15.8 and in annex B, may be used in
receive templates. No binding of the incoming values to the template shall occur.

Restrictions
In addition to restrictions in clause 15, the following restrictions apply:

a) Atthetimeof asend operation, the used template shall be completely initialized and all fields shall resolveto
actual values or to omit and no other matching mechanisms shall be used in the template fields, neither directly
nor indirectly.

At the time of areceiving operation, the matching template shall be completely initialized.

b) Optional fields of record and set templates or template fields can be initialized explicitly or implicitly. For
implicit initialization of the optional fields of atemplate or atemplate field, an opt i onal attribute with the
value"inplicit omt" (seeclause27.7) shall be associated with it either directly or viathe attribute
distribution (scoping) mechanism (see clause 27.1.1).

ETSI

131 ETSI ES 201 873-1 V4.9.1 (2017-05)

Examples

EXAMPLE 1: Template for sending messages

/1 G ven the nessage definition
type record MyMessageType

{
i nt eger fieldl optional,
charstring field2,
bool ean field3

}

/1 a nessage tenplate could be
tenpl ate MyMessageType m nyTenpl ate: =

fieldl := omt,
field2 := "M string",
field3 := true

}

/1 and a correspondi ng send operation could be
myPCO. send(m nyTenpl ate) ;

EXAMPLE 2: Template for receiving messages

/1 G ven the nessage definition
type record MyMessageType
{

i nt eger fieldl optional,
charstring field2,
bool ean field3

}

/1 a nessage tenplate mght be
tenpl ate MyMessageType mw_nyTenpl ate: =

{
fieldl := 2,
field2 := pattern "abc*xyz",
field3 := true

}

/1 and a corresponding receive operation could be
nyPCO. r ecei ve(mw_nyTenpl at e) ;

EXAMPLE 3: Template for receiving messages

/1 When used in a receiving operation this tenplate will natch any integer val ue
tenpl ate integer nw_nyTenplate := ?;

/1 This tenplate will nmatch only the integer values 1, 2 or 3
tenpl ate integer nw nyTenplate := (1, 2, 3);

15.2 Declaring signature templates

Instances of procedure parameter lists with actual values may be specified using templates. Templates may be defined
for any procedure by referencing the associated signature definition.

Syntactical Structure
See syntactical structure of global and local templates (see clause 15.3) and of in-line templates (see clause 15.4).
Semantic Description

A signature template defines the values and matching mechanisms of the procedure parameters only, but not the return
value. The values or matching mechanisms for a return have to be defined within the reply (see clause 22.3.3) or
getreply operation (see clause 22.3.4).

A templateusedinacal | orrepl y operation defines acomplete set of field valuesfor all i n and i nout
parameters. At thetime of the cal | operation, al i n andi nout parametersin the template shall resolve to actual
values, no matching mechanisms shall be used in these fields, either directly or indirectly. Any template specification
for out parametersissimply ignored, thereforeit is allowed to specify matching mechanisms for these fields, or to
omit them (see annex B).

ETSI

132 ETSI ES 201 873-1 V4.9.1 (2017-05)

A template used in aget cal | operation defines a data template against which the incoming parameter fields are
matched. Matching mechanisms, as defined in annex B, may be used in any templates used by this operation. No
binding of incoming values to the template shall occur. Any out parameters shall be ignored in the matching process.

Restrictions
In addition to restrictions in clause 15, the following restrictions apply:

a) Atthetimeofacal | ,reply andrai se operation, the used template shall be completely initialized and all
i n/i nout parametersinacal | , al out /i nout parametersinar epl y or r ai se operation shall resolve
to specific values or to omit and no other matching mechanisms shall be used for these parameters, neither
directly nor indirectly.

b) The NotUsedSymbol shall only be used in signature templates for parameters which are not relevant and in
modified template declarations and modified in-line templates to indicate no change for the specified field or
element.

Atthetimeof aget cal | , get r epl y and cat ch operation, the matching template shall be completely initialized.

c) Optiona fields of record and set parameters or parameter fields can be initialized explicitly or implicitly. For
implicit initialization of a parameter or a parameter field, anopt i onal attribute with thevalue" i npl i ci t
onmi t" (seeclause 27.7) shall be associated with it either directly or via the attribute distribution (scoping)
mechanism (see clause 27.1.1).

Examples

EXAMPLE 1: Templates for invoking and accepting procedures

/] signature definition for a renpte procedure
signature RenoteProc(in integer Parl, out integer Par2, inout integer Par3) return integer;

/1 exanple tenpl ates associated to defined procedure signature
tenpl ate RenoteProc s_tenpl atel: =

{
Parl := 1,
Par2 := 2,
Par3 := 3
}
tenpl ate RenoteProc s_tenpl ate2: =
{
Parl := 1,
Par2 : = ?,
Par3 := 3
}
tenpl ate RenoteProc s_tenpl ate3: =
{
Parl := 1,
Par2 := 72,
Par3 := ?
}

tenpl ate RenoteProc s_tenpl at e4: =?;

EXAMPLE 2: In-line templates for invoking procedures
/1l Gven exanple 1 in this clause

/1 Valid invocation since all in and inout paraneters have a distinct val ue
nyPCO. cal | (Renot eProc: s_tenpl atel);

/1 Valid invocation since all in and inout paraneters have a distinct val ue
nyPCO. cal | (Renot eProc: s_tenpl ate2);

/1 Invalid invocation causing an error
/1 since the inout paranmeter Par3 has a matching attribute not a val ue
nyPCO. cal | (Renot eProc: s_t enpl at e3);

/1 Tenpl ates never return values. In the case of Par2 and Par3 the values returned by the
/1 call operation shall be retrieved using an assignnent clause at the end of the call statenent

ETSI

133 ETSI ES 201 873-1 V4.9.1 (2017-05)

EXAMPLE 3: In-line templates for accepting procedure invocations
/1l Gven exanple 1 in this clause

// Valid getcall, it will match if Parl == 1 and Par3 == 3
nyPCO. get cal | (Renpt eProc: s_tenpl atel);

/1 Valid getcall, it will match if Parl == 1 and Par3 == 3
nyPCO. get cal | (Renot eProc: s_t enpl ate2);

/1 Valid getcall, it will match on Parl == 1 and Any val ue of Par3
myPCO. get cal | (Renot eProc: s_t enpl ate3);

EXAMPLE 4: In-line templates for accepting procedure replies
/1l Gven exanple 1 in this clause

/1 Valid getreply, in paraneters will be ignored, matches if return value is 4
nmyPCO. get repl y(Renot eProc: s_tenpl ate2 val ue 4);

// Valid getreply, accepting any reply for RenoteProc
nmyPCO. get r epl y(Renot eProc: ?);

/1 Valid getreply, also accepting any reply for RenoteProc
nyPCO. get cal | (Renpt eProc: s_tenpl ate4 val ue ?);

15.3 Global and local templates
TTCN-3 alows defining global templates and local templates.

Syntactical Structure

tenplate [restriction] [@uzzy] Type Tenplateldentifier ["(" Tenpl ateFornal ParList ")"]
[nodifies TenplateRef] ":=" Tenpl at eBody

NOTE: The optional restriction part is covered by clause 15.8.
Semantic Description

Global templates shall be defined in the module definitions part. Local templates shall be defined in module control,
testcases, functions, atsteps or statement blocks. Both global and local templates shall adhere to the scoping rules
specified in clause 5.

Both global and local templates can be parameterized. The actual parameters of atemplate can include values and
templates. The rules for formal and actual parameter lists shall be followed as defined in clause 5.2.

Both global and local templates are initialized at the place of their declaration. This means, all template fields which are
not affected by parameterization shall receive avalue or matching mechanism. Template fields affected by
parameterization areinitialized at the time of template use.

If functions are used for the initialization of module parameters, it is strongly advised to adhere to the rules defined in
clause 16.1.4. Not following these rules may cause non-deterministic test executions.

At the time of their use (e.g. in communication operationssend, r ecei ve,cal | ,getcal I, etc.), itisalowed to
change template fields by in-line modified templates, to pass in values via value parameters as well asto passin
templates viatemplate parameters. The effects of these changes on the values of the template fields do not persist in the
template subsequent to the corresponding communication event.

Restrictions
In addition to restrictions in clause 15, the following restrictions apply:

a) Thedot notation such as myTemplateld.fieldld shall not be used to set or retrieve values in templatesin
communication events. The "->" symbol shall be used for this purpose (see clause 23).

b) Redtrictions on referencing elements of templates or template fields are described in clause 15.6.

C) Thereexist anumber of restrictions on the functions used in expressions when specifying templates or
template fields; these are specified in clause 16.1.4.

ETSI

134 ETSI ES 201 873-1 V4.9.1 (2017-05)

Examples

/1 The tenplate
tenpl ate MyMessageType mw_nyTenpl ate (integer p_mnyFornal Paran): =

fieldl := p_nyFornal Param
field2 := pattern "abc*xyz",
field3 := true

}

/1 could be used as follows
pcol. recei ve(mv_nyTenpl at e(123));

15.4 In-line Templates

Templates can be specified directly at the place they are used. Such templates are called in-line templates.
Syntactical Structure
[Type ":" 1 [nodifies Tenpl ateRef Wt hParList ":="] Tenpl at eBody

NOTE 1. Anin-linetemplate is an argument of a communication operation or an actual parameter of atestcase,
function or atstep call, i.e. it isaways placed within parenthesis and potentially separated with a comma.

Semantic Description
In-line templates can be defined directly at the place of its use.

In-line templates do not have names, therefore they cannot be referenced or reused. The lifetime of in-line templatesis
the TTCN-3 statement (an assignment, a testcase/function/alstep invocation, a return from a function, a communication
operation), where they are defined.

Restrictions
In addition to restrictions in clause 15, the following restrictions apply:

a) Templates may be specified for any TTCN-3 type defined in table 3 and for any procedure signature except for
port anddef aul t types.

b) Thetypefield should only be omitted when the type isimplicitly unambiguous.

NOTE 2: For literal in-line templates, the following types may be omitted: i nt eger , f | oat , bool ean,
bitstring, hexstring,octetstring.

NOTE 3: Types of constants, parameters and variables of the actual scope are always unambiguous and can hence
always be omitted.

c) In-linetemplates containing instead of values or inside val ues matching mechanisms (see clause 15.7) can only
be defined in arguments of receiving communication operations (i.e. r ecei ve, tri gger, check,
getcal | ,getrepl y and cat ch), in arguments of thenat ch and sel ect case operations, in actual
template parameters, at the right hand side of assignments (when there is atemplate variable at the |eft hand
side of the assignment) and in return statements of template returning functions. In-line templates not
containing matching mechanisms can be defined wherever values are allowed.

d) When used in communication operations, the type of the in-line template shall be in the port list over which
the template is sent or received. In the case where there is an ambiguity between the listed type and the type of
the value provided (e.g. through subtyping) then the type name of the in-line template shall be included in the
communication operation.

€) Thereexist anumber of restrictions on the functions used in expressions when specifying templates or
template fields; these are specified in clause 16.1.4.

Examples

nyPCO. r ecei ve(charstring: "abcxyz");

ETSI

135 ETSI ES 201 873-1 V4.9.1 (2017-05)

15.5 Modified templates

In cases where small changes are needed to specify a new template, it is possible to specify a modified template. A
modified template specifies modifications to particular fields of the original template, either directly or indirectly. As
well as creating explicitly named modified templates, TTCN-3 alows the definition of in-line modified templates.

Syntactical Structure

Global or local modified template:

tenplate [restriction] [@uzzy] Type Tenplateldentifier ["(" TenplateFormal ParList ")"]
nodi fi es Tenpl ateRef ":=" Tenpl at eBody

NOTE 1: The optional restriction part is covered by clause 15.8.

In-line modified template:

[Type ":"] nodifies Tenpl ateRef WthParList ":=" Tenpl at eBody
Semantic Description

The nodi fi es keyword denotes the parent template from which the new modified template shall be derived. This
parent template may be either an original template or a modified template.

The modifications occur in alinked fashion, eventually tracing back to the origina template:

a) Incaseof templates, template fields or list elements of simple types, uni on and enumner at ed types, the
matching mechanism specified in the modified template is simply replacing its corresponding content in its
parent.

b) For templates, template fields and elements of r ecor d and set types, if ar ecor d or set field and its
corresponding matching mechanism is specified in the modified template, then the specified matching
mechanism replaces the one specified in the corresponding field of the parent template. If ar ecor d or set
field or its corresponding matching mechanism is—implicitly or explicitly by using the not used symbol "-" -
left unspecified in the modified template, then the matching mechanism in the corresponding field of the
parent template shall be used. When the field to be modified is nested within atemplate field whichisa
structured field itself, no other field of the structured field is changed apart from the explicitly denoted one(s).

c) For templates, template fields and elements of r ecor d of andset of types, the above rules specified for
r ecor dsand set s apply with the following deviations:

- if the value list notation is used, only the number of elementslisted in the modified template isinherited
from the parent (i.e. thelist is truncated at the last element of the list notation in the modified template);

- when individual values of a modified template or a modified template field of record of orset of
type wished to be changed, and only in these cases, the index assignment notation may also be used,
where the left hand side of the assignment is the index of the element to be altered.

Incaseof record of andset of typesfirst apply rule (c) to the complete structure (e.g. truncation) than apply
further rules for the remaining individual type structure elements (see example 3).

Formal value or template parameters of modified templates inherit the default value or respectively template of the
corresponding parameter of their parent templates only, if thisis denoted by the dash (don't change) symbol at the place
of the parameters default value or respectively template.

Modified templates may also be restricted. Template restrictions are specified in clause 15.8.
A modified template may also be declared fuzzy using the @ uzzy modifier.

NOTE 2: If afuzzy modified template modifies a non-fuzzy unparameterized template, the inherited fields before
modification will be the same for every evauation of the fuzzy template.

ETSI

136 ETSI ES 201 873-1 V4.9.1 (2017-05)

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) A modified template shall not refer to itself, either directly or indirectly, i.e. recursive derivation is not
allowed.

b) If abasetemplate has aformal parameter list, the following rules apply to all modified templates derived from
that base template, whether or not they are derived in one or several modification steps:

1) thederived template shall not omit parameters and change types or names of parameters defined at any
of the modification steps between the base template and the actual modified template;

2) atemplate parameter restriction of aderived template specified at any of the modification steps between
the base template and the actual modified template can be changed to a stricter one (see clause 15.8);

3) aderived template can have additional (appended) parametersif wished;

4) if the dash (don't change) symbol is used at the place of a default value or default template, the
corresponding parameter of the parent template shall have a valid default value or default template, either
assigned directly or inherited. If not, this shall cause an error.

¢) Restrictions on referencing elements of templates or template fields are described in clause 15.6: for modified
templates the rules for the left hand side of assignments apply.

d) Limitations on template restrictions described in clause 15.8 shall apply.
Examples

EXAMPLE 1: Modifying record templates (non-embedded case)

/1 Modifying records
type record MyRecordType
{

integer fieldl optional,
charstring field2,
bool ean fiel d3

}
tenpl ate MyRecordType m nyRecTenpl atel : =

fieldl := 123,
field2 := "A string",
field3 := true

}
/1 then writing

tenpl ate MyRecordType m nyRecTenpl ate2 nodi fi es m nyRecTenpl atel : =

fieldl :
field2 :

omt, /1 fieldl is optional but present in mnyTenplatel
"A nodified string"

/1 field3 is unchanged

/1 is the same as witing
/1 tenplate MyRecordType m nyRecTenpl ate2 : =

11 {

I/ fieldl := omt,

/1 field2 := "A nodified string",
/1 field3 := true

I}

tenpl ate MyRecordType m nyRecTenpl ate3 nodi fi es mnyRecTenplatel := {onmit, "A nodified string"}
//field3 is inplicitly left unchanged;

/I m nyRecTenpl at e3 has the sanme content as m nyRecTenpl at e2

tenpl ate MyRecordType m nyRecTenpl ate4 nodifies mnmyRecTenplatel := {omt,"A nodified string",-}

//field3 is explicitly left unchanged;
/I m nyRecTenpl at e4 has the same content as mnyRecTenpl ate2 and m nyRecTenpl at e3

EXAMPLE 2: Modifying record of templates (non-embedded case)
type record of integer MyRecordOf Type;

tenpl ate MyRecordOf Type m nyBaseTenplate := { 0, 1, 2, 3, 4, 5 6, 7, 8 9 };

ETSI

137 ETSI ES 201 873-1 V4.9.1 (2017-05)

tenpl ate MyRecordOf Type m nyRecOf Tenpl at el nodi fi es m nyBaseTenpl ate : =

o302, -, -, ., 5, 5, - b
/1l mnmyRecOf Tenpl atel contains { 0, 1, 3, 2, 4, 5, 6, 7, 8 91}
tenpl ate MyRecordOf Type m nyRecOf Tenpl at e2 nodi fi es m nyBaseTenplate := { -, -, 3, 2 };
/1 mnyRecOf Tenpl at e2 repl aces m nyBaseTenplate with: { 0, 1, 3, 2 };
/1 elements 5 to 10 of mnyBaseTenpl ate are truncated
tenpl ate MyRecor dOf Type m nyRecOf Tenpl at e3 nodi fi es m nyBaseTenplate := { [2] :=3, [3] :=2}
/1 mnyRecOf Tenpl at e3 has the sane content as mnyMdlTenplate: { O, 1, 3, 2, 4, 5 6, 7, 8 9}

EXAMPLE 3: Modifying embedded record and record of templates

/I Modifying a record enbedded in a record of
type record of record {

i nteger a,

integer b
} MyLi st Type

tenpl ate MyLi st Type nw_nyBaselListTenplate :={ ?, { a:=1, b:=21}, ?, { a:=3, b:=41}1}
tenpl ate MyLi st Type mw_nyLi st Tenpl atel nodifies mwv_nyBaseListTenplate :={ [1] :={ a := 42 } }
/1 Content of field "a" of the second elenent is nodified,

//the content of mw nyListTenplatel is: { ?, { a:=42, b:=21}, ?, {a:=3, b:=4}1}

tenpl ate MyLi st Type nmw_nyLi st Tenpl ate2 nodi fi es mw_nyBaseListTenplate :={ -, { a:=42} ,- }

/Il Content of field "a" of the second elenent is nodified, and the
/lrecord of is truncated after the third elenent: { ?, { a:=42, b:=21}, ?}

EXAMPLE 4: Modified in-line template

/1l Gven

tenpl ate MyRecordType msetup : =
fieldl := 75,
field2 := "abc",
field3 :=true

}

/1 Could be used to define an in-line nodified tenplate of Setup
/1 pcol.send (nodifies msetup := {fieldl:= 76});

EXAMPLES5: Modified parameterized template

/1 Gven

tenpl ate MyRecordType m nyTenpl atel(i nteger p_nyPar):=
fieldl := p_nyPar,
field2 := "A string",
field3 := true

}

/1 then a nodification could be
tenpl ate MyRecordType m nyTenpl ate2(i nteger p_nyPar) nodifies mnyRecTenpl atel : =
// fieldl is paraneterized in mnyTenplatel and renains al so paraneterized in mnyTenpl at e2

field2 := "A nodified string"
}

EXAMPLE 6: Default values of modified parameterized templates
/1l Gven

tenpl ate M/RecordType mnyTenpl atell (integer p_int :=5):=
/1 p_int has the default value 5

fieldl := p_int,
field2 := "A string",
field3 := true

}

/1 then possible tenplate nodifications are
tenpl ate MyRecordType m nyTenpl atel2(integer p_int) nodifies mnyTenpl atell : =
/1 p_int had a default value in mnyTenpl atell but has none in this tenplate

field2 := "B string"

ETSI

138 ETSI ES 201 873-1 V4.9.1 (2017-05)

tenpl ate MyRecordType m nyTenpl atel3(integer p_int := 0) nodifies mnyTenplatel2 := { }
/1 p_int has the default value O
/1 no change is made to the tenplate's content, but only to the default value of p_int

tenpl ate MyRecordType m nyTenpl ateld(integer p_int := -) nodifies mnyTenplatel3 : =
I/l p_int inherits the default value O fromits parent mnyTenpl atel3
field2 := "C string"

}

tenpl ate MyRecordType m nyTenpl atel5(integer p_int := -) nodifies mnyTenpl ateld : =

/1 p_int inherits the default value 0 from mnyTenpl atel3 via mnyTenpl at el4

field2 := "D string"
}

tenpl ate MyRecordType m nyTenpl at el6(integer p_int) nodifies mnyTenplatel5 := { }
/1 p_int has no default value; no change in the tenplate's content

tenpl ate MyRecordType m nyTenpl atel7(integer p_int := -) nodifies mnyTenplatel6 : =
/] causes an error as p_int has no default value in the parent tenplate mnyTenpl atel6

field2 := "E string"
}

15.6 Referencing elements of templates or template fields

15.6.0 General

This clause defines rules and restrictions for referencing elements of templates or template fields in case of unrestricted
templates or templates with the present restriction. When referencing elements of templates or templates fields with the
value or omit restriction, the rules for referencing elements of values are used.

15.6.1 Referencing individual string elements

It isnot allowed to reference individua string elements inside templates or template fields. Instead, thesubst r
function (see clause C.4.2) shall be used.

EXAMPLE:

var tenplate charstring v_charl := "MCHAR';
var tenplate charstring v_char2;

v_char2 := v_charl[1];
/1 shall cause an error as referencing individual string elenents is not allowed

15.6.2 Referencing recor d and set fields

Both templates and template variables allow referencing sub-fields inside a template definition using the dot notation.
However, the referenced field may be a subfield of a structured field to which a matching mechanism is assigned. This
clause provides rules for such cases.

a Omit, AnyValueOrNone, template lists and complemented lists: referencing a subfield within a structured field
to which Omit, AnyValueOrNone, atemplate list or acomplemented list is assigned, at the right hand side of
an assignment, shall cause an error.

When referencing a subfield within a structured field to which AnyValueOrNone or omit is assigned, at the left
hand side of an assignment, the structured field isimplicitly set to be present, it is expanded recursively up to
and including the depth of the referenced subfield. During this expansion an AnyValue shall be assigned to
mandatory subfields and AnyValueOrNone shall be assigned to optional subfields. After this expansion the
value or matching mechanism at the right hand side of the assignment shall be assigned to the referenced
subfield.

When referencing a subfield within a structured field to which template lists or complemented template lists
are assigned, at the left hand side of an assignment, shall cause an error.

ETSI

139 ETSI ES 201 873-1 V4.9.1 (2017-05)

EXAMPLE 1.

type record R1 {
integer f1 optional,

R2 f2 optional
}
type record R2 {
i nteger g1,
R2 g2 optional
}
var tenplate RL v_rl1 := {
fl:=05,
f2 := omt

}
var tenplate R2 v_r2 :=v_rl.f2.92;

/] causes an error as onit is assigned to v_rl.f2
vrl.f2 .:=%*;
v r2 :=v_rl.f2. 92;

/] causes an error as * is assigned to v_r1.f2

v_rl = ({fl:=omt, f2:={gl:=0, g2:=omit}}, {f1l:=5 f2:={gl:=1, g2:={gl:=2, g2:=omit}}});
v_r2 :=v_rl.f2;

v.r2 :=v_rl.f2.92;

v_r2 :=v_rl.f2. 9g2.92;

/1 all these assignnents cause error as a tenplate list is assigned to v_rl

vrl =
conpl ement ({f1: =om t, f2:={gl:=0, g2:=omt}},{f1:=5 f2:={gl:=1, g2:={gl:=2, g2:=omt}}});

v_r2 :=v_rl.f2;
v.r2 :=v_rl.f2.92;
v_r2 :=v_rl.f2. 9g2.92;

/1 all these assignnents cause errors as a conplenmented list is assigned to v_rl

b) AnyValue: when referencing a subfield within a structured field to which AnyValue is assigned, at the right
hand side of an assignment, AnyValue shall be returned for mandatory subfields and AnyValueOrNone shall be
returned for optional subfields.

When referencing a subfield within a structured field to which AnyValue is assigned, at the left hand side of an
assignment, the structured field isimplicitly expanded recursively up to and including, the depth of the
referenced subfield. During this expansion an AnyValue shall be assigned to mandatory subfields and
AnyValueOrNone shall be assigned to optional subfields. After this expansion the value or matching
mechanism at the right hand side of the assignment shall be assigned to the referenced subfield.

EXAMPLE 2:

v_rl := {fl1:=0, f2:=?}
v r2 :=v_rl.f2.g2;
// after the assignnment v_r2 wll be {gl:=?, g2:=*}
v_rl.f2.92.92 := ({gl:=1, g2:=onmit},{gl:=2, g2:=onit});
/1 first the field v_r1.f2 has hypothetically be expanded to {gl:=?,92: ={gl:=?,92: =*}}
/1 thus after the assignnent v_rl will be:
I {f1:=0, f2:={gl:=?,92:={gl:=?,092: =({gl: =1, g2:=omit},{gl:=2, g2:=omit})}}}

c) Ifpresent attribute: referencing a subfield within a structured field to which the ifpresent attribute is attached,
shall cause an error (irrespective of the value or the matching mechanism to whichi f pr esent is appended).

d) Specia valuenul | : referencing afield of an addr ess type, which actual valueisnul | shall cause an error.

15.6.3 Referencing record of and set of elements

Both templates and template variables alow referencing elementsof ar ecord of , array or set of template or field
using the index notation. However, a matching mechanism may be assigned to the template or field within which the
element is referenced. This clause provides rules on handling such cases.

a) Omit: referencing an element within arecord of, set of or array field to which omit is assigned shall follow the
rules specified in clause 6.2.3.

ETSI

140 ETSI ES 201 873-1 V4.9.1 (2017-05)

b) Template lists, complemented lists, subset and superset: referencing an element within arecord of or set of
field to which a complemented list, a subset or a superset is assigned, shall cause an error.
EXAMPLE 1

type record of integer Rol;

var tenplate Rol v_rol;
var tenplate integer v_int;

v_rol

({}.{0},{0,0},{0,0,0});

v_int :=t_Rol[0];

©)

/1 shall cause an error as tenplate list is assigned to v_rol

AnyValue: when referencing an element of ar ecord of orset of template or field to which AnyValueis
assigned (without a length attribute), at the right hand side of an assignment, AnyValue shall be returned. If a
length attribute is attached to the AnyValue , the index of the reference shall not violate the length attribute.
When referencing an element withinar ecor d of orset of template or field to which AnyValueis
assigned (without alength attribute), at the left hand side of an assignment, the value or matching mechanism
at the right hand side of the assignment shall be assigned to the referenced element, AnyElement shall be
assigned to al elements before the referenced one (if any) and a single AnyElementsOrNone shall be added at
the end. When alength attribute is attached to AnyValue, the attribute shall be conveyed to the new template or
field transparently. The index shall not violate type restrictionsin any of the above cases.

EXAMPLE 2:

type record of integer Rol;
type record of Rol RoRol;

var tenplate Rol v_rol;
var tenplate RoRol v_roRol;
var tenplate integer v_int;

v_rol =7,
v_int :=v_rol[5];

/Il after the assignnent v_int will be AnyVal ue(?);

v_roRol := 7?;
v_rol := v_roRol[5];

/Il after the assignnent v_rol will be AnyVal ue(?);

v_int := v_roRol[5].[3];

/] after the assignnent v_int will be AnyVal ue(?);
v_rol :=? length (2..5);
v_int :=v_rol[3];

/1 after the assignnent v_int will be AnyVal ue(?);
v_int :=v_rol[5];

/1 shall cause an error as the referenced index is outside the length attribute
/1 (note that index 5 would refer to the 6" el enent);

v_roRol[2] := {0,0};

/Il after the assignnent v_roRol will be {?,?,{0,0},*};

v_roRol[4] := {1, 1};

/] after the assignnent v_roRol will be {?,?,{0,0},?, {1, 1}, *};

v_rol[0] := -5

/Il after the assignnent v_rol will be {-5 *} length(2..5);
v_rol :=? length (2..5);
v_rol[1] :=1;

/] after the assignnent v_rol will be {?,1,*} length(2..5);

v_rol[3] := 7

// after the assignnent v_rol will be {?,1,?,?,*} length(2..5);

v_rol[5] :=5;

d)

/1 after the assignnent v_rol wll be {?,1,?,?,?2,5 *} length(2..5); note that v_rol
/1 becones an enpty set but that shall cause no error;

AnyValueOrNone: referencing an element within arecord of, set of or array field to which AnyValueOrNone
with or without alength attribute is assigned on the right hand side of an assignment shall cause an error.
When referencing an element within arecord of, set of or array field to which AnyValueOrNone is assigned on
the left hand side of an assignment, the rules for AnyValue shall apply (see item c) for more details).

ETSI

141 ETSI ES 201 873-1 V4.9.1 (2017-05)

EXAMPLE 3:

type record of integer Rol;
type record R

Rol fieldl optional
}
var tenplate Rnmw tl := { fieldl := * };
var tenplate integer nw_t2;
mv tl.fieldl[2] := 2; // after the assignment, mnv t1 will be { fieldl :={ 2, ?2, 2, * } }
mv tl.fieldl := *;
nvt2 := nmvtl. fieldl[O];
/1 shall cause an error as nw_tl.fieldl contains AnyVal ueOr None

€) Permutation: when referencing an element of ar ecor d of template or field, which islocated inside a
permutation (based on its index), this shall cause an error. Indexes of elements sheltered by a permutation shall
be determined based on the number of permutation elements. AnyElementsOrNone as a permutation element
causes that the permutation shelters all record of element indexes.

EXAMPLE 4:
v_rol:= {pernutation(0,1,3,?),2,7?};
v_int :=v_rol[5];
/Il after the assignment v_int will be AnyVal ue(?)

v_rol:= {pernutation(0,1,3,7?),2,*};

v_int :=v_rol[5];
I/ after the assignment v_int will be * (AnyVal ueOr None)
v_int :=v_rol[2];

/] causes error as the third element (with index 2) is inside pernutation

v_rol:= {pernutation(O0,1,3,*),2,7?};

v_int :=v_rol[5];
/] causes error as the pernutation contains AnyVal ueOrNone(*) that is able to
/1 cover any record of indexes

f) Ifpresent attribute: referencing an element withinar ecord of orset of fieldtowhichthei f present
attribute is attached, shall cause an error (irrespective of the value or the matching mechanism to which
i fpresent isappended).

g) AnyElementsOrNone: when referencing an element of arecord of or set of template or field that contains
AnyElementsOrNone, the result of an operation is dependent on the position of AnyElementsOrNone, the
referenced index and length attributes attached to AnyElementsOrNone.

When resolving the reference, a transformed form of the record of or set of template is used. The transformed
form is equal to the original value where al occurrences of AnyElementsOrNone with a length restriction are
replaced with a sequence of AnyElements of the same size as the lower bound. If the lower bound is greater
than the upper bound, the sequence shall be followed by a single AnyElementsOrNone symbol with alength
restriction. The lower bound of this restriction is zero and the upper bound is the difference between the lower
and upper bound of the original restriction.

EXAMPLE 5:

type record of interger Rol;

tenplate Rol mwrol := {1, * length(2), 5}; I/l transformed form {1, ?, ?, 5}

tenplate Rol mwrol := {1, * length(1..3), 5}; // transformed form {1, ?, * length(0..2), 5}

h) Specia valuenul | : referencing an element of an addr ess type, which actual valueisnul | shall cause an
error.

When the reference is used at the right hand side of the assignment, the following applies:

- If positions of all AnyElementsOrNone matching symbolsin the transformed form are greater than the
position of the referenced item, rules from the clause 6.2.3.2 are used for resolving the reference.

ETSI

142 ETSI ES 201 873-1 V4.9.1 (2017-05)

EXAMPLE 6:

type record of interger Rol;

var tenplate Rol v_rol := {1, 2, * length(2), 5};
/l transformed form {1, 2, ?, ?, 5}
var tenplate integer v_int;

v_int :=v_rol[1]; // after the assignnent, v_int will be 2
v_int :=v_rol[2]; // after the assignnent, v_int will be ?
- If the position of the referenced item is greater or equal to the position of any AnyElementsOrNone
symbol in the transformed template, an error is generated.
EXAMPLE 7:

type record of interger Rol;

var tenplate Rol v_rol := {1, 2, *, 5};
var tenplate integer v_int :=v_rol[3]; // produces an error
v_rol {1, 2, *};

v_int :

v_rol[2]; [/ produces an error

When the reference is used at the left hand side of the assignment, the following applies:

If positions of al AnyElementsOrNone matching symbols in the transformed form are greater than the
position of the referenced item the following rules are used. If the referenced item is not a result of
transformation, the value or matching symbol at the right hand side of the assignment shall replace the
referenced symbol in the original template. If the referenced element was a result of transformation, then
the AnyValueOrNone symbol in the original template is replaced with its transformed form and the
assignment is performed afterwards.

EXAMPLE 8:

type record of interger Rol;

var tenplate Rol v_rol := {1, 2, * length(2), 5};

/Il transformed form {1, 2, ?, ?, 5}
v_rol [1] := 10; [/ after the assignnment, t_Rol will be {1, 10, * length(2), 5}
v_rol [2] := 3 /Il after the assignnent, t_Rol wll be {1, 10, 3, ?, 5}

If the position of the referenced item is greater or equal to the position of any AnyElementsOrNone
symbol in the transformed form and this AnyElementsOrNone symbol is not the last element in the
template, an error is generated.

EXAMPLE 9:

type record of interger Rol;

;/ar tenplate Rol v_rol:= {1, 2, *, 5};
v_rol[3]

= 4; /] produces an error

If the position of the referenced item is greater or equal to the position of an AnyElementsOrNone
symbol in the transformed form and this AnyElementsOrNone is the last symbol in the template, the
value or matching symbol at the right hand side of the assignment shall be assigned to the referenced
element. Then the AnyElementsOrNone symbol and all unbound values between it and the referenced
symbol shall be replaced with AnyElement symbols. If the AnyElementsOrNone symbol had alength
restriction, only as many AnyElement symbols can be added as is the value of the upper bound of the
restriction. Asthe last step, an AnyElementsOrNone symbol can be appended to the end of the template.
The symbol is always appended if the original AnyElementsOrNone symbol was unrestricted. If the
original AnyElementsOrNone had a length restriction, the symbol is appended only if the restriction
included items beyond the referenced item. In such a case, the appended symbol contains the original
length restriction adjusted by the difference between the size of the template before and after assignment.

ETSI

143 ETSI ES 201 873-1 V4.9.1 (2017-05)

EXAMPLE 10:

type record of interger Rol;

var tenplate Rol v_rol := {1, 2, * };
v_rol[4] :=5; /Il {1, 2, ?, ?, 5 *};
v_rol := {1, * length(1..2)};
v_rol[4] :=5; [/ {1, ?, ?, -, 5};

/1 short length restriction: only two ? synbols added and no * at the end

v_rol := {1, * length(1l..5)};
v_rol[2] :=3; /] {1, ?, 3, * length(0..3)};
// adjusted length restriction at the end

Theindex of the referenced item shall not violate type restrictionsin any of the above cases.

15.6.4 Referencing signature parameters

While signature templates do not allow referencing their parameters directly (e.g. using dot notation), such areference
is possible when modifying a signature template. However, there can be a matching mechanism assigned to the
signature template. This clause provides rules for such cases.

a) Vauelistsand complemented lists: referencing a parameter of a signature template to which avaluelist or a
complemented list is assigned, at the left hand side of an assignment, shall cause an error.

EXAMPLE 1.

signature MySignature(in integer parl, in integer par2);

tenplate MySignature s_nySignl := ({ parl := 1, par2 := 2}, { parl := 2, par2 :=11});
tenplate MySignature s_nySign2 nodifies s_nySignl :={ parl :=? };

/1 shall cause an error as s_nySignl contains a value list tenplate

b) AnyValue: when referencing a parameter within a signature to which AnyValue is assigned, at the left hand
side of an assignment, the signature template is implicitly expanded to the parameter level. During this
expansion an AnyValue shall be assigned to al parameters of the template. After this expansion the value or
matching mechanism at the right hand side of the assignment shall be assigned to the referenced parameter.

EXAMPLE 2:

tenpl ate MySignature s_nySign3 := ?;

tenplate MySignature s_nySign4 nodifies s_nySign3 := { parl := 3 };
/1 s_nmySign3 is expanded to { parl :=?, par2 := ? }, then 3 is assigned to parl,
/1 thus s_nySign4 will be { parl := 3, par2 :=?

—-— .9

15.6.5 Referencing uni on alternatives

Both templates and template variables allow referencing alternatives inside a union template definition using the dot
notation. However, the referenced alternative may belong to template field containing a matching mechanism. This
clause provides rules for such cases.

a) Omit, AnyValueOrNone, template lists and complemented lists: referencing an alternative of a union template
or template field to which Omit, AnyValueOrNone, atemplate list or acomplemented list is assigned, at the
right hand side of an assignment, shall cause an error.

When referencing an alternative of a union template or template field to which AnyValueOrNone or omit is
assigned, at the left hand side of an assignment, the template field isimplicitly set to be present and the
referenced alternative becomes the chosen one. If the referenced alternative is not the last element of the dot
notation, rulesin clause 15.6.2 valid for AnyValue shall apply recursively for further expansion. After this
expansion the value or matching mechanism at the right hand side of the assignment shall be assigned to the
referenced subfield.

Referencing an alternative of a union template field to which template lists or complemented template lists are
assigned, at the left hand side of an assignment, shall cause an error.

ETSI

144 ETSI ES 201 873-1 V4.9.1 (2017-05)

EXAMPLE 1.

type record Rl {
integer f1,
integer f2

}

type union U {
i nteger cl,
R1 c2

type record R2 {

i nteger g1,

U g2 optional
}

Var template R2 v_t1 := {
gl := 5,
g2 :=*

var tenplate integer v_t2;
v_tl.g2.f1 := 1,
// after the assignnent v_t2.g2 is { g2 :={ f1:=1, f2:=21}}
v_t1l.92 := omt;
v_t2 :=v_t1l.9g2.cl;
/] causes an error as omt is assigned to v_t1.g2

b) AnyValue: when referencing an aternative of a union template or template field to which AnyValueis
assigned, at the right hand side of an assignment, AnyValue shall be returned.
When referencing an alternative of a union template or template field to which AnyValue is assigned, at the left
hand side of an assignment, the referenced alternative becomes the chosen one. If the referenced aternativeis
not the last element of the dot notation, rulesin clause 15.6.2 valid for AnyValue shall apply recursively for
further expansion. After this expansion the value or matching mechanism at the right hand side of the
assignment shall be assigned to the referenced subfield.

EXAMPLE 2:

var tenplate Uv_t3 := ?;
v_t2 :=v_t3.cl,
[/l after the assignnent v_t2 will be ?
v_t3.cl.f1 :=1;
/Il after the assignment v_t3 will be { c1:={ f1:=1, f2:=7?1}}

c) Ifpresent attribute: referencing an alternative of a union template field to which the ifpresent attributeis
attached, shall cause an error (irrespective of the value or the matching mechanism to whichi f pr esent is
appended).

d) Specia valuenul | : referencing an aternative of an addr ess type, which actual valueisnul | shall cause
anerror.

15.7 Template matching mechanisms

15.7.0 General

Generally, matching mechanisms are used to replace values of single template fields or to replace even the entire
contents of atemplate. Matching mechanisms may also be used in-line (see clause 15.4).

Matching mechanisms are arranged in four groups:
. specific values;
. special symbolsthat can be used instead of values;
. specia symbols that can be used inside values,
. special symbols which describe attributes of values.

Some of the mechanisms may be used in combination.

ETSI

145

ETSI ES 201 873-1 V4.9.1 (2017-05)

The supported matching mechanisms and their associated symbols (if any) and the scope of their application are shown
intable 11. The left-hand column of thistable lists al the TTCN-3 types to which these matching mechanisms apply. A
full description of each matching mechanism can be found in annex B.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) All other applications of matching mechanisms than the ones allowed in table 11 are forbidden.

Table 11: TTCN-3 Matching Mechanisms

Used with values|Value Instead of values Inside values Attributes
of
S (0] C T A A R S S P M A A P L |
p m o e n n a u u a a n n e e f
e i m m y y n p b t t y y r n P
c t p p \Y, \Y g e S t c E E m g r
i | | a a e r e e h | I u t e
f e a | | s t r e e t h s
i m t u u e n d m m a R e
c e e e e t e e e t e n
\% n L | O c n n i s t
a t i r o t t 0 t
| e s N d (?) s n r
u d t o] e (0] i
e L n d r c
i e N t
S *) c o] i
t 0 n o]
n e n
t ()
e
n
t
boolean Yes | Yes! | Yes | Yes | Yes | Yes? Yes!
integer Yes | Yes! | Yes | Yes | Yes |Yes!| Yes Yes'
float Yes | Yes! | Yes | Yes | Yes |Yes!| Yes Yest
bitstring Yes | Yes! | Yes | Yes | Yes |Yes! Yes | Yes | Yes Yes | Yes!
octetstring Yes | Yes! | Yes | Yes | Yes |Yes? Yes | Yes | Yes Yes | Yes!
hexstring Yes | Yes! | Yes | Yes | Yes |Yes! Yes | Yes | Yes Yes | Yes!
character strings | Yes | Yes! | Yes | Yes | Yes | Yes!| Yes Yes | Yes | Yes? | Yes? Yes | Yes!
record Yes | Yes! | Yes | Yes | Yes | Yes? Yes!
record of Yes | Yes! | Yes | Yes | Yes | Yes? Yes | Yes | Yes | Yes | Yes'
array Yes | Yes! | Yes | Yes | Yes |Yes? Yes | Yes | Yes | Yes | Yes!
set Yes | Yes! | Yes | Yes | Yes |Yes! Yes!
set of Yes | Yes! | Yes | Yes | Yes | Yes Yes | Yes Yes | Yes Yes | Yes!
enumerated Yes | Yes! | Yes | Yes | Yes | Yes? Yes?
union Yes | Yes! | Yes | Yes | Yes |Yes? Yest
anytype Yes | Yes! | Yes | Yes | Yes |Yes! Yes?!

NOTE 1: Can be assigned to templates of any type as a whole or to optional fields of record and set templates. However
when matching, it shall be applied to optional fields of record and set types only (without restriction on the type of

that fi

NOTE 2: Have matching mechanism meaning within character patterns only.

eld).

15.7.1

Specific values

Specific values are the basic matching mechanism of TTCN-3 templates. Specific values in templates are expressions

which do not contain any matching mechanisms.

Syntactical Structure

Si ngl eExp

ressi on

ETSI

146 ETSI ES 201 873-1 V4.9.1 (2017-05)

Semantic Description

The matching mechanism for a specific value is an expression that evaluates to a specific value.

For further details please refer to clause 6 and to annex B.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Seetherestrictionsgivenin table 11 and in annex B.

Examples

nyPCO. r ecei ve(charstring: "abcxyz");
nyPCO. recei ve(' AAAA' O ;

15.7.2 Special symbols that can be used instead of values
These matching mechanisms can be used to characterize a set of values.

Syntactical Structure

omt |
"(" { (Tenplatelnstance | all from Tenpl atelnstance) [","] } ")" |

conpl ement " (" { (Tenplatelnstance | all from Tenplatelnstance) [","] } ")" |
won |

nxn

"(" (ConstantExpression | -infinity) ".." (OonstantExpressmn | |nf|n|ty) ")
superset "(" { (Tenplatelnstance | all from Tenpl atelnstance) [","] }) [

subset "(" { (Tenplatelnstance | all from Tenpl atelnstance) [","] I

pattern [@ocase] Cstring

decmatch ["(" Expression]")"] Tenpl at el nstance

EnunVal uel dentifier "(" Tenpl ateBody {"," Tenpl at eBody} ")"

Semantic Description
The matching mechanisms for special symbols that can be used instead of values are:
° omit: the optional field, in which it is used, is not present;

NOTE 1: omit can be assigned to templates of any type as a whole or to optional fields of record and set types.
omit can only be used for matching optional fields.

e (...): alist of values or templates;

. complement (...): complement of alist of values or templates;

. ?: wildcard for any value;

e *:wildcard for any value or no value at al, i.e. the field is not present;

NOTE 2: * can be assigned to templates of any type as awhole or to optional fields of record and set types. * can
only be used for matching optional fields.

e (lowerBound . . upperBound): arange of integer or float values between and including the lower- and upper
bounds;

. superset: at least all of the elements listed, i.e. possibly more;

. subset: at most the elementslisted, i.e. possibly less;

. pattern: acharstring or universal charstring that matches this format;
. decmatch: used for matching of encoded payload fields;

. EnumValuel dentifier with list of templates: used for matching of enumerated values with associated value
list.

ETSI

147 ETSI ES 201 873-1 V4.9.1 (2017-05)

The matching mechanisms list, complemented list, subset, and superset can use the elements of atemplate using the all
from clause.

For further details please refer to annex B.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Seetheredtrictionsgivenintable 11 and in annex B.

b) All templates and values used in the matching mechanisms above (including the referenced ones, e.g. within a
pattern) shall be completely initialized.

Examples

nyPCO. recei ve (integer:conplenent(1l, 2, 3));

15.7.3 Special symbols that can be used inside values
These matching mechanisms allow to characterize value sets by varying values inside.

Syntactical Structure

Lt

p:;rrrulatl on "(" { (TenplateBody | "?" "*" | all from Tenpl atel nstance)[","] } ")"
Semantic Description
The matching mechanisms for special symbols that can be used inside values are:

e ?: wildcard for any single element in astring, array, record of orset of;

e *:wildcard for any number of consecutive elementsin astring, array, record of orset of,orno
element at al (i.e. an omitted element);

. permutation: al of the elements listed but in an arbitrary order (note, that ? and * are also alowed as
elements of the permutation list and all elements of atemplate can be added to permutation using the all from
clause).

For further details please refer to annex B.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Seetheredtrictionsgivenintable 11 and in annex B.

b) All templates or values used in the permutation matching mechanism shall be completely initialized.

Examples
tenplate bitstring nw b :="'10???'B; /1 where each "?" nay either be 0 or 1
type record of integer R ;
tenmplate R mw ri := {1, ?, 3} /1 where ? nay be any integer val ue

15.7.4 Special symbols which describe attributes of values
These matching mechanisms define properties of values.

Syntactical Structure

length "(" ConstantExpression [".." (ConstantExpression | infinity)] ")" [ifpresent] |
i fpresent

ETSI

148 ETSI ES 201 873-1 V4.9.1 (2017-05)

Semantic Description
The matching mechanisms which describe attributes of values are:

. length: restrictions for string length of string types and the number of elementsfor r ecord of ,set of
and arrays,

. ifpresent: for matching of optional field values (if not omitted).

NOTE 1: ifpresent can be assigned to templates of any type as awhole or to optional fields of record and set types.
ifpresent can only be used for matching optional fields.

NOTE 2: Assigning ifpresent to atemplate that already matches the special value omit (i.e. it is either omit, an
ifpresent template or AnyValueOrNone) has no effect; the resulting template will match the same set of
values and the special value omit as the template the ifpresent is assigned to.

For further details please refer to annex B.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Seetheredtrictionsgivenintable 11 and in annex B.
b) All values used in the length matching attribute shall be completely initialized.

Examples

type record R {
record of integer ri optional

tenplate R mnv r: =

{
ri :=* length (1 .. 6) ifpresent /1 any value containing 1, 2, 3, 4,

/1 5 or 6 elenments, provided it is present

15.8 Template Restrictions

Template restrictions allow to restrict the matching mechanisms that can be used with atemplate. Template restrictions
are applicable to template definitions and template variables, formal template parameters, and return template types of
functions. Template restrictions can be applied equally to message and signature templates.

Syntactical Structure

tenplate "(" (omit | present | value) ")" Type
Semantic Description
The restrictions mean in case of:

. (om t) thetemplate shall resolve to avalue matching mechanism (i.e. the fields of it shall resolveto a
specific value or omit, and the whole template may also resolve to omit). Such atemplate can be used to define
afield of arecord and set template and the latter one could still be used in asend statement.

. (val ue) thetemplate shall resolveto a specific value (i.e. the fields of it shall resolve to a specific value or
omit, but the whole template shall not resolve to omit). It can be used to define a mandatory field of arecord or
set template and the latter one could still be used in asend statement.

ETSI

NOTE:

149

ETSI ES 201 873-1 V4.9.1 (2017-05)

(present) thetemplate as awhole shall not resolve to matching mechanisms that match omit (i.e. its fields
may contain any of the matching mechanisms or matching attributes). Such atemplate can be used to define a
mandatory field of arecord or set template.

Template restrictions allow TTCN-3 tools to check more easily at compile time whether templates and

matching expressions are used correctly. Whether the checks are performed at compile time and invalid
codeisregjected or whether the checks are performed at execution time and dynamic errors are raised, is

outside the scope of the present document.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Matching mechanisms can be used within restricted templates according to table 12.
Table 12: Using matching mechanisms with restricted templates
Used with
template Value Instead of values Inside values Attributes
restriction
S o C T A A R S S P M A A P L |
p m o e n n a u u a a n n e e f
e i m m y y n p b t t y y r n P
c t p p \% \% g e s t c E E m g r
i I I a a e r e e h I | u t e
f e a | | s t r e e t h s
i m t u u e n d m m a R e
c e elL e e t e e e t e n
\Y, n i ™| O c n n i s t
a t S r o) t t o] t
| e t N d (?) s n r
u d o] e (0] i
e L n d r c
i e N t
S *) c o] i
t o) n o
n e n
t *)
e
n
t
omit Yes | Yes
value Yes | Note
1
present Yes | Note | Yes | Yes | Yes |Note| Yes | Yes | Yes | Yes |Note| Yes | Yes | Yes | Yes | Note
1 1 2 1
NOTE 1: Itis allowed to use the matching mechanism in fields of the template, but the template as a whole shall not
resolve to this matching mechanism.
NOTE 2: The matching mechanism is allowed only if the template following the decmatch keyword is fulfilling the given
restriction.
b) Restricted and unrestricted templates can be used as actual parameters of formal template parameters or

assigned to template variables according to table 13.

ETSI

150 ETSI ES 201 873-1 V4.9.1 (2017-05)

Table 13: Restrictions of formal and actual template parameters

Actual value template template template template
parameter/right (omit) (value) (present)
hand side of an
expression
Formal
parameter/-
left hand
side of an
expression
template(omit) Yes Yes Yes (see note) (see note)
template(value) Yes (see note) Yes (see note) (see note)
template(present) Yes (see note) Yes Yes (see note)
template Yes Yes Yes Yes Yes
NOTE: These restrictions are related to the content of the actual parameter or right hand side expression
and not to the definition of the entities used. Which cases are checked at compile time and which
ones at runtime is a tool implementation issue.

Examples

/1 definitions of restricted tenplates
type record Exanpl eType {

i nteger a,

bool ean b opti onal

}

tenpl ate(omit) Exanpl eType m exanpleQrit := onit;

tenpl ate(onit) Exanpl eType m exanpl eOrnitValue:= { 1, true };

tenpl ate(omit) Exanpl eType nw_exanpl eOnitAny := ?; /1 incorrect
tenpl at e(val ue) Exanpl eType m exanpl eVal ueomt := onit; /'l incorrect
tenpl at e(val ue) Exanpl eType m exanpleValue := { 1, true };

tenpl at e(val ue) Exanpl eType m exanpl eVal ueOptional := { 1, omit };

// omt assigned to a field is correct

tenpl at e(present) Exanpl eType mw_exanpl ePresent := {1, ?};

tenpl ate(present) Exanpl eType nw_exanpl ePresent|fpresent := { 1, true } ifpresent;
/1 incorrect

tenpl at e(present) Exanpl eType mw_exanpl ePresent Any : = ?;

Il restricted tenplate usage

var tenplate (omt) ExanpleType v_omt;

var tenplate (present) Exanpl eType v_present;
var tenplate (val ue) Exanpl eType v_val ue;

v_omt := mexanpleOnt;

v_omt := mexanpl eVal ueOpti onal ;

v_onmit := nw_exanpl ePresent Any; /1 incorrect, not a specific value
v_present := mexanpleOnt; Il incorrect, shall not be omt
v_present := mw_exanpl ePresent;

v_val ue : = mexanpl eOnit; /1 incorrect, shall not be omt

v_val ue : = nw_exanpl ePresent Any; /1 incorrect, shall be a single value

15.9 Match Operation

Themat ch operation allows to compare a va ue (specified in form of an expression) with atemplate.

Syntactical Structure

match " (" Expression "," Tenpl atel nstance ")"

ETSI

151 ETSI ES 201 873-1 V4.9.1 (2017-05)

Semantic Description

The mat ch operation returns a boolean value. It matches an expression, which shall denote avalue or afield of avaue
against atemplate instance. Types of the expression and the template instance shall be compatible (see clause 6.3). The
return value of the mat ch operation indicates whether the expression matches the specified template instance. In the
special case, matching a non-optional value expression (e.g. avalue variable or non-optional field of avaue) with a
template instance that matches an omitted field (i.e. one of the matching mechanisms Omit, AnyValueOrNone,
IfPresent) shall be allowed and shall be treated asif the value expression were an optiona field. Thus, matching avalue
expression against atemplate instance which evaluates to the omit matching mechanism shall return f al se.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) The expression-parameter of the mat ch operation shall evaluate to a value or shall denote an omitted optional
field, i.e. the mat ch operation cannot be used to compare two templates.

b) The operands of the nat ch operation shall be completely initialized.

¢) Thetype of the template instance-parameter shall be unambiguoudly identified. If the expression-parameter
evaluatesto aliteral value without explicit or implicit identification of its type, the type of the template
instance-parameter shall be used as the type governor for the expression-parameter.

NOTE: Incaseof in-line templates, see restriction b) in clause 15.4.
Examples
EXAMPLE 1: Using the match operation
tenpl ate integer nw_ | essThanl0 := (-infinity..9);

ﬁyPort .receive(integer:?) -> value v_rxVal ue;
if(match(v_rxValue, nw_|essThanl0)) { ...}
[/ true if the actual value of v_rxvalue is less than 10 and fal se ot herwi se

type record R{ integer a, integer b optional, integer c optional }
const Rcr :={ a:=1 b:=omt, ¢c:=11}
const integer c_c := 1;

function f_f(tenplate(omt) integer p_o) {

mat ch(c_c, onmit) /'l returns fal se
mat ch(5, omit) /1 returns false
match(c_c, *) /1 returns true
mat ch(c_r, c_c) /1 error (different types)

match(c_r.a, p_o) /1 returns true if p_o evaluates to 1, false, otherw se

match(c_r.b, p_o) /1 returns true, if p_ois not present, false, otherw se

match(c_r.c, p_o) /1 returns true, if p_o evaluates to 1, false, otherw se

mat ch(c_c, p_o) /1 returns true, if p_o evaluates to 1, false, otherw se

match(c_c, 1) /'l returns true (the syntax of the tenplate parameter inplicitly
/] identifies its type, see clause 15.4)

}

EXAMPLE 2: Using the match operation with enumerated types
type enunerated MyFirstEnunType { Monday, Tuesday, Wednesday, Thursday, Friday };
type enunerated MySecondEnunTType { Saturday, Sunday, Mnday };

control {
var MyFirst EnunType v_today := Tuesday;
mat ch (v_today, Sunday) // causes an error, as the value Sunday al one does not specifies
/'l the type context of the tenplate instance-paraneter
mat ch (v_today, MySecondEnunilype: Sunday) // returns false
mat ch (Monday, v_today)
/lreturns false; in this case v_today is governing the type context for the match operation
/1 (MyFi rst EnunType), but its actual value is different from Mynday

ETSI

152 ETSI ES 201 873-1 V4.9.1 (2017-05)

15.10 Valueof Operation

Theval ueof operation alows to return the val ue specified within atemplate. The returned value can be assigned to a
variable, may be used in expressions, as an actual value parameter, etc.

Syntactical Structure
val ueof " (" Tenpl atelnstance ")"

Semantic Description

Theval ueof operation returnsthe value of atemplate instance.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Thetemplate shall be completely initialized and resolve to a specific value.

Examples

EXAMPLE 1:

type record Exanpl eType

{
integer fieldl,

bool ean fi el d2

}

tenpl ate Exanpl eType m setupTenpl ate : =

fieldl := 1,
field2 := true
}
Var Exanpl eType v_rxVal ue : = val ueof (m setupTenpl ate);
EXAMPLE 2:
function MyFunc() {
var tenplate integer v_tint := omit;
/lis ok, but to be used for optional record or set fields only
var integer v_int := valueof(v_tlnt)

//causes an error as onit is not a value and shall not be an argunment of val ueof

15.11 Concatenating templates of string and list types

Templates of string and list types (bitstring, octetstring, hexstring, charstring, universal charstring, record of, set of, and
array) can be concatenated from severa single (in-line) templates using the concatenation operation. With the exception
of charstring and universal charstring templates, each single template shall have the same root type. The single
templates of binary string and list types shall contain only the matching mechanisms specific values, AnyValue without
alength modifier, AnyValue or AnyValueOrNone, both constrained to a fixed length, AnyElement or
AnyElementsOrNone possibly constrained with a length attribute for list types. The length matching attribute shall not
follow atemplate or template field produced by concatenation directly, but in this case the concatenation shall be placed
within a pair of parentheses.

Single templates of charstring and universal charstring types shall contain specific values only. When concatenating
templates of charstring and universal charstring types, each single template shall be either of the charstring or universal
charstring type. When templates of charstring and universal charstring type are both present in the concatenation, the
charstring values are implicitly converted to universal charstring values according to the rules specified in clause 6.3.1
before concatenation and the resulting template is of the universal charstring type.

ETSI

153 ETSI ES 201 873-1 V4.9.1 (2017-05)

The concatenation results in the sequential concatenation of the single templates from left to right, with two exceptions:
matching symbol AnyValue without alength modifier shall be replaced by a single AnyElementsOrNone matching
symbol before concatenation and matching symbols AnyValue and AnyValueOrNone that are each constrained to a fixed
length N shall be replaced by N AnyElement matching symbols before concatenation. The concatenation shall be
performed completely before using the resulting template (e.g. for assignment or matching) and the result shall be type-
compatible with the place of its use.

NOTE: Seeaso concatenation of character string patternsin clause B.1.5.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) All operands of the concatenation operation shall be at least partialy initialized.

EXAMPLE 1: Composing templates of string types

tenpl ate charstring nw_nycharl := "ABC' & "DE*" & "F?";
/1 results in the tenpl ate " ABCDE*F?"
/] please note that "*" and "?" denote the characters "*" and "?"

tenpl ate charstring nw_nychar2 := "ABC' & * length(2) & "EF";
/'l causes an error as for character string types only
/1 specific values are all owed

tenplate bitstring nwnybit :='010'B & ? & '1'B & ? length(l) & '1'B;
I/l results in the tenplate '010*1?71'B
I/l note that & ? & turns to * within the resulting bitstring as the original ?
/1 stands for a bitstring of any length

tenpl ate octetstring mv nyoctl := "ABCDO & '"EFF O & ? & ? length(1l) & 'EF O
/1 results in the tenplate ' ABCDEF*?EF O
/'l note that & ? & turns to * within the resulting octetstring as the original ?
/1 stands for an octetstring of any length

tenpl ate octetstring nw nyoct2 := 'ABCD O & ? length (2) & 'EF O
/1 results in the tenplate ' ABCD??EF O
/1l (i.e. a5 octets i.e. 10 hexadeci mal digits |ong val ue)

tenpl ate octetstring nmnv_myoctWong := "ABCD O & ? length(2) length (4);
/] causes an error, no length matching attribute shall directly follow a concatenation

tenpl ate octetstring nv_myoct3 := (" ABCD O & ? length(2)) length (1..3);
/1 However, this is correct but will not match any val ue;

tenpl ate hexstring nw_nyhexPar (integer N):=
"ABC H & ? length(N) & '"EH&? length(l) &' 'F H
function f_myFunc() runs on MyConpType {
var integer v_int := 3;
var tenplate hexstring v_hstring;

;/_hstring = "ABCH & ? length(v_int) & " EH&? length(l) &' 'F H,
/lresults in the tenplate ' ABC???E?F H

p.recei ve (mv_nyhexPar (4));
/lactual content of mw_nyhexPar is 'ABC????E?F H
}

EXAMPLE 2: Composing templates of list types

type record of charstring Recof Char;
type set of integer Setoflnt;

tenpl ate Recof Char nw_nyRecof Char := {"ABC'} & {"D?", "EF'};
/] results in the tenplate {"ABC', "D?", "EF" }

tenplate Setof Int mw nySetofint :={ 1, 2} & ? length(2) &{ 3, 4 };
I/l results in the tenplate {1, 2, ?, ?, 3, 4}

tenpl ate Recof Int mw nyRecofint :={ 1, 2} &{ * length(2), 3, 4 };
/1 results in the tenplate {1, 2, ?, ?, 3, 4}

tenpl ate Recof Char nw_nyRecof Char Wong: = {"ABC'} & ? length(1..2) & {"EF'};
/] causes an error, the length attribute shall denote a fixed |length

ETSI

154 ETSI ES 201 873-1 V4.9.1 (2017-05)

tenpl ate Recof Char nw_nyRecof CharPar (integer N):= { "ABC' } & ? & * length(N & { "EF" };
function M/Func() runs on MyConpType{

var integer v_int := 3

var tenpl ate Recof Char v_recof Char;

v_recof Char := { "ABC' } &7Iength(V|nt) &{ ")
/lresults in the tenplate { "ABC', ?, ?, ?, EF“ }
p.receive (mv_nmyRecof Char Par (3));
/lactual content of nw_nyRecofCharPar is { "ABC', ?, ?, ?, ?, "EF" }

16 Functions, altsteps and testcases

16.0 General

In TTCN-3, functions, altsteps and testcases are used to specify and structure test behaviour, define default behaviour
and to structure computation in a module, etc. as described in the following clauses.

16.1 Functions

16.1.0 General

Functions are used in TTCN-3 to express test behaviour, to organize test execution or to structure computation in a
module, for example, to calculate asingle value, to initialize a set of variables or to check some condition.

Syntactical Structure

function [@leterministic] Functionldentifier

"(" [{ (Formal Val uePar | Formal Ti nerPar | Fornal Tenpl atePar | Fornal PortPar) [","] } 1 ")"
[runs on Conponent Type]

[mtc Conponent Type]

[system Conponent Type]

[return [tenplate] Type]

St at ement Bl ock

Semantic Description

Functions are portions of TTCN-3 behaviour, which perform a specific task and are relatively independent of the
remaining behaviour.

Functions may return avalue or atemplate. Vaue return is denoted by ther et ur n keyword followed by atype
expression. Template return is denoted by ther et ur n t enpl at e keywords followed by an optional restriction and a
type expression. Execution of ar et ur n statement in the body of the function causes evaluation of the return value or
template, the function to terminate and to return the result to the location of the call of the function.

The behaviour of afunction can be defined by using statements and operations described in clauses 18 to 26.
Functions may be parameterized.

Functions may have an mtc clause. If a function has an mtc clause, the type referenced by this clause shall be mtc-
compatible (see clause 6.3.3) with the type of the mtc component reference. If the mtc clause is not present, the type of
the mtc component reference is unknown in the scope of this function.

Functions may have a system clause. If a function has a system clause, the type referenced by this clause shall be
system-compatible (see clause 6.3.3) with the type of the system component reference. If the system clause is not
present, the type of the system component reference is unknown in the scope of this function.

Using the @et er m ni sti ¢ modifier, afunction can be declared to be deterministic. Deterministic functions are safe
to be used when called from specific places where non-determinism could lead to unexpected side effects (see
clause 16.1.4).

ETSI

155 ETSI ES 201 873-1 V4.9.1 (2017-05)

NOTE 0: The determination of determinism of afunction is a semi-decidable problem and as such can and will not

be exhaustively checked. As such, the annotation deterministic is mainly used for informational purposes
and for allowing certain functions to be used during snapshot evaluation. Principally, afunction can be
seen asdeterministic if it does not violate any of the restrictions from clause 16.1.4 which does not mean
that violation of these restriction automatically leads to non-determinism.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a)

b)

A function without r uns on clause shall never invoke afunction or altstep or activate an atstep as default
withar uns on clause localy.

Functions started by using the st ar t test component operation shall alwayshavear uns on clause
(see clause 22.5) and are considered to be invoked in the component to be started, i.e. not locally. However,
thest art test component operation may be invoked within behaviours without ar uns on clause.

NOTE 1: Therestrictions concerning ther uns on clause are only related to functions and altsteps and not to test

c)

cases.

Functions used in the control part of a TTCN-3 module shall have no r uns on, nt ¢ or syst emclause.

NOTE 2: Nevertheless, functions used in the control part are allowed to execute test cases.

d) Therulesfor formal parameter lists shall be followed as defined in clause 5.4.

€) Forreturn tenpl at e statementsthe restrictions specified in clause 15 shall apply.

f) Templater et ur n can berestricted to the matching mechanisms specific value and omi t , see clause 5.4.1.2.

g) Areturn statement in avalue returning function shall always have a value expression compatible to the type
specified in the function header return clause.

h) Ar et urn statement in atemplate returning function shall always have atemplate reference (including
calling avaue or template returning function)or template instance compatible to the type specified in the
function header return clause. If ther et ur n clause has atemplate restriction, this restriction shall be adhered
to by the returned template. The return statement shall return atemplate that is at least partialy initialized.

i) If thefunction header includes ar et ur n clause, the function, when terminating, shall do so by executing a
r et ur n statement. The function will cause atest case error if it terminates (i.e. reaches the end of the
function body) without executing ar et ur n statement.

j) If afunction references the names of definitions that are defined inside a component type definition, the
component type shall be referenced using the r uns on keywords in the function header. The one exception to
thisruleisif all the necessary component-wide information is passed in the function as parameters.

Examples

EXAMPLE 1. Function with return

/1 Definition of f_nyFunction which has no paraneters
function f_nyFunction() return integer

{

}

return 7; /1 returns the integer value 7 when the function terninates

EXAMPLE 2: Function with template return

/1 Definition of functions which nmay return natching synbols or tenpl ates
function f_nyFunction2() return tenpl ate integer

{

return ?; /'l returns the natching nechani sm AnyVal ue

function f_nmyFunction3() return tenplate octetstring

!

ETSI

156 ETSI ES 201 873-1 V4.9.1 (2017-05)

return ' FF??FF' G /] returns an octetstring with AnyValue inside it

}
EXAMPLE 3: Function with runs on clause

function f_nyFunction3() runs on M/PTCType {
/1 f_nyFunction3 does not return a val ue, but

var integer v_nyVar := 5; /'l does nake use of the port operation
pCOL. send(v_nyVar); /1 send and therefore requires a runs on
/1 clause to resolve the port identifiers
} /1 by referencing a conponent type

EXAMPLE 4: Parameterized function

function f_nyFunction2(inout integer p_nyParl) {
/1 f_nyFunction2 does not return a val ue
p_nyParl := 10 * p_nyParl; // but changes the value of p_nyParl which
/1 is passed in by reference

EXAMPLE5: Function without return statement

function f_nyFunction5(inout integer p_nyParl) return integer {
if (p_nyParl > 5) {
p_nyParl := 5;
return p_nyPar1l,
}
Il in case of p_nyParl <= 5, f_nyFunction5 does not termnate in a return statenent
/1 and will cause a test case error

}

EXAMPLE 6: Function with system and mtc
type conponent McType { ... }

type conponent SystenilType { ... }

function f_nyFunction6() runs on M/PtcType ntc McType system Systeniype {
var McType v_ntc := ntc;
var Systenilype v_system := system
f_nmyFunction3(); // allowed, f_myFunction3() has no ntc and system cl ause
f _myFunction6(); // allowed, f_myFunction6() has conpatible ntc and system cl ause

}
function f_nyFunction7() runs on M/PtcType system Systenilype {

var McType v_ntc := ntc; // not allowed, ntc type unknown
f _myFunction6(); // possible runtinme error, no ntc clause of f_myFunction?

}
function MyFunction8() runs on M/PtcType ntc McType {
var SysteniType v_system:= system // not allowed, systemtype unknown
f _myFunction6(); // possible runtine error, no systemclause of f_nyFunction8

16.1.1 Invoking functions
A function isinvoked by referring to its name and providing the actual list of parameters.

Syntactical Structure

FunctionRef "(" [{ ActualPar [","] } 1 ")"
Semantic Description

A function invocation results in the execution of the statement block of the invoked function. The invoked functionis
performed by the test component invoking it. Actual parameters are passed into the statement block. If the function
returns (upon termination and potentially with areturn value), the test components continues its behaviour right after
the function invocation.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Functionsthat do not return values shall be invoked directly. Functions that return values may be invoked
directly or inside expressions.

b) Therulesfor actual parameter lists shall be followed as defined in clause 5.4.

ETSI

157 ETSI ES 201 873-1 V4.9.1 (2017-05)

c) Specid restrictions apply to functions bound to test components using the st art test component operation.
These restrictions are described in clause 21.3.2.

d) Wheninvoking afunction, the compatibility to the test component type of the invoking test component as
described in clause 6.3.3 need to be fulfilled.

€) Restrictions on invoking functions from specific places are described in clause 16.1.4.

f) When invoking a function, the mtc and system compatibility of the mtc and system components of the invoked
function with the actual mtc and system types of the running test case as described in clause 6.3.3 need to be
fulfilled.

Examples
v_nyVar := f_nyFunction4(); // The value returned by f_myFunction4 is assigned to v_nyVar.

f _myFunction2(v_nyVar 2);

/'l The types of the returned value and v_nyVar have to be conpatible

/1 f_myFunction2 does not return a value and is called with the
/Il actual paraneter v_nyVar2, which nay be passed in by reference

v_nyVar 3 :

= f_myFunction6(4) + f_myFunction7(v_nyVar3);

16.1.2 Predefined functions

TTCN-3 contains a number of predefined (built-in) functions that need not be declared before use. These are

summarized in table 14.

Table 14: List of TTCN-3 predefined functions

/1 Functions used in expressions

Convert charstring value to octetstring value

Category Function Keyword

Conversion functions |Convert integer value to charstring value i nt 2char
Convert integer value to universal charstring value i_nt 2uni char
Convert integer value to bitstring value int2bit
Convert integer value to enumerated value i nt 2enum
Convert integer value to hexstring value i nt 2hex
Convert integer value to octetstring value i nt 2oct
Convert integer value to charstring value int2str
Convert integer value to float value i nt 2f | oat
Convert float value to integer value float2int
Convert charstring value to integer value char 2i nt

char 2oct

Convert universal charstring value to octetstring value

uni char 2oct

Convert universal charstring value to integer value

uni char 2i nt

record of, set of or array

Convert bitstring value to integer value bi t 2i nt
Convert bitstring value to hexstring value bi t 2hex
Convert bitstring value to octetstring value bi t 2oct
Convert bitstring value to charstring value bit2str
Convert hexstring value to integer value hex2i nt
Convert hexstring value to bitstring value hex2bi t
Convert hexstring value to octetstring value hex2oct
Convert hexstring value to charstring value hex2str
Convert octetstring value to integer value oct 2i nt
Convert octetstring value to bitstring value oct 2bi t
Convert octetstring value to hexstring value oct 2hex
Convert octetstring value to charstring value oct2str
Convert octetstring value to charstring value, version Il oct 2char
Convert octetstring value to universal charstring value oct 2uni char
Convert charstring value to integer value str2int
Convert charstring value to hexstring value str2hex
Convert charstring value to octetstring value str2oct
Convert charstring value to float value str2fl oat
Convert enumerated value to integer value enun®i nt
Convert value or template to universal charstring value any2uni str
Length/size functions |Return the length of a value or template of any string type, I engt hof

ETSI

Determine if a template is uninitialized or not

158 ETSI ES 201 873-1 V4.9.1 (2017-05)
Category Function Keyword

Return the number of elements in a value or a template of a si zeof

record or set
Presence checking Determine if an optional field in a record or set value or template|i_spr esent
functions is present or is assigned a matching mechanism that cannot

match an ommitted field (i.e. none of omi t , AnyValueOrNone or

i fpresent)

Determine which choice has been selected in a union value or |ischosen

template

Determine if a template evaluates to a concrete value isval ue

i sbound

Determine if a template contains certain matching mechanism

i stenpl at eki nd

String/list handling Returns part of the input string matching the specified pattern

regexp

Decode a bitstring into a value

functions group within a character pattern
Returns the specified portion of the input string/list value or substr
template
Replaces a substring of a string with or inserts the input string repl ace
into a string, and similarly for lists
Codec functions Encode a value into a bitstring encval ue
decval ue

Encode a value into a universal charstring

encval ue uni char

Decode a universal charstring into a value

decval ue uni char

Encode a value into a octetstring

encval ue o

Decode a octetstring into a value

decval ue o

Retrieve the type of string encoding

get stringencod

ng
Remove BOMs of UCS encoding schemes remove_bom
Other functions Generate a random float number rnd

Returns the name of the currently executing test case

t est casenane

Returns the host id of the test component or module

hosti d

Syntactical Structure

int2char "(" SingleExpression ")" |

i nt2uni char " (" Singl eExpression ")" |

int2bit "(" SingleExpression "," SingleExpression ")"
int2enum " (" Singl eExpression "," SingleExpression ")"
int2hex "(" Singl eExpression "," SingleExpression ")"
int2oct "(" SingleExpression "," SingleExpression ")"
int2str "(" SingleExpression ")"

int2float "(" SingleExpression ")" |

float2int "(" SingleExpression ")"

char2int "(" SingleExpression ")"

char2oct "(" SingleExpression ")" |
uni char2int "(" SingleExpression ")" |
uni char 2oct " (" Singl eExpression ["," SingleExpression] ")"

oct2bit "(" SingleExpression "
oct 2hex "(" Singl eExpression "
oct2str "(" "
oct 2char "(" Singl eExpression ")"
oct 2uni char " (" Si ngl eExpression

[
bit2int "(" SingleExpression ")
bi t 2hex " (" Singl eExpression ")" |
bit2oct "(" SingleExpression ")" |
bit2str "(" Singl eExpression ")"
hex2int "(" Singl eExpression ")"
hex2bit " (" SingleExpression ")" |
hex2oct " (" Singl eExpression ")" |
hex2str "(" Singl eExpression ")"
oct2int "(" SingleExpression ")"
()"
()"
()"

Si ngl eExpression "

" Singl eExpression] ")" |

[
str2int "(" SingleExpression ")" |
str2hex "(" SingleExpression ")" |
str2oct "(" SingleExpression ")"
str2float "(" SingleExpression ")" |
enunint "(" SingleExpression ")"
any2uni str "(" Singl eExpression ")"
| engt hof " (" Tenpl atel nstance ")" |
si zeof "(" Tenpl atelnstance ")" |

i spresent " ("
i schosen " ("
i svalue " ("

Tenpl atel nstance ")" |
Tenpl atel nstance ")" |
Tenpl atel nstance ")" |

ETSI

159 ETSI ES 201 873-1 V4.9.1 (2017-05)

i sbound " (" Tenpl atel nstance ")" |

i stenpl atekind "(" Tenplatelnstance "," Tenpl atelnstance ")" |
regexp [@ocase] "(" Tenpl atel nstance"," Tenpl atel nstance"," Singl eExpression ")" |
substr "(" Tenplatelnstance "," Singl eExpression "," SingleExpression ")" |
replace "(" SingleExpression "," SingleExpression "," SingleExpression "," SingleExpression ")" |
encval ue "(" Tenplatelnstance ["," SingleExpression] ["," SingleExpression] ")" |
decval ue "(" SingleExpression "," Singl eExpression
["," SingleExpression] ["," SingleExpression] ["," SingleExpression] ")" |

encval ue_uni char " (" Tenpl atelnstance ["," Singl eExpression]

["," SingleExpression] ["," SingleExpression] ")" |
decval ue_uni char "(" Singl eExpression "," SingleExpression

["," SingleExpression] ["," SingleExpression] ["," SingleExpression] ")" |
encvalue_o "(" Tenplatelnstance ["," SingleExpression] ")" |
decvalue_o "(" SingleExpression "," SingleExpression ["," SingleExpression] ")" |

get _stringencoding "(" SingleExpression ")" |
remove_bom(" Singl eExpression ") |
rnd "(" [SingleExpression] ")" |
testcasenanme "()" |
hostid "(" [SingleExpression] ")"
Semantic Description
The description of predefined functionsis given in annex C.
Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) When apredefined function is invoked:
1) thenumber of the actual parameters shall be the same as the number of the formal parameters; and
2) each actual parameter shall evaluate to an element of its corresponding formal parameter's type; and
3) dlactuali nandi nout parametersshall beinitialized with the following exceptions:

L] the actual i n parameter passed to the predefined functionsi sval ue,i schosen,i spresent
and i shound may be uninitialized or even contain non-evaluable reference expressions;

" any_string_or_sequence_type parameters of the functions| engt hof , subst r and
r epl ace may be partialy initialized;

L] thei nval ue parameter of theany2uni st r function may be uninitialized or partialy initialized;

L] theencoded_val ue parameter of thedecval ue and decval ue_uni char function may be
uninitialized.
b) Restrictions on invoking functions from specific places are described in clause 16.1.4.
Examples

var hexstring v_h:

= bit2hex ('111010111' B);
var octetstring v_o:=

substr ('01AB23CD O 1, 2);

16.1.3 External functions
A function may be defined within a module or be declared as being defined externaly (i.e. ext er nal).

Syntactical Structure
external function [@etermnistic] ExtFunctionldentifier

"(" [{ (Formal Val uePar | Formal Ti merPar | Fornal Tenpl atePar | Formal PortPar) [","] }] ")"
[return [tenplate [Restriction]] Type]

ETSI

160 ETSI ES 201 873-1 V4.9.1 (2017-05)

Semantic Description

For an externa function only the function interface has to be provided in the TTCN-3 module. The realization of the
external function is outside the scope of the present document.

Using the @ et er m ni sti ¢ modifier, an external function can be declared to be deterministic. Deterministic
functions are safe to be used when called from specific places where non-determinism could lead to unexpected side
effects (see clause 16.1.4).

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Restrictions on invoking functions from specific places are described in clause 16.1.4.

NOTE: External functions should only exchange information with the test system via return values and parameter
passing. Side-effects that change the status of the test system and may influence the test outcome should
be avoided. Such side-effects can occur if an external function contains default handling, configuration,
communication or timer operations.

Examples

external function fx_nmyFunction4() return integer; // External function w thout paraneters
/1 which returns an integer val ue

external function fx_initTestDevices(); // An external function which only has an
I/ effect outside the TTCN-3 nodul e

16.1.4 Invoking functions from specific places

If value returning functions are called in receiving communication operations (in templates, template fields, in-line
templates, or as actual parameters), in guards or events of alt statements or atsteps (see clause 20.2), or in initializations
of altstep local definitions (see clause 16.2), the following operations shall not be used in functions called in the cases
specified above, in order to avoid side effects that cause changing the state of the component or the actual snapshot and
to prevent different results of subsequent eval uations on an unchanged snapshot:

a) All component operations, i.e.cr eat e, start (component), st op (component), kil l,
runni ng (component), al i ve, done andki | | ed (seenotes1, 3, 4 and 6).

b) All port operations, i.e. st art (port), st op (port), hal t,cl ear,checkst at e, send,r ecei ve,
trigger,call,getcall,reply,getreply,raise,catch,check, connect, di sconnect,
map and unnap (seenotes 1, 2, 3, 4 and 6).

c¢) Theacti on operation (see notes2 and 6).

d) All timer operations, i.e. st art (timer), st op (timer),runni ng (timer),r ead,ti nmeout (seenotes4
and 6).

€) Caling non-deterministic external functions, i.e. external functions where the resulting values for actual inout
or out parameters or the return value may differ for different invocations with the same actual in and inout
parameters (see notes 4 and 6).

f) Callingther nd predefined function (see notes 4 and 6).

g) Changing of component variables, i.e. using component variables on the left-hand side of assignments, and in
the instantiation of out andi nout parameters (see notes 4 and 6).

h)y Calingtheset ver di ct operation (see hotes 4 and 6).
i) Activation and deactivation of defaults, i.e. theact i vat e and deact i vat e statements (see notes 5 and 6).
j) Cadlling functions and deterministic external functions with out or i nout parameters (see notes 7 and 8).

k) Cadling functions and external functionswith @ uzzy formal parameters and variables (see notes 4 and 9).

ETSI

161 ETSI ES 201 873-1 V4.9.1 (2017-05)

) Theset encode operation (see note 8 and clause 27.9).

NOTE 1: The execution of the operationsst art, st op,done, kil |l ed, hal t,cl ear,recei ve,trigger,
getcal | ,getrepl y, catch andcheck can cause changesto the current snapshot.

NOTE 2: The use of operationssend, cal | ,repl y,rai se,andact i on causesan error, i.e. all
communication are to be made explicit and not as a side effect of another communication operation or the
evaluation of a snapshot.

NOTE 3: The use of operations nap, unnap, connect , di sconnect, cr eat e shall cause an error, i.e. al
configuration operations are to be made explicit, and not as a side effect of a communication operation or
the evaluation of a snapshot.

NOTE 4: Cdling of non-deterministic external functions, r nd, r unni ng, al i ve, r ead, checkst at e,
set verdi ct, referencing fuzzy objects and writing to component variables causes an error because this
may lead to different results of subsequent evaluations of the same snapshot, thus, e.g. rendering deadlock
detection impossible.

NOTE 5: Theuseof operationsact i vat e and deact i vat e causes an error because they modify the set of
defaults that is considered during the evaluation of the current snapshot.

NOTE 6: Restrictions except the limitation on the use of out or i nout parameterization in restriction j) apply
recursively, i.e. it is disallowed to use them directly, or viaan arbitrary long chain of function
invocations.

NOTE 7: Therestriction of calling functions and deterministic external functionswith out or i nout parameters
does not apply recursively, i.e. calling functions that themselves call functions with out or i nout
parametersislegal.

NOTE 8: Usingout ori nout parametersand theset encode operation causes an error because this may lead
to different results of subsequent evaluations of the same snapshot.

NOTE 9: Calling functions and external functionswith @ uzzy parameters causes an error, because fuzzy objects
are re-evaluated each time referenced and this may lead to different results of subsequent evaluations of
the same snapshot.

16.2 Altsteps

16.2.0 General

TTCN-3 uses atsteps to specify default behaviour or to structure the alternatives of anal t statement.

Syntactical Structure

altstep Altstepldentifier

"(" [{ (Formal Val uePar | Formal Ti nerPar | Fornal Tenpl atePar | Fornal PortPar) [","] } 1 ")"
[runs on Conponent Type]

[mtc Conponent Type]

[system Conponent Type]

{ (Varlnstance | Tinerlnstance | ConstDef | TenplateDef) [";"] }
Al t Guar dLi st
nyn
Semantic Description

Altsteps are scope units similar to functions. The altstep body defines an optional set of local definitions and a set of
aternatives, the so-called top alternatives, that form the altstep body. The syntax rules of the top alternatives are
identical to the syntax rules of the alternatives of al t statements.

The behaviour of an altstep can be defined by using the program statements and operations summarized in clause 18.
Altsteps may invoke functions and altsteps or activate altsteps as defaults.

Altsteps may be parameterized as defined in clause 5.4.

ETSI

162 ETSI ES 201 873-1 V4.9.1 (2017-05)

Altsteps may have an mtc clause. If an atstep has an mtc clause, the type referenced by this clause shall be mtc-
compatible (see clause 6.3.3) with the type of the mtc component reference. If the mtc clauseis not present, the type of
the mtc component reference is unknown in the scope of this altstep.

Altsteps may have asystem clause. If an altstep has a system clause, the type referenced by this clause shall by
system-compatible (see clause 6.3.3) with the type of the system component reference. If the system clause is not
present, the type of the system component reference is unknown in the scope of this altstep.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Thelocal definitions of an altstep shall be defined before the set of alternatives.

b) Theevauation of formal parameters default values and initialization of local definitions by calling value
returning functions may have side effects. To avoid side effects that cause an inconsistency between the actual
snapshot and the state of the component, and to prevent different results of subsequent evaluations on an
unchanged snapshot, restrictions given in clause 16.1.4 shall apply to the formal parameters' default values and
the initialization of local definitions.

c) If analtstep includes port operations or uses component variables, constants or timers the associated
component type shall be referenced using the r uns on keywords in the altstep header. The one exception to
thisruleisif all ports, variables, constants and timers used within the altstep are passed in as parameters.

d) Analtstep without ar uns on clause shall never invoke afunction or altstep or activate an altstep as default
withar uns on clauselocaly.

e) Analtstep that isactivated as a default shall only havei n value or template parameters, port parameters, and
timer parameters. An altstep that isonly invoked as an alternativeinanal t statement or as stand-alone
statement in a TTCN-3 behaviour description may havei n, out andi nout parameters. The rulesfor formal
parameter lists shall be followed as defined in clause 5.4.

f) Altsteps started by using the start test component operation shall aways have aruns on clause (see
clause 22.5) and are considered to be invoked in the component to be started, i.e. not locally. However, the
start test component operation may be invoked within behaviours without a runs on clause.

Examples

EXAMPLE 1: Parameterized altstep with runs on clause

/1 Gven
type conponent MyConponent Type {
var integer vc_nylntVar := 0;

timer tc_nyTiner;
port nyPort TypeOne pCOl, pCQ2;
port nyPort TypeTwo pCCB;

}

/Il Atstep definition using pCOl, pCX2, vc_nylntVar and tc_nyTiner of MyConponent Type
altstep a_altSet _A(in integer p_nyParl) runs on MyConponent Type {
[T pCOL. receive(nw_nyTenpl ate(p_mnyPar1l, vc_nylntVar)) {
setverdi ct (i nconc);

[1 %)COZ receive {

if (p_nyParl !'= 0) {
r epeat

el se {

br eak
}

[T tc_nyTiner.tinmeout {
setverdict(fail);
st op
}

ETSI

163 ETSI ES 201 873-1 V4.9.1 (2017-05)

EXAMPLE 2: Altstep with local definitions

altstep a_anotherAltStep(in integer p_nyParl) runs on MyConponent Type {
var integer v_nylLocal Var := f_nyFunction(); /1 local variable
const float c_nyFloat := 3.41; /1 local constant
[1 pCOL.recei ve(My/Tenpl ate(p_nyPar1, v_nylLocal Var) {
setverdi ct (i nconc);

}
[T pCR.receive {
r epeat
}

16.2.1 Invoking altsteps

The invocation of an altstep isawaysrelated to an al t statement. The invocation may be done either implicitly by the
default mechanism (see clause 20.5.3) or explicitly by adirect call withinan al t statement (see clause 20.2).

Syntactical Structure

Al tstepRef "(" [{ ActualPar [","] }] ")"
Semantic Description

The invocation of an atstep causes no new snapshot and the evaluation of the top alternatives of an altstep is done by
using the actual snapshot of theal t statement from which the altstep was called.

NOTE 1: A new snapshot within an altstep will of course be taken, if within a selected top aternativeanew al t
statement is specified and entered.

For an implicit invocation of an altstep by means of the default mechanism, the altstep shall be activated as a default by
means of anact i vat e statement before the place of the invocation is reached.

An explicit call of an altstep withinanal t statement looks syntactically like afunction invocation as an alternative.
When an altstep is called explicitly withinan al t statement, the next alternative to be checked is the first alternative of
theal t st ep. The alternatives of theal t st ep are checked and executed the same way as alternatives of anal t
statement (see clause 20.1) with the exception that no new snapshot is taken when entering theal t st ep. An
unsuccessful termination of the altstep (i.e. al top aternatives of theal t st ep have been checked and no matching
branch is found) causes the evaluation of the next alternative or invocation of the default mechanism (if the explicit call
isthe last aternative of theal t statement). A successful termination may cause either the termination of the test
component, i.e. the altstep ends with ast op statement, or a new snapshot and re-evaluation of theal t statement,

i.e. the altstep endswith r epeat (see clause 20.2) or acontinuation immediately after theal t statement, i.e. the
execution of the selected top alternative of the altstep ends with abr eak statement (see clause 19.12) or without
explicitr epeat or st op.

NOTE 2: Dueto the possibility of defining dynamic test configurations, an aternative in an explicitly invoked
altstep may refer to a disconnected or unmapped port at the time of its evaluation. In TTCN-3, ports
belong to the receiving component and matching is related to the top elementsin the port queues.
Dynamically unmapped and disconnected ports contribute to a snapshot in the same manner as mapped
and connected ports. This means, an explicitly invoked al t st ep may execute receiving operations that
empty the queues of unmapped and disconnected ports without causing atest case error.

Anal t st ep can also be caled as a stand-alone statement in a TTCN-3 behaviour description. In this case, the call of
theal t st ep can beinterpreted as shorthand for an al t statement with only one alternative describing the explicit call
of theal t st ep.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a Wheninvoking an altstep, the compatibility of the test component type of the invoking test component and of
the altstep runs on clause (as described in clause 6.3.3) need to be fulfilled.

b) Further restrictions on invoking altsteps in the activate statement are given in clause 20.5.2.

ETSI

164 ETSI ES 201 873-1 V4.9.1 (2017-05)

¢) Wheninvoking an atstep, the mtc and system compatibility of the mtc and system components of the invoked
atstep with the actual mtc and system types of the running test case as described in clause 6.3.3 need to be
fulfilled.

Examples

EXAMPLE 1: Implicit invocation of an atstep via a default activation

var defaul t v_nyDef Var Two : = activate(a_nySecondAl tStep()); // Activation of an altstep as
/1 default

EXAMPLE 2: Explicit invocation of an atstep within an alt statement

aI:t {
[1] pC3®.receive {

[T a_anotherAltStep(); // explicit call of altstep a_anotherAltStep as an alternative
/1 of an alt statenent
[T t_nyTiner.tineout {}

EXAMPLE 3: Explicit, stand-alone invocation of an altstep

/1 The statenent
a_anotherAltStep(); // a_anotherAltStep is assuned to be a correctly defined altstep

/lis a shorthand for

alt {
[1 a_anotherAltStep();
}

16.3 Test cases

A test case is complete and independent specification of the actions required to achieve a specific test purpose. It
typicaly startsin a stable testing state and ends in a stabl e testing state. It may involve one or more consecutive or
concurrent connectionsto the SUT. The test case shall be complete in the sense that it is sufficient to enable a test
verdict to be assigned unambiguously to each potentially observable test outcome (i.e. sequence of test events). Thetest
case shall be independent in the sense that it shall be possible to execute the derived executable test casein isolation
from other such test cases.

In TTCN-3, test cases are aspecia kind of function. Test cases define the behaviours, which have to be executed to
check whether the SUT passes atest or not. This behaviour is performed by the MTC which is automatically created
when atest case is being executed.

Syntactical Structure
testcase Testcaseldentifier
"(" [{ (Formal Val uePar | Fornal TenplatePar) [","] }] ")"
runs on Conponent Type

[system Conponent Type]
St at erent Bl ock

Semantic Description

A test case is considered to be a self-contained and complete specification that checks atest purpose. The result of atest
case execution is atest verdict.

A test case header has two parts:

a) interface part (mandatory): denoted by the keyword r uns on which references the required component type
for the MTC and makes the associated port names visible within the MTC behaviour; and

ETSI

165 ETSI ES 201 873-1 V4.9.1 (2017-05)

b) test system part (optional): denoted by the keyword sy st emwhich references the component type which
defines the required ports for the test system interface. The test system part shall only be omitted if, during test
execution, only the MTC isinstantiated. In this case, the MTC type defines the test system interface ports
implicitly.

The behaviour of atest case can be defined by using the program statements and operations described in clause 18.

Test cases may be parameterized as described in clause 5.4. Test cases can be executed in the control part of a module
(see clause 26).

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Therulesfor formal parameter lists shall be followed as defined in clause 5.4.

b) Test cases may only be invoked with an execute statement in a module control part as defined in clause 26.

Examples
testcase TC MyTest CaseOne()
runs on MyM cTypel /1 defines the type of the MIC
syst em MyTest Syst enlype /1 makes the port nanes of the TSI visible to the MIC

/1 The behavi our defined here executes on the nmtc when the test case invoked

}

/l or, a test case where only the MIC is instantiated
testcase TC_MyTest CaseTwo() runs on MyM cType2

/1 The behavi our defined here executes on the mc when the test case invoked

17 Void

18 Overview of program statements and operations

The fundamental program elements of test cases, functions, altsteps and the control part of TTCN-3 modules are
expressions, basic program statements such as assignments, loop constructs, etc., behavioural statements such as
sequential behaviour, alternative behaviour, interleaving, defaults, etc., and operations such assend, r ecei ve,
creat e, €efc.

Statements can be either single statements (which do not include other program statements) or compound statements
(which may include other statements and statement blocks).

Statements shall be executed in the order of their appearance, i.e. sequentialy, asillustrated in figure 8.

S1

S2 |:> S1; S2; S3;

S3

Figure 8: Illustration of sequential behaviour

Theindividual statementsin the sequence shall be separated by the delimiter *;".

ETSI

EXAMPLE:

M/Port . send(Mymessage); MyTIi

166

ner.start;

| og(" Done!");

ETSI ES 201 873-1 V4.9.1 (2017-05)

The specification of an empty statement block, i.e. { } , may be found in compound statements, e.g. abranchinan al t
statement, and implies that no actions are taken.

Table 15 gives an overview of the TTCN-3 expressions, statements and operations and restrictions on their usage.

Table 15: Overview of TTCN-3 expressions, statements and operations

Statement Associated keyword or Can be Can be invoked | Can be directly
symbol directly or |by functions, test| or indirectly
indirectly cases and invoked from
invoked by | altsteps running | specific places
module on test (see note 1)
control, but components
not by test
components
Expressions (...) Yes Yes Yes
Basic program statements
Assignments = Yes Yes Yes (see note 4)
If-else if (..){.}else{.} Yes Yes Yes
Select case select case (...) { case Yes Yes Yes
(..){.}caseelse{..}}
For loop for (..){...} Yes Yes Yes
While loop while (...) {...} Yes Yes Yes
Do while loop do {...} while (...) Yes Yes Yes
Label and Goto label / goto Yes Yes Yes
Stop execution stop Yes Yes
Returning control return Yes (see note 5) Yes
Leaving a loop, alt, altstep or break Yes Yes Yes
interleave
Next iteration of a loop continue Yes Yes Yes
Logging log Yes Yes Yes
Statements and operations for alternative behaviours
Alternative behaviour alt{...} Yes Yes
(see note 2)
Re-evaluation of alternative behaviour |repeat Yes Yes
Interleaved behaviour interleave {...} Yes Yes
(see note 2)
Activate a default activate Yes Yes
Deactivate a default deactivate Yes Yes
Configuration operations
Create parallel test component create Yes
Connect component port to connect Yes
component port
Disconnect two component ports disconnect Yes
Map port to test interface map Yes
Unmap port from test system interface|unmap Yes
Get MTC component reference value |mtc Yes Yes
Get test system interface component |system Yes Yes
reference value
Get own component reference value |self Yes Yes
Start execution of test component start Yes
behaviour
Stop execution of test component stop Yes
behaviour
Terminating the testcase with an error |testcase.stop Yes Yes
verdict
Remove a test component from the |kill Yes
system
Check termination of a PTC behaviour|running Yes
Check if a PTC exists in the test alive Yes
system
Wait for termination of a PTC done Yes

behaviour

ETSI

167

ETSI ES 201 873-1 V4.9.1 (2017-05)

Statement Associated keyword or Can be Can be invoked | Can be directly
symbol directly or |by functions, test| or indirectly
indirectly cases and invoked from
invoked by | altsteps running | specific places
module on test (see note 1)
control, but components
not by test
components
Wait a PTC cease to exist killed Yes
Communication operations
Send message send Yes
Invoke procedure call call Yes
Reply to procedure call from remote |reply Yes
entity
Raise exception (to an accepted call) |raise Yes
Receive message receive Yes
Trigger on message trigger Yes
Accept procedure call from remote getcall Yes
entity
Handle response from a previous call |getreply Yes
Catch exception (from called entity) |catch Yes
Check (current) message/call check Yes
received
Clear port queue clear Yes
Clear queue and enable sending & start Yes
receiving at a to port
Disable sending and disallow stop Yes
receiving operations to match at a port
Disable sending and disallow halt Yes
receiving operations to match new
messages/calls
Check the state of a port checkstate Yes
Timer operations
Start timer start Yes Yes
Stop timer stop Yes Yes
Read elapsed time read Yes Yes
Check if timer running running Yes Yes
Timeout event timeout Yes Yes
Verdict operations
Set local verdict setverdict Yes
Get local verdict getverdict Yes Yes
External actions
Stimulate an (SUT) action externally [action Yes Yes |
Execution of test cases
Execute test case execute Yes Yes
(see note 3)

NOTE 1:
snapshot evaluation are allowed.
NOTE 2: Can be used to control timer operations only.
NOTE 3:
NOTE 4: Changing of component variables is disallowed.
NOTE 5: Can be used in functions and altsteps but not in test cases.

Specific places are defined in clause 16.1.4. Only operations that do not have any potential side effects on

Can only be used in functions and altsteps that are used in module control.

19

19.0 General

Basic program statements

Table 16 provides an overview of the TTCN-3 basic program statements.

ETSI

168 ETSI ES 201 873-1 V4.9.1 (2017-05)

Table 16: Overview of TTCN-3 basic program statements

Basic program statements
Statement Associated keyword or symbol
Assignments =
If-else if (..){.}else{.}
Select case select case (...) { case (...) {...} case
else{...}}
For loop for (..){...}
While loop while (..) {...}
Do while loop do {...} while (...)
Label and Goto label / goto
Stop execution stop
Returning control return
Leaving a loop, alt, altstep or |break
interleave
Next iteration of a loop continue
Logging log

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Unless specified differently in the relevant clause, all values and templates used in a basic program statement
shall be completely initialized (for exemption see e.g. clause 19.1).

NOTE: Note that the restriction applies to component of statements defined in the present document, like the
boolean condition of i f statements, but not to the content of statement blocks embedded into the
statements.

19.1 Assignments

Values or templates may be assigned to variables or template variables (see clause 11). Thisisindicated by the symbol

Syntactical Structure

Vari abl eRef ":=" (Expression | Tenpl ateBody)
Semantic Description

During execution of an assignment, the right-hand side of the assignment shall evaluate to avalue or template that is at
least partially initialized.. The effect of an assignment is to bind the variable to the value of the expression or to a
template. Assignments are processed from left to right, i.e. expressionsin the left hand side are evaluated before those
in the right hand side. The evaluations obey the operator precedence defined in table 6. Unless the assignment isto a
lazy or fuzzy variable or parameter, the right hand side is evaluated completely before the resulting value or templateis
bound to the evaluated left-hand side of the assignment. Whenever assignments are used within the right hand side of an
assignment (due to assignment notation), these rules apply recursively.

A structured val ue on the right-hand side of the assignment shall be assigned completely to the variable on the left-hand
side of the assignment, If apartialy initialized value is assigned to a completely initialized variable, fields uninitialized
at the right-hand side of the assignment shall also become uninitialized at the left-hand side.

When adirect or indirect element or field of alazy or fuzzy variable is assigned, the variable is a so evaluated as much
as necessary before assignment, i.e. if an ancestor of that element or field isinitialized with afunction call, it shall be
evaluated. Thus, if the variableisfully assigned, it does not need to be evaluated before assignment.

NOTE: If asub-field or sub-element of afuzzy variable is assigned that has an ancestor which was formerly
assigned a function call, this function call will be evaluated once before the assignment and replaced by
its result inside the variable. Thus, the other sub-fields and sub-elements of that ancestor, apart from the
field or element being assigned become non-fuzzy.

ETSI

169 ETSI ES 201 873-1 V4.9.1 (2017-05)

Restrictions

In addition to the genera static rules of TTCN-3 given in clause 5 and shown in table 15, the following restrictions
apply:

a) Theright-hand side of an assignment shall evaluate to a value or template, which is type compatible with the
variable at the left-hand side of the assignment.

b) When the right-hand side of the assignment evaluates to atemplate (global or local template, in-line template,
template variable or a matching mechanism), the variable at the left hand side shall be atemplate variable.

c) Theright-hand side of an assignment shall evaluate to an object that is at least partially initialized.

d) If theleft-hand side of the assignment is areference to a non-optional value object (i.e. a value definition, a

mandatory field, arecord/set of/array element, a union alternative, a value parameter), the right-hand side shall
not be areference to an omitted field or the omit symbol.

€) Using areference to an omitted field in the right-hand side of the assignment has the same effect as using the

oni t keyword.
Examples
EXAMPLE 1:
v_nyVariable := (c_x + c_y — f_increnent(c_z))*3;
EXAMPLE 2:

type record MyRecord {
record { float x, float y } c,
integer a

}
var @azy MyRecord v_r :={
c := f_conputeC(),
a := f_conput eA()
} // not evaluated here
v_r.c.x := f_conputeX(); /1 first replaces field c with result of f_conputeC(),
/1 then replaces field c.x with uneval uated f_conputeX()
/1 field while c.y remains fixed; field a remains uneval uated

EXAMPLE 3:

type record MyRecord {
charstring fieldi,
charstring field2,
charstring field3

}

var MyRecord v_nylLi st 1;
var MyRecord v_nylLi st 2;

v_nyListl := {"val uel", "value2", "value3" }; /1 v_nyListl is conpletely initialized

v_nyList2.field2 := "newal ue"; /1 v_nmyList2 is partilly initialized
/1 fieldl and field3 renain uninitialized

v_nyListl := v_nyList2; /1 v_nyListl becone partially initialized,

/1 field2 has the value "newal ue"
/1 fieldl and field3 are uninitialized

ETSI

170 ETSI ES 201 873-1 V4.9.1 (2017-05)

19.2 The If-else statement

Thei f - el se statement, also known as the conditional statement, is used to denote branching in the control flow.

Syntactical Structure
if "(" Bool eanExpression ")" StatenentBl ock

{ else if "(" Bool eanExpression ")" StatenentBl ock }
[el se StatenentBl ock]

NOTE: else if "("BooleanExpression")" SatementBlock [else SatementBlock] is a shorthand notation for
el se "{"if "("BooleanExpression")" StatementBlock [else SatementBlock] "}".

Semantic Description

The branching of the control flow is decided upon the value of the Boolean expressions - the condition. A statement
block - and only one - will be executed, if its condition evaluates to true. The optional el se specifies a statement block
that will be executed if al the "if" and "else if" conditions before are false.

Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5 and shown in table 15.
Examples

if (v_date == "1.1.2005") { return (fail); }

if (v_nyVar < 10) { v_nyVar := v_nyVar * 10; log ("v_nyVar < 10"); }
else { v_nyVar :=v_nyVar/5; }

19.3 The Select statements

19.3.1 The Select case statement
Thesel ect case statement isan aternative syntactic form of thei f - el se statement.

Syntactical Structure

select "(" SingleExpression ")" "{"
{ case "(" { Tenplatelnstance[","] } ")" StatenentBl ock }+
[case else StatementBl ock]

"y
Semantic Description

Thesel ect case statementisan dternativetousingi f ..el sei f .. el se statements when comparing a value to
one or several other values. The statement contains a header part and one or more branches. Never more than one of the
branchesis executed.

In the header part of thesel ect case statement an expression shall be given. Each branch startswiththecase
keyword followed by alist of templatel nstance (alist branch, which may also contain a single element) or theel se
keyword (an else branch) and a statement block.

All templatel nstance in al list branches shall be of atype compatible with the type of the expression in the header.

A list branch is selected and the statement block of the selected branch is executed only, if any of the templatel nstance
matches the value of the expression in the header of the statement. On executing the statement block of the selected
branch (i.e. not jumping out by agot o statement), execution continues with the statement following the select case
statement.

The statement block of an else branch is always executed if no other branch textually preceding the else branch has
been selected.

ETSI

171 ETSI ES 201 873-1 V4.9.1 (2017-05)

Branches are evaluated in their textual order. If none of the templatel nstance-s matches the value of the expressionin
the header and the statement contains no el se branch, execution continues without executing any of thesel ect case
branches.

NOTE 1: Ingenerd, it cannot be decided if templatel nstances overlap or not. However, it is advised to use in the
branches templatel nstances that don't overlap. In such situations tools might provide better runtime
performance. The handling however is tool-specific.

NOTE 2: When more than one branch could be selected (the templatel nstances overlap) the textually first will be
selected. For this reason overlapping is discouraged, handling however is tool-specific.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 15, the following restrictions
apply:

a) Thesel ect SngleExpression and the case Templatel nstance-s shall be type compatible.

b) When all templatel nstances of all branches can be statically evaluated in compile time to specific values or
value ranges no two branches shall match the same value.

Examples
sel ect (PX_MyModul ePar) // where PX_MyMdul ePar is of charstring type

case (charstring:"firstValue")
{

log ("The first branch is selected");

}

case (v_nyCharVar, c_nyCharConst)
{
log ("The second branch is sel ected");
}

case el se

{
log ("The value of the nodul e paraneter PX M/Mdul ePar is selected");

}

}

/1 the above select statenent is equivalent to the following nested if-else statenent.

/Il Note: the followi ng textual replacenent of the select-case statenent is described in
/'l the operational semantics of TTCN 3.

{
var charstring v_mnyLocal Var := PX_M/Modul ePar ;

if (match(v_nyLocal Var , charstring:"firstValue")

log ("The first branch is selected");
else if (match(v_nyLocal Var , v_mnyCharVar) or match(v_nyLocal Var , c_nyChar Const))
log ("The second branch is selected");
el se
log ("The value of the nodul e paranmeter PX M/Mddul ePar is selected");

{
}
{
}

19.3.2 The Select union statement

To alow easier usage of the select statement for values of union types or anytype, a special form of the select statement
exists.

Syntactical Structure

sel ect union "(" SingleExpression ")" "{
{ case "(" ({ Ildentifier [","] } | { Typeldentifier [","] }) ")" StatementBl ock }+
[case else StatementBl ock]

ETSI

172 ETSI ES 201 873-1 V4.9.1 (2017-05)

Semantic Description
The statement contains a header part and one or more branches. Never more than one of the branchesis executed.

In the header part of thesel ect uni on statement atemplate instance of uni on type or anyt ype shall be given. If
the template instance has a union type, each branch shall start with the case keyword followed by one or more
identifiers of the alternatives (fields) of the union type (alist branch) or the el se keyword (an else branch) and a
statement block. If the template instance has type anyt ype, each branch shall start with the case keyword followed by
one or more type names (alist branch) or the el se keyword (an else branch) and a statement block. The
StatementBlock of the list branch containing the identifier or type identifier of the chosen aternative is executed. If no
case exists for the chosen alternative, the StatementBlock of the else branch, if it is present, is executed. Otherwise, the
sel ect uni on statement has no effect.

Restrictions

a) The SingleExpression in the header of thesel ect uni on statement shall be of auni on type. It shal be at
least partially initialized.

b) Every ldentifier inacase of thesel ect uni on statement shall be an identifier of an alternative of the
uni on type of the template instance given to the statement's header.

c) Notwocasesinasel ect uni on statement shall have the same case Identifier or Typeldentifier.

Examples

type uni on Messages {
M/MessageTypel nsgl
MyMessageType2 nsg2
MyMessageType3 nsg3
M/MessageTyped nsgéd
M/MessageType5 nsgb
}

function f_f(in Messages p_nsg) {
sel ect union (p_nsg) {
case (msgl) { log(p_nsg.msgl); }
case (nmsg2) { log(p_nsg.nsg2); }
case (nmsg3, nsg4) { log("either nsg3 or nsg4"); }
case else { log("unhandl ed variant"); }

}
function f_g(in anytype p_nsg) {
sel ect union (p_nsg) {
case (integer) { log(p_msg.integer); }
case (Messages) { f_f(p_nsg. Messages); }
case else { log("unhandl ed anytype variant"); }

}

194 The For statement

Thef or statement defines a counter loop.

Syntactical Structure

for "(" (Varlnstance | Assignnment) ";" Bool eanExpression ";" Assignnment ")"
St at emrent Bl ock

Semantic Description

Thef or statement contains two assignments and abool ean expression. The first assignment is necessary to initialize
the index (or counter) variable of the loop. The bool ean expression terminates the loop and the second assignment is
used to manipulate the index variable.

The value of the index variable isincreased, decreased or manipulated in such a manner that after a certain number of
execution loops atermination criteriais reached.

ETSI

173 ETSI ES 201 873-1 V4.9.1 (2017-05)

The termination criterion of the loop shall be expressed by abool ean expression. It is checked at the beginning of
each new loop iteration. If it evaluatesto t r ue, the execution continues with the statement block in the f or statement,
if it evaluatesto f al se, the execution continues with the statement which immediately followsthef or loop. If a

br eak statement is executed that is not within the body of an enclosed loop, al t , aststep ori nt er | eave, then the
loop is terminated, too.

Theindex variable of af or loop can be declared before being used in the f or statement or can be declared and
initidlized inthe f or statement header. If the index variable is declared and initialized in thef or statement header, the
scope of theindex variable islimited to the loop body, i.e. it isonly visible inside the loop body.

Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5 and shown in table 15.

Examples
var integer v_j; /1 Declaration of integer variable v_j

for (v_j:=1; v_j<=10; v_j:=v_j+1) { ...} /'l Usage of variable v_j as index variable of the
/1 for loop

for (var float v_i:=1.0; v_i<7.9; v_i:=v_i*1.35) { ...} // Index variable v_i is declared and
[/ initialized in the for |oop header. Variable
/1 v_i only is visible in the | oop body.

19.5 The While statement

A whi | e statement defines aloop that is executed as long as the loop condition holds.

Syntactical Structure
while "(" Bool eanExpression ")" StatenentBl ock
Semantic Description

The loop condition shall be checked at the beginning of each new loop iteration. If the loop condition does not hold,
then the loop is exited and execution shall continue with the statement, which immediately follows the whi | e loop. If a
br eak statement is executed that is not within the body of an enclosed loop, al t , dststep ori nt er | eave, thenthe
loop is terminated, too.

Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5 and shown in table 15.

Examples

while (v_j<10){ ...}

19.6 The Do-while statement

A do- whi | e statement defines aloop that is executed up until the loop condition does not hold.
Syntactical Structure

do StatenentBl ock while "(" Bool eanExpression ")"
Semantic Description

Thedo- whi | e loopisidentical to awhi | e loop with the exception that the loop condition shall be checked at the end
of each loop iteration. This means when using ado- whi | e loop the behaviour is executed at least once before the loop
condition is evaluated for the first time. If abr eak statement is executed that is not within the body of an enclosed
loop, al t, alststep ori nt er | eave, then the loop is terminated, too.

ETSI

174 ETSI ES 201 873-1 V4.9.1 (2017-05)

Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5 and shown in table 15.

Examples

do { ...} while (v_j<10);

19.7 The Label statement

Thel abel statement allows the specification of labelsin test cases, functions, atsteps and the control part of a
module.

Syntactical Structure

| abel Label I dentifier
Semantic Description

Al abel marksastatement. Thelabel isused by the got o statement (see clause 19.8) to transfer control to alabelled
statement.

Restrictions

In addition to the general static rulesof TTCN-3 given in clause 5 and shown in table 15, the following restrictions
apply:

a) Al abel statement can be used freely like other TTCN-3 behavioural program statements according to the
syntax rules defined in annex A. It can be used before or after a TTCN-3 statement but not as the first
statement of an alternative or top alternativeinanal t statement, i nt er | eave statement or al t st ep.

b) Labelsused followingthel abel keyword shall be unique among all labels defined in the same test case,
function, altstep or control part.

Examples
| abel MyLabel; /1 Defines the | abel MyLabel
/1 The labels L1, L2 and L3 are defined in the following TTCN-3 code fragment
Iébel L1; /1 Definition of |abel L1
al t {
[T pCOL.receive(nw_nySigl)
{ | abel L2; /1 Definition of |abel L2
pCOL. send(m nySi g2) ;
pCOL. r ecei ve(mv_ySi g3)
}
[T pCo2.receive(mv_nySig4)
{ pCx2. send(m nySi g5) ;
pC2. send(m nySi g6) ;
| abel L3; /1 Definition of |abel L3
pCx2. recei ve(mwv_nySi g7) ;

19.8 The Goto statement

A got o statement performsajumpto al abel .

Syntactical Structure

goto Label I dentifier
Semantic Description

The got o statement can be used in functions, test cases, atsteps and the control part of a TTCN-3 module to transfer
control to alabelled statement.

ETSI

175 ETSI ES 201 873-1 V4.9.1 (2017-05)

The got o statement provides the possibility to jump freely, i.e. forwards and backwards, within a sequence of
statements, to jump out of a single compound statement (e.g. awhi | e loop) and to jump over several levels out of
nested compound statements (e.g. nested alternatives).

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 15, the following restrictions
apply:

a) Itisnot alowed to jump out of or into functions, test cases, altsteps and the control part of a TTCN-3 module.

b) Itisnot allowed to jump into a sequence of statements defined in a compound statement (i.e. al t statement,
whi | e loop, for loop, i f -el se statement, do-whi | e loop and thei nt er | eave statement).

c) Itisnot alowed to usethe got o statement withinani nt er | eave statement.

Examples

/1 The followi ng TTCN-3 code fragnent includes

iabel L1; /1 ...the definition of |abel L1,
mnyVar := 2 * mnyVar,;
if (mnyVar < 2000) { goto L1; } [/l ...a junp backward to L1,

m nyVar2 := f_nyFunction(m.nyVar);
if (mnyVar2 > mnyVar) { goto L2; } /1 ...a junp forward to L2,
pCOL. send(m nyVar) ;
pCOQL. r ecei ve;
| abel L2; /1 ...the definition of |abel L2,
pCx2. send(i nteger: 21);
alt {
[T pCOL.receive { }
[1 pC®2.receive(integer: 67) {
| abel L3; /1 ...the definition of |abel L3,
pC2. send(m nyVar) ;
alt {
[T pCOL.receive { }
[T pCR2.receive(integer: 90) {
pC2. send(i nteger: 33);
pC2. recei ve(integer: 13);
goto L4; /1 ..a junmp forward out of two nested alt statenents,

}
[T pCR.receive(nw_nmyError) {
goto L3; /1 ...a junmp backward out of the current alt statenent,

[1 any port.receive {
goto L2; /1 ...a junp backward out of two nested alt statenents,
}

}

[1 any port.receive {
goto L2; /1 ...and a long junp backward out of an alt statenent.
}

}
| abel L4;

19.9 The Stop execution statement

The st op statement terminates execution of test components, atest case or atest control.
Syntactical Structure

st op
Semantic Description

The st op statement terminates execution in different ways depending on the context in which it is executed. When
executed in the control part of a module or in afunction called by the control part of amodule, it terminates the
execution of the module control part. When invoked in atest case, altstep or function that are executed on a test
component, it terminates the relevant test component.

ETSI

176 ETSI ES 201 873-1 V4.9.1 (2017-05)

NOTE: Thesemanticsof ast op statement that terminates atest component is identical to the stop component
operation sel f. st op (see clause 21.3.3).

Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5 and shown in table 15.
Examples
nodul e MyModul e {
: [/ Modul e definitions

téstcase TC My Test Case() runs on MyMICType system MySyst enilype{
var MyPTCType v_ptc: = MyPTCType.create; // PTC creation

v_ptc.start(f_nyFunction()); /1 start PTC execution
: /'l test case behaviour continued
st op /1 stops the MIC, all PTCs and the whol e test case

}
function f_nyFunction() runs on M/PTCType {
sfop /1 stops the PTC only, the test case continues
control {
/] test execution
st op /] stops the test canpaign

} /1 end control
} 1/ end nodul e

19.10 The Return statement

Ther et ur n statement terminates execution of functions or altsteps.
Syntactical Structure

return [Expression | Tenpl atel nstance]
Semantic Description

Ther et ur n statement terminates execution of a function or altstep and returns control to the point from which the
function or altstep was called. When used in functions, ar et ur n statement may be optionally associated with areturn
value or template.

TTCN-3 alows optional statement blocks that may follow altstep callswithinal t statements. If thereis a statement
block, ther et ur n statement returns control to the beginning of this statement block and the statement block is
executed beforethe al t statement isleft. If there is no statement block, test execution continues with the first statement
following theal t statement.

Thereturn value or template isfirst evaluated before returning.
Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 15, the following restrictions
apply:

a) Thereturn statement shall not be used in testcase definitions.

Examples

function f_myFunction() return bool ean {

if (v_date == "1.1.2005") {
return fal se; /] execution stops on the 1.1.2005 and returns the bool ean fal se
}
.returntrue; /1 true is returned
}
function f_nmyTenpl at eFunction() return tenplate charstring {
if (v_date == "1.1.2005") {
return "2005"; // the string of the year is returned

ETSI

177 ETSI ES 201 873-1 V4.9.1 (2017-05)

!

return ?; /1 the any tenplate is returned

}

function f_nyBehaviour() return verdicttype {

if (f _myFunction()) {

setverdict(pass); // use of f_myFunction in an if statenent

}
el se {

setverdi ct (i nconc);
}

return getverdict; // explicit return of the verdict

19.11

Thel og statement provides the means to write logging information to some logging device. The information that can
be logged is summarized in table 17.

The Log statement

Table 17: TTCN-3 language elements that can be logged

Used in a log statement

What is logged

Comment

module parameter identifier actual value
literal value value This includes also free text.
data constant identifier actual value

template instance

actual template or field
values and matching
symbols

data type variable identifier

actual value
or "UNINITIALIZED"

See notes 3 and 4.

sel f,ntc, systemor
component type variable
identifier

actual value and if
assigned the component
instance name
otherwise
"UNINITIALIZED"

On logging actual values see notes 2 to
4. Actual component states shall be
logged according to note 5.

running operation
(component or timer)

return value

true orfal se. In case of component or
timer arrays, array element specification
shall be included.

alive operation
(component)

return value

true orf al se. In case of arrays, array
element specifications shall be included.

port instance

actual state

Port states shall be logged according to
note 6.

default type variable identifier

actual state
or "UNINITIALIZED"

Default states shall be logged according
to note 7. See also notes 2 to 4.

timer name

actual state

Timer states shall be logged according to
note 8.

read operation

return value

See clause 24.3.

match operation

return value

getverdict operation

return value

none, pass, i nconc, orf ai |

predefined functions

return value

See annex C.

function instance

return value

Only functions with return clause are
allowed.

external function instance

return value

Only external functions with return clause
are allowed.

ETSI

178 ETSI ES 201 873-1 V4.9.1 (2017-05)

Used in a log statement What is logged Comment

formal parameter identifier see comment column Logging of actual parameters shall follow

rules specified for the language elements

they are substituting. In case of value

parameters the actual parameter value,

in case of template-type parameters the

actual template or field values and

matching symbols, in case of component

type parameters the actual component

reference, etc. shall be logged. For timer

parameters also the use of the read

operation and for component type and

timer parameters the use of the running

operation are allowed.

NOTE 1: Actual value/actual template is the value/template at the moment of the execution of the log
statement.

NOTE 2: The type of the logged value is tool dependent.

NOTE 3: In case of array identifiers without array element specification, actual values and for
component references names of all array elements shall be logged.

NOTE 4: The string "UNINITIALIZED" is logged only if the log item is unbound (uninitialized).

NOTE 5: Component states that can be logged are: Inactive, Running, Stopped and Killed (for further
details see annex F).

NOTE 6: Port states that can be logged are: Started and Stopped (for further details see annex F).

NOTE 7: Default states that can be logged are: Activated and Deactivated.

NOTE 8: Timer states that can be logged are: Inactive, Running and Expired (for further details see
annex F).

Syntactical Structure
log “(" { (FreeText | Tenplatelnstance) [","] } ")"
Semantic Description

Thel og statement provides the means to write one or more log items to some logging device associated with the test
control or the test component in which the statement is used. Items to be logged shall be identified by a
comma-separated list in the argument of the log statement. L og items may be individual language elements specified in
table 17 or expressions composed of such log items.

It is strongly recommended that the execution of the | og statement has no effect on the test behaviour. In particular,
functions used in alog statement should not (explicitly or implicitly) change component variable values, port or timer
status, and should not change the value of any of itsinout or out parameters.

NOTE: It isoutside the scope of the present document to define complex logging and trace capabilities which
may be tool dependent.

Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5 and shown in table 15.

Examples

var integer v_nyVar:= 1,

log("Line 248 in PTC_ A ", v_nyVar, " (actual value of v_nyVar)");

/1 The string "Line 248 in PTC_ A 1 (actual value of v_nyVar)" is witten to sone |og device
/1 of the test system

19.12 The Break statement

A br eak statement causes the exit from aloop, from an altstep or fromanal t ori nt er| eave statement.

Syntactical Structure

br eak

ETSI

179 ETSI ES 201 873-1 V4.9.1 (2017-05)

Semantic Description

On executing abr eak statement the innermost, currently executed loop, al t statement or i nt er | eave statement is
left. Execution continues with the statement following the construct which isleft. Using br eak outside the body of a
loop (f or , whi | e, do-whi | e) or an dternativeof anal t ori nt er| eave statement shall cause an error.

Altsteps are aways executed within a surrounding al t statement. If the execution of atop aternative of an altstep (see
clause 16.2) endswith abr eak statement, the altstep and the surrounding al t statement are left. Execution continues
with the statement following the surrounding al t statement.

NOTE: TTCN-3 alows optional statement blocks that may follow altstep callswithinal t statements. These
statement blocks are not executed when the altstep isleft by executing abr eak statement. Ar et ur n
statement has to be used, if such an optional statement block has to be executed (see clause 19.10).

Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 givenin clause 5 and shown in table 15.

Examples
do {
i f (v_condl) {
br eak; /1 the do-while loop is left
}
flér (var integer v_j:=1; v_j<=10; v_j:= v_j+1) {

i f (v_cond2) ({
br eak; /1 the for-loop is left but the do-while [oop is continued
}

\}/\lni le (v_j<10);

19.13 The Continue statement

A cont i nue statement causes the start of the next iteration of aloop.
Syntactical Structure
continue

Semantic Description

On executing acont i nue statement, the subsequent statements of the body of the innermost, currently executed loop
are skipped and the next iteration starts. Using cont i nue outside the body of aloop (f or , whi | e, do-whi | e) shall
cause an error.

Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5 and shown in table 15.

Examples
do {

if (v_cond) {
conti nue; /] execution continues with the next iteration of the do-while-Ioop
}

for (var integer v_j:=1; v_j<=10; v_j:= v_j+1) {

|f (v_cond2) {
conti nue; /1 continues with the next iteration of the for-1oop
}

ETSI

180 ETSI ES 201 873-1 V4.9.1 (2017-05)

}
while (v_j<10);

19.14 Statement block

Statement blocks can be used like basic program statements to introduce alocal scope in the flow of control of TTCN-3
behaviour. The declarations and statementsin a statement block are executed in the order of their appearance,
i.e. sequentially.

Syntactical Structure
"{" { LocalDefinition | Statenent } "}"
Semantic Description
A statement block defines alocal scope unit. Scoping rules for TTCN-3 are defined in clause 5.2.
Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5 and shown in table 15.

Examples
var integer v_aVar:= 0; /1 v_aVar is declared
{ /] start of a statenent bl ock
var integer v_nyVar:= 2; /1 v_nyVar is declared
v_aVar := 5 + v_nyVar, /1 v_nyVar is used in an assignhment
/1 end of statenent bl ock
/1 after leaving the statenent block, v_aVar is still known, but v_nyVar is not known anynore.

20 Statement and operations for alternative behaviours

20.0 General

Test behaviour cannot only be expressed sequentially, but also as a set of alternatives or combinations of both. An
interleaving operator allows the specification of interleaved sequences or alternatives. Table 18 summarizes the
statements and operations for alternative behaviours.

Table 18: Overview of TTCN-3 statements and operations for alternative behaviours

Statements and operations for alternative behaviours
Statement/Operation Associated keyword or symbol
Alternative behaviour alt{...}
Re-evaluation of alt statements |repeat
Interleaved behaviour interleave { ... }
Activate a default activate
Deactivate a default deactivate

ETSI

20.1

181 ETSI ES 201 873-1 V4.9.1 (2017-05)

The snapshot mechanism

A more complex form of behaviour is where sequences of statements are expressed as sets of possible aternatives to
form atree of execution paths, asillustrated in figure 9.

S1;
S1 alt {
[1 s2{
alt {
[] 4{ s7}
[1 s5{
S8;
alt {
[] s9 {}
[1 s10 {}
}
}
}
}
[1 s3{ S61}

Figure 9: lllustration of alternative behaviour

Thisisdonewiththeal t statement.

When entering an al t statement, a snapshot istaken. A snapshot is considered to be a partial state of atest component
that includes al information necessary to evaluate the Boolean conditions that guard alternative branches, all relevant
stopped test components, all relevant timeout events and the top messages, calls, replies and exceptionsin the relevant
incoming port queues. Any test component, timer and port which isreferenced in at least one aternativein the al t
statement, or in atop alternative of an altstep that isinvoked as an alternativeintheal t statement or activated as
default is considered to be relevant. A detailed description of the snapshot semanticsis given in the operational
semantics of TTCN-3 (part 4 of the TTCN-3 standard - ETSI ES 201 873-4 [1]).

NOTE 1.

NOTE 2:

20.2

Snapshots are only a conceptual means for describing the behaviour of theal t statement. The concrete
algorithms for the snapshot handling can be found in part 4 of the TTCN-3 standard
(ETSI ES 201 873-4[1]).

The TTCN-3 semantics assumes that taking a snapshot is instantaneous, i.e. has no duration. In areal
implementation, taking a snapshot may take some time and race conditions may occur. The handling of
such race conditions is outside the scope of the present document.

The Alt statement

An alt statement expresses sets of possible alternatives that form atree of possible execution paths.

Syntactical Structure

alt "{"

{
"[" [Bool eanExpression] "]"
((TimeoutStatenent |
Recei veSt at enent |
Trigger Statement |
Get Cal | St at enent |
Cat chSt at enent |
CheckSt at enent |
Get Repl ySt at ement |
DoneSt at enent |
Kill edStatenent) StatenentBl ock)

(Altsteplnstance [StatementBlock])

["[" else "]" StatenentBl ock]

ETSI

182 ETSI ES 201 873-1 V4.9.1 (2017-05)

Semantic Description

Theal t statement denotes branching of test behaviour due to the reception and handling of communication and/or
timer events and/or the termination of parallel test components, i.e. it isrelated to the use of the TTCN-3 operations
recei ve,trigger,getcall,getreply,catch,check,tinmeout, doneandkilled.Thealt statement
denotes a set of possible events that are to be matched against a particular snapshot.

Execution of alter native behaviour:
When entering an al t statement, a snapshot is taken.

The aternative branchesin theal t statement and the top alternatives of invoked altsteps and altsteps that are activated
as defaults are processed in the order of their appearance. If several defaults are active, the reverse order of their
activation determines the evaluation order of the top alternatives in the defaults. The alternative branchesin active
defaults are reached by the default mechanism described in clause 20.5.

Theindividual alternative branches are either branches that may be guarded by a Boolean expression or else-branches,
i.e. alternative branches starting with [el se] .

Else-branches are always chosen and executed when they are reached (see below).

Branches that may be guarded by boolean expressions either invoke an altstep (altstep-branch), or start with adone
operation (done-branch), aki | | ed operation (killed-branch), t i meout operation (timeout-branch) or areceiving
operation (receiving-branch), i.e.r ecei ve, trigger,getcall,getreply, catch oracheck operation. The
evaluation of the Boolean guards shall be based on the snapshot. The Boolean guard is considered to be fulfilled if no
Boolean guard is defined, or if the Boolean guard evaluatesto t r ue. The branches are processed and executed in the
following manner.

An altstep-branch is selected if the Boolean guard is fulfilled. The selection of an altstep-branch causes the invocation
of the referenced altstep, i.e. the altstep isinvoked and the evaluation of the snapshot continues within the altstep. An
altstep-branche may contain an optional statement block. The optional statement block shall be executed only, if an
alternative of the atstep referenced in the atstep-branch has been selected and executed.

A done-branch is selected if the Boolean guard is fulfilled and if the specified test component isin the list of stopped
components of the snapshot. The selection causes the execution of the statement block following the done operation.
The done operation itself has no further effect.

A killed-branch is selected if the Boolean guard is fulfilled and if the specified test component isin thelist of killed
components of the snapshot. The selection causes the execution of the statement block following theki | | ed
operation. Theki | | ed operation itself has no further effect.

A timeout-branch is selected if the Boolean guard is fulfilled and if the specified timeout event isin the timeout-list of
the snapshot. The selection causes execution of the specified t i neout operation, i.e. removal of the timeout event
from the timeout-list, and the execution of the statement block following thet i meout operation.

A receiving-branch is selected if the Boolean guard is fulfilled and if the matching criteria of receiving operation is
fulfilled by one of the messages, calls, replies or exceptions in the snapshot. The selection causes execution of the
receiving operation, i.e. removal of the matching message, call, reply or exception from the port queue, maybe an
assignment of the received information to a variable and the execution of the statement block following the receiving
operation. In the case of thet ri gger operation the top message of the queueis aso removed if the Boolean guard is
fulfilled but the matching criteriais not. In this case the statement block of the given alternative is not executed.

NOTE 1: The TTCN-3 semantics describe the evaluation of a snapshot as a series of indivisible actions of atest
component. The semantics do not assume that the evaluation of a snapshot has no duration. During the
evaluation of a snapshot, test components may stop, timers may timeout and new messages, calls, replies
or exceptions may enter the port queues of the component However, these events do not change the actual
snapshot and thus, are not considered for the snapshot eval uation.

NOTE 2: Due to the possibility of defining dynamic test configurations, a receiving branch may refer to a
disconnected or unmapped port at the time of its evaluation. In TTCN-3, ports belong to the receiving
component and matching is related to the top elements in the port queues. Dynamically unmapped and
disconnected ports contribute to a snapshot in the same manner as mapped and connected ports. This
means, the execution of receiving operations may empty the queues of unmapped and disconnected ports
without causing atest case error.

ETSI

183 ETSI ES 201 873-1 V4.9.1 (2017-05)

If none of the alternative branchesintheal t statement and top alternatives in the invoked altsteps and active defaults
can be selected and executed, theal t statement shall be executed again, i.e. a new snapshot is taken and the evaluation
of the alternative branches is repeated with the new snapshot. This repetitive procedure shall continue until either an
aternative branch is selected and executed, or the test case is stopped by another component or by the test system

(e.g. because the MTC is stopped) or with a dynamic error.

The test case shall stop and indicate a dynamic error if atest component is completely blocked. This means none of the
aternatives can be chosen, no relevant test component is running, no relevant timer is running and all relevant ports
contain at least one message, call, reply or exception that do not match.

NOTE 3: The repetitive procedure of taking a complete snapshot and re-evaluate al alternativesisonly a
conceptual means for describing the semantics of theal t statement. The concrete algorithm that
implements this semantics is outside the scope of the present document.

Selecting/deselecting an alter native:

If necessary, it is possible to enable/disable an alternative by means of a Boolean expression placed between the
("[...]") brackets of the alternative.

Else branch in alternatives:

Any branchinanal t statement can be defined as an el se branch by including the el se keyword between the opening
and closing brackets at the beginning of the alternative. The statement block of the else branch is always executed if no
other alternative textually preceding the else branch has proceeded.

Default mechanism:

It should be noted that the default mechanism (see clause 20.5) is always invoked at the end of al alternatives. If an
el se branch is defined, the default mechanism will never be called, i.e. active defaults will never be entered.

NOTE 4: Itisalso possibleto use el se in altsteps.
NOTEDS: Itisallowedtousear epeat statement withinan el se branch.

NOTE 6: It isalowed to define more than one else branch in an alt statement or in an altstep, however always only
the first else branch is executed.

Re-evaluation of alt statements:
There-evauation of anal t statement can be specified by using ar epeat statement (see clause 20.3).
Invocation of altsteps as alter natives:

TTCN-3 alowsthe invocation of atsteps as dternativesinal t statements (see clause 16.2.1). When an altstep is
explicitly invoked as an alternative, the optional statement block following the altstep call shall aso be executed.

Continue execution after the alt statement:

Behaviour execution continues with the statement following the al t statement when one of the branches of theal t or
invoked defaultsis selected and completely executed, or abranch of anal t st ep used in an atsteps-branch is selected
and the branch and the optional statement block following the invoked altstep are completely executed.

Execution also continues with the statement following theal t statement if abr eak statement isreached in the
statement block of the selected branch of anal t statement, of anal t st ep used in an atstep-branch, or of an
al t st ep invoked as default.

Theal t statement can also be left by using agot o statement in the selected branch of theal t (i.e. no branches of
atsteps and defaults can be considered in this case), and execution continues with the statement following the label,
got o ispointing to.

ETSI

184 ETSI ES 201 873-1 V4.9.1 (2017-05)

Restrictions

In addition to the genera static rules of TTCN-3 given in clause 5 and shown in table 15, the following restrictions
apply:

a) Theopen and close square brackets ("[...]") shall be present at the start of each alternative, even if they are
empty. This not only aids readability but also is necessary to syntactically distinguish one alternative from
another.

b) Theevaluation of a Boolean expression guarding an aternative shall not have side effects. To avoid side
effects that cause an inconsistency between the actual snapshot and the state of the component, the same
restrictions as the restrictions for the initialization of local definitions within altsteps (clause 16.2) and the
restrictions imposed on the contents of functions called from special places (clause 16.1.4) shall apply.

c¢) Theevaluation of the event of an alt branch shall not have side effects. To avoid side effects that cause an
inconsistency between the actual snapshot and the state of the component or introduce indeterminism in the
evaluation of the following alt branches or the re-evalution of the same alt branch, the restrictions imposed on
the contents of functions called from specia places (clause 16.1.4) shall apply to expressions occurring in the
matching part of an alternative.

d) Theevaluation of an altstep invoked from an alt branch, if none of the alternativesin the altstep is chosen,
shall not have side effects. To avoid side effects the restrictions imposed on the contents of functions called
from specia places (clause 16.1.4) shall apply to the actual parameters of the invoked altstep.

e) Void.
f) Anal t statement used within the module control part shall only containt i meout statements.
Examples

EXAMPLE 1: Nested alternatives

alt {
[T nyPort.receive (mv_nyMessage) {

setverdi ct (pass);

t_nyTiner.start;

alt {

[T nyPort.receive (mv_nySecondMessage) {

t_nyTinmer. stop;
setverdi ct (pass);

[T t_nyTimer.timeout {
myPort.send (m.nyRepeat);
t_nyTiner.start;
alt {
[T nyPort.receive (mv_nySecondMessage) {
t_nyTinmer. stop;
setverdi ct (pass)

}
[T t_nyTimer.timeout { setverdict (inconc) }
[T nmyPort.receive { setverdict (fail) }

}

[T nmyPort.receive { setverdict (fail) }

}

}
[1 t_nyTirmer.tineout { setverdict (inconc) }
[T nmyPort.receive { setverdict (fail) }

}
EXAMPLE 2: Alt statement with guards

alt {
[v_x>1] |2.receive { /1 Bool ean guar d/ expression
setverdi ct (pass);
[v_x<=1] |2.receive { /1 Bool ean guard/ expression
setverdi ct (i nconc);
}
}

ETSI

185 ETSI ES 201 873-1 V4.9.1 (2017-05)

EXAMPLE 3. Alt statement with else branch

/1 Use of alternative with Bool ean expressions (or guard) and el se branch

alt {
tel se] { /1 else branch
f_nyErrorHandling();
setverdict(fail);
st op;
}
}

EXAMPLE 4. Re-evauation with repeat

alt {
[T pC3. receive {
v_count := v_count + 1;
r epeat /'l usage of repeat

}

[T t_tl.tinmeout { }

[1 any port.receive {
setverdict(fail);
st op;

}
}

EXAMPLES: Alt statement with explicitly invoked altstep

alt {
[1] pC3®.receive { }
[1] a_anotherAltStep() { /1 Explicit call of altstep a_anotherAltStep as alternative.
setverdict(inconc) // Statement block executed if an alternative within
/1 altstep Another AltStep has been sel ected and execut ed.

[1 %_rryTi mer.timeout { }

}
EXAMPLE 6: Alt statement with forbidden function calls
alt {
[] f_getPort().receive(t(p())) { } // forbidden if f_getPort, t or p has side effects
[1 a_anotherAltStep(f()); // forbidden if f has side effects
[T t_nyTimer[i(p())].tineout { } /] forbidden if i or p has side effects
[f_g()] f_getConmponent(p()).done {} // forbidden if f_g, f_getConponent or p has side effects
}

20.3 The Repeat statement
Ther epeat statement isused for are-evaluation of anal t statement.

Syntactical Structure
r epeat

Semantic Description

Ther epeat statement, when used in the statement block of alternativesof al t statements, causes the re-eval uation of
theal t statement, i.e. a new snapshot is taken and the alternatives of theal t statement are evaluated in the order of
their specification.

When used in statement blocks of the response and exception handling parts of blocking procedure calls, the repeat
statement causes the re-eval uation of the response and exception handling part of the call (see clause 22.3.1).

If ar epeat statement isused in atop aternative in an altstep definition, it causes a new snapshot and the
re-evaluation of theal t statement from which the altstep has been called. The call of the altstep may either be done
implicitly by the default mechanism (see clause 20.5.1) or explicitly intheal t statement (see clause 20.2).

ETSI

186 ETSI ES 201 873-1 V4.9.1 (2017-05)

Restrictions

In addition to the genera static rules of TTCN-3 given in clause 5 and shown in table 15, the following restrictions
apply:

a) Therepeat statement shall only be used withinal t statements, cal | statements or altsteps.

Examples

EXAMPLE 1: Usage of repesat in an alt statement

alt {
[T pC3. receive {
v_count := v_count + 1;
r epeat /'l usage of repeat

}

[T t_tl.tineout { }

[1 any port.receive {
setverdict(fail);
st op;

}
}

EXAMPLE 2: Usage of repeat in an altstep

altstep a_anotherAltStep() runs on MyConponent Type {
[1 pCOL.receive{
setverdi ct (i nconc);
repeat /1 usage of repeat

[1 }F'JCOZ receive {}

204 The Interleave statement

Thei nt er | eave statement allows to specify the interleaved occurrence and handling of receiving eventsincluding
done,kill ed,ti meout,receive,trigger,getcall,getreply,catchandcheck.

Syntactical Structure

interleave "{"

{ "[1" (TineoutStatenent |
Recei veSt at enent |
Trigger St atement |
Get Cal | St at ement |
Cat chSt at ement |
CheckSt at ement |
CGet Repl ySt at emrent |
DoneSt at enent |
Ki |l edStatenent) StatenentBl ock

"y
Semantic Description

Thei nt er | eave statement allows to specify the interleaved occurrence and handling of the statementsdone,
killed,tinmeout,receive,trigger,getcall,getreply,catchandcheck.

Interleaved behaviour can always be replaced by an equivalent set of nested al t statements. The procedures for this
replacement and the operational semantics of interleaving are described in part 4 of the TTCN-3 standard
(ETSI ES 201 873-4[1]).

ETSI

187 ETSI ES 201 873-1 V4.9.1 (2017-05)

The rules for the evaluation of an interleaving statement are the following:

a) Whenever areception statement is executed, the following non-reception statements are subsequently executed
until the next reception statement isreached, abr eak statement isreached, or the interleaved sequence ends.

NOTE 1: Reception statements are TTCN-3 statements which may occur in sets of alternatives, i.e.r ecei ve,
check,trigger,getcall,getreply,catch,done, kill edandti nmeout.Non-reception
statements denote all other non-control-transfer statements which can be used withinthei nt er | eave
statement.

b) If none of the alternatives of thei nt er | eave statement can be executed, the default mechanism will be
invoked. This means, according to the semantics of the default mechanism, the actual snapshot will be used to
evaluate those altsteps that have been activated before entering thei nt er | eave statement.

NOTE 2: The complete semantics of the default mechanism withinani nt er | eave statement is given by
replacing thei nt er | eave statement by an equivalent set of nested al t statements. The default
mechanism applies for each of theseal t statements.

¢) Theevauation then continues by taking the next snapshot if no br eak statement was encountered.

d) Theevauation of thei nt er | eave statement isterminated if abr eak statement is executed.
The operational semantics of interleaving are fully defined in part 4 of the TTCN-3 standard (ETSI ES 201 873-4 [1]).
Restrictions

In addition to the genera static rules of TTCN-3 given in clause 5 and shown in table 15, the following restrictions
apply:

a) Control transfer statementsact i vat e, deacti vat e, repeat, al callsof atsteps and (direct and
indirect) calls of user-defined functions, which include reception statements, shall not be used in
i nt erl eave statements.

b) Inaddition, itisnot alowed to guard branches of ani nt er | eave statement with Boolean expressions
(i.e. the'[]' shall always be empty). It isalso not alowed to specify el se branchesin interleaved behaviour.

c) Aninterl eave statement used within the module control part shall only containt i meout statements.

d) Therestricted use of the control transfer statementsf or , whi | e, do- whi | e, and got o within
i nt er| eave statementsis allowed under the following conditions:

a Theloop statementsf or , whi | e, and do- whi | e can be used within statements blocks that do not
contain reception statements.

b. Thegot o statement can be used for defining unconditional jumps within statements blocks that do
not contain reception statements and for specifying unconditional jumpsout of i nt er | eave
Statements.

EXAMPLE:

/1 The following TTCN-3 code fragment
interl eave {
[1 pCOL.receive(nw nySigl) {

PCOL. send(m_nySi g2) ;

PCOL. recei ve(nw_nySi g3) ;

}

[T pCR.receive(nw nySig4d) {
pCx2. send(m nySi g5) ;
pCR2. send(m nySi g6) ;
pC2. recei ve(mw_nySi g7);

}

/1 is a shorthand for

alt {

[T PCOL.receive(nw_nySigl) {
PCOL. send(m nySi g2) ;
alt {

ETSI

188

[1 PCOL. Irec?i ve(mv_nySi g3) {
al t
[T PCR.receive(mv nySig4) {
PCX2. send(m_nySi g5) ;
PCO2. send(m nySi g6) ;
PCQ2. r ecei ve(nw_nySi g7)

}

}
[1 PC®R.receive(nw nySig4) {
PCX2. send(m_nySi g5) ;
PC®2. send(m nySi g6) ;
alt {
[1 PCOL.receive(nw_nySig3) {
PC2. r ecei ve(nw_nySi g7) ;

}
[T PCR.receive(nw_nySig7) {
PCOL. recei ve(nw_nySi g3) ;
}

}

}
[T pCRR.receive(nw_nySig4) {

pCR2. send(m nySi g5) ;

pC2. send(m nySi g6) ;

alt {

[T pCOL.receive(nw_nySigl) {
pCOL. send(m nySi g2) ;
alt {
[T pCOL.receive(nw_nySig3) {

pC2. recei ve(mv_nySi g7) ;

}
[T pCR.receive(nv nySig7) {
pCQOL. r ecei ve(mv_nySi g3) ;
}

}

}
[T pCR.receive(mv_nySig7) {
alt {
[1 pCOL.receive(nw_nySigl) {
pCOL. send(m nySi g2) ;
pCQL. r ecei ve(mv_nySi g3) ;

20.5 Default Handling

20.5.0 General

TTCN-3 alows the activation of altsteps (see clause 16.2) as defaults. For each test component the defaults,

i.e. activated altsteps, are stored as an ordered list. The defaults are listed in the reversed order of their activation i.e. the
last activated default isthe first element in the list of active defaults. The TTCN-3 operationsact i vat e

(seeclause 20.5.2) and deact i vat e (see clause 20.5.3) operate on the list of defaults. Anact i vat e putsanew
default asthe first element into thelist and adeact i vat e removes adefault from the list. A default in the default list
can be identified by means of default reference that is generated as a result of the corresponding act i vat e operation.

ETSI

ETSI ES 201 873-1 V4.9.1 (2017-05)

189 ETSI ES 201 873-1 V4.9.1 (2017-05)

20.5.1 The default mechanism

The default mechanism is evoked at the end of each al t statement, if due to the actual snapshot none of the specified
aternatives could be executed. An evoked default mechanism invokes the first altstep in the list of defaults, i.e. the last
activated default, and waits for the result of its termination. The termination can be successful or unsuccessful.
Unsuccessful means that none of the top alternatives of theal t st ep (see clause 16.2) defining the default behaviour
could be selected, successful means that one of the top alternatives of the default has been selected and executed.

NOTE 1: Ani nt er| eave statement is semantically equivalent to a nested set of al t statements and the default
mechanism also applies to each of theseal t statements. This means, the default mechanism also applies
toi nt er| eave statements. Furthermore, the restrictions imposed on interleave statementsin
clause 20.4 do not apply to altsteps that are activated as default behaviour for interleave statements.

NOTE 2: Dueto the possibility of defining dynamic test configurations, an alternative in an altstep activated as
default may refer to a disconnected or unmapped port at the time of its evaluation. In TTCN-3, ports
belong to the receiving component and matching is related to the top elementsin the port queues.
Dynamically unmapped and disconnected ports contribute to a snapshot in the same manner as mapped
and connected ports. Thismeans, an al t st ep invoked as default may execute receiving operations that
empty the queues of unmapped and disconnected ports without causing atest case error.

In the case of an unsuccessful termination, the default mechanism invokes the next default in the list. If the last default
in the list has terminated unsuccessfully, the default mechanism will return to the placein theal t statement in which it
has been invoked, i.e. at theend of theal t statement, and indicate an unsuccessful default execution. An unsuccessful
default execution will also beindicated if the list of defaults is empty.

An unsuccessful default execution may cause a new snapshot or a dynamic error if the test component is blocked
(see clause 20.1).

In the case of a successful termination, the default may either stop the test component by means of ast op statement, or
the main control flow of the test component will continue immediately after the al t statement from which the default
mechanism was called or the test component will take new snapshot and re-evaluatethe al t statement. The latter has
to be specified by means of ar epeat statement (see clause 20.3). If the execution of the selected top alternative of the
default ends with abr eak statement or without ar epeat statement the control flow of the test component will
continue immediately after theal t statement.

NOTE 3: TTCN-3 does not restrict the implementation of the default mechanism. It may for example be
implemented in form of aprocessthat isimplicitly called at the end of each al t statement or in form of a
separate thread that is only responsible for the default handling. The only requirement is that defaults are
called in the reverse order of their activation when the default mechanism has been invoked.

20.5.2 The Activate operation

Theact i vat e operation is used to activate altsteps as defaults.

Syntactical Structure
activate "(" AtstepRef "(" [{ ActualPar [","] }] ")" ")"
Semantic Description

Anact i vat e operation will put the referenced altstep as the first element into the list of defaults and return a default
reference. The default reference is a unique identifier for the default and may be used inadeact i vat e operation for
the deactivation of the defaullt.

The effect of anact i vat e operation islocal to the test component in which it is called. This means, atest component
cannot activate a default in another test component.

Theact i vat e operation can be called without saving the returned default reference. This formis useful in test cases
which do not require explicit deactivation of the activated default, i.e. deactivation of adefault is done implicitly at
MTC termination.

ETSI

190 ETSI ES 201 873-1 V4.9.1 (2017-05)

The actual parameters of a parameterized altstep (see clause 16.2.1) that should be activated as a default, shall be
provided in the corresponding act i vat e statement. This means the actual parameters are bound to the default at the
time of its activation (and not e.g. at the time of its invocation by the default mechanism).

Restrictions

In addition to the genera static rules of TTCN-3 given in clause 5 and shown in table 15, the following restrictions
apply:

a) For atsteps activated on test components, all timer instances in the actual parameter list shall be declared as
component type local timers (see clause 6.2.10.1).

b) For altsteps activated in module control or in functions or atsteps invoked directly or indirectly from module
control, al timer instances in the actual parameter list shall be declared in the highest scope of the module
control part (see clause 26.2). Timers from lower scopes of the module control part (i.e. from the nested
statement blocks) are not allowed to occur in the actual parameter list.

c) Anadltstep that is activated as a default shall only havei n parameters, port parameters, or timer parameters.

Examples

EXAMPLE 1. Activation where the default reference is kept

Il Declaration of a variable for the handling of defaults
var default v_nyDefaultVar := null;

/) Decl aration of a default reference variable and activation of an altstep as default
var default v_nyDefVarTwo : = activate(a_nySecondAl tStep());

/) Activation of altstep MJAItStep as a defaul t
v_nyDefaul tVar := activate(a_nyAltStep()); // a_nyAltStep is activated as defaul t

/) Usage of v_nyDefaultVar for the deactivation of default a_nyDefAltStep
deactivat e(v_mnyDef aul t Var) ;

EXAMPLE 2: Simple activation

/1 Activation of an altstep as a default, without assignnent of default reference
activate(a_myCommonDefaul t());

EXAMPLE 3: Activation of a parameterized altstep

altstep a_nyAltStep2 (integer p_val uel, MyType p_val ue2,
MyPort Type p_port, timer p_tinmer)
{

}

function f_nyFunc () runs on MyConpType

va.r default v_nyDefaultVar := null;

v_nyDefaul tVar : = activate(a_nyA tStep2(5, v_nyVar, vc_nyConpPort, tc_nyConpTiner);
/1 MYAltStep2 is activated as default with the actual paraneters 5 and

/'l the value of v_nyVar. A change of v_nyVar before a call of a_nyAltStep2 by
/1 the default mechanismwi |l not change the actual paraneters of the call.

20.5.3 The Deactivate operation
Thedeact i vat e operation is used to deactivate defaults, i.e. previously activated altsteps.

Syntactical Structure

deactivate ["(" VariableRef | Functionlnstance ")"]

ETSI

191 ETSI ES 201 873-1 V4.9.1 (2017-05)

Semantic Description
A deact i vat e operation will remove the referenced default from the list of defaults.

The effect of adeact i vat e operation islocal to the test component in which it is called. This means, atest
component cannot deactivate a default in another test component.

A deact i vat e operation without parameter deactivates all defaults of atest component.

Callingadeact i vat e operation with the specia value nul | has no effect. Calling adeact i vat e operation with
an undefined default reference, e.g. an old reference to a default that has already been deactivated or an uninitialized
default reference variable, shall cause aruntime error.

Restrictions

In addition to the genera static rules of TTCN-3 given in clause 5 and shown in table 15, the following restrictions
apply:

a) Thevariable associated with VariableRef (being a component type variable, a component type parameter, etc.)
or the return type associated with Functionlnstance shall be of default type.

Examples
var default v_nyDefaultVar := null;
var default v_nyDefVarTwo : = activate(a_nySecondA tStep());
var default v_nyDefVarThree : = activate(a_nmyThirdAltStep());
v._rTyDef aultVar := activate(a_nyAltStep());
deact i vat e(v_nyDefaul tVar); // deactivates a_nyA tStep

déactivate; /] deactivates all other defaults, i.e. in this case a_nySecondAlt Step
/1 and a_nyThirdAl t Step

21 Configuration Operations

21.0 General

Configuration operations are used to set up and control test components and their connections. They are summarized in
table 19.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) These operations shall only be used in:
- TTCN-3 test cases;
- behaviours invoked directly or indirectly from atest case or from a behaviour started on a ptc.
b) They shal not be used in:
- the module control part;
- functions or altsteps invoked directly or indirectly from the module control part;
- declarations inside component type definitions; or

- functions invoked directly or indirectly from declarations inside component type definitions.

ETSI

192

ETSI ES 201 873-1 V4.9.1 (2017-05)

Table 19: Overview of TTCN-3 configuration operations

Operation

Explanation

Syntax Examples

Connection Operations

connect

Connects the port of one test
component to the port of another test

connect (ptcl: pl, ptc2:p2);

component

disconnect Disconnects two or more connected di sconnect (ptcl:pl, ptc2:p2);
ports

map Maps the port of one test component to [Map(ptcl: g, systemsutPort1);
the port of the test system interface

unmap Unmaps two or more mapped ports unmap(ptcl: g, systemsutPortl);

Test Component Operations

create

Creation of a normal or alive test
component, the distinction between
normal and alive test components is
made during creation

(MTC behaves as a normal test
component)

Non-alive test components:
var PTCType c := PTCType. create;

Alive test components:
var PTCType c := PTCType.create alive;

start

Starting test behaviour on a test
component, starting a behaviour does
not affect the status of component
variables, timers or ports

c.start (PTCBehaviour());

stop

Stopping test behaviour on a test
component

c.stop;

kill

Causes a test component to cease to
exist

c.kill;

alive

Returns true if the test component has
been created and is ready to execute
or is executing already a behaviour;
otherwise returns false

if (c.alive)

running

Returns true as long as the test
component is executing a behaviour;
otherwise returns false

if (c.running)

done

Checks whether the function running
on a test component has terminated

c. done;

killed

Checks whether a test component has
ceased to exist

c.killed { ..}

Test Case Operations

stop

Terminates the test case with the test
verdict error

testcase. stop (

B

Reference Operations

mtc

Gets the reference to the MTC

connect(ntc:p, ptc:p);

component that executes this operation

system Gets the reference to the test system |map(c:p, system sutPort);
interface
self Gets the reference to the test sel f. stop;

21.1

21.1.0 General

Connection Operations

The ports of atest component can be connected to other components or to the ports of the test system interface
(seefigure 10). In the case of connections between two test components, the connect operation shall be used. When
connecting atest component to atest system interface the map operation shall be used. The connect operation
directly connects one port to another with thei n side connected to the out side and vice versa. The map operation on
the other hand can be seen purely as a name trandation defining how communications streams can be referenced.

ETSI

193 ETSI ES 201 873-1 V4.9.1 (2017-05)

Test system Connected Ports

[T -
MTC < PTC

v

out IN
out I'N
Mapped Ports *
Abstract Test SystemInterface aut l | I'N
OO

Real Test System Interface

SUT

Figure 10: lllustration of the connect and map operations

21.1.1 The Connect and Map operations

Theconnect operation isused to setup connections between test components. The map operation are used to setup
connections to the SUT.

Syntactical Structure

connect "(" ConponentRef ":" Port "," ConmponentRef ":" Port ")"
map " (" ConponentRef ":" Port "," ConponentRef ":" Port ")"
[param"(" [{ ActualPar [","] }+ 1 ")" 1]

Semantic Description

With both the connect operation and the map operation, the ports to be connected are identified by the component
references of the components to be connected and the names of the ports to be connected.

The operation mt ¢ identifiesthe MTC, the operation sy st emidentifies the test system interface and the operation
sel f identifies the test component in which sel f has been called (see clause 6.2.11). All these operations can be used
for identifying and connecting ports.

Both theconnect and map operations can be called from any behaviour definition except for the control part of a
module. However before either operation is called, the components to be connected shall have been created and their
component references shall be known together with the names of the relevant ports.

Both the map and connect operations alow the connection of a port to more than one other port. It is not allowed to
connect to a mapped port or to map to a connected port.

Applying amap or connect operation to ports which are already mapped or connected has no effect on the test
behaviour or test configuration, i.e. test execution continues as if the operation has not been invoked.

NOTE: Please note that also triMap or tciConnect respectively will not be invoked in such a case.

The map operation provides an optional parameter list for configuration purposes. This allows to pass val ues needed for
dynamic runtime configuration. If a parameter list is present, the actual parameters shall conform to the map param
clause of the port type declaration of the system port used.

ETSI

194 ETSI ES 201 873-1 V4.9.1 (2017-05)

Restrictions

In addition to the genera static rules of TTCN-3 given in clauses 5 and 21 and shown in table 15, the following
restrictions apply:

a)

b)

0)

d)

e

f)
9)

h)

For both the connect and map operations, only consistent connections are allowed.
Assuming the following:
1) ports PORT1 and PORT2 are the ports to be connected;
2) inlist-PORT1 defines the messages or procedures of the in-direction of PORT1;
3) outlist-PORT 1defines the messages or procedures of the out-direction of PORT1;
4) inlist-PORT2 defines the messages or procedures of the in-direction of PORT2; and
5) outlist-PORT2 defines the messages or procedures of the out-direction of PORT2.
Theconnect operationisallowed if and only if:
outlist-PORT1 c inlist-PORT2 and outlist-PORT2 c inlist-PORT1.
The map operation (assuming PORT2 isthe test system interface port) isalowed if and only if:
outlist-PORT1 c outlist-PORT2 and inlist-PORT2 c inlist-PORT1.
In all other cases, the operations shall not be allowed.

Since TTCN-3 alows dynamic configurations and addresses, not all of these consistency checks can be made
statically at compile-time. All checks, which could not be made at compile-time, shall be made at runtime and
shall lead to atest case error when failing.

In addition, the restrictions on allowed and disallowed connections described in clause 9.1 apply.

In map operations, par amclauses are optional. If in armap operation apar amclause is present, exactly one
of the components referenced by the operation shall be the sy st emcomponent reference, the type of the
system component shall be known in the context of the operation either viaasyst emclause or viaar uns
on clauseinat est case without syst emclause, the type of the system port to which the operation is
applied shall include amap par amdeclaration, and the actual parameters shall conform to the map param
clause of the port type declaration of the system port used.

If the type of the component referenced in a connection operation is known (either when the component
reference isavariable or value returned from a function or the type is defined in the runs on, mtc or system
clause of the calling function), the referenced port declaration shall be present in this component type.

Examples

EXAMPLE 1. Simple map and connect

/1
/1

It is assuned that the ports Portl, Port2, Port3 and PCOL are properly defined and decl ared
in the corresponding port type and conponent type definitions

vér MyConponent Type v_nyNewPTC,
v_nyNewPTC : = MyConponent Type. creat e;

cbnnect (v_nyNewPTC: portl, ntc:port3);
map(v_nyNewPTC: port 2, system pCOL);

/1
/1
/1
/1

In this exanple a new conponent of type MyConponent Type is created and its reference stored
in variable v_nmyNewPTC. Afterwards in the connect operation, portl of this new conponent

is connected with port3 of the MIC. By neans of the map operation, port2 of the new conponent
is then connected to port pCOL of the test systeminterface

ETSI

195 ETSI ES 201 873-1 V4.9.1 (2017-05)

EXAMPLE 2: Parameterized map

vér MyConfi gType v_nyConfig := { option := 1, lock := fal se};
m.ap(ntc:port4, system pCO2) param (v_nyConfig);

/1 In this exanple by means of the map operation, port4 of the MIC is connected to the port pCQ2
/1 of the test systeminterface, and additionally a paraneter containing configuration options
// for the connection is passed.

EXAMPLE 3: Port visibility

type port P nessage { inout integer; }
type conponent Cl1 { port P pl; }
type conponent C2 { port P pl, p2; }

testcase TC runs on Cl system Cl
{
var Cl v_ptc := C2.create; // valid assignment, instance of C2 is conpatible with Cl type
connect (self:pl, v_ptc:pl); // valid, plis present in Cl type definition
di sconnect (self:pl, v_ptc:pl);
connect (self:pl, v_ptc:p2); // invalid, although the real instance in v_ptc is of the
/1l C2 type, the variable itself is of the Cl1 type making the p2 port invisible to the
/1 connection operation

21.1.2 The Disconnect and Unmap operations
Thedi sconnect and unmap operations are the opposite operations of connect and map.

Syntactical Structure

di sconnect [("(" ConponentRef ":" Port "," ConponentRef ":" Port ")") |
("(" PortRef ")") |
("(" ConponentRef ":" all port ")") |
("(" all conponent ":" all port ")")]

unmap [("(" ConponentRef ":" Port "," ConponentRef ":" Port ")"

[param”(" [{ ActualPar [","] }+])" 1) |

("(" PortRef ")" [param" (" [{ ActualPar [","] }+1 ")" 1) |
("(" ComponentRef ":" all port ")") |
("(" all conponent ":" all port ")")]

Semantic Description

Thedi sconnect and unmap operations perform the disconnection (of previously connected) ports of test
components and the unmapping of (previously mapped) ports of test components and portsin the test system interface.

Both, the di sconnect and unnmap operations can be called from any component if the relevant component references
together with the names of the relevant ports are known. A di sconnect or unmap operation has only an effect if the
connection or mapping to be removed has been created beforehand.

Toeasedi sconnect and unmap operations related to all connections and mappings of a component or aport, it is
allowed to usedi sconnect and unmap operations with one argument only. This one argument specifies one side of
the connections to be disconnected or unmapped. Theal | port keyword can be used to denote all ports of a
component.

The usage of adi sconnect or unnap operation without any parameters is a shorthand form for using the operation
with the parameter sel f: al | port . It disconnects or unmaps all ports of the component that calls the operation.

Theal I conponent keyword shall only be used in combination withtheal | port keyword, i.e. al |
conponent :al | port, and shal only be used by the MTC. Furthermore, theal | conponent: all port
argument shall be used as the one and only argument of adi sconnect or unmap operation and it allowsto release
all connections and mappings of the test configuration.

ETSI

196 ETSI ES 201 873-1 V4.9.1 (2017-05)

Similar to the map operation, unmap provides an optional parameter list for configuration purposes. If a parameter list
is present, the actual parameters shall conform to the unmap param clause of the port type declaration of the system
port used. It allows to pass values needed for dynamic runtime configuration.

Restrictions

In addition to the general static rules of TTCN-3 given in clauses 5 and 21 and shown in table 15, the following
restrictions apply:

a Inanunmap operation, apar amclause shall only be present if the system port to which the par amclause
belongsto is explicitly referenced.

b) Inunmap operations, par amclauses are optional. If in an unnmap operation apar amclauseis present,
exactly one of the components referenced by the operation shall be the sy st emcomponent reference, the type
of the system component shall be known in the context of the operation either viaasyst emclause or viaa
runs on clauseinat est case without syst emclause, the type of the system port to which the operation
isapplied shall include an unmap param declaration and the actual parameters shall conform to the unmap
param clause of the port type declaration of the system port used.

c) If thetype of the component referenced in a connection operation is known (either when the component
reference isavariable or value returned from a function or the type is defined the runs on, mtc or system
clause of the calling function), the referenced port declaration shall be present in this component type.

Examples

EXAMPLE 1: Disconnect/unmap for specific connections

connect (myNewConponent : port1, mtc:port3);
map(nyNewConponent : port2, system pCOL);

di sconnect (myNewConponent : port1, ntc:port3); /1 disconnect previously nade connection
unmap(nyNewConponent : port2, system pCOL); /1 unmap previously nade napping

EXAMPLE 2: Disconnect/unmap for a component

di sconnect (myNewConponent : port1); /1 disconnects all connections of Portl, which
/1 is owned by conponent nyNewConponent .
unmap(myNewConponent: al | port); /1 unmaps all ports of conponent nyNewConponent

EXAMPLE 3: Disconnect/unmap for "self"

di sconnect; I/l is a shorthand formfor ...

di sconnect (self:all port); /1 which disconnects all ports of the conponent
/1 that called the operation

uﬁrrap; /1 is a shorthand formfor ..

unmap(sel f:all port); /1 which unmaps all ports of the conponent
/1 that called the operation

EXAMPLE 4: Disconnect/unmap for "all component"

di sconnect (all component:all port); /1 the MIC disconnects all ports of all
/] conponents in the test configuration.

uﬁrrap(all conponent:all port); /1 the MIC unnaps all ports of all
/] conponents in the test configuration.

21.2 Test case operations

21.2.0 General

Test case operations address the entire test case by using the keyword testcase. Currently, the test case stop operation is
the only test case operation. It specifies an immediate stop of the test case behaviour with an error verdict.

ETSI

197 ETSI ES 201 873-1 V4.9.1 (2017-05)

21.2.1 Test case stop operation

The testcase stop operation defines a user defined immediate termination of atest case with thetest verdict er r or and
an (optional) associated reason for the termination. Such an immediate stop of atest case isrequired for cases where a
user defined behaviour that does not contribute to the test outcome behaves in an unexpected manner which leadsto a
situation where the continuation of the test case makes no more sense.

Syntactical Structure
testcase "." stop ["(" { (FreeText | Tenplatelnstance) [","] } ")"]
Semantic Description

The test case stop operation causes an immediate stop of the entire test case behaviour with the verdict err or . In
addition, the test case stop operation provides the means to specify the reason for the immediate termination of atest
case by writing one or more items to some logging device associated with the test control or the test component in
which the operation is used. Items to be logged shall be identified by a comma-separated list in the argument of the test
case stop operation. The argument of the test case stop operation shall follow the same restrictions as the argument of
the log statement (see clause 19.11).

Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5 and shown in table 15.

Examples

t est case. st op(" Unexpected Term nation");
/1 The test case stops the an error verdict and the string "Unexpected Termi nation"
I/l is witten to sone |og device of the test system

21.3 Test Component Operations

21.3.0 General

Test component operations are used to create, start, stop and kill test components. They can also be used to check if test
components are alive, running, done or killed.

21.3.1 The Create operation
The cr eat e operation is used to create test components.

Syntactical Structure

Conponent Type "." create ["(" Expression ["," Expression] ")"] [alive]
Semantic Description

The MTC isthe only test component, which is automatically created when atest case starts. All other test components
(the PTCs) shall be created explicitly during test execution by cr eat e operations. A component is created with its full
set of ports of which the input queues are empty and with its full set of constants, variables and timers. Furthermore, if a
port is defined to be of thetypei n or i nout it shall bein alistening state ready to receive traffic over the connection.

All component variables and timers are reset to their initial value (if any) and all component constants are reset to their
assigned values when the component is explicitly or implicitly created.

Two types of PTCs are distinguished: a PTC that can execute a behaviour only once and a PTC that is kept alive after
termination of a behaviour and can be therefore reused to execute another behaviour. The latter is created using the
additional al i ve keyword. An alive-type PTC shall be destroyed explicitly using the ki | | operation (see

clause 21.3.4), whereas a non-aive PTC is destroyed implicitly after its behaviour terminates. Termination of atest
case, i.e. the MTC, terminates all PTCsthat still exist, if any.

Since all test components and ports are implicitly destroyed at the termination of each test case, each test case shall
completely create its required configuration of components and connections when it isinvoked.

ETSI

198 ETSI ES 201 873-1 V4.9.1 (2017-05)

Thecr eat e operation shall return the unique component reference of the newly created instance. The unique
reference to the component will typically be stored in avariable (see clause 6.2.10.1) and can be used for connecting
instances and for communication purposes such as sending and receiving.

Optionally, a name can be associated with the newly created component instance. The test system shall associate the
names 'MTC' to the MTC and 'SY STEM' to the test system interface automatically at creation. Associated component
names are not required to be unique.

The component instance name is used for logging purposes (see clause 19.11) only and shall not be used to refer to the
component instance (the component reference shall be used for this purpose) and has no effect on matching.

Also optionally, ahost id can be associated with the newly created component instance. If ahost id is provided, the
cr eat e operation shall cause atest case error, if the component cannot be deployed on the specified host.

Components can be created at any point in a behaviour definition providing full flexibility with regard to dynamic
configurations (i.e. any component can create any other PTC). The visibility of component references shall follow the
same scope rules as that of variables and in order to reference components outside their scope of creation the component
reference shall be passed as a parameter or asafield in a message.

Restrictions

In addition to the general static rules of TTCN-3 given in clauses 5 and 21 and shown in table 15, the following
restrictions apply:

a) Thename given by the first Expression shall be acharstring value and when assigned it shall appear asthe
first argument of the cr eat e function.

b) Thehostid given by the second Expression shall be a char string value and, when assigned, it shall appear as
the second argument of the cr eat e function.

Examples

/'l This exanpl e decl ares variabl es of type MyConponent Type, which is used to store the

Il references of newy created conponent instances of type MyConponent Type which is the

Il result of the create operations. An associated nane is allocated to sone of the created
/1 conponent instances.

var MyConponent Type v_mnyNewConponent ;

var MyConponent Type v_nyNewest Conponent ;

var MyConponent Type v_nyAl i veConponent ;

var MyConponent Type v_mnyAnot her Al i veConponent ;

var MyConponent Type v_nyDepl oyedConponent ;
v_nmyNewConponent : = MyConponent Type. creat e;

v_nyNewest Conponent : = MyConponent Type. creat e(" Newest") ;
v_nyAl i veConponent : = MyConponent Type.create alive;

v_nyAnot her Al i veConponent : = MyConponent Type. creat e("Anot her Alive") alive;
v_nyDepl oyedConponent : = MyConponent Type.create(-, "Host4");

21.3.2 The Start test component operation

The start operation is used to associate a test behaviour to atest component, which is then being executed by that test
component.

Syntactical Structure
(VariableRef | Functionlnstance) "." start "(" (Functionlnstance | Altsteplnstance) ")"
Semantic Description

Once a PTC has been created and connected, behaviour has to be bound to this PTC and the execution of its behaviour
has to be started. Thisis done by using the st art operation (as PTC creation does not start execution of the
component behaviour). The reason for the distinction between cr eat e and st ar t isto allow connection operations to
be done before actually running the test component.

Thest art operation shall bind the required behaviour to the test component. This behaviour is defined by reference to
an already defined function or altstep.

ETSI

199 ETSI ES 201 873-1 V4.9.1 (2017-05)

An alive-type PTC may perform several behavioursin sequential order. Starting a second behaviour on a non-alive PTC
or starting a behaviour on a PTC that is still running resultsin atest case error. If abehaviour is started on an aive-type
PTC after termination of a previous behaviour, it uses variable values, timers, ports, and the local verdict as they were
left after termination of the previous behaviour. In particular, if atimer was started in the previous behaviour, the
subsequent behaviour should be enabled to handle a possible timeout event. In contrast to that, all active defaults are
deactivated when the behaviour of an alive-type PTC is stopped. This means no default is activated when a new
behaviour is started on an aive-type PTC.

NOTE 1. Thelifetime of variables and timersis bound to the scope in which they are declared. When an alive-type
component is stopped, only the component scope is left. This means only variable values and timers
declared in the component type definition of an alive-type PTC can be accessed by a behaviour with a
corresponding r uns on-clause that is started on an alive-type PTC.

Actual inout parameters will be passed to the function by value, i.e. like in-parameters.

If the function's formal parameter list includes any out parameter the actual parameter list may omit actual out
parameters using the dash symbol ("-") or be omitted in the same manner as for actual in parameters with default values
(see clause 5.4.2), i.e. they can be omitted in the list notation if all following actual parameters are also omitted and
their assignment can be omitted altogether in assignment notation. If avariable is given as an actual out parameter, it
will remain unchanged by the started behaviour, even if the behaviour changes the formal parameter during its

execution.

Possible return values of afunctioninvoked inast art test component operation, i.e. templates denoted by r et ur n
keyword or i nout and out parameters, have no effect when the started test component terminates.

Restrictions

In addition to the general static rules of TTCN-3 given in clauses 5 and 21 and shown in table 15, the following
restrictions apply:

a) Thevariable associated with VariableRef (being a component type variable, a component type parameter, etc.)
or the return type associated with the first Functionlnstance shall be of component type.

b) Thefunction or atstep invoked inast art test component operation shall have ar uns on definition
referencing a component type that is compatible with the newly created component (see clause 6.3.3).

c) Ports, defaults and timers shall not be passed into a function or altstep invoked inast ar t test component
operation. All formal parameter types of the behaviour shall neither be of port or default type or should contain
adirect or indirect element or field of port or default type.

NOTE 2: Asi nandi nout ports starts listening when the component is created, at the moment, when it starts
execution there may be messages in the incoming queues of such ports already waiting to be processed.

Examples

function f_nyFirstBehaviour() runs on MyConponent Type { ...}

function f_nySecondBehavi our() runs on MyConponent Type { ...}

function f_nyThirdBehavi our (out integer p_pl, inout integer p_p2) runs on MyConponent Type { ...}
altstep a_mnyFourthBehaviour() runs on MyConponent Type { ... }

Var MyConponent Type v_nmyNewPTC;
var MyConponent Type v_nyAl i vePTC,

var integer v_int := 0;

V_rTyNemPTC : = MyConponent Type. cr eat €; I/l Creation of a new non-alive test conponent.
v_nyAl i vePTC : = MyConponent Type. create ali ve; /1 Creation of a new alive-type test conponent
V_nyNewPTC. start (f_nyFi rstBehaviour()); /1 Start of the non-alive conponent.

v_nyNewPTC. done; /1 Wait for termnation

v_nyNewPTC. st art (f _nySecondBehavi our ()); /] Test case error

;/_rryAI i vePTC. start (f_myFi rstBehaviour()); /1 Start of the alive-type conponent
v_nyAl i vePTC. done; /1 Wait for term nation
v_nyAl i vePTC. start (f_nySecondBehaviour()); // Start of the next function on the sane conponent

;/_nyAI i vePTC. start (f_myThi rdBehavi our(-,v_int)); /1 v_int will not be changed by the function
v_nyAl i vePTC. done;
v_nyAl i vePTC. st art (a_nyFourt hBehavi our()); /Il Direct start of an altstep behavi our<>

ETSI

200 ETSI ES 201 873-1 V4.9.1 (2017-05)

21.3.3 The Stop test behaviour operation

The stop test behaviour operation is used to stop the execution of atest component by itself or by another test
component.

Syntactical Structure

stop |
((VariableRef | Functionlnstance | ntc | self) "." stop) |
(all conmponent "." stop)

Semantic Description

By using the st op test component statement a test component can stop the execution of its own currently running test
behaviour or the execution of the test behaviour running on another test component. If a component does not stop its
own behaviour, but the behaviour running on another test component in the test system, the component to be stopped
hasto be identified by using its component reference. A component can stop its own behaviour by using asimple st op
execution statement (see clause 19.9) or by addressing itself inthe st op operation, e.g. by using the sel f operation.

NOTE 1: Whilethecreat e,start,runni ng, done andki | | ed operations can be used for PTC(s) only, the
st op operation can aso be applied to the MTC.

Stopping atest component is the explicit form of terminating the execution of the currently running behaviour. A test
component behaviour terminates also by completing its execution upon reaching the end of the test behaviour that is
started on this component or by an explicit r et ur n statement. Thistermination isaso called implicit stop. The
implicit stop has the same effects as an explicit stop, i.e. the global verdict is updated with the local verdict of the
stopped test component (see clause 24).

If the stopped test component isthe MTC, resources of all existing PTCs shall be released, the PTCs shall be removed
from the test system and the test case shall terminate (see clause 26.1).

Stopping a non-alive-type test component (implicitly or explicitly) shall destroy it and all resources associated with the
test component shall be released.

Stopping an alive-type component shall stop the currently running behaviour only but the component continues to exist
and can execute new behaviour (started on it using the st ar t operation). Stopping an alive-type component means that
all variables, timers and ports declared in the component type definition of the alive-type component keep their value,
contents or state. Furthermore, the local verdict of the component keeps its value. In contrast to that, all active defaults
are automatically deactivated when the alive-type component is stopped. The component shall be left in a consistent
state after stopping its behaviour.

For example, if the behaviour of an alive-type component is stopped during assigning a new value to an aready bound
variable, the variable shall remain bound after the component is stopped (with the old or the new value). Similarly, if
the component is stopped during re-starting an already running timer, the timer shall be left in the running state after
termination of the behaviour.

Theal | keyword can be used by the MTC only in order to stop all running PTCs but the MTC itself.
NOTE 2: A PTC can stop the test case execution by stopping the MTC.
NOTE 3: The concrete mechanism for stopping PTCs is outside the scope of the present document.
Restrictions

In addition to the general static rules of TTCN-3 given in clauses 5 and 21 and shown in table 15, the following
restrictions apply:

a) Thevariable associated with VariableRef (being a component type variable, a component type parameter, etc.)
or the return type associated with Functionlnstance shall be of component type.

ETSI

201 ETSI ES 201 873-1 V4.9.1 (2017-05)

Examples

EXAMPLE 1. Stopping another test component and a test component by itself

var MyConponent Type v_nyConp : = MyConponent Type.create; // A new test conponent is created

v_nyConp. start (f_conpBehaviour()); /1 The new conponent is started
if (v_date == "1.1.2005") {

v_nyConp. st op; /1 The conponent "v_nyConp" is stopped
}

i:f (v_,a<v_b) {

sel f.stop; /1 The test conponent that is currently executing stops its own behavi our

}
étop /1 The test conponent stops its own behavi our
EXAMPLE 2: Stopping @l PTCsby the MTC

al | conponent. stop /1 The MIC stops all PTCs of the test case but not itself.

21.3.4 The Kill test component operation

Theki I | test component operation is used to destroy atest component by itself or by another test component. Kill and
stop on a non-alive component have the same results, while they differ for alive components: stopping an alive
components stops the test behaviour only, the test component continues to exist. Killing a test component destroys the
test component.

Syntactical Structure

kill |
((VariableRef | Functionlnstance | ntc | self) "." kill) |
(all component "." kill)

Semantic Description

Theki | | operation applied on atest component stops the execution of the currently running behaviour - if any - of

that component and frees al resources associated to it (including all port connections of the killed component) and
removes the component from the test system. The ki | | operation can be applied on the current test component itself

by asimpleki | | statement or by addressing itself using the sel f operation in conjunction with the kill operation. The
ki || operation can also be applied to another test component. In this case the component to be killed shall be
addressed using its component reference. If theki | | operation isapplied onthe MTC, eg. nt c. ki | | , it terminates
the test case.

Theal | keyword can be used by the MTC only in order to stop and kill al running PTCs but the MTC itself.
Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and 21 and shown in table 15, the following
restrictions apply:

a) Thevariable associated with VariableRef (being a component type variable, a component type parameter, etc.)
or the return type associated with Functionlnstance shall be of component type.

Examples

EXAMPLE 1: Killing another test component and atest component by itself

var PTCType v_nyAliveConp := PTCType.create alive; // Create an alive-type test conponent

v_nyAl i veConp. start (f_nyFi rst Behavi our()); /1 The new conponent is started
v_nyAl i veConp. done; /1 Wait for termnation

v_nyAl i veConp. start (f_nySecondBehavior()); /] Start the conponent a 2™ tine
v_nyAl i veConp. done; /1 Wit for termination
v_nyAliveConp. Kkill; /] Free its resources

ETSI

202 ETSI ES 201 873-1 V4.9.1 (2017-05)

EXAMPLE 2: Killingall PTCsby theMTC

all conponent.kill; /1 The MIC stops all (alive-type and normal) PTCs of the test case first
/1 and frees their resources.

21.3.5 The Alive operation

Theal i ve operation is aBoolean operation that checks whether a test component has been created and is ready to
execute or is executing aready a behaviour.

Syntactical Structure

(Variabl eRef |

Functi onl nst ance |

any conponent |

all conmponent |

any from ConponentArrayRef) "." alive
["->" @ndex val ue Vari abl eRef]

Semantic Description

Applied on anormal parallel test component, theal i ve operation returns true if the component isinactive or running a
behaviour and fal se otherwise. Applied on an alive-type parallel test component, the operation returns true if the
component isinactive, running or stopped. It returnsfalse if the component has been killed. Applied on the it ¢ the
operation returnst r ue.

Theal i ve operation can be used similar to ther unni ng operation (see clause 21.3.6). In particular, in combination
withtheal | keyword it returnstrueif al (alive-type or normal) PTCs are alive.

Theal i ve operation used in combination with the any keyword returnstrue if at least one PTC is alive.

When the any from component array notation is used, the components from the referenced array are iterated over and
individually checked for being inactive or running a function from innermost to outermost dimension from lowest to
highest index for each dimension. The first component to be found being inactive or running a behaviour causes the
alive operation to return thet r ue value. The index of the first component found alive can optionally be assigned to an
integer variable for single-dimensional component arrays or to an integer array or record of integer variable for
multi-dimensional component arrays.

Restrictions

In addition to the general static rules of TTCN-3 given in clauses 5 and 21 and shown in table 15, the following
restrictions apply:

a) Thevariable associated with VariableRef (being a component type variable, a component type parameter, etc.)
or the return type associated with Functionlnstance shall be of component type.

b) The ComponentArrayRef shall be areference to a completely initialized component array.

€) Theindex redirection shall only be used when the operation is used on an any from component array
construct.

d) If theindex redirectionis used for single-dimensional component arrays, the type of the integer variable shall
allow storing the highest index of the respective array.

e) If theindex redirection is used for multi-dimensional component arrays, the size of the integer array or record
of integer type shall exactly be the same as the dimension of the respective array, and its type shall allow
storing the highest index (from all dimensions) of the array.

f) If avariablereferenced in the @ ndex clauseisalazy or fuzzy variable, the expression assigned to this
variable is equal to the result produced by the al i ve operation, i.e. later evaluation of the lazy or fuzzy
variable does not lead to repeated invocation of theal i ve operation.

Examples
pTCL. done; /1 Waits for term nation of the conponent
if (pTCl.alive) { /1 If the conponent is still alive ...
pTCl. start (f_anot her Function()); /1 ...execute another function on it.

ETSI

203 ETSI ES 201 873-1 V4.9.1 (2017-05)

21.3.6 The Running operation

Ther unni ng operation is a Boolean operation that checks whether a test component is executing already a behaviour.

Syntactical Structure

(Variabl eRef |

Functi onl nst ance |

any conponent |

al | component |

any from Conponent ArrayRef) "." running
["->" @ndex val ue Vari abl eRef]

Semantic Description

Ther unni ng operation allows behaviour executing on atest component to ascertain whether behaviour running on a
different test component has completed. The running operation returnst r ue for the nt ¢ and PTCs that have been
started but not yet terminated or stopped. It returnsf al se otherwise. The r unni ng operation is considered to be a
bool ean expression and, thus, returnsabool ean va ue to indicate whether the specified test component (or al test
components) has terminated. In contrast to the done operation, ther unni ng operation can be used freely in

bool ean expressions.

Whentheal | keyword isused with ther unni ng operation, it will returnt r ue if all PTCs started but not stopped
explicitly by another component are executing their behaviour. Otherwise it returnsf al se.

NOTE: The difference between ther unni ng operation applied to a single ptc and the usage of theal | keyword
leads to the situation that pt ¢. runni ng isf al se if the ptc has never been started but al |
conponent . runni ngistrue at the sametime asit considers only those components that ever have
been started.

When the any keyword is used with ther unni ng operation, it will returnt r ue if at least one PTC is executing its
behaviour. Otherwise it returnsf al se.

When the any from component array notation is used, the components from the referenced array are iterated over and
individually checked for executing currently from innermost to outermost dimension from lowest to highest index for
each dimension. The first component to be found executing causes the running operation to succeed. The index of the
matched component can optionally be assigned to an integer variable for single-dimensional arrays or to an integer
array or record of integer variable for multi-dimensional component arrays.

Restrictions

In addition to the general static rules of TTCN-3 given in clauses 5 and 21 and shown in table 15, the following
restrictions apply:
a) Thevariable associated with VariableRef (being a component type variable, a component type parameter, etc.)
or the return type associated with Functionlnstance shall be of component type.
b) The ComponentArrayRef shall be areference to a completely initialized component array.

¢) Theindex redirection shall only be used when the operation is used on an any from component array
construct.

d) If theindex redirection is used for single-dimensional component arrays, the type of the integer variable shall
alow storing the highest index of the respective array.

e) If theindex redirection is used for multi-dimensional component arrays, the size of the integer array or record
of integer type shall exactly be the same as the dimension of the respective array, and its type shall allow
storing the highest index (from all dimensions) of the array.

f) If avariablereferenced inthe @ ndex clauseisalazy or fuzzy variable, the expression assigned to this
variable is equal to the result produced by ther unni ng operation. Later evaluation of the lazy or fuzzy
variable does not lead to repeated invocation of ther unni ng operation.

ETSI

204 ETSI ES 201 873-1 V4.9.1 (2017-05)

Examples

if (pTCL. running) /1 usage of running in an if statenent

/1 do sonet hi ng!

}

while (all conponent.running != true) { // usage of running in a | oop condition
f _nySpeci al Functi on()

21.3.7 The Done operation

The done operation allows behaviour executing on atest component to ascertain whether the behaviour running on a
different test component has completed. In addition, the done operation allows to retrieve the final local verdict of
completed test components, i.e., the value of the local verdict at the time of test component completion.

Syntactical Structure

(Vari abl eRef |
Functi onl nst ance |
any conponent |
all component |
any from Conponent ArrayRef) "." done
["->" [value VariableRef] [@ndex value Variabl eRef]]

Semantic Description

The done operation shall be used in the same manner as areceiving operation or at i neout operation. This meansit
shall not be used in abool ean expression, but it can be used to determine an aternativeinan al t statement or as
stand-alone statement in a behaviour description. In the latter case adone operation is considered to be a shorthand for
anal t statement with the done operation asthe only alternative.

When the done operation is applied to aPTC, it matches only if the behaviour of that PTC has been stopped (implicitly
or explicitly) or the PTC has been killed. Otherwise, the match is unsuccessful.

NOTE 1: The execution of adone operation does not change the state of the test component. Consecutive done
operations applied to the same test component will give the same result as long as the test component
does not change its state (see clause F.1.2).

When the done operation is applied to a PTC and matches, the final local verdict of the PTC can be retrieved and
stored in variable of thetypever di ct t ype. Thisisdenoted by the symbol - >' the keyword value followed by the
name of the variable into which the verdict is stored.

Whentheal | keyword is used with the done operation, it matches if no one PTC is executing its behaviour. It aso
matches if no PTC has been created.

NOTE 2: The difference between the done operation applied to a single ptc and the usage of the al | keyword
leads to the situation that pt c. done does not match if the ptc has never been started but al |
conponent . done matches at the same time as it considers only those components that ever have been
started.

When the any keyword is used with the done operation, it matchesif at least the behaviour of one PTC has been
stopped or killed. Otherwise, the match is unsuccessful.

NOTE 3: Stopping the behaviour of a non-alive component also results in removing that component from the test
system, while stopping an alive-type component leaves the component alive in the test system. In both
cases the done operation matches.

When the any from component array notation is used, the components from the referenced array are iterated over and
individually checked for being stopped or killed from innermost to outermost dimension from lowest to highest index

for each dimension. The first component to be found stopped or killed causes done operation to succeed. The index of
the matched component can optionally be assigned to an integer variable for single-dimensional arrays or to an integer
array or record of integer variable for multi-dimensional component arrays.

ETSI

205 ETSI ES 201 873-1 V4.9.1 (2017-05)

Restrictions
In addition to the genera static rules of TTCN-3 given in clauses 5 and 21 and shown in table 15, the following
restrictions apply:

a) Thedone operation can be used for PTCsonly.

b) Thevariable or the return type associated with Functionlnstance followed by the done keyword, i.e. used for
identifying a specific PTC, shall be of component type.

c¢) The ComponentArrayRef shall be areference to a completely initialized component array.

d) Thevariable used inthe (optiona) val ue clause for storing the final local verdict of a PTC shall be of the
typeverdi cttype.

€) The(optional) val ue clause for storing the final local verdict of a PTC shall not be used in combination with
al | conponent orany conponent.

f) Theindex redirection shall only be used when the operation is used on an any from component array
construct.

g) If theindex redirection is used for single-dimensional component arrays, the type of the integer variable shall
alow storing the highest index of the respective array.

h) If theindex redirection is used for multi-dimensional component arrays, the size of the integer array or record
of integer type shall exactly be the same as the dimension of the respective array, and its type shall alow
storing the highest index (from all dimensions) of the array.

i) If avariablereferenced inthe @ ndex clauseisalazy or fuzzy variable, the expression assigned to this
variable is equal to the result produced by the done operation. Later evaluation of the lazy or fuzzy variable
does not lead to repeated invocation of the done operation.

Examples
/] Use of done in alternatives
alt {

var

V_cC.
V_cC.

vV_c.

[T nyPTC. done {
setverdi ct (pass)

}
[T any port.receive {
r epeat
}

MyConp v_c := MyConp.create alive;
start (f_myPTCBehavi our());

done;

/1 matches as soon as the function f_nyPTCBehaviour (or function/altstep called by it) stops
done;

/1 matches again, even if the conponent has not been started again

if(v_c.running) {v_c.done}

/1 in case that sone other conponent has started v_c in the neantine
/1 done here natches the end of the next behaviour only, not the previous one

/1 the followi ng done as stand-al one statenent:

al |

conponent . done;

/1 has the follow ng neaning:

al t

{

[T all conponent.done {}

/1 and thus, blocks the execution until all parallel test conponents have term nated

/'l Retrieving and using the final |ocal verdict of a conpleted PTC

var
var

MyConmp v_nyPTC : = MyPTC. create alive;
verdi cttype v_nyPTCverdi ct := none;

v_nyPTC. start (f_myPTCBehavi our ());

ETSI

206 ETSI ES 201 873-1 V4.9.1 (2017-05)

alt {
[T v_nyPTC done -> value v_nyPTCverdict {
if (v_nyPTCverdict == fail) {
setverdict(fail);
st op;
}

el se {
setverdi ct (pass);
}

}

[T any port.receive {
r epeat
}

21.3.8 The Killed operation

Theki | | ed operation allows to ascertain whether a different test component is alive or has been removed from the
test system. In addition, the ki | | ed operation allows to retrieve the final local verdict of killed test components, i.e.,
the value of the local verdict at the time when the test component was killed.

Syntactical Structure

(Vari abl eRef |
Functi onl nst ance |
any conponent |
all conponent |
any from Conponent ArrayRef) "." killed
["->" [value VariableRef] [@ndex value VariableRef]]

Semantic Description

Theki | | ed operation shall be used in the same manner as receiving operations. This means it shall not be used in
bool ean expressions, but it can be used to determine an alternativeinan al t statement or as a stand-alone statement
in a behaviour description. In the latter case aki | | ed operation is considered to be a shorthand for anal t statement
withtheki | | ed operation as the only alternative.

NOTE 1: When checking normal test components a killed operation matches if it stopped (implicitly or explicitly)
the execution of its behaviour or hasbeen ki | | ed explicitly, i.e. the operation is equivalent to the done
operation (see clause 21.3.7). When checking alive-type test components, however, theki | | ed
operation matches only if the component has been killed using theki | | operation. Otherwise the
ki | | ed operation is unsuccessful.

NOTE 2: The execution of aki | | ed operation does not change the state of the test component. Consecutive
ki | | ed operations applied to the same test component will give the same result as long as the test
component does not change its state (see clause F.1.2).

Whentheal | keyword isused withtheki | | ed operation, it matchesif all PTCs of the test case have ceased to exist.
It also matchesif no PTC has been created.

Whentheki | | ed operationis applied to a PTC and matches, the final local verdict of that PTC can be retrieved and
stored in avariable of thetypever di ctt ype. Thisisdenoted by the symbol - >' the keyword value followed by the
name of the variable into which the verdict is stored.

When the any keyword is used with theki | | ed operation, it matchesif at least one PTC ceased to exist. Otherwise,
the match is unsuccessful.

When the any from component array notation is used, the components from the referenced array are iterated over and
individually checked for being killed from innermost to outermost dimension from lowest to highest index for each
dimension. The first component to be found killed causes the killed operation to succeed. The index of the matched
component can optionally be assigned to an integer variable for single-dimensional component arrays or to an integer
array or record of integer variable for multi-dimensional component arrays.

ETSI

207 ETSI ES 201 873-1 V4.9.1 (2017-05)

Restrictions
In addition to the genera static rules of TTCN-3 given in clauses 5 and 21 and shown in table 15, the following
restrictions apply:

a Thekil | ed operation can be used for PTCsonly.

b) Thevariable or the return type associated with Functionlnstance followed by theki | | ed keyword, i.e. used
for identifying a specific PTC, shall be of a component type.

c¢) The ComponentArrayRef shall be areference to a completely initialized component array.

d) Thevariable used inthe (optiona) val ue clause for storing the final local verdict of a PTC shall be of the
typeverdi cttype.

€) The(optional) val ue clause for storing the final local verdict of a PTC shall not be used in combination with
al | conponent orany conponent.

f) Theindex redirection shall only be used when the operation is used on an any from component array
construct.

g) If theindex redirection is used for single-dimensional component arrays, the type of the integer variable shall
alow storing the highest index of the respective array.

h) If theindex redirection is used for multi-dimensional component arrays, the size of the integer array or record
of integer type shall exactly be the same as the dimension of the respective array, and its type shall alow
storing the highest index (from all dimensions) of the array.

i) If avariablereferenced inthe @ ndex clauseisalazy or fuzzy variable, the expression assigned to this
variable is equal to the result produced by the ki | | ed operation i.e. later evaluation of the lazy or fuzzy
variable does not lead to repeated invocation of theki | | ed operation.

Examples

var M/PTCType v_ptc := M/PTCType.create alive; // create an alive-type test conponent

timer t_T:= 10.0; /] create a tiner

t_T.start,; /1 start the tiner

v_ptc.start(f_nyTest Behavior()); /] start executing a function on the PTC

alt {

[T v_ptc.killed { /1 if the PTC was killed during execution ...
t_T. stop; /] ..stop the timer and ...
setverdi ct (i nconc); /1 ...set the verdict to 'inconclusive'

}

[T v_ptc.done { /1 if the PTC term nated regularly ...
t_T.stop; /] ..stop the timer and ...
v_ptc.start(f_anot her Function()); /1 ...start another function on the PTC

[T t_T.tinmeout { /1 if the timeout occurs before the PTC stopped
v_ptc.kill; /1 ..kill the PTC and ...
setverdict(fail); /1 ...set the verdict to 'fail’

}
}

/! Retrieving and using the final local verdict of a killed PTC
var MyConp v_nyPTC : = MyPTC. create alive;

var verdicttype v_nyPTCverdict := none;

v_nyPTC. start (f_myPTCBehavi our ());

alt {
[T v_nyPTC done { /1 expected term nation
setverdict (pass);
}
} . .
[T v_nyPTC killed -> value v_nyPTCverdict {
if (v_MyPTCverdict == none) { /1 v_nyPTC kil l ed before verdi ct assingnent
setverdict(fail);
st op;
el se {
setverdi ct (inconc); /1 further analysis is needed
st op;
}

ETSI

(]

}

any port.receive {

r epeat

}

208

ETSI ES 201 873-1 V4.9.1 (2017-05)

21.3.9 Summary of the use of any and all with components

The keywordsany and al | may be used with configuration operations as indicated in table 20.

Table 20: Any and All with components

Operation Allowed Example Comment
any (see note) | al | (see note)
create
start
runni ng Yes but from |Yes but from any conponent.running; |Is there any PTC performing test
MTC only MTC only behaviour?
all component. runni ng; |Are all PTCs performing test
behaviour?
alive Yes but from |Yes but from any conponent. al i ve; Is there any alive PTC?
MTC only MTC only all conponent. alive; Are all PTCs alive?
done Yes but from |Yes but from any conponent. done; Is there any PTC that completed
MTC only MTC only execution?
all conponent. done; Did all PTCs complete their
execution?
killed Yes but from |Yes but from any conponent.killed; |[Isthere any PTC that ceased to exist?
MTC only MTC only all conponent.killed; |Did all PTCs cease to exist?
stop Yes but from al'l conponent . st op; Stop the behaviour on all PTCs.
MTC only
kill Yes but from all component. kill; Kill all PTCs, i.e. they cease to exist.
MTC only
NOTE: any and al | refer to PTCs only, i.e. the MTC is not considered.

22

22.0

Communication operations

General

TTCN-3 supports message-based and procedure-based unicast, multicast and broadcast communication. Furthermore,
TTCN-3 alows to examine the top element of incoming port queues and to control the access to ports by means of
controlling operations. The communication operations and restrictions on their usage are summarized in table 21.

ETSI

209 ETSI ES 201 873-1 V4.9.1 (2017-05)

Table 21: Overview of TTCN-3 communication operations

Communication operations
Communication operation Keyword Can be used at Can be used at
message-based ports | procedure-based ports
Message-based communication
Send message send Yes
Receive message receive Yes
Trigger on message trigger Yes
Procedure-based communication
Invoke procedure call call Yes
Accept procedure call from remote entity getcall Yes
Reply to procedure call from remote entity reply Yes
Raise exception (to an accepted call) raise Yes
Handle response from a previous call getreply Yes
Catch exception (from called entity) catch Yes
Examine top element of incoming port queues
Check msg/call/exception/reply received [check | Yes Yes
Controlling operations
Clear port queue clear Yes Yes
Clear queue and enable sending and start Yes Yes
receiving at a port
Disable sending and disallow receiving stop Yes Yes
operations to match at a port
Disable sending and disallow receiving halt Yes Yes
operations to match new messages/calls
Check the state of a port checkstate Yes Yes

22 .1 The communication mechanisms

22.1.0 General

This clause explains the principles of TTCN-3 communication for message-based communication (see clause 22.1.1),
for procedure-based communication (see clause 22.1.2), for unicast, multicast, and broadcast communication (see
clause 22.1.3), aswell as the general format of sending and receiving operations (see clause 22.1.4).

22.1.1 Principles of message-based communication

M essage-based communication is communication based on an asynchronous message exchange. M essage-based
communication is non-blocking on the send operation, asillustrated in figure 11, where processing in the SENDER
continues immediately after the send operation occurs. The RECEIVER isblocked onther ecei ve operation until it
processes the received message.

In additionto ther ecei ve operation, TTCN-3 providesat ri gger operation that filters messages with certain
matching criteria from a stream of received messages on a given incoming port. Messages at the top of the queue that
do not fulfil the matching criteria are removed from the port without any further action.

send receive or trigger

SENDER » RECEIVER

Figure 11: lllustration of the asynchronous send, receive and trigger

ETSI

210 ETSI ES 201 873-1 V4.9.1 (2017-05)

22.1.2 Principles of procedure-based communication

The principle of procedure-based communication isto call proceduresin remote entities. TTCN-3 supports blocking
and non-blocking procedure-based communication. Blocking procedure-based communication is blocking on the calling
and the called side, whereas non-blocking procedure-based communication is only blocking on the called side.
Signatures of procedures that are used for non-blocking procedure-based communication shall be specified according to
therulesin clause 13.

The communication scheme of blocking procedure-based communication is shown in figure 12. The CALLER callsa
remote procedure in the CALLEE by using the cal | operation. The CALLEE accepts the call by means of a

get cal | operation and reacts by either using ar epl y operation to answer the call or by raising (r ai se operation)
an exception. The CALLER handles the reply or exception by using get r epl y or cat ch operations. In figure 12, the
blocking of CALLER and CALLEE isindicated by means of dashed lines.

call getcall
: >
CALLER | | | | CALLEE
'€ :
getreply or reply or
cat ch exception r ai se exception

Figure 12: lllustration of blocking procedure-based communication

The communication scheme of non-blocking procedure-based communication is shown in figure 13. The CALLER
calls aremote procedure in the CALLEE by using the cal | operation and continues its execution, i.e. does not wait for
areply or exception. The CALLEE acceptsthe call by means of aget cal | operation and executes the requested
procedure. If the execution is not successful, the CALLEE may raise an exception to inform the CALLER. The
CALLER may handle the exception by using acat ch operationinanal t statement. In figure 13, the blocking of the
CALLEE until the end of the call handling and possible raise of an exception isindicated by means of a dashed line.

cal | get cal |
>
CALLER | | CALLEE
< 1
cat ch exception rai se exception

Figure 13: lllustration of non-blocking procedure-based communication

22.1.3 Principles of unicast, multicast and broadcast communication
TTCN-3 supports unicast, multicast and broadcast communication:

J Unicast communication means one sender to one receiver.

o Multicast communication is from one sender to alist of receivers.

. Broadcast communication is from one sender to al receivers (being connected or mapped to the sender).

The terms unicast, multicast and broadcast communication are related to port communication. This means, it isonly
possible to address one, several or all test components that are connected to the specified port. Unicast, multicast and
broadcast can also be used for mapped ports. In this case, one, several or al entities within the SUT can be reached via
the specified mapped port.

ETSI

211 ETSI ES 201 873-1 V4.9.1 (2017-05)

22.1.4 General format of communication operations

22.1.4.0 General

Operations such assend and cal | are used for the exchange of information among test components and between an
SUT and test components. For explaining the general format of these operations, they can be structured into two groups:

a) atest component sends a message (send operation), calls aprocedure (cal | operation), or repliesto an
accepted call (r epl y operation) or raises an exception (r ai se operation). These actions are collectively
referred to as sending operations;

b) acomponent receives amessage (r ecei ve operation), awaitsamessage (t ri gger operation),accepts a
procedure call (get cal | operation), receives areply for aprevioudy called procedure (get r epl y
operation) or catches an exception (cat ch operation). These actions are collectively referred to asreceiving

operations.
22.1.4.1 General format of the sending operations

Sending operations consist of a send part and, in the case of a blocking procedure-based cal | operation, aresponse
and exception handling part.

The send part:
. specifies the port at which the specified operation shall take place;
. defines the message or procedure call to be transmitted;

e givesan (optional) address part that uniquely identifies one or more communication partners to which a
message, call, reply or exception shall be sent.

The port name, operation name and value shall be present in all sending operations. The address part (denoted by thet o
keyword) is optional and need only be specified in cases of one-to-many connections where:

. unicast communication is used and one receiving entity shall be explicitly identified;
. multicast communication is used and a set of receiving entities has to be explicitly identified;

. broadcast communication is used and all entities connected to the specified port have to be addressed.

EXAMPLE 1:
(Optional) response
Send part and exception
Port and operation Value part (Optional) address part handling part
nyP1. send (v_nyVariable + v_yourVariable - 2) |to v_nyPartner;

Response and exception handling is only needed in cases of procedure-based communication. The response and
exception handling part of the cal | operation isoptional and is required for cases where the called procedure returns a
value or hasout ori nout parameters whose values are needed within the calling component and for cases where the
called procedure may raise exceptions which need to be handled by the calling component.

The response and exception handling part of the call operation makes use of get r epl y and cat ch operations to
provide the required functionality.

EXAMPLE 2:
Send part (Optional) response and exception handling part
Port and Value part (Optional)
operation address part
nyP1. cal | (MyProc: {s_nyVar1})
[1 nyPl.getreply(MyProc:{s_nyVar2}) {}
[T nyPl.catch(M/Proc, ExceptionOne) {}
}

ETSI

212 ETSI ES 201 873-1 V4.9.1 (2017-05)

22.1.4.2 General format of the receiving operations

A receiving operation consists of areceive part and an (optional) assignment part.
The receive part:
a) specifiesthe port at which the operation shall take place;
b) defines amatching part which specifies the acceptable input which will match the statement;

c) givesan (optional) address expression that uniquely identifies the communication partner (in case of
one-to-many connections).

The port name, operation name and value part of all receiving operations shall be present. The identification of the
communication partner (denoted by the f r omkeyword) is optional and need only be specified in cases of one-to-many
connections where the receiving entity needsto be explicitly identified.

The assignment part in areceiving operation is optional. For message-based portsit is used when it is required to store
received messages. In the case of procedure-based portsit is used for storing thei n andi nout parameters of an
accepted call, for storing the return value or for storing exceptions. For the message or parameter val ue assignment part
strong typing is not required, e.g. the variable used for storing a message shall be type-compatible to the type of the
incoming message.

In addition, the assignment part may also be used to assign the sender address of a message, exception, r epl y or
cal | toavariable. Thisis useful for one-to-many connections where, for example, the same message or call can be
received from different components, but the message, reply or exception shall be sent back to the original sending
component.

For receiving operations using the any port from a port array construction (see clause 22.2.2), the assignment part may
also be used to store the indices that identify the specific port instance where the receiving operation matched.

EXAMPLE:
Receive part (Optional) assignment part
Port and Matching part (Optional) (Optional) (Optional) (Optional) sender
operation address value parameter |value assignment
expression assignment value
assignment
nyPl.getreply |(AProc:{?} value 5) -> param (v_v1) sender v_aPeer
Receive part (Optional) assignment part
Port and Matching part (Optional) (Optional) value (Optional) (Optional)
operation address assignment parameter |sender value
expression value assignment
assignment
nyP2.recei ve (mw_nyTenpl ate(5,7)) |fromv_aPeer -> |val ue v_nyVar
Receive part (Optional) assignment part
Port and Matching part (Optional) (Optional) | (Optional) | (Optional) (Optional)
operation address value parameter sender port index
expression assignment value value assignment
assignment |assignment
any from (mv_nyTenpl ate(5, 7)) -> @ ndex
p.receive val ue v_i

ETSI

213 ETSI ES 201 873-1 V4.9.1 (2017-05)

22.2 Message-based communication

22.2.0 General

The operations for message-based communication via asynchronous ports are summarized in table 22.

Table 22: Overview of TTCN-3 message-based communication

Communication operation Keyword
Send message send
Receive message receive
Trigger on message trigger
Check message received check

22.2.1 The Send operation

The send operation is used to place a message on an outgoing message port.

Syntactical Structure

Port "." send "(" Tenplatelnstance ")"
[to Address]

NOTE: Address may be an AddressRef, alist of AddressRef-s or "all component”.
Semantic Description

The send operation places a message on an outgoing message port. The message may be specified by referencing a
defined template or can be defined as an in-line template.

Sending unicast, multicast or broadcast

Unicast, multicast and broadcast communication can be determined by the optional t o clausein the send operation. A
t o clause can be omitted in case of a one-to-one connection where unicast communication is used and the message
receiver is uniquely determined by the test system structure.

Unicast communication is specified, if thet o clause addresses one communication partner only. Multicast
communication is used, if thet o clause includes alist of communication partners. Broadcast is defined by using thet o
clausewithal | conponent keyword.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 15, the following restrictions
apply:

a) TheTemplatelnstance (and all parts of it) shall have a specific valuei.e. the use of matching mechanisms such
as AnyValueis not allowed.

b) When defining the message in-line, the optional type part shall be used if there is ambiguity of the type of the
message being sent.

¢) Thesend operation shall only be used on message-based ports and the type of the template to be sent shall be
in the list of outgoing types of the port type definition.

d) At o clauseshall be present in case of one-to-many connections.

e) All AddressRef itemsin the to clause shall be of type addr ess, conponent or of the address type bound to
the port type (see clause 6.2.9) of the port instance referenced in the send operation. No AddressRef inthet o
clause shall contain the special valuenul | at the time of the operation.

f) Applying asend operation to an unmapped or disconnected port shall cause a test case error.

ETSI

214 ETSI ES 201 873-1 V4.9.1 (2017-05)

Examples

EXAMPLE 1: Simple send (receiver is determined from the test configuration)

nyPort.send(m nyTenpl ate(5, v_nyVar)); /1 Sends the tenplate mnyTenplate with the actual
|l paraneters 5 and v_nyVar via nyPort.

nmyPort. send(5); /1 Sends the integer value 5 (which is an in-line tenplate)

EXAMPLE 2: Sending with explicit to clause

nyPort.send(charstring:"M string") to v_nyPartner;
/1 Sends the string "My string" to a conponent with a
/] conponent reference stored in variable v_nyPartner

myPCO. send(v_nyVariable + v_yourVariable - 2) to v_nyPartner;
/1 Sends the result of the arithnetic expression to v_nyPartner.

myPCO2. send(m_nmyTenpl ate) to (v_nyPeer One, v_nyPeer Two) ;
/1 Specifies a multicast conmunication, where the val ue of
/!l mnyTenplate is sent to the two conponent references stored
/1 in the variables v_nyPeerOne and v_nyPeer Two.

myPCO3. send(m_nmyTenpl ate) to all conponent;
/] Broadcast communication: the value of mnytenplate is sent to
/1 all conponents which can be addressed via this port. If
/1 myPCO3 is a mapped port, the conponents may reside inside
/1 the SUT.

22.2.2 The Receive operation
Ther ecei ve operationis used to receive a message from an incoming message port queue.

Syntactical Structure

(Port | any port | any fromPortArrayRef) "." receive
["(" Tenplatelnstance ")"]
[from Address]
["->" [value (Variabl eRef |
("(" { VariableRef [":=" [@ecoded ["(" Expression ")"]]
Fi el dOr TypeReference 1[","]1 } ")")

)]
[sender Variabl eRef]
[@ndex val ue Variabl eRef]]

NOTE 1: Address may be an AddressRef, alist of AddressRef-s or "any component".
Semantic Description

Ther ecei ve operationis used to receive a message from an incoming message port queue. The message may be
specified by referencing a defined template or can be defined as an in-line template.

Ther ecei ve operation removes the top message from the associated incoming port queue if, and only if, that top
message satisfies al the matching criteria associated with ther ecei ve operation.

If the match is not successful, the top message shall not be removed from the port queuei.e. if ther ecei ve operation
isused as an aternative of an al t statement and it is not successful, the execution of al t statement shall continue with
its next aternative.

Matching criteria

The matching criteria are related to the type and value of the message to be received. The type and val ue of the message
to be received are determined by the argument of ther ecei ve operation, i.e. may either be derived from the defined
template or be specified in-line. An optional type field in the matching criteriato ther ecei ve operation shall be used
to avoid any ambiguity of the type of the value being received.

NOTE 2: Encoding attributes also participate in matching in an implicit way, by preventing the decoder to produce
an abstract value from the received message encoded in a different way than specified by the attributes.

ETSI

215 ETSI ES 201 873-1 V4.9.1 (2017-05)

Receiving from a specific sender

In the case of one-to-many connectionsthe r ecei ve operation may be restricted to a certain communication partner.
Thisrestriction shall be denoted using the f r omkeyword followed by a specification of an address or component
reference, alist of address or component references or any component.

NOTE 3: The one-to-one connection is considered to be a simple case of the one-to-many connections and allows
the usage of the from-clause.

Storing the received message and parts of the received message

If the match is successful, the value is removed from the port queue and/or parts of this value can be stored in variables
or formal parameters. Thisis denoted by the symbol '->' and the keyword val ue.

When the keyword val ue isfollowed by a name of avariable or formal parameter, the whole received message shall
be stored in the variable or formal parameter. The variable or formal parameter shall be type compatible with the
received message.

When the keyword val ue isfollowed by alist enframed by a pair of parentheses, the whole received message and/or
one or more parts of it can be stored. For each list element that consists only of avariable or formal parameter name the
whole message shall be stored in that variable or formal parameter. The type of the variable or formal parameter shall
be compatible with the type of the message. Each assignment notation member of the list alows storing the value of the
field or element of the received message, which is referenced on the right hand side of the assignment notation (:=), in
the variable or formal parameter on the left hand side. The variable or formal parameter shall be type compatible with
the type of the referenced field or element.

When assigning individual fields of a message, encoded payload fields can be decoded prior to assignment using the
@ecoded modifier. In this case, the referenced field on the right hand side of the assignment shall be one of the
bitstring,hexstring,octetstring,charstringoruniversal charstring types. Itshal be
decoded into a value of the same type as the variable on the left hand side of the assignment. Failure of this decoding
shall cause atest case error. In case the referenced field is of theuni ver sal char st ri ng type, the @ecoded
clause can contain an optional parameter defining the encoding format. The parameter shall be of thechar st ri ng
type and it shall contain one of the strings allowed for the decval ue_uni char function (specified in clause C.5.4).
Any other value shall cause an error. In case the referenced field isnot auni ver sal charstring, the optional
parameter shall not be present.

NOTE 4: The model of the behaviour of thisimplicit decoding is defined in clause B.1.2.9.

NOTE5: The @lecoded clauseistypically used together with the decmat ch matching mechanism in the
matching part of the receive statement. Since the decoding procedures for assignment and matching are
virtually the same, TTCN-3 tools can be optimized in such away that only one call to the decoder is
made when the receiving statement contains both decmat ch matching mechanism and @lecoded
assignment for the same payload field.

Storing the sender

It isalso possible to retrieve and store the component reference or address of the sender of a message. Thisis denoted
by the keyword sender .

When the message is received on a connected port, only the component reference is stored in the following the sender
keyword, but the test system shall internally store the component name too, if any (to be used in logging).

Receive any message

A r ecei ve operation with no argument list for the type and value matching criteria of the message to be received shall
remove the message on the top of the incoming port queue (if any) if al other matching criteriaare fulfilled.

Receive on any port

Tor ecei ve amessage on any port, usetheany port keywords.

ETSI

216 ETSI ES 201 873-1 V4.9.1 (2017-05)

Receive on any port from a port array

Tor ecei ve amessage on any port from a specific port array, usetheany from Port ArrayRef syntax where
PortArrayRef shall bea referenceto a port array identifier. It isalso possible to store the index of aport in asingle-
dimensional port array at which the operation was successful to a variable of type integer or, in case of
multi-dimensional port arrays the index of the successful port to an integer array or record of integer variable. When
checking the port array for matching messages, the port indices to be checked are iterated from lowest to highest. If the
port array is multi-dimensional, then the ports are iterated over from innermost to outermost array dimension from
lowest to highest index for each dimension, e.g. [0][Q], [O][1], [1][O], [1][1]. The first port which matches all the criteria
will cause the operation to be successful even if other portsin the array would also meet the criteria.

Stand-alonereceive

Ther ecei ve operation can be used as a stand-alone statement in a behaviour description. In this latter case the
r ecei ve operation is considered to be shorthand for anal t statement with ther ecei ve operation as the only
aternative.

Restrictions

In addition to the genera static rules of TTCN-3 given in clause 5 and shown in table 15, the following restrictions
apply:

a When defining the message in-line, the optional type part shall be present whenever the type of the message
being received is ambiguous.

b) Therecei ve operation shall only be used on message-based ports and the type of the value to be received
shall beincluded in the list of incoming types of the port type definition.

¢) No binding of the incoming values to the terms of the expression or to the template shall occur.
d) A message received by receive any message shall not be stored, i.e. the value clause shall not be present.

e) Type mismatch at storing the received val ue or parts of the received value and storing the sender shall cause an
error.

NOTE 6: An error due to atype mismatch may happen if the typesin the receive part are not compatible to the
typesin the assignment part or, if the f r omclause is missing, but the type of the sender can be
determined and it is not type compatible with the typein the sender clause.

f) All AddressRef itemsin the from clause and al VariableRef itemsin the sender clause shall be of type
addr ess, conmponent or of the address type bound to the port type (see clause 6.2.9) of the port instance
referenced in ther ecei ve operation. No AddressRef inthe f r omclause shall contain the special value
nul | at the time of the operation.

g) ThePortArrayRef shall be areference to a completely initialized port array.
h) Theindex redirection shall only be used when the operation is used on an any from port array construct.

i) Iftheindex redirection is used for single-dimensional port arrays, the type of the integer variable shall allow
storing the highest index of the respective array.

i) Iftheindex redirection is used for multi-dimensional port arrays, the size of the integer array or record of
integer type shall exactly be the same as the dimension of the respective array, and its type shall alow storing
the highest index (from all dimensions) of the array.

k) If avariablereferencedintheval ue, sender or @ ndex clauseisalazy or fuzzy variable, the expression
assigned to this variableis equal to the result produced by ther ecei ve operation i.e. later evaluation of the
lazy or fuzzy variable does not lead to repeated invocation of ther ecei ve operation.

) Iftherecei ve operation contains both f r omand sender clause, the variable or parameter referenced in
thesender clause shal be type compatible with the template in the f r omclause.

ETSI

217 ETSI ES 201 873-1 V4.9.1 (2017-05)

m) When assigning implicitly decoded message fields (by using the @lecoded modifier) in cases where the
value or template to be matched uses the MatchDecodedContent (decmat ch) matching for the field to be
stored, the type of the template in the MatchDecodedContent matching shall be type-compatible to the type of
the variable the decoded field is stored into.

Examples

EXAMPLE 1. Basicreceive

nyPort.recei ve(nw_nyTenpl ate(5, v_nyVar)); // Matches a nmessage that fulfils the conditions
/1 defined by tenplate nw nyTenplate at port nyPort.

nmyPort. receive(v_a<v_b); /1 Matches a Bool ean val ue that depends on the outcone of v_a<v_b

nmyPort.receive(integer:v_nyVar); /1 Matches an integer value with the value of v_nyVar
/1 at port myPort

myPort . receive(v_nyVar); /1 Is an alternative to the previous exanple

EXAMPLE 2: Receiving from a sender, storing the message, parts of the message or the sender

type MyPayl oadType record {
i nt eger nessagel d,
Cont ent Type cont ent

}

type MyType2 record {
Header header,
octetstring payl oad

}

tenpl ate MyType nw_nyTenpl ate : = {
nmessagel d : = 42,
content := ?

}

var MyPayl oadType v_nyVar;

var integer v_nyMessagel dvVar, v_nylntegerVar;
var charstring v_myCharstringVar;

var address v_nyPeer;

var octetstring v_nyVarOne := '00ff'Q

MyPort . receive(charstring:"Hello")fromv_nyPeer; /1 Matches charstring "Hello" from MyPeer

MyPort.recei ve(MyType: ?) -> value v_nyVar; // The value of the received nessage is
/'l assigned to v_nyVar.

MyPort.recei ve(MyType: ?) -> value (v_nyVar, v_nyMessagel dVar: = nessagel d)
/1 The val ue of the received nessage is stored in the variable
/1l v_nyVar and the val ue of the nessageld field of the received
/1 message is stored in the variable v_nyMessagel dVvar.

MyPort.recei ve(anytype: ?) -> value (v_nylntegerVar:= integer)
/1 1f the received value is an integer, it is stored in the variable
/'l v_nylntegerVar, a test case error otherw se.

MyPort.receive(charstring:?) -> value (v_nyCharstringVar)
/1 The received value is stored in the variable v_nyCharstringVar;
/1 Note that it is the sane as to wite "value v_nyCharstringVar"

MyPort . recei ve(A<B) -> sender v_nyPeer; /1 The address of the sender is assigned to v_nyPeer

MyPort.recei ve(M/Type: {5, v_nmyVarOne }) -> value v_nyVar sender v_nyPeer;
/1 The received nmessage value is stored in v_nyVar and the sender address is stored in
/'l v_nyPeer.
M/Port.recei ve(M/Type2: { header := ?, payload := decnatch nw_nyTenpl at e})
-> value (v_nyVar := @ecoded payl oad);
/'l The encoded payl oad field of the received nessage is decoded and matched with
/1 mw_nyTenplate; if the matching is successful the decoded payload is stored in v_nyVar.

ETSI

218 ETSI ES 201 873-1 V4.9.1 (2017-05)

EXAMPLE 3: Receive any message

nmyPort. receive,; /1 Renoves the top value fromnyPort.
nyPort.recei ve from nyPeer; /'l Renoves the top nessage fromnyPort if its sender is
/'l nyPeer

myPort.receive -> sender v_nySenderVar; // Renoves the top message from nyPort and assigns
/'l the sender address to v_nySender Var

EXAMPLE 4: Receive on any port

any port.recei ve(mv_nyMessage);

EXAMPLES: Receive on any port from aport array

type port MyPort nessage { inout integer }
type conponent MyConponent {
port MyPort p[10][10];
}
var integer v_i[2];
any from p.recei ve(mv_nyMessage) -> @ndex value v_i;
/'l checking receiving mv_nmyMessage on any port of the port array p and storing the index of the
/1 port on which the matching was successful first; if, for exanple M/Message is matched first
/1 on p[4,2], the content of i will be {4,2}

22.2.3 The Trigger operation
Thetri gger operationisused to await a specific message on an incoming port queue.

Syntactical Structure

(Port | any port | any from PortArrayRef) "." trigger
["(" Tenplatelnstance ")"]
[from Address]
["->" [value (Variabl eRef |
("(" { VariableRef [":=" [@ecoded ["(" Expression ")"]]
Fi el dOr TypeReference 1[","]1 } ")")

)]
[sender Variabl eRef]
[@ndex value VariableRef]]

NOTE 1. Address may be an AddressRef, alist of AddressRef-s or "any component”.
Semantic Description

Thetri gger operation removes the top message from the associated incoming port queue. If that top message meets
the matching criteria, thet r i gger operation behavesin the same manner asar ecei ve operation. If that top
message does not fulfil the matching criteria, it shall be removed from the queue without any further action.

Thetri gger operation requiresthe port name, matching criteriafor type and value, an optional f r omrestriction
(i.e. selection of communication partner) and an optional assignment of the matching message and sender component to
variables.

Matching criteria
The matching criteria as defined in clause 22.2.2 apply also to thet r i gger operation.
Trigger from a specific sender

In the case of one-to-many connectionsthet r i gger operation may be restricted to a certain communication partner.
Thisrestriction shall be denoted using the f r omkeyword followed by a specification of an address or component
reference, alist of address or component references or any component.

NOTE 2: The one-to-one connection is considered to be a simple case of the one-to-many connections and allows
the usage of the from-clause.

ETSI

219 ETSI ES 201 873-1 V4.9.1 (2017-05)

Trigger on any message

Atri gger operation with no argument list shall trigger on the receipt of any message. Thus, its meaning is identical
to the meaning of receive any message.

Trigger on any port
Totrigger onamessage at any port, usetheany port keywords.
Trigger on any port from a port array

To trigger on amessage at any port from a specific port array, usetheany from Port ArrayRef syntax where
PortArrayRef shall bea referenceto a port array identifier. It isalso possible to store the index of aportina
single-dimensional port array at which the operation was successful to avariable of type integer or, in case of
multi-dimensional port arrays the index of the successful port to an integer array or record of integer variable. When
checking the port array for matching messages, the port indices to be checked are iterated from lowest to highest. If the
port array is multi-dimensional, then the ports are iterated over from innermost to outermost array dimension from
lowest to highest index for each dimension, e.g. [0][0], [O][1], [1][O], [1][1]. The first port which matches all the criteria
will cause the operation to be successful even if other portsin the array would also meet the criteria.

If any port in the port array which is checked for matching contains a message that does not match, this messageis
removed and the containing al t statement is re-evalutated, regardless of whether or not other portsin the port array
would meet the trigger criteria.

Stand-alone trigger

Thetri gger operation can be used as a stand-alone statement in a behaviour description. In this latter case the

tri gger operationisconsidered to be shorthand for anal t statement with two alternatives (one alternative expecting
the message and another alternative consuming all other messages and repeating the alt statement, see

ETSI ES 201 873-4[1]).

Storing the received message, parts of the received message or the sender
Rulesin clause 22.2.2 shall apply.
Restrictions

In addition to the genera static rules of TTCN-3 given in clause 5 and shown in table 15, the following restrictions
apply:

a Thetri gger operation shall only be used on message-based ports and the type of the value to be received
shall beincluded in the list of incoming types of the port type definition.

b) A message received by TriggerOnAnyMessage shall not be assigned to a variable.

c¢) Typemismatch at storing the received val ue or parts of the received value and storing the sender shall cause an
error.

NOTE 3: An error due to atype mismatch may happen if the typesin the receive part are not compatible to the
typesin the assignment part or, if the f r omclause is missing, but the type of the sender can be
determined and it is not type compatible with the typein the sender clause.

d) All AddressRef itemsin the from clause and all VariableRef itemsin the sender clause shall be of type
addr ess, conmponent or of the address type bound to the port type (see clause 6.2.9) of the port instance
referencedinthet ri gger operation. No AddressRef in the f r omclause shall contain the special value
nul | at the time of the operation.

€) The PortArrayRef shall be areference to acompletely initialized port array.
f) Theindex redirection shall only be used when the operation is used on an any from port array construct.

g) If theindex redirection is used for single-dimensional port arrays, the type of the integer variable shall allow
storing the highest index of the respective array.

ETSI

220 ETSI ES 201 873-1 V4.9.1 (2017-05)

h) If theindex redirection is used for multi-dimensional port arrays, the size of the integer array or record of
integer type shall exactly be the same as the dimension of the respective array, and its type shall alow storing
the highest index (from all dimensions) of the array.

i) If avariablereferencedintheval ue, sender or @ ndex clauseisalazy or fuzzy variable, the expression
assigned to this variableis equal to the result produced by thet r i gger operation, i.e. later evaluation of the
lazy or fuzzy variable does not lead to repeated invocation of thet r i gger operation.

j) Ifthetri gger operation containsboth f r omand sender clause, the variable or parameter referenced in
thesender clause shal be type compatible with the template in the f r omclause.

Examples

EXAMPLE 1. Basictrigger

nmyPort.trigger(MType: ?);
/1 Specifies that the operation will trigger on the reception of the first nessage observed of
/1 the type MyType with an arbitrary value at port nyPort.

EXAMPLE 2: Trigger from a sender and with storing message or sender

nyPort.trigger(MType:?) from nyPartner;
/1 Triggers on the reception of the first nmessage of type MyType at port nyPort
/'l received fromnyPartner.

nyPort.trigger(MType:?) fromnyPartner -> val ue v_nyRecMessage;
/1 This exanple is alnpst identical to the previous exanple. In addition, the nessage which
/Il triggers i.e. all matching criteria are met, is stored in the variable v_nyRecMessage.

nyPort.trigger(MType:?) -> sender nyPartner;
/1 This exanple is alnobst identical to the first exanple. In addition, the reference of the
/'l sender conponent will be retrieved and stored in variable nmyPartner.

nmyPort.trigger(integer:?) -> value v_nyVar sender v_nyPartner;

/1 Trigger on the reception of an arbitrary integer value which afterwards is stored in
/1 variable v_nyVar. The reference of the sender conponent will be stored in variable M/Partner.

EXAMPLE 3: Trigger on any message
nmyPort.trigger;
nyPort.trigger from nyPartner;

myPort.trigger -> sender v_nySender Var;

EXAMPLE 4: Trigger on any port

any port.trigger

EXAMPLES5: Trigger on any port from port array

type port MyPort message { inout integer }
type conponent MyConponent {
port MyPort p[10][10];
}
var integer v_i[2];
any fromp.trigger(mv_nyMessage) -> @ndex value v_i;
/1 Checking if nmw_nyMessage has been received on any port of the port array p; if yes, the index
/1 of the port on which the matching was first successful is stored in the array v_i; if no port
/'l succeeds, the top nessages are renoved and the port array is re-checked.

ETSI

221 ETSI ES 201 873-1 V4.9.1 (2017-05)

22.3 Procedure-based communication

22.3.0 General

The operations for procedure-based communication via synchronous ports are summearized in table 23.

Table 23: Overview of procedure-based communication

Communication operation Keyword
Invoke procedure call call
Accept procedure call from remote entity getcall
Reply to procedure call from remote entity |reply
Raise exception (to an accepted call) raise
Handle response from a previous call getreply
Catch exception (from called entity) catch
Check call/exception/reply received check

22.3.1 The Call operation

Thecal | operation specifies the call of aremote operation on another test component or within the SUT.

Syntactical Structure

Port "." call "(" Tenplatelnstance ["," CallTinervalue] ")"
[to Address]

NOTE 1: Address may be an AddressRef, alist of AddressRef-sor "all component”.
Semantic Description
Thecal | operationis used to specify that atest component calls a procedure in the SUT or in another test component.

Theinformation to be transmitted in the send part of the cal | operation isasignature that may either be defined in the
form of a signature template or be defined in-line.

Handling responses and exceptionsto a call

In case of non-blocking procedure-based communication the handling of exceptionsto cal | operationsis done by
using cat ch (see clause 22.3.6) operations as aternativesinal t statements.

If the nowai t option is used, the handling of responses or exceptionsto cal | operationsis done by using get r epl y
(see clause 22.3.4) and cat ch (see clause 22.3.6) operations as alternativesinal t statements.

In case of blocking procedure-based communication, the handling of responses or exceptionsto acall isdonein the
response and exception handling part of the cal | operation by means of get r epl y (see clause 22.3.4) and cat ch
(see clause 22.3.6) operations.

The response and exception handling part of acal | operation looks similar to the body of anal t statement. It defines
a set of aternatives, describing the possible responses and exceptions to the call.

If necessary, it is possible to enable/disable an aternative by means of abool ean expression placed between the"[1"
brackets of the alternative.

The response and exception handling part of acall operation is executed likean al t statement without any active
default. This means a corresponding snapshot includes all information necessary to eval uate the (optional) Boolean
guards, may include the top element (if any) of the port over which the procedure has been called and may include a
timeout exception generated by the (optional) timer that supervises the call.

ETSI

222 ETSI ES 201 873-1 V4.9.1 (2017-05)

Handling timeout exceptionsto a call

Thecal | operation may optionally include atimeout. Thisis defined as an explicit value or constant of f | oat type
and defines the length of time after thecal | operation has started that at i meout exception shall be generated by the
test system. If no timeout value part is present inthecal | operation, not i meout exception shall be generated.

Nowait calls of blocking procedures

Using the keyword nowai t instead of atimeout exception valueinacal | operation allows calling a procedure to
continue without waiting either for aresponse or an exception raised by the called procedure or atimeout exception.

If thenowai t keyword is used, a possible response or exception of the called procedure has to be removed from the
port queue by using aget r epl y or acat ch operation in asubsequent al t statement.

Calling blocking procedureswithout return value, out parameters, inout parameters and exceptions

A blocking procedure may have no return values, no out and inout parameters and may raise no exception. The call
operation for such a procedure shall also have a response and exception handling part to handle the blocking in a
uniform manner.

Calling non-blocking procedures

A non-blocking procedure has no out and inout parameters, no return value and the non-blocking property isindicated
in the corresponding signature definition by means of anobl ock keyword.

Possible exceptions raised by non-blocking procedures have to be removed from the port queue by using cat ch
operationsin subsequent al t ori nt er | eave statements.

Unicast, multicast and broadcast calls of procedures

Like for the send operation, TTCN-3 also supports unicast, multicast and broadcast calls of procedures. This can be
done in the same manner as described in clause 22.2.1, i.e. the argument of thet o clause of acal | operationisfor
unicast calls the address of one receiving entity (or can be omitted in case of one-to-one connections), for multicast calls
alist of addresses of a set of receivers and for broadcast callstheal | conponent keyword. In case of one-to-one
connections, thet o clause may be omitted, because the receiving entity is uniquely identified by the system structure.

The handling of responses and exceptions for a blocking or non-blocking unicast cal | operation has been explained in
this clause under "Handling timeout exceptionsto acall". A multicast or broadcast cal | operation may cause several
responses and exceptions from different communication partners.

In case of amulticast or broadcast cal | operation of a non-blocking procedure, al exceptions which may be raised
from the different communication partners can be handled in subsequent cat ch, al t ori nt er | eave statements.

In case of amulticast or broadcast cal | operation of a blocking procedure, two options exist. Either, only one response
or exception is handled in the response and exception handling part of the cal | operation. Then, further responses and
exceptions can be handled in subsequent al t ori nt er | eave statements. Or, several responses or exceptions are
handled by the use of repeat statements in one or more of the statement blocks of the response and exception handling
part of the call operation: the execution of arepeat statement causes the re-evaluation of the call body.

NOTE 2: Inthe second case, the user needs to handle the number of repetitions.
Restrictions

In addition to the genera static rules of TTCN-3 given in clause 5 and shown in table 15, the following restrictions
apply:

a Thecal | operation shall only be used on procedure-based ports. The type definition of the port at which the
call operation takes place shall include the procedure nameinitsout or i nout listi.e. it shall be allowed to
call this procedure at this port.

b) Alli nandi nout parametersof the signature shall have a specific valuei.e. the use of matching mechanisms
such as AnyValue is not allowed.

c¢) Only out parameters may be omitted or specified with a matching attribute.

ETSI

223 ETSI ES 201 873-1 V4.9.1 (2017-05)

d) Thesignature arguments of thecal | operation are not used to retrieve variable names for out and i nout
parameters. The actual assignment of the procedure return value and out andi nout parameter valuesto
variables shall explicitly be made in the response and exception handling part of thecal | operation by means
of get r epl y and cat ch operations. This allows the use of signature templatesincal | operationsin the
same manner as templates can be used for types.

€) At o clauseshall be present in case of one-to-many connections.

f) All AddressRef itemsin the to clause shall be of type addr ess, conponent or of the address type bound to
the port type (see clause 6.2.9) of the port instance referenced inthe cal | operation. No AddressRef inthet o
clause shall contain the special valuenul | at the time of the operation.

g) CallTimerValue shall be of type float.

h) The selection of the aternativesto acall shal only be based on get r epl y and cat ch operations for the
called procedure. Unqualified get r epl y and cat ch operations shall only treat replies from and exceptions
raised by the called procedure. The use of el se branches and the invocation of atstepsis not allowed.

i) The evaluation of the Boolean expressions guarding the alternatives in the response and exception handling
part may have side effects. In order to avoid unexpected side effects, the same rules as for the Boolean guards
inal t statements shall be applied (see clause 20.2).

i) Thecall operation for a blocking procedures without return value, out parameters, inout parameters and
exceptions shall also have a response and exception handling part to handle the blocking in a uniform manner.

k) Incaseof amulticast or broadcast cal | operation of a blocking procedure, where the nowai t keyword is
used, all responses and exceptions have to be handled in subsequent al t or i nt er | eave statements.

) Thecal | operationfor a non-blocking procedure shall have no response and exception handling part, shall
raise no timeout exception and shall not use the nowai t keyword.

m) Applyingacal | operation to an unmapped or disconnected port shall cause atest case error.
Examples

EXAMPLE 1: Blocking call with getreply

/'l Gven ..
signature MyProc (out integer MyParl, inout bool ean MyPar?2);

/) a call of MyProc
nmyPort.call (MyProc:{ -, v_nyVar2}) { /1 in-line signature tenplate for the call of M/Proc
[1 nyPort.getreply(MProc:{?, ?}) { }

/1 ...and another call of MProc
myPort. cal | (s_nmyProcTenpl ate) { /1 using sighature tenplate for the call of M/Proc

[1 nyPort.getreply(MProc:{?, ?}) { }

myPort.call (s_nmyProcTenpl ate) to myPeer { /1 calling MyProc at myPeer
[1 nmyPort.getreply(MProc:{?, ?}) { }

EXAMPLE 2: Blocking call with getreply and catch

/1l Gven
signature MyProc3 (out integer MyParl, inout bool ean MyPar2) return MyResult Type
exception (ExceptionTypeOne, ExceptionTypeTwo);

/1 Call of MyProc3
myPort.call (MyProc3:{ -, true }) to nyPartner {
[1 nyPort.getreply(MyProc3:{?, ?}) -> value v_nyResult param (v_nyPar1Var,v_nyPar2Var) { }
[T nyPort.catch(M/Proc3, MExceptionOne) {
setverdict(fail);

st op;
}

ETSI

224 ETSI ES 201 873-1 V4.9.1 (2017-05)

[1 nyPort.catch(M/Proc3, ExceptionTypeTwo : ?) {
setverdi ct (i nconc);

}
[MyCondi tion] nyPort.catch(MProc3, M/ExceptionThree) { }
}

EXAMPLE 3: Blocking call with timeout exception
nyPort.call (MyProc: {5,v_nyVar}, 20E-3) {

[T nmyPort.getreply(M/Proc:{?, ?}) { }

[1 nyPort.catch(tineout) { /1 tinmeout exception after 20ns
setverdict(fail);
st op;
}

}
EXAMPLE 4: Nowait call

nyPort.call (MyProc: {5, v_nyVar}, nowait); /1 The calling test conponent will continue
/] its execution without waiting for the
/1 termination of MyProc

EXAMPLES5: Blocking call without return value, out parameters, inout parameters and exceptions

/Il Gven ..
si gnature MyBl ockingProc (in integer MyParl, in bool ean MyPar?2);

/) a call of MBI ocki ngProc
myPort.cal | (MyBl ocki ngProc:{ 7, false }) {
[T nyPort.getreply(MyBlockingProc:{ -, - }) { }

EXAMPLE 6: Broadcast call

var boolean v_first:= true;
nyPort.call (MyProc: {5,v_nyVar}, 20E-3) to all conponent { /1 Broadcast call of MProc
/1 Handl es the response from nmyPeer One
[v_first] nyPort.getreply(MProc:{?, ?}) from nyPeerOne {
if (v_first) { v_first := false; repeat; }

/1 Handl es the response from nmyPeer Two
[v_first] nyPort.getreply(MProc:{?, ?}) from nyPeerTwo {

if (v_first) { v_first := false; repeat; }
[T nyPort.catch(tineout) { /1 timeout exception after 20ns
setverdict(fail);
st op;
}
}
alt {
[T nyPort.getreply(MProc:{?, ?}) { /1 Handles all other responses to the broadcast call
r epeat
}
}

EXAMPLE 7: Multicast call

nyPort.call (MyProc: {5,v_nyVar}, nowait) to (nyPeerl, nyPeer2); // Milticast call of M/Proc

interleave {
[1 nyPort.getreply(MProc:{?, ?}) fromnyPeerl { } /1 Handl es the response of nyPeerl
[1 nyPort.getreply(MProc:{?, ?}) fromnyPeer2 { } /1 Handl es the response of nyPeer2
}

ETSI

225 ETSI ES 201 873-1 V4.9.1 (2017-05)

22.3.2 The Getcall operation

Theget cal | operation isused to accept cals.

Syntactical Structure

(Port | any port | any fromPortArrayRef) "." getcall

["(" Tenplatelnstance ")"]

[from Address]

["->" [param"(" { (VariableRef ":=" [@lecoded ["(" Expression ")"]]
Parameterldentifier) "," } |
{ (VariableRef | "-") "," }

[sender Variabl eRef]
[@ndex value Variabl eRef]]

NOTE 1: Address may be an AddressRef, alist of AddressRef-s or "any component".
Semantic Description

Theget cal | operation is used to specify that atest component accepts a call from the SUT, or another test
component.

Theget cal | operation shall remove the top call from the incoming port queue, if, and only if, the matching criteria
associated totheget cal | operation are fulfilled. These matching criteria are related to the signature of the call to be
processed and the communication partner. The matching criteria for the signature may either be specified in-line or be
derived from a signature template.

The assignment of i n and i nout parameter values to variables shall be made in the assignment part of the get cal |
operation. This alows the use of signature templatesin get cal | operations in the same manner as templates are used
for types.

A get cal | operation may be restricted to a certain communication partner in case of one-to-many connections. This
restriction shall be denoted by using the f r omkeyword followed by a specification of an address or component
reference, alist of address or component references or any component.

NOTE 2: The one-to-one connection is considered to be a simple case of the one-to-many connections and allows
the usage of the from-clause.

The (optional) assignment part of theget cal | operation comprises the assignment of i n and i nout parameter
values to variables and the retrieval of the address of the calling component. The keyword par amis used to retrieve the
parameter values of acall.

When assigning individual parameters of a call, encoded parameters can be decoded prior to assignment using the
@lecoded modifier. In this case, the referenced parameter on the right hand sided of the assignment shall be one of
thebi t string,hexstring,octetstring,charstringoruniversal charstring types. Itshal be
decoded into a value of the same type as the variable on the left hand side of the assignment. Failure of this decoding
shall cause atest case error. In case the referenced field is of theuni ver sal char st ri ng type, the @ecoded
clause can contain an optional parameter defining the encoding format. The parameter shall be of thechar st ri ng
type and it shall contain one of the strings allowed for thedecval ue_uni char function (specified in clause C.5.4).
Any other value shall cause an error. In case the referenced field isnot auni ver sal charstring, the optional
parameter shall not be present.

The keyword sender isused when it isrequired to retrieve the address of the sender (e.g. for addressingar epl y or
exception to the calling party in a one-to-many configuration).

Accepting any call

A get cal | operation with no argument list for the signature matching criteria will remove the call on the top of the
incoming port queue (if any) if al other matching criteria are fulfilled.

Getcall on any port

Toget cal | onany port is denoted by the any keyword.

ETSI

226 ETSI ES 201 873-1 V4.9.1 (2017-05)

Getcall on any port from a port array

Toget cal | onany port from a specific port array, usetheany from Port ArrayRef syntax where
PortArrayRef shall bea referenceto a port array identifier. It isalso possible to store the index of aport in asingle-
dimensional port array at which the operation was successful to a variable of type integer or, in case of
multi-dimensional port arrays the index of the successful port to an integer array or record of integer variable. When
checking the port array for matching calls, the port indices to be checked are iterated from lowest to highest. If the port
array is multi-dimensional, then the ports are iterated over from innermost to outermost array dimension from lowest to
highest index for each dimension, e.g. [0][O], [O][1], [1][OC], [1][1]. The first port which matches all the criteria will
cause the operation to be successful even if other portsin the array would also meet the criteria.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 15, the following restrictions
apply:

a Thegetcal | operation shall only be used on procedure-based ports and the signature of the procedure call to
be accepted shall be included in the list of allowed incoming procedures of the port type definition.

b) Thesignature argument of the get cal | operation shall not be used to passin variable namesfor i n and
i nout parameters.

c) The Parameterldentifiers shall be from the corresponding signature definition.
d) Thevaueassignment part shall not be used with the getcall operation.

€) Parameters of calls accepted by accepting any call shall not be assigned to avariable, i.e. the param clause
shall not be present.

f) All AddressRef itemsin the from clause and al VariableRef itemsin the sender clause shall be of type
addr ess, conponent or of the address type bound to the port type (see clause 6.2.9) of the port instance
referenced intheget cal | operation. No AddressRef in the f r omclause shall contain the special value
nul | at the time of the operation.

g) ThePortArrayRef shall be areference to a completely initialized port array.
h) Theindex redirection shall only be used when the operation is used on an any from port array construct.

i) If theindex redirection is used for single-dimensional port arrays, the type of the integer variable shall alow
storing the highest index of the respective array.

j) If theindex redirection is used for multi-dimensional port arrays, the size of the integer array or record of
integer type shall exactly be the same as the dimension of the respective array, and its type shall allow storing
the highest index (from all dimensions) of the array.

k) If avariablereferenced inthe par am sender or @ ndex clauseisalazy or fuzzy variable, the expression
assigned to this variableis equal to the result produced by theget cal | operation, i.e. later evaluation of the
lazy or fuzzy variable does not lead to repeated invocation of the get cal | operation.

) Iftheget cal | operation contains both f r omand sender clause, the variable or parameter referenced in
thesender clause shall be type compatible with the template in the f r omclause. If the operation contains a
sender clause but no f r omclause, the sender shall be type compatible with the type of the variable or
parameter referenced inthe sender clause.

NOTE 3: Anerror due to atype mismatch may happen if the typesin the receive part are not compatible to the
typesin the assignment part or, if the f r omclause is missing, but the type of the sender can be
determined and it is not type compatible with the typein the sender clause.

m) When assigning implicitly decoded parameters (by using the @ecoded modifier) in cases where the value or
template to be matched uses the MatchDecodedContent (decmat ch) matching for the parameter to be stored,
the type of the template in the MatchDecodedContent matching shall be type-compatible to the type of the
variable the decoded field is stored into.

ETSI

227 ETSI ES 201 873-1 V4.9.1 (2017-05)

Examples

EXAMPLE 1: Basic getcall
nyPort.getcal |l (M/Proc: s_nyProcTenpl ate(5, v_nyVar)); /1 accepts a call of MyProc at nyPort

myPort.getcall (MProc: {5, v_nyVar}) frommyPeer; // accepts a call of MyProc at myPort from
/'l myPeer

EXAMPLE 2: Getcall with matching and assignments of parameter values to variables

nyPort.getcal |l (MProc:{?, ?}) fromnyPartner -> param (v_nyPar1Var, v_nyPar2Var);
/1 The in or inout paraneter values of M/Proc are assigned to v_nyParl1Var and v_nyPar2Var.

nmyPort.getcal | (MyProc: {5, v_nyVar}) -> sender v_nySender Var;
/1 Accepts a call of MyProc at nyPort with the in or inout paraneters 5 and v_nyVar.
/1 The address of the calling party is retrieved and stored in v_nySender Var.

/1 The followi ng getcall exanples show the possibilities to use natching attributes
/1 and onmit optional parts, which may be of no inportance for the test specification.

nyPort.getcal |l (MProc: {5, v_nyVar}) -> paran(v_nyVarl, v_nyVar2) sender v_nySender Var;
myPort.getcal |l (MProc: {5, ?}) -> paran(v_nyVarl, v_nyVar2);

nyPort.getcal |l (MyProc:{?, v_nyVar}) -> paran(- , v_nyVar2);
/1 The value of the first inout parameter is not inportant or not used

/1 The foll owi ng exanpl es shall explain the possibilities to assign in and inout paraneter
/1 values to variables. The followi ng signature is assuned for the procedure to be call ed:

signature MyProc2(in integer A integer B, integer C, out integer D, inout integer E);
nmyPort.getcal |l (MProc2:{?, ?, 3, - , ?}) -> param (v_nyVarA, v_nyVarB, - , -, v_nyVarE);

/'l The parameters A, B, and E are assigned to the variables v_nyVarA, v_nyVarB, and

/1 v_nyVarE. The out paraneter D needs not to be considered.

nyPort.getcal |l (MyProc2:{?, ?, 3, -, ?}) -> param (v_nyVarA:= A v_nyVarB:= B, v_nyVarE: = E);
/1 Alternative notation for the val ue assignment of in and inout paranmeter to variables. Note,
/1 the names in the assignnent list refer to the nanes used in the signature of MyProc2

nmyPort.getcal l (MProc2:{1, 2, 3, -, *}) -> param (v_nyVarE: = E);
/1 Only the inout paranmeter value is needed for the further test case execution

/1 The followi ng exanpl e denonstrates the use of encoded paraneters:
signature MyProc3(in integer paranmlype, octetstring encodedParan;
tenplate integer mv.int := ?;

var integer v_nyVarX;

myPort.getcal |l (MProc3: {1, decmatch nw_int}) -> param (v_nyVarX := @ecoded encodedParam ;
/1 The paraneters encodedParamis decoded into an integer and assigned to v_nyVarX

EXAMPLE 3: Accepting any call
nyPort. getcal l; /'l Renoves the top call fromnyPort.
nmyPort.getcall fromnyPartner; // Renoves a call frommyPartner from port mnyPort

nyPort.getcall -> sender v_nySenderVar; // Renoves a call fromnyPort and retrieves
/1 the address of the calling entity

EXAMPLE 4: Getcall on any port

any port.getcall (M/Proc:?)

EXAMPLES5: Getcall on any port from port array

type port MyPort procedure { inout MyProc }
type conponent MyConponent {

port MyPort p[10][10];
}

var integer v_i[2];

any fromp.getcall (M/Proc:?) -> @ndex value v_i;

/1 checking for an incoming call of the type M/Proc on any port of the port array p and storing
/1 the index of the port on which the matching was successful first

ETSI

228 ETSI ES 201 873-1 V4.9.1 (2017-05)

22.3.3 The Reply operation
Ther epl y operation isused to reply to acall.

Syntactical Structure

Port "." reply "(" Tenpl atel nstance [val ue Tenpl ateBody] ")"
[to Address]

NOTE 1: Address may be an AddressRef, alist of AddressRef-sor "all component”.
Semantic Description
Ther epl y operation is used to reply to a previously accepted call according to the procedure signature.

NOTE 2: Therelation between an accepted call and ar epl y operation cannot always be checked statically. For
testing it is alowed to specify ar epl y operation without an associated get cal | operation.

The value part of ther epl y operation consists of a signature reference with an associated actual parameter list and
(optional) return value. The signature may either be defined in the form of a signature template or it may be defined
in-line.

Responsesto one or morecal | operations may be sent to one, several or all peer entities connected to the addressed
port. This can be specified in the same manner as described in clause 22.2.1. This means, the argument of thet o clause
of ar epl y operation is for unicast responses the address of one receiving entity, for multicast responses a list of
addresses of a set of receivers and for broadcast responsestheal | conponent keywords.

In case of one-to-one connections, thet o clause may be omitted, because the receiving entity is uniquely identified by
the system structure.

A return value or template shall be explicitly stated with the val ue keyword and is first evaluated before returning.
Restrictions

In addition to the genera static rules of TTCN-3 given in clause 5 and shown in table 15, the following restrictions
apply:

a Areply operation shall only be used at a procedure-based port. The type definition of the port shall include
the name of the procedure to which ther epl y operation belongs.

b) Allout andi nout parameters of the signature shall have a specific valuei.e. the use of matching
mechanisms such as AnyValue is not allowed.

c) At o clauseshall be present in case of one-to-many connections.,

d) All AddressRef itemsin the to clause shall be of type addr ess, conrponent or of the address type bound to
the port type (see clause 6.2.9) of the port instance referenced inthe r epl y operation. No AddressRef in the
t o clause shall contain the specia valuenul | at the time of the operation.

e) If avalueisto bereturned to the calling party, this shall be explicitly stated using the val ue keyword. The
TemplateBody in the val ue clause shall conform to the template(value) restriction.

f) Applyingar epl y operation to an unmapped or disconnected port shall cause atest case error.
Examples
nmyPort.reply(MProc2:{ - ,5}); /1 Replies to an accepted call of M/Proc2.

nyPort.reply(MProc2:{ - ,5}) to nyPeer; // Replies to an accepted call of My/Proc2 from nyPeer

nmyPort.reply(MProc2:{ - ,5}) to (myPeerl, nyPeer2); // Milticast reply to nmyPeerl and mnyPeer?2

nyPort.reply(M/Proc2:{ - ,5}) to all conponent; // Broadcast reply to all entities connected
/1 to nyPort
nyPort.repl y(M/Proc3: {5, v_nyVar} val ue 20); /! Replies to an accepted call of MProc3.

ETSI

229 ETSI ES 201 873-1 V4.9.1 (2017-05)

22.3.4 The Getreply operation
Theget r epl y operation is used to handle replies from a previously called procedure.

Syntactical Structure

(Port | any port | any fromPortArrayRef) "." getreply
["(" Tenplatelnstance [val ue Tenplatelnstance]")"]

[from Address]

[

"->" [value (Variabl eRef |
("(" { variableRef [":=" [@ecoded ["(" Expression ")"]]
Fi el dOr TypeReference 1[","]1 } ")")
)]
[param"(" { (VariableRef ":=" [@lecoded ["(" Expression ")"]]
Paraneterldentifier) "," } |
{ (VariableRef | "-") "," }

")
[sender Variabl eRef]
[@ndex value Variabl eRef]]

NOTE 1. Address may be an AddressRef, alist of AddressRef-s or "any component”.
Semantic Description
Theget r epl y operation is used to handle replies from a previously called procedure.

Theget r epl y operation shall remove the top reply from the incoming port queue, if, and only if, the matching
criteriaassociated to the get r epl y operation are fulfilled. These matching criteria are related to the signature of the
procedure to be processed and the communication partner. The matching criteria for the signature may either be
specified in-line or be derived from a signature template.

Matching against a received return value can be specified by using theval ue keyword.

A get r epl y operation may be restricted to a certain communication partner in case of one-to-many connections. This
restriction shall be denoted by using the f r omkeyword followed by a specification of an address or component
reference, alist of address or component references or any component..

NOTE 2: The one-to-one connection is considered to be a simple case of the one-to-many connections and allows
the usage of the from-clause.

The assignment of out and i nout parameter valuesto variables shall be made in the assignment part of the
get r epl y operation. This alows the use of signature templatesin get r epl y operations in the same manner as
templates are used for types.

The (optional) assignment part of the get r epl y operation comprises the assignment of out and i nout parameter
values to variables and the retrieval of the address of the sender of the reply. The keyword val ue is used to retrieve
return values and the keyword par amis used to retrieve the parameter values of areply. The keyword sender is used
when it isrequired to retrieve the address of the sender.

When assigning individual parameters or referenced fields of the return value of areply, encoded parameters can be
decoded prior to assignment using the @ ecoded modifier. In this case, the referenced parameter or field of the return
value on the right hand sided of the assignment shall be one of thebi t st ri ng, hexstri ng,octetstring,
charstringoruni versal charstring types. Itshal bedecoded into avaue of the same type as the variable
on the left hand side of the assignment. Failure of this decoding shall cause atest case error. In case the parameter or
referenced field of the return valueis of the uni ver sal char stri ng type, the @ecoded clause can contain an
optional parameter defining the encoding format. The parameter shall be of thechar st ri ng type and it shal contain
one of the strings allowed for the decval ue_uni char function (specified in clause C.5.4). Any other value shall
cause an error. In case the parameter or referenced field of the return valueisnot auni ver sal char string, the
optiona parameter shall not be present.

Get any reply

A get r epl y operation with no argument list for the signature matching criteria shall remove the reply message on the
top of the incoming port queue (if any) if all other matching criteria are fulfilled.

ETSI

230 ETSI ES 201 873-1 V4.9.1 (2017-05)

If GetAnyReply is used in the response and exception handling part of acal | operation, it shall only treat replies from
the procedure invoked by the cal | operation.

Get areply on any port
To get areply on any port, usetheany port keywords.
Get areply on any port from a port array

To get areply on any port from a specific port array, usetheany from Port ArrayRef syntax where
PortArrayRef shall bea referenceto a port array identifier. It isalso possible to store the index of aportina
single-dimensional port array at which the operation was successful to avariable of type integer or, in case of
multi-dimensional port arrays the index of the successful port to an integer array or record of integer variable. When
checking the port array for matching replies, the port indices to be checked are iterated from lowest to highest. If the
port array is multi-dimensional, then the ports are iterated over from innermost to outermost array dimension from
lowest to highest index for each dimension, e.g. [0][0], [O][1], [1][O], [1][1]. The first port which matches all the criteria
will cause the operation to be successful even if other portsin the array would also meet the criteria.

Restrictions

In addition to the genera static rules of TTCN-3 given in clause 5 and shown in table 15, the following restrictions
apply:

a) Agetreply operation shal only be used at a procedure-based port. The type definition of the port shall
include the name of the procedure to which the get r epl y operation belongs.

b) Thesignature argument of the get r epl y operation shall not be used to pass in variable names for out and
i nout parameters.

c) Parameters or return values of responses accepted by get any reply shall not be assigned to avariable, i.e. the
param and value clause shall not be present.

d) All AddressRef itemsin the from clause and all VariableRef itemsin the sender clause shall be of type
addr ess, conponent or of the address type bound to the port type (see clause 6.2.9) of the port instance
referenced intheget r epl y operation. No AddressRef in the f r omclause shall contain the special value
nul | at the time of the operation.

€) The PortArrayRef shal be areference to acompletely initialized port array .
f) Theindex redirection shall only be used when the operation is used on an any from port array construct.

g) If theindex redirectionis used for single-dimensional arrays, the type of the integer variable shall allow
storing the highest index of the respective port array.

h) If theindex redirection is used for multi-dimensional arrays, the size of the integer array or record of integer
type shall exactly be the same as the dimension of the respective port array, and the its type shall allow storing
the highest index (from all dimensions) of the port array.

i) Ifavariablereferenced intheval ue, par am sender or @ ndex clauseisalazy or fuzzy variable, the
expression assigned to this variable is equal to the result produced by theget r epl y operation, i.e. later
evaluation of the lazy or fuzzy variable does not lead to repeated invocation of the get r epl y operation.

j) Ifthegetrepl y operation contains both f r omand sender clause, the variable or parameter referenced in
the sender clause shall be type compatible with the template in the f r omclause. If the operation contains a
sender clause but no f r omclause, the sender shall be type compatible with the variable or parameter
referenced inthe sender clause.

NOTE 3: Anerror due to atype mismatch may happen if the typesin the receive part are not compatible to the
typesin the assignment part or, if the f r omclause is missing, but the type of the sender can be
determined and it is not type compatible with the typeinthe sender clause.

ETSI

231 ETSI ES 201 873-1 V4.9.1 (2017-05)

k) When assigning implicitly decoded parameters or referenced fields of the return value (by using the
@lecoded modifier) in cases where the value or template to be matched uses the MatchDecodedContent
(decmat ch) matching for the parameter to be stored, the type of the template in the MatchDecodedContent
matching shall be type-compatible to the type of the variable the decoded field is stored into.

Examples

EXAMPLE 1: Basic getreply

nyPort.getrepl y(M/Proc: {5, ?} value 20); /1 Accepts a reply of M/Proc with two out or
/'l inout paraneters and a return value of 20

nmyPort.getreply(MyProc2:{ - , 5}) fromnyPeer; [/ Accepts a reply of MyProc2 from nyPeer

EXAMPLE 2: Getreply with storing inout/out parameters and return values in variables
nmyPort.getreply(M/Procl: {?, ?} value ?) -> value v_nyRetVal ue paran(v_nyParl, v_nyPar?2);

/1 The returned value is assigned to variable v_nyRetValue and the val ue

/1 of the two out or inout paraneters are assigned to the variables v_nyParl and v_nyPar2.
myPort. getrepl y(MyProcl: {?, ?} value ?)-> value v_nyRetValue param(- ,v_nyPar2) sender nySender;
/1 The value of the first paraneter is not considered for the further test execution and

/1 the address of the sender conponent is retrieved and stored in the variable nySender.

/1 The followi ng exanpl es descri be some possibilities to assign out and inout paraneter val ues
/1 to variables. The followi ng signature is assuned for the procedure which has been called

signature MyProc2(in integer A integer B, integer C, out integer D, inout integer E);
myPort.getreply(s_aTenplate) -> paran(- , - , - , v_nyVarQutl, v_nyVarlnoutl);
myPort.getreply(s_aTenplate) -> paran(v_nyVarQutl: =D, v_nyVarQut2: =E);
myPort.getreply(MyProc2:{ - , - , -, 3, ?}) -> param(v_nyVarl nout1: =E);

/1 The followi ng exanpl e denbnstrates the use of encoded paraneters:

signature MyProc3(out integer paranType, out octetstring encodedParan)j;

tenplate integer mv_int := ?;

\-/.ér i nteger v_nyVarX;

myPort. getrepl y(MyProc3: {1, decmatch nw_.int}) -> param (v_nyVarX : = @ecoded encodedPar anj;
/'l The paraneters encodedParamis decoded into an integer and assigned to v_nyVarX.

EXAMPLE 3: Get any reply

nmyPort. getreply; /1 Renoves the top reply fromnyPort.
nyPort.getreply from nyPeer; /1 Renoves the top reply received fromnyPeer fromnyPort.
nmyPort.getreply -> sender v_nySender Var; /1 Renoves the top reply fromnyPort and retrieves

/'l the address of the sender entity
EXAMPLE 4: Get areply on any port
any port.getreply(Mproc:?)

EXAMPLES: Get areply on any port from port array

type port MyPort procedure { inout MyProc }
type conponent MyConponent {
port MyPort p[10][10];
}
var integer v_i[2];
any fromp.getreply(MProc:?) -> @ndex value v_i;
/] Getting a reply of the type M/Proc on any port of the port array p and
/1 storing the index of the port on which the nmatching was successful first

ETSI

232 ETSI ES 201 873-1 V4.9.1 (2017-05)

22.3.5 The Raise operation
Exceptions are raised with the r ai se operation.

Syntactical Structure

Port "." raise "(" Signature "," Tenpl atel nstance ")"
[to Address]

NOTE 1: Address may be an AddressRef, alist of AddressRef-sor "all component”.
Semantic Description
Ther ai se operation is used to raise an exception.

NOTE 2: The relation between an accepted call and ar ai se operation cannot always be checked statically. For
testing it is alowed to specify ar ai se operation without an associated get cal | operation.

The value part of ther ai se operation consists of the signature reference followed by the exception value.

Exceptions are specified as types. Therefore the exception value may either be derived from atemplate conforming to
the template(value) restriction or be the value resulting from an expression (which of course can be an explicit value).
The optional type field in the value specification to ther ai se operation shall be used in cases where it is necessary to
avoid any ambiguity of the type of the value being sent.

Exceptionsto one or more cal | operations may be sent to one, several or al peer entities connected to the addressed
port. This can be specified in the same manner as described in clause 22.2.1. This means, the argument of thet o clause
of ar ai se operation isfor unicast exceptions the address of one receiving entity, for multicast exceptions alist of
addresses of a set of receivers and for broadcast exceptionstheal | conponent keywords.

In case of one-to-one connections, thet o clause may be omitted, because the receiving entity is uniquely identified by
the system structure.

Restrictions

In addition to the genera static rules of TTCN-3 given in clause 5 and shown in table 15, the following restrictions
apply:

a) Anexception shall only beraised at a procedure-based port. An exception is a reaction to an accepted
procedure call the result of which leads to an exceptional event.

b) Thetype of the exception shall be specified in the signature of the called procedure. The type definition of the
port shall includeinitslist of accepted procedure calls the name of the procedure to which the exception
belongs.

¢) At o clauseshal be present in case of one-to-many connections.

d) All AddressRef itemsin the to clause shall be of type addr ess, conponent or of the address type bound to
the port type (see clause 6.2.9) of the port instance referenced inthe r ai se operation. No AddressRef in the
t o clause shall contain the special value nul | at the time of the operation.

€) Applyingar ai se operation to an unmapped or disconnected port shall cause atest case error.
f) The Templatel nstance shall conform to the template(val ue) restriction (see clause 15.8).

Examples
myPort.rai se(MSignature, v_nyVariable + v_yourVariable - 2);
/] Raises an exception with a value which is the result of the arithnetic expression
/1 at nyPort
nyPort.rai se(M/Proc, integer:5}); /'l Raises an exception with the integer value 5 for M/Proc
nyPort.rai se(M/Signature, "My string") to nyPartner;

/] Raises an exception with the value "My string" at nyPort for M/Signature and
/1 send it to nyPartner

ETSI

233 ETSI ES 201 873-1 V4.9.1 (2017-05)

nyPort.rai se(M/Signature, "My string") to (nyPartnerOne, nyPartnerTwo);

/'l Raises an exception with the value "My string" at nyPort and sends it to nyPartnerOne and
/1 myPartnerTwo (i.e. multicast communication)

myPort.rai se(M/Signature, "My string") to all conponent;

/] Raises an exception with the value "My string" at nyPort for MySignature and sends it
// to all entites connected to nyPort (i.e. broadcast communicati on)

22.3.6 The Catch operation

Thecat ch operation is used to catch exceptions.

Syntactical Structure

(Port | any port | any fromPortArrayRef) "." catch
["(" (Signature "," Tenplatelnstance) | Ti meoutKeyword ")"]
[from Address]
["->" [value (Variabl eRef |
("(" { VariableRef [":=" [@ecoded ["(" Expression ")"]]
Fi el dO TypeReference 1[","] } ")")

)]
[sender Variabl eRef]
[@ndex value VariableRef]]

NOTE 1. Address may be an AddressRef, alist of AddressRef-s or "any component”.
Semantic Description

The cat ch operation is used to catch exceptions raised by a test component or the SUT as a reaction to a procedure
call. Exceptions are specified as types and thus, can be treated like messages, e.g. templates can be used to distinguish
between different val ues of the same exception type.

The cat ch operation removes the top exception from the associated incoming port queue if, and only if, that top
exception satisfies al the matching criteria associated with the cat ch operation.

A cat ch operation may be restricted to a certain communication partner in case of one-to-many connections. This
restriction shall be denoted by using the f r omkeyword followed by a specification of an address or component
reference, alist of address or component references or any component.

NOTE 2: The one-to-one connection is considered to be a simple case of the one-to-many connections and allows
the usage of the from-clause.

The (optional) redirection part of the cat ch operation comprises of storing the exception value and/or one or more
parts of it and the retrieval of the address of the calling component. The keyword val ue isused to retrieve the val ue of
an exception and/or the parts of it and the keyword sender isused when it isrequired to retrieve the address of the
sender.

When assigning individual fields of an exception, encoded payload fields can be decoded prior to assignment using the
@lecoded modifier. In this case, the referenced field on the right hand sided of the assignment shall be one of the
bitstring,hexstring,octetstring,charstringoruniversal charstring types. Itshal be
decoded into a value of the same type as the variable on the left hand side of the assignment. Failure of this decoding
shall cause atest case error. In case the referenced field is of theuni ver sal char st ri ng type, the @ecoded
clause can contain an optional parameter defining the encoding format. The parameter shall be of thechar stri ng
type and it shall contain one of the strings allowed for thedecval ue_uni char function (specified in clause C.5.4).
Any other value shall cause an error. In case the referenced field isnot auni ver sal charstring, the optional
parameter shall not be present.

The cat ch operation may be part of the response and exception handling part of acal | operation or be used to
determine an dternativeinan al t statement. If the cat ch operation is used in the accepting part of acal | operation,
the information about port name and signature reference to indicate the procedure that raised the exception is redundant,
because this information follows fromthe cal | operation. However, for readability reasons (e.g. in case of complex
cal | statements) thisinformation shall be repeated.

ETSI

234 ETSI ES 201 873-1 V4.9.1 (2017-05)

The Timeout exception

Thereisone special t i meout exception that can be caught by the cat ch operation. Thet i meout exceptionisan
emergency exit for cases where a called procedure neither replies nor raises an exception within a predetermined time
(see clause 22.3.1).

Catch any exception

A cat ch operation with no argument list allows any valid exception to be caught. The most general case is without
using the f r omkeyword. CatchAnyException will also catch thet i meout exception.

Catch on any port
To cat ch an exception on any port use the any keyword.
Catch on any port from a port array

To cat ch an exception on any port from a specific port array, indicesusetheany from Port ArrayRef syntax
where PortArrayRef shall bea referenceto a port array identifier. It isalso possibleto store the index of aportina
single-dimensional port array at which the operation was successful to a variable of type integer or, in case of
multi-dimensional port arrays the index of the successful port to an integer array or record of integer variable. When
checking the port array for matching exceptions, the port indices to be checked are iterated from lowest to highest. If the
port array is multi-dimensional, then the ports are iterated over from innermost to outermost array dimension from
lowest to highest index for each dimension, e.g. [0][0], [O][1], [1][O], [1][1]. The first port which matches all the criteria
will cause the operation to be successful even if other portsin the array would also meet the criteria.

The catch on any port from a port array operation can not be used to catch acall timeout.
Restrictions

In addition to the genera static rules of TTCN-3 given in clause 5 and shown in table 15, the following restrictions
apply:
a Thecat ch operation shall only be used at procedure-based ports. The type of the caught exception shall be
specified in the signature of the procedure that raised the exception.

b) No binding of theincoming valuesto the terms of the expression or to the template shall occur. The
assignment of the exception values to variables shall be made in the assignment part of the cat ch operation.

c¢) Catchingti meout exceptionsshall be restricted to the exception handling part of acall. No further matching
criteria (including af r ompart) and no assignment part is allowed for acat ch operation that handles a
ti meout exception.

d) Exception values accepted by catch any exception shall not be assigned to avariable, i.e. the value clause shall
not be present.

€) |If CatchAnyException isused in the response and exception handling part of acal | operation, it shall only
treat exceptions raised by the procedure invoked by the cal | operation.

f) All AddressRef itemsin the from clause and all VariableRef itemsin the sender clause shall be of type
addr ess, conponent or of the address type bound to the port type (see clause 6.2.9) of the port instance
referenced in the cat ch operation. No AddressRef in the f r omclause shall contain the special valuenul | at
the time of the operation.

g) ThePortArrayRef shall be areference to a completely initialized port array.
h) Theindex redirection shall only be used when the operation is used on an any from port array construct.

i) Iftheindex redirection is used for single-dimensional arrays, the type of the integer variable shall alow
storing the highest index of the respective port array.

j) Iftheindex redirection is used for multi-dimensional arrays, the size of the integer array or record of integer
type shall exactly be the same as the dimension of the respective port array, and the its type shall alow storing
the highest index (from all dimensions) of the port array.

ETSI

235 ETSI ES 201 873-1 V4.9.1 (2017-05)

k) If avariablereferenced intheval ue, sender or @ ndex clauseisalazy or fuzzy variable, the expression
assigned to thisvariable is equal to the result produced by the cat ch operation, i.e. later evaluation of the
lazy or fuzzy variable does not lead to repeated invocation of the cat ch operation.

[) If thecat ch operation contains both f r omand sender clause, the variable or parameter referenced in the
sender clause shal be type compatible with the template in the f r omclause. If the operation contains a
sender clause but no f r omclause, the sender shall be type compatible with the variable or parameter
referenced inthe sender clause.

NOTE 3: An error due to atype mismatch may happen if the typesin the receive part are not compatible to the
typesin the assignment part or, if the from clause is missing, but the type of the sender can be determined
and it is not type compatible with the type in the sender clause.

m) When assigning implicitly decoded exception fields (by using the @lecoded modifier) in cases where the
value or template to be matched uses the MatchDecodedContent (decmat ch) matching for the parameter to
be stored, the type of the template in the MatchDecodedContent matching shall be type-compatible to the type
of the variable the decoded field is stored into.

Examples

EXAMPLE 1: Basic catch

nmyPort.catch(M/Proc, integer: v_nyVar); /] Catches an integer exception of value

/'l v_nyVar raised by MyProc at port nyPort.
myPort. catch(M/Proc, v_nyVar); /1 Is an alternative to the previous exanple.
nyPort. catch(M/Proc, v_a<v_b); /] Catches a bool ean exception

nmyPort.catch(M/Proc, MyType: {5, v_nyVar}); // In-line tenplate definition of an exception val ue.

nyPort. catch(M/Proc, charstring:"Hello")from nyPeer; /1 Catches "Hello" exception from nyPeer

EXAMPLE 2: Catch with storing value and/or sender in variables

nyPort.catch(M/Proc, MyType:?) from nyPartner -> value v_nyVar;
/] Catches an exception fromnyPartner and assigns its value to v_nyVar.

nmyPort. catch(M/Proc, s_nyTenplate(5)) -> value v_nyVar Two sender nmnyPeer;
/Il Catches an exception, assigns its value to v_nyVarTwo and retrieves the
/1 address of the sender.

myPort.catch(M/Proc, s_nyTenplate(5)) -> value (v_nyVarThree: = f1)
sender mnyPeer;
/] Catches an exception, assigns the value of its field f1 to v_nyVarThree and retrieves the
/1 address of the sender.
/1 Handling encoded exception payl oad:

type MyException record {

}

type CommonException record {
i nt eger exceptionld,
octetstring payl oad

}

signature S() exception (ComonException);

var MyException v_nyVar;

myPort.catch (S, CommonException: {exceptionld := 25, payload : = decmatch MyException:? })

-> value (v_nyVar := @ecoded payl oad);
/1 The encoded payl oad field of the caught exception is decoded and matched wi th m excTenpl at e;
/1 if the matching is successful the decoded payload is stored in v_mnyVar.

ETSI

236 ETSI ES 201 873-1 V4.9.1 (2017-05)

EXAMPLE 3: The Timeout exception

nmyPort.call (MyProc: {5, v_nyVar}, 20E-3) {
[1 nyPort.getreply(MyProc:{?, ?}) { }
[1 nyPort.catch(tineout) { /'l tinmeout exception after 20ns
setverdict(fail);
st op;
}
}

EXAMPLE 4: Catch any exception
nyPort. catch;
nmyPort.catch from nyPartner;

nyPort.catch -> sender v_nySender Var;

EXAMPLES5: Catch on any port

any port.catch;

EXAMPLE 6: Catch on any port from port array

type port MyPort procedure { inout MyProc }
type conponent MyConponent {
port MyPort p[10][10];
}
var integer v_i[2];
any from p.catch(M/Proc, MyType:?) -> @ndex value v_i;
/1 Catching an incomi ng exception of type MyType on any port in the port array p and
/1 storing the index of the port on which the matching was successful first

22.4 The Check operation

The check operation allows reading the top element of a message-based or procedure-based incoming port queue.

Syntactical Structure

(Port | any port | any fromPortArrayRef) "." check
["
(PortReceiveOp | PortGetCall Op | PortGetReplyOp | PortCatchCp) |
([from Address]
["->" [sender Variabl eRef]
[@ndex value VariableRef]])
")

NOTE 1. Address may be an AddressRef, alist of AddressRef-s or "any component”.
Semantic Description

The check operation is a generic operation that allows read access to the top element of message-based and
procedure-based incoming port queues without removing the top element from the queue. The check operation hasto
handle values of a certain type at message-based ports and to distinguish between calls to be accepted, exceptionsto be
caught and replies from previous calls at procedure-based ports.

Thereceiving operationsr ecei ve, get cal | , get r epl y and cat ch together with their matching and value, sender
or parameter storing parts, are used by the check operation to define the conditions that have to be checked and the
information to be optionally extracted.

ETSI

237 ETSI ES 201 873-1 V4.9.1 (2017-05)

It isthe top element of an incoming port queue that shall be checked (it is not possible to look into the queue). If the
gueue is empty the check operation fails. If the queue is not empty, a copy of the top element is taken and the
receiving operation specified in the check operation is performed on the copy. The check operation failsif the
receiving operation failsi.e. the matching criteriaare not fulfilled. In this case the copy of the top element of the queue
is discarded and test execution continues in the normal manner, i.e. the statement or alternative next to the check
operation is evaluated. The check operation is successful if the receiving operation is successful. In this case, the
value, sender or parameter storing parts of the receiving operation, if any, are executed, i.e. the message and/or a part of
it, the sender's address or component reference, the parameter(s) of the call or reply or the value of the exception are
stored in the associated variables.

If check isused as a stand-alone statement, it is considered to be a shorthand for an al t statement with thecheck
operation as the only alternative.

Check from a specific sender

In the case of one-to-many connections the check operation may be restricted to a certain communication partner. This
restriction shall be denoted using the f r omkeyword followed by a specification of an address or component reference,
alist of address or component references or any component.

NOTE 2: The one-to-one connection is considered to be a simple case of the one-to-many connections and allows
the usage of the from-clause.

Check any operation

A check operation with no argument list allows checking whether something waits for processing in an incoming port
queue. The check any operation alows to distinguish between different senders (in case of one-to-many connections)
by using af r omclause and to retrieve the sender by using a shorthand assignment part withasender clause.

Check on any port
Tocheck onany port, usetheany port keywords.
Check on any port from a port array

To check on any port from a specific port array, indicesindicesusetheany from Port ArrayRef syntax where
PortArrayRef shall bea referenceto a port array identifier. It isalso possible to store the index of aportina
single-dimensional port array at which the operation was successful to avariable of type integer or, in case of
multi-dimensional port arrays the index of the successful port to an integer array or record of integer variable. When
checking the port array for a matching message, call, reply or exception, the port indices to be checked are iterated from
lowest to highest. If the port array is multi-dimensional, then the ports are iterated over from innermost to outermost
array dimension from lowest to highest index for each dimension, e.g. [0][O], [O][1], [1][O], [1][1]. Thefirst port which
matches all the criteriawill cause the operation to be successful even if other portsin the array would aso meet the
criteria.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 15, the following restrictions
apply:

a) Usingthecheck operation in awrong manner, e.g. check for an exception at a message-based port shall
cause atest case error.

b) All AddressRef itemsin the from clause and all VariableRef itemsin the sender clause shall be of type
addr ess, conponent or of the address type bound to the port type (see clause 6.2.9) of the port instance
referenced in the check operation. No AddressRef in the f r omclause shall contain the special valuenul | at
the time of the operation.

c) ThePortArrayRef shall be areference to acompletely initialized port array.
d) Theindex redirection shall only be used when the operation is used on an any from port array construct.

€) If theindex redirectionis used for single-dimensional arrays, the type of the integer variable shall allow
storing the highest index of the respective port array.

ETSI

238 ETSI ES 201 873-1 V4.9.1 (2017-05)

f) If theindex redirection is used for multi-dimensional arrays, the size of the integer array or record of integer
type shall exactly be the same as the dimension of the respective port array, and the its type shall allow storing
the highest index (from all dimensions) of the port array.

g) Ifavariablereferenced inthe sender or @ ndex clauseisalazy or fuzzy variable, the expression assigned
to thisvariableis equal to the result produced by the check operation, i.e. later evaluation of the lazy or fuzzy
variable does not lead to repeated invocation of the check operation.

h) If thecheck operation contains both f r omand sender clause, the variable or parameter referenced in the
sender clause shal be type compatible with the template in the f r omclause. If the operation contains a
sender clause but no f r omclause, the sender shall be type compatible with the variable or parameter
referenced inthe sender clause.

NOTE 3: In most cases the correct usage of the check operation can be checked statically, i.e. before/during
compilation.

NOTE 4: Anerror due to atype mismatch may happen if the typesin the receive part are not compatible to the
typesin the assignment part or, if the from clause is missing, but the type of the sender can be determined
and it is not type compatible with the type in the sender clause.

Examples

EXAMPLE 1: Basic check
nyPort 1. check(receive(5)); [/ Checks for an integer nessage of value 5.

nyPort 1. check(receive(charstring:?) -> value v_nyCharVar);
/] Checks for a charstring nessage and stores the nessage if the nessage type is charstring

nmyPort 2. check(getcal | (MyProc: {5, v_nyVar}) from nyPartner);
/1 Checks for a call of MyProc at port nyPort2 from nyPartner

nyPort 2. check(getrepl y(M/Proc: {5, v_nyVar} value 20));

I/ Checks for a reply fromprocedure M/Proc at nyPort2 where the returned value is 20 and

/1 the values of the two out or inout paraneters are 5 and the value of v_nyVar.

nyPort 2. check(catch(M/Proc, s_nyTenplate(5, v_nyVar)));

myPort 2. check(getrepl y(MyProcl: {?, v_nyVar} value *)-> value v_nyReturnVal ue param(v_nyParl,-));
nyPort.check(getcal |l (MyProc: {5, v_nyVar}) fromnyPartner -> param (v_nyPar1lVar, v_nyPar2Var));

myPort. check(getcal | (M/Proc: {5, v_nyVar}) -> sender v_nySender Var);

EXAMPLE 2: Check any operation
myPort . check;
nyPort. check(from nyPartner);

myPort. check(-> sender v_nySenderVar);

EXAMPLE 3: Check on any port

any port.check;

EXAMPLE 4: Check on any port from port array

type port MyPort procedure { inout MyProc }
type conponent MyConponent {
port MyPort p[10][10];
}
var integer v_i[2];
any from p.check(catch(M/Proc, MyType:?)) -> @ndex value v_i;
/] Checking for an incoming exception of the type MyType on any port of the port array p and
/1 storing the index of the port on which the matching was successful first

ETSI

239 ETSI ES 201 873-1 V4.9.1 (2017-05)

22.5 Controlling communication ports

22.5.0 General

TTCN-3 operations for controlling message-based and procedure-based ports are presented in table 24.

Table 24: Overview of TTCN-3 port operations

Port operations
Statement Associated keyword or symbol
Clear port clear
Start port start
Stop port stop
Halt port halt
Check the state of a port checkstate

22.5.1 The Clear port operation
Thecl ear port operation emptiesincoming port queues.

Syntactical Structure

(Port | (all port)) "." clear
Semantic Description

Thecl ear operation removes the contents of the incoming queue of the specified port or of all ports of the test
component performing the cl ear operation.

If aport queueis already empty then this operation shall have no action on that port.
Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5 and shown in table 15.

Examples

nyPort. cl ear; Il clears port MyPort

22.5.2 The Start port operation

Thest art operation enables sending and receiving operations on the port(s).

Syntactical Structure

(Port | (all port)) "." start
Semantic Description

If aport is defined as allowing receiving operationssuch asr ecei ve, get cal | , etc., thest art operation clears
the incoming queue of the named port and starts listening for traffic over the port. If the port is defined to allow sending
operations then the operations such assend, cal | ,r ai se, etc., are also allowed to be performed at that port.

By default, al ports of acomponent shall be started implicitly when a component is created. The start port operation
will cause unstopped ports to be restarted by removing all messages waiting in the incoming queue.

Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5 and shown in table 15.

Examples

nyPort.start; /] starts nyPort

ETSI

240 ETSI ES 201 873-1 V4.9.1 (2017-05)

22.5.3 The Stop port operation
The st op operation disables sending and disallow receiving operations to match at the port(s).

Syntactical Structure

(Port | (all port)) "." stop
Semantic Description

If aport is defined as allowing receiving operationssuch asr ecei ve and get cal | , thest op operation causes
listening at the named port to cease. If the port is defined to allow sending operations then st op port disallows the
operationssuch assend, cal | , r ai se, etc., to be performed.

To cease listening at the port meansthat all receiving operations defined before the stop operation shall be completely
performed before the working of the port is suspended.

Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5 and shown in table 15.

Examples

nmyPort.receive (mv_nyTenpl atel) -> val ue v_recPDU,
/1 the received value is decoded, matched agai nst
/'l MyTenpl atel and the natching value is stored
/1 in the variable v_recPDU
nmyPort . st op; /1 No receiving operation defined followi ng the stop
/] operation is executed (unless the port is restarted
/1 by a subsequent start operation)
nmyPort.receive (mv_nyTenpl ate2); /] This operation does not natch and will block (assuming
/1 that no default is activated)

22.5.4 The Halt port operation

Thehal t operationis comparableto the st op operation, but allows entries being aready in the queue to be processed
with receiving operations.

Syntactical Structure

(Port | (all port)) "." halt
Semantic Description

If aport allows receiving operationssuch asr ecei ve, t ri gger andget cal | ,thehal t operation disallows
receiving operations to succeed for messages and procedure call elements that enter the port queue after performing the
hal t operation at that port. Messages and procedure call elements that were already in the queue before the hal t
operation can still be processed with receiving operations. If the port allows sending operations then hal t port
immediately disallows sending operations such assend, cal | , r ai se, etc. to be performed. Subsequent halt
operations have no effect on the state of the port or its queue.

NOTE 1: Theport hal t operation virtually puts a marker after the last entry in the queue received when the
operation is performed. Entries ahead of the marker can be processed normally. After al entriesin the
queue ahead of the marker have been processed, the state of the port is equivalent to the stopped state.

NOTE 2: If aport st op operation is performed on a halted port before al entriesin the queue ahead of the marker
have been processed, further receive operations are disallowed immediately (i.e. the marker is virtually
moved to the top of the queue).

NOTE 3: A port st art operation on a halted port clears al entriesin the queue irrespectively if they arrived
before or after performing the port hal t operation. It aso removes the marker.

NOTE 4: A port cl ear operation on ahalted port clears all entriesin the queue irrespectively if they arrived
before or after performing the port hal t operation. It also virtually puts the marker at the top of the
queue.

ETSI

241 ETSI ES 201 873-1 V4.9.1 (2017-05)

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5 and shown in table 15.

Examples
nmyPort. hal t; /1 No sending allowed on nyPort fromthis nonent on;
/'l processing of nessages in the queue still possible.
nyPort.receive (mv_nyTenpl atel); /1 If a nmessage was already in the queue before the halt

/] operation and it nmatches nw nyTenplatel, it is processed,
/1 otherw se the receive operation bl ocks.

22.5.5 The Checkstate port operation
Thecheckst at e port operation allows to check the state of a port.
Syntactical Structure
(Port | (all port) | (any port)) "." checkstate "(" Singl eExpression ")"
Semantic Description

Thecheckst at e port operation allows to examine the state of a port. If aport isin the state specified by the
parameter, the checkst at e operation returns the Boolean valuet r ue. If the port is not in the specified state, the
checkst at e operation returnsthe Boolean value f al se. Calling thecheckst at e operation with aninvalid
argument leadsto an error.

The checkstate operation allows to check for different dimensions of a port state. It allowsto check if aport is Started,
Halted or Stopped, but also if a port is Connected, Mapped or Linked (i.e. Connected or Mapped).

NOTE 1. The states Started, Halted and Stopped refer to the port states defined in the clauses F.3.1 and F.3.2. The
states Connected, Mapped and Linked are related to the application of the connection operations
connect, di sconnect , map and unmap as defined in clause 21.1.

Thecheckst at e port operation can beused withal | port andany port.Usingthecheckst at e operation
withany port alowstotestif at least one port of atest component isin the specified state. Using thecheckst at e
operationwithal | port alowsto check if al ports of acomponent are in the specified state.

Restrictions

In addition to the genera static rules of TTCN-3 given in clause 5 and shown in table 15, the following restrictions
apply:

a) The parameter of thecheckst at e operation shall be of type char st ri ng and shall have one of the
following values:

a "Started"

b) "Halted"

c) "Stopped"
d) "Connected"
e "Mapped"

f) "Linked"

NOTE 2: Clause E.2.2.4 includes the type definition obj St at e and the constant definitions STARTED, HALTED,
STOPPED, CONNECTED, MAPPED, and LI NKED. It is recommended to use the checkst at e operation
in combination with this type and these constants to ease the checking of correct usage and to improve the
readability of test specs.

b) Callingthecheckst at e operation withachar st ri ng parameter not listed in @) shall lead to an error.

ETSI

Examples

242

type conponent MyMICType // Conponent type definition for an MIC

port MyPort Type pCOL, pCQ2

}

ETSI ES 201 873-1 V4.9.1 (2017-05)

type conponent MyTest Systemi nterface // Conponent type definition for a test systeminterface

}

port MyPortType pCO3, pCO4, pCob;

/] Test case definition

testcase TC MyTestcasel ()

22.6

var bool ean v_

nmyPort State : =

v_nyPort State

map(ntc: pCOL,

v_nyPortState :
v_nyPortState :

v_nyPortState :

v_myPort State

all port.stop;

v_nyPortState :

v_nyPort State

/1 further testcase behavi our

/1

myPort St at e;

al |

;= any port.checkstate("Linked");

system pC®B) ;

;= any port.checkstate("Mpped");

= all

port.checkstate("Started");

pCQOL. checkst at e(" Li nked") ;
pCOL. checkst at e(" Mapped") ;

pCQOL. checkst at e(" Connect ed") ;

;= pCOL. checkst at e(" St opped") ;

/1
/1
/1

/1
/1

/1
/1

/1
/1

/1

port.checkstate("Started");//

/1
/1

Use of any and all with ports

checkstate returns true,

runs on MyMICType system MyTest Systeni nterface {

because al |

ports of a conponent are started after
conponent creation and start

checkstate returns fal se,

no port is

ei ther connected nor mapped

checkstate returns
checkstate returns

checkstate returns

pCOL is mapped
pCOL i s mapped

true,
true,

fal se, pCOlL i s napped

and not connected

checkstate returns

checkstate returns

true, pCOL is mapped

false, all ports

are stopped

checkstate returns

true, pCOL is stopped

The keywordsany and al | may be used with configuration and communication operations as indicated in table 25.

Table 25: Any and All with ports

Operation Allowed Example
any all
receive, trigger, getcall, getreply, catch, check) |yes any port.receive
connect / map
di sconnect / unmap yes unmap(sel f all port)
start, stop, clear, halt yes all port.start
checkstate yes yes any port.checkstate("Started")
al | port.checkstate("Connected")

NOTE:

port andal |

ETSI

Ports are owned by test components and instantiated when a component is created. The keywords any
port address all ports owned by atest component and not only the ports known in the
scope of the function or atstep that is executed on the component.

243 ETSI ES 201 873-1 V4.9.1 (2017-05)

23 Timer operations

23.0 General

TTCN-3 supports a number of timer operations as given in table 26. These operations may be used in test cases,
functions, altsteps and module control.

Table 26: Overview of TTCN-3 timer operations

Timer operations
Statement Associated keyword or symbol
Start timer start
Stop timer stop
Read elapsed time read
Check if timer running running
Timeout event timeout

23.1 The timer mechanism

It is assumed that each test component and the module control maintain their own running-timers list and timeout-list,
i.e. alist of al timersthat are actually running and alist of all timersthat have timed out. The timeout-lists are part of
the snapshots that are taken when atest case is executed. The running-timers list and timeout-list of a component or
module control are updated if atimer of the component or module control is started, is stopped, times out or the
component or module control executesat i meout operation.

NOTE 1: The running-timerslist and the timeout-list are only a conceptual lists and do not restrict the
implementation of timers. Other data structures like a set, where the access to timeout eventsis not
restricted by, e.g. the order in which the timeout events have happened, may also be used.

NOTE 2: Conceptually, each test component and module control maintain one running-timers list and one timeout-
list only. However, within a given scope unit only timers known in the scope unit can be accessed
individually, i.e. timersthat are declared in the scope unit, passed in as parameters to the scope unit or
known viaaruns-on clause. In some special cases (e.g. for re-establishing a test component during atest
run), it can be necessary to stop timers local to other scope units or to check if timerslocal to other scope
units are running or have already timed out. This can be done by using the keywordsal | and any in
combination with the timer operations st op, t i meout and r unni ng. Allowed combinations are
defined in clause 23.7.

When atimer expires, the timer becomes immediately inactive. A timeout event is placed in the timeout-list and the
timer is removed from the running-timer list of the test component or module control for which the timer has been
declared. Only one entry for any particular timer may appear in the timeout-list and running-timer list of the test
component or module control for which the timer has been declared.

All running timers shall automatically be cancelled when atest component is explicitly or implicitly stopped.

23.2 The Start timer operation
Thest art timer operation is used to indicate that atimer shall start running.

Syntactical Structure

((Timerldentifier | TimerParldentifier) { "[" SingleExpression "]" })
" start ["(" TimerValue ")"]

ETSI

244 ETSI ES 201 873-1 V4.9.1 (2017-05)

Semantic Description
When atimer is started, its name is added to the list of running timers (for the given scope unit).

The optional timer value parameter shall be used if no default duration is given, or if it is desired to override the default
value specified in the timer declaration. When atimer duration is overridden, the new value applies only to the current
instance of the timer, any later st art operations for this timer, which do not specify a duration, shall use the default
duration.

Starting atimer with the timer value 0.0 means that the timer times out immediately. Starting a timer with a negative
timer value, e.g. the timer valueis the result of an expression, or without a specified timer value shall cause aruntime
error.

The timer clock runs from the float value zero (0.0) up to maximum stated by the duration parameter.

Thest art operation may be applied to arunning timer, in which case the timer is stopped and re-started. Any entry in
atimeout-list for thistimer shall be removed from the timeout-list.

Restrictions

In addition to the genera static rules of TTCN-3 given in clause 5 and shown in table 15, the following restrictions
apply:

a) Timer value shall be anon-negative numerical f | oat number (i.e. the value shall be greater than or equal to
0.0; infinity and not_a_number are disallowed).

Examples
t_nyTinerl.start; /1 t_nyTinmerl is started with the default duration
t_nyTinmer2. start (20E-3); /1 t_nyTiner2 is started with a duration of 20 ns

/] Elements of tiner arrays nay also be started in a |oop, for exanple
timer t_nyTiner [5];
var float v_tinerValues [5];

for (var integer v_i :=0; v_i<=4; v_i:=v_i+1)
{ v_tinmerValues [v_i] := 1.0}
for (var integer v_i :=0; v_i<=4; v_i:=v_i+1)

{t_nmyTinmer [v_i].start (v_timerValues [v_i])}

23.3 The Stop timer operation
The st op operation is used to stop a running timer.

Syntactical Structure

(((Timerldentifier | TimerParldentifier) { "[" SingleExpression "]" }) |
all timer)
' stop

Semantic Description

A st op operation removes a running timer from the list of running timers. A stopped timer becomes inactive and its
elapsed time is set to the float value zero (0.0).

Stopping an inactive timer is a valid operation, although it does not have any effect. Stopping an expired timer causes
the entry for this timer in the timeout-list to be removed.

Theal | keyword may be used to stop all timers that have been started on a component or module control.
Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5 and shown in table 15.

ETSI

245 ETSI ES 201 873-1 V4.9.1 (2017-05)

Examples
t _nyTi ner 1. st op; /1 stops t_nyTinerl
all timer.stop; /1 stops all running tiners

23.4 The Read timer operation

Ther ead operation is used to retrieve the time that has elapsed since the specified timer was started.

Syntactical Structure

((Timerldentifier | TimerParldentifier) { "[" SingleExpression "]" })
"." read

Semantic Description

Ther ead operation returns the time that has elapsed since the specified timer was started. The returned value shall be
of typef | oat .

Applying the r ead operation on an inactive timer, i.e. on atimer not listed on the running-timer list, will return the
float value zero (0.0).

Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5 and shown in table 15.

Examples

var float v_nyVar;
v_nyVar :=t_nyTinerl.read; // assign to v_nyVar the tine that has el apsed since t_nyTinerl
/1l was started

23.5 The Running timer operation

Ther unni ng timer operation is used to check whether atimer isin the running-timer list.

Syntactical Structure

(((Timerldentifier | TimerParldentifier) { "[" SingleExpression "]" }) |
any timer |
any from Ti mer ArrayRef)
" runni ng

["->" @ndex val ue Vari abl eRef]
Semantic Description

Ther unni ng timer operation is used to check whether a specific timer visible in the given scope unit is listed on the
running-timer list or not (i.e. that it has been started and has neither timed out nor been stopped). The operation returns
thevauet r ue if thetimer islisted onthelist, f al se otherwise.

The any keyword may be used to check if any timer started on a component or module control is running.

When the any from Ti mer Ar r ayRef notation is used, where TimerArrayRef shall be atimer array identifier, the
timers from the referenced array are iterated over and their states are checked individualy, from innermost to outermost
dimension from lowest to highest index for each dimension. The first timer to be found in the running state causes the
operation returning with thet r ue value. If no running timer is found in the array, the operation returns with the

f al se value. Theindex of the first timer found running can optionally be stored in an integer variable for a
single-dimensional array, or to an integer array or record of integer variable for multi-dimensional timer arrays.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 15, the following restrictions
apply:

a) TimerArrayRef shall be areference to a completely initialized timer array.

ETSI

246 ETSI ES 201 873-1 V4.9.1 (2017-05)

b) Theindex redirection shall only be used for any from timer array running operations.

¢) If theindex redirectionis used for single-dimensional timer arrays, the type of the integer variable shall allow
storing the highest index of the respective timer array.

d) If theindex redirection is used for multi-dimensional timer arrays, the size of the integer array or record of
integer type shall exactly be the same as the dimension of the respective timer array, and its type shall alow
storing the highest index (from all dimensions) of the timer array.

Examples
EXAMPLE 1: Checking if a specific timer is running
if (t_nyTinerl.running) { ...}
EXAMPLE 2: Checking if an arbitrary timer is running
if (any tiner.running) { ...}
EXAMPLE 3: Checking if an arbitrary timer from atimer array is running

timer t_nyTinerArray[2][2];

var integer v_i[2];

if (any fromt_nyTinerArray.running -> @ndex value v_i;) { ...}
/1 checks if any tinmer fromarray is running

/'l assigns index of nmatched tiner to v_i

23.6 The Timeout operation

Theti meout operation allows to check the expiration of timers.

Syntactical Structure

(((Timerldentifier | TimerParldentifier) { "[" SingleExpression "]" }) |
any timer |
any from Ti mer ArrayRef)
" timeout

["->" @ndex value Variabl eRef]
Semantic Description

Thet i meout operation alows to check the expiration of a specific timer in the scope unit of atest component or
module control in which the timeout operation has been called or of any timer that has been started on a test component
or module control before entering the scopein which thet i neout operation has been called.

When at i neout operationisprocessed, if atimer name isindicated, the timeout-list is searched according to the
TTCN-3 scope rules. If there isatimeout event matching the timer name, that event is removed from the timeout-list,
andthet i meout operation succeeds.

Thet i meout can beused to determine an alternativein an al t statement or as stand-alone statement in a behaviour
description. In the latter caseat i meout operation is considered to be shorthand for anal t statement with the
ti meout operation asthe only alternative.

The any keyword used with thet i meout operation succeeds if the timeout-list is not empty. In this case arandomly
chosen timeout event is removed from the timeout-list.

When the any from Ti nmer Ar r ayRef notation is used, where TimerArrayRef shall be atimer array identifier, the
timers from the referenced array are iterated over and individually checked for timeout from innermost to outermost
dimension from lowest to highest index for each dimension. The first timer to be found in the timeout-list causes that
timer to be removed from the list and the timeout operation succeeds. The index of the matched timer can be optionally
stored in an integer variable for single-dimensional arrays or to an integer array or record of integer variable for multi-
dimensional timer arrays.

ETSI

247 ETSI ES 201 873-1 V4.9.1 (2017-05)

Restrictions

In addition to the genera static rules of TTCN-3 given in clause 5 and shown in table 15, the following restrictions
apply:

a Theti meout operation does not return any value and therefore shall not be used in an expression.
b) TimerArrayRef shall be areferenceto a completely initialized timer array.
c) Theindex redirection shall only be used for any from timer array timeout operations.

d) If theindex redirectionis used for single-dimensional timer arrays, the type of the integer variable shall allow
storing the highest index of the respective timer array.

€) If theindex redirectionis used for multi-dimensional timer arrays, the size of the integer array or record of
integer type shall exactly be the same as the dimension of the respective timer array, and its type shall alow
storing the highest index (from all dimensions) of the timer array.

Examples
EXAMPLE 1: Timeout of a specific timer
t_nyTinmerl.tinmeout; // checks for the tineout of the previously started tiner MTinerl
EXAMPLE 2: Timeout of an arbitrary timer
any timer.timeout; // checks for the tinmeout of any previously started tiner

EXAMPLE 3: Timeout of atimer from atimer array
timer t_nyTinerArray[2][2];
var integer v_i[2];
any fromt_nyTimerArray.tinmeout -> @ndex value v_i;

/'l checks for the tineout of any tiner fromarray
/'l assigns index of nmatched tiner to v_i

23.7 Summary of use of any and all with timers

The keywordsany and al | may be used with timer operations as indicated in table 27.

Table 27: Any and All with Timers

Operation Allowed Example
any all
start
stop yes all timer.stop
read
running yes if (any timer.running) {...}
timeout yes any timer.timeout

24 Test verdict operations

24.0 General

Verdict operations given in table 28 alow to set and retrieve verdicts. These operations shall only be used in test cases,
atsteps and functions.

ETSI

248 ETSI ES 201 873-1 V4.9.1 (2017-05)

Table 28: Overview of TTCN-3 test verdict operations

Test verdict operations
Statement Associated keyword or symbol
Set local verdict setverdict
Get local verdict getverdict

24 1 The Verdict mechanism

Each test component of the active configuration shall maintain its own local verdict. The local verdict is an object
which is created for each test component at the time of its creation. It is used to track the individual verdict in each test
component (i.e. in the MTC and in each and every PTC).

Additionally, there is aglobal test case verdict instantiated and handled by the test system that is updated when each test
component (i.e. the MTC and each and every PTC) terminates execution (see figure 14). This verdict is not accessible
totheget ver di ct andset ver di ct operations. The value of this verdict shall be returned by the test case when it
terminates execution. If the returned verdict is not explicitly saved in the control part (e.g. assigned to a variable) then it
islost.

Verdict returned y :
by_the t&_tcase
when it terminates
MIC PTCL [y PTCh [y

Figure 14: lllustration of the relationship between verdicts

NOTE 1: TTCN-3 does not specify the actual mechanisms that perform the updating of the local and test case
verdicts. These mechanisms are implementation dependent.

The verdict can have five different values: pass,fai |l ,i nconc, none and er r or, i.e. the distinguished values of
thever di ctt ype (seeclause 6.1).

NOTE 2: i nconc means an inconclusive verdict.
When atest component isinstantiated, itslocal verdict object is created and set to the value none.

When changing the value of the local verdict (i.e. using the set ver di ct operation) the effect of this change shall
follow the overwriting rules listed in table 29. The test case verdict isimplicitly updated on the termination of atest
component. The effect of thisimplicit operation shall also follow the overwriting rules listed in table 29.

Table 29: Overwriting rules for the verdict

Current value of New verdict assignment value
Verdict pass inconc fail none
None pass inconc fail none
Pass pass inconc fail pass
Inconc inconc inconc fail inconc
Fail fail fail fail fail

Theer ror verdict isspecial inthat it is set by the test system to indicate that atest case (i.e. runtime) error has
occurred. It shall not be set by theset ver di ct operation and will not be returned by the getverdict operation. No
other verdict value can override an er r or verdict. This meansthat an er r or verdict can only be aresult of an
execut e test case operation.

ETSI

249 ETSI ES 201 873-1 V4.9.1 (2017-05)

Together with the local test verdict, each test component shall also maintain an implicit char st ri ng variable to store
information about the reasons for assigning the verdict. Theimplicit char st ri ng variable shall have no effect on the
overwriting rules and on the calculation of the final test case verdict. On the termination of the test component, the local
verdict of the test component shall be logged together with the implicit char st ri ng variable. The implicit

char st ri ng variable cannot be retrieved and read by any TTCN-3 function, it only provides additional information
for logging.

24.2 The Setverdict operation
Thelocal verdict isset withtheset ver di ct operation.
Syntactical Structure
setverdict "(" SingleExpression { "," (FreeText | Tenplatelnstance) } ")"
Semantic Description

The value of the local verdict is changed with theset ver di ct operation. The effect of this change shall follow the
overwriting ruleslisted in table 29.

The optional parameters alow to provide information that explain the reasons for assigning the verdict. This
information is composed to a string and stored in an implicit char st r i ng variable. On termination of the test
component, the actual local verdict islogged together with the implicit char st r i ng variable. Since the optional
parameters can be seen as log information, the same rules and restrictions as for the parameters of the log statement
(clause 19.11) apply.

Asthe result of the setverdict operation, theimplicit char st ri ng variable is overwritten whenever the local verdict
of atest component is overwritten. A set ver di ct operation with averdict only that overwrites the current local
verdict, will aso clear theimplicit char st ri ng variable. This means previously stored information gets lost.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 15, the following restrictions
apply:

a) Thesetverdi ct operation shall only be used with the valuespass, f ai | ,i nconc and none. It shall not
be used to assign the value error, thisis set by the test system only to indicate runtime errors.

b) SngleExpression shall resolve to avalue of type verdict.

c) For FreeText and Templatel nstance, the same rules and restrictions apply as for the parameters of thel og
statement. Table 17 lists al language elements that can be used in a setverdict operation.

Examples
EXAMPLE 1:
setverdi ct (pass); /'l the local verdict is set to pass
éetverdict(fail); /] until this line is executed, which will result in the value
/1 of the local verdict being overwitten to fail
/1 When the ptc terminates the test case verdict is set to fail
EXAMPLE 2:

var integer v_nyVar:= 1,

nyPort.receive(integer:v_nyVar);// Matches an integer value with the value of v_nyVar
[/ at port myPort
setverdi ct (pass, "Value received: ", v_nyVar); // Provided the actual test conponent verdict is
/1 none: local verdict is set to pass, the inplicit
/l charstring variable is set to "Val ue received: 5"
st op; /] The test conponent terninates. The |ocal test verdict and
/1 inmplicit charstring variable are |ogged

ETSI

250 ETSI ES 201 873-1 V4.9.1 (2017-05)

24.3 The Getverdict operation

The value of the local verdict may beretrieved using the get ver di ct operation.

Syntactical Structure

getverdi ct
Semantic Description
Theget verdi ct operation returns the actual value of the local verdict.
Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5 and shown in table 15.

Examples

v_nyResult := getverdict; // Where v_nyResult is a variable of type verdicttype

25 External actions

In some testing situations some interface(s) to the SUT may be missing or unknown apriori (e.g. management
interface) but it may be necessary that the SUT is stimulated to carry out certain actions (e.g. send a message to the test
system). Also certain actions may be required from the test executing personnel (e.g. to change the environmental
conditions of testing like the temperature, voltage of the power feeding, etc.).

The required action may be described as a string expression, i.e. the use of literal strings, string typed variables and
parameters, etc. and any concatenation thereof are allowed.

Syntactical Structure

action "(" { (FreeText | Expression) ["&'] } ")"
Semantic Description
External actions can be used in test cases, functions, atsteps and module control.

Thereis no specification of what is done to or by the SUT to trigger this action, only an informal description of the
required action itself.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 15, the following restrictions
apply:

a) Expression shall have the base type charstring or universal charstring.

Examples
var charstring v_nyString:=" now."
action("Send MyTenpl ate on | ower PCO'" & v_nyString); /1 Informal description of the

/'l external action

26 Module control

26.0 General

Test cases are defined in the module definitions part while the module control part manages their execution. The
statements and operations that can be used in the module control are summarized in table 30.

ETSI

251 ETSI ES 201 873-1 V4.9.1 (2017-05)

Table 30: Overview of TTCN-3 statements and operations in module control

Statement Associated keyword or symbol
Assignments =
If-else if ((..){.}else{.}
Select case select case (...) { case (...){...}
caseelse {...}}
For loop for (..){...}
While loop while (..) {...}
Do while loop do {...} while (...)
Label and Goto label / goto
Stop execution stop
Leaving a loop, alt or interleave break
Next iteration of a loop continue
Logging log
Alternative behaviour (see note) alt {...}
Re-evaluation of alternative behaviour |[repeat
(see note)
Interleaved behaviour (see note) interleave {...}
Activate a default (see note) activate
Deactivate a default (see note) deactivate
Start timer start
Stop timer stop
Read elapsed time read
Check if timer running running
Timeout event timeout
Stimulate an (SUT) action externally action
Execute test case execute
NOTE: Can be used to control timer operations only.

26.1 The Execute statement

Test cases are executed with an execut e statement in the module control.

Syntactical Structure
execute "(" TestcaseRef "(" [{ ActualPar [","]1 } 1 ") ["," TimerValue ["," Hostld]] ")"
Semantic Description

In the module control part the execut e statement is used to start test cases (see clause 27.1). The result of an executed
test caseisawaysavaue of typever di ct t ype. Every test case shall contain one and only one MTC the type of
which is referenced in the header of the test case definition. The behaviour defined in the test case body is the behaviour
of the MTC.

When atest caseisinvoked the MTC is created, the ports of the MTC and the test system interface are instantiated and
the behaviour specified in the test case definition is started on the MTC. All these actions shall be performed implicitly
i.e. without explicit cr eat e and st art operations.

Test case start

A test caseiscaled using an execut e statement. Asthe result of the execution of atest case, atest case verdict of
either none, pass, i nconc,fail orerror shal bereturned and may be assigned to a variable for further
processing.

Optionaly, the execut e statement allows supervision of atest case by means of atimer duration.

Also optionally, the execute statement allows deployment of the MTC to a specific host before starting the execution.
The host isidentified by means of ahost id.

ETSI

252 ETSI ES 201 873-1 V4.9.1 (2017-05)

Test case parameterization and configuration

All variables (if any) defined in the control part of a module shall be passed into the test case by parameterization if
they are to be used in the behaviour definition of that test case, i.e. TTCN-3 does not support global variables of any
kind.

At the start of each test case, the test configuration shall be reset. This meansthat all components and ports conducted
by cr eat e, connect , etc. operationsin a previous test case were destroyed when that test case was stopped (hence
are not "visible" to the new test case).

Test case ter mination

A test case terminates with the termination of the MTC. On termination of the MTC (explicitly or implicitly), all
running parallel test components shall be removed by the test system.

NOTE 1: The concrete mechanism for stopping all PTCsistool specific and therefore outside the scope of the
present document.

The final verdict of atest caseis calculated based on the final local verdicts of the different test components according
to the rules defined in clause 24.1. The actual local verdict of atest component becomesits final local verdict when the
test component terminates itself or is stopped by itself, another test component or by the test system.

NOTE 2: To avoid race conditions for the calculation of test verdicts due to the delayed stopping of PTCs, the
MTC should ensure that all PTCs have stopped (by means of the done or ki | | ed statement) before it
stopsitself.

Test casetimer

Timer may be used to supervise the execution of atest case. This may be done using an explicit timeout in the
execut e statement. If the test case does not end within this duration, the result of the test case execution shall be an
error verdict and the test system shall terminate the test case. The timer used for test case supervision is a system timer
and need not be declared or started.

Host id

A host id can be used to give a specific deployment location to the test system where the MTC shall be started and
execute its behaviour. If ahost id is provided, the execute statement shall end with atest case error if the MTC cannot
be deployed on the specified host.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 15, the following restrictions
apply:

a) The TimerValue shall resolve to a non-negative numerical float value (i.e. the value shall be greater or
equal 0.0, infinity and not_a_number are disallowed).

b) When the corresponding formal parameter is not of template type Templatel nstance shall resolve to an
Expression.

c) The execute statement shall not be called from within an existing executing test behaviour chain called from a
test case, i.e. test cases can only be executed from the control part or from functions or atsteps called directly
or indirectly from the control part.

d) TheHostld parameter shall resolve to acharstring value.
Examples

EXAMPLE 1. Test case execution without keeping the test case verdict

execute(TC_MyTest Casel()); // executes TC MyTestCasel, w thout storing the
/Il returned test verdict and without tine supervision

ETSI

253 ETSI ES 201 873-1 V4.9.1 (2017-05)

EXAMPLE 2: Test case execution with keeping the test case verdict

v_nyVerdict := execute(TC MyTest Case2()); /1 executes TC MyTest Case2 and stores the resulting
/1 verdict in variable v_nyVerdict

EXAMPLE 3: Test casetimer
v_nyVerdi ct := execute(TC MyTest Case3(), 5E-3);

/'l executes TC MyTest Case3 and stores the resulting verdict in variable v_nyVerdict.
/1 If the test case does not terminate within 5ns, v_nyVerdict will get the value 'error’'

EXAMPLE 4: Hostid

v_nyVerdict := execute(TC MyTestCase3(), -, "Host1");
/] executes TC MyTestCase3 with unlinmited tine with MIC deployed to 'Host1'

26.2 The Control part

The control part defines, in which order, sequence, loop, under which preconditions, and with which parameters test
cases are to be executed.

Syntactical Structure

control "{"
{ (ConstDef |
Tenpl at eDef |

Var | nst ance |

Ti mer | nst ance |

Ti mer St atenents |
Basi cStatements |
Behavi our St at enent s |
SUTSt at emrent s |

stop) [";"] }

"y
[WthStatenment] [";"]

Semantic Description

Sequence of test cases

Program statements specify such things like the order in which test cases are to be executed or the number of times a
test case should run.

If no programming statements are used then, by default, the test cases are executed in the sequential order in which they
appear in the module control.

NOTE: Thisdoes not preclude the possibility that certain tools may wish to override this default ordering to allow
auser or tool to select a different execution order.

Timer operations may also be used explicitly to control test case execution.
Selection/deselection of test cases
The selection and desel ection of test cases can also be used to control the execution of test cases.

There are different waysin TTCN-3 to select and deselect test cases. For example, boolean expressions may be used to
select and deselect which test cases are to be executed. Thisincludes, of course, the use of functions that return a
bool ean vaue.

Another way to execute test cases as a group is to collect them in a function and execute that function from the module
control.

Asatest case returns asingle value of typever di ct t ype, it isaso possible to control the order of test case
execution depending on the outcome of atest case. The use of the TTCN-3 verdicttype is another way to select test
Cases.

ETSI

254 ETSI ES 201 873-1 V4.9.1 (2017-05)

Restrictions

In addition to the genera static rules of TTCN-3 given in clause 5 and shown in table 15, the following restrictions
apply:

a) Configuration statements such as connect and map (with the exception of stop execution, which is allowed),
communication statements such as send and receive and verdict statements such as setverdict shall not be
invoked by module control.

b) Statementsfor aternative behaviours shall only be used to control timer behaviours.
€) Therestrictions on the use of statementsin the control part are given in table 15.
Examples

EXAMPLE 1: Test case execution in aloop
nodul e MyTestSuite () {
cbnt rol {

// Do this test 10 times

v_count : =0;

while (v_count < 10)

{ execute (TC_M/Si npl eTest Casel());
V_count := v_count +1;

}

}
EXAMPLE 2: Test case execution controlled by atimer and a counter

/'l Exanple of the use of the running tiner operation
while (t_tl.running or v_x<10) // Wiere t_tl is a previously started tiner
{ execut e(TC_M/Test Case());
V_X = V_X+1;
}

/1 Exanple of the use of the start and timeout operations
timer t_tl1l:=1.0;

e;<ecut e(TC My Test Casel());

t_tl. start;

t_tl.tineout; /'l Pause before executing the next test case
execut e(TC_MyTest Case2());

EXAMPLE 3: Selection/deselection of test cases with Boolean expressions
nodul e MyTestSuite () {
cbnt rol {

if (f_nySel ectionExpressionl()) {
execut e(TC_M/Si npl eTest Casel())
execut e(TC_M/Si npl eTest Case2());
execut e(TC_M/Si npl eTest Case3())

}

if (f_nySel ectionExpression2()) {
execut e(TC_M/Si npl eTest Case4())
execut e(TC_M/Si npl eTest Case5());
execut e(TC_M/Si npl eTest Case6())

ETSI

255 ETSI ES 201 873-1 V4.9.1 (2017-05)

EXAMPLE 4. Selection/desel ection of test cases with functions

function f_nyTest CaseG oupl()

{ execut e(TC_M/Si npl eTest Casel());
execut e(TC_M/Si npl eTest Case2());
execut e(TC_M/Si npl eTest Case3());

function f_nmyTest CaseG oup2()

{ execut e(TC_M/Si npl eTest Case4());
execut e(TC_M/Si npl eTest Case5());
execut e(TC_M/Si npl eTest Case6());

} .

cbntrol
{ if (f_mySel ecti onExpressionl()) { f_nyTestCaseG oupl(); }
if (f_mySel ecti onExpression2()) { f_nyTestCaseG oup2(); }

}
EXAMPLE5: Selection/deselection of test cases based on test case verdicts

if (execute (TC_M/Si npl eTest Case()) == pass)
{ execute (TC_MyGoOnTest Case()) }

el se
{ execute (TC_MyErrorRecoveryTest Case()) };

27 Specifying attributes

27.0 General

TTCN-3 uses attributes to give special characterization/meaning to language elements such as specific presentation
format, specific encoding and encoding variants, and user-defined properties.

27 .1 The Attribute mechanism

27.1.0 General

Attributes can be associated with TTCN-3 language elements by means of the with statement. The with statement can
be applied to modules, global module definitions and to local definitionsin control, test cases, functions, altsteps,
statement blocks and in component type definitions.

27.1.1 Scope of attributes

A wi t h statement may associate attributes to a single language element or to elements or fields of structured types (in a
recursive way) or to members of component or port types, the same way as specified in clauses 6.2.1.1 and 6.2.3.2. It is
also possible to associate attributes to a number of language elements by, e.g. listing fields of a structured typein an
attribute statement associated with a single type definition or associating awi t h statement to the surrounding scope
unit or gr oup of language elements.

A wi t h statement can follow any module, any global definition inside module and group declarations as well as any
local definition in component types and statement blocks inside behaviour definitions or the control part.

Attibutes can be attached to synonym types (6.4). If the synonym type is a structured type, attributesinthewi t h
statement may reference fields or elements of this structured type.

EXAMPLE 1. // attributes for single language elements and groups

/1 MyPDUL will be displayed as PDU
type record MPDUL { ...} with { display "PDU"'}

/1 MyPDU2 will be displayed as PDU with the application specific extension attribute M/Rul e

type record WPDW2 { ...}
Wit h

ETSI

256 ETSI ES 201 873-1 V4.9.1 (2017-05)

di splay "PDU';
extensi on "M/Rul e"

}

/1 The follow ng group definition ...
group nyPDUs {

type record WPDU3 { ...}

type record WPDW { ...}

}
with {display "PDU'} /1 Al types of group M/PDUs wi |l be displayed as PDU

/1 is identical to
group myPDUs {
type record WPDU3 { ...} with { display "PDU'}
type record WPDU4 { ...} with { display "PDU'}
}

EXAMPLE 2: [/ attributes for fields and elements

type record MyRec {
integer fieldl,
record {
i nteger eFieldl,
bool ean eFi el d2
} field2

}
with { display (field2.eFieldl) "colour blue" }
/1 the enbedded field eFieldl is displayed blue

type record of integer M/RecOf I nt eger

with { display ([-]) "col our green"

/1 all integer elenments are displayed green

type record of integer M/RecOf I nt eger 2

with { display ([-]) "colour red" }

/'l integer elenents are displayed red

const MyRecOf I nteger ¢_MWRecordOfInt := {0, 1, 2, 3}

with { display ([0]) "col our blue" }
/1 the first element is displayed blue, the other el enents are displayed green

27.1.2 Overwriting rules for attributes

27.1.2.0 General

An attribute definition that is directly attached to alower scope unit will override a general attribute definition in a
higher scope and a type-specific attribute inherited from atype reference. Attributes inherited from a type reference will
override genera attributes from a higher scope unit containing the type reference. Additional overwriting rules for
variant attributes are defined in clause 27.1.2.1.

EXAMPLE 1.

type record MyRecor dA

} with { encode "Rul eA" }

/1 In the followi ng, M/RecordA is encoded according to "Rul eA" and not according to
/1 "Rul eB" because the attribute fromthe referenced type My/RecordA overrides

/1 the attribute from hi gher scope unit (surrounding MyRecordB type).

type record MyRecordB

{

MRecordA field
} with { encode "RuleB" }

A wi t h statement that is placed inside the scope of another wi t h statement shall override the outermost wi t h. This
shall also apply to the use of thewi t h statement with groups. If multiple attributes of the same type are allowed, all of
them are overridden unless specified otherwise.

ETSI

257 ETSI ES 201 873-1 V4.9.1 (2017-05)

EXAMPLE 2:

/] Exanple of the use of the overwiting scheme of the with statenent
group myPDUs
{

type record MyPDUL { ...}
type record WPDU2 { ...}

group mnySpeci al PDUs
{

type record WPDU3 { ...}
type record WPDW { ...}

}
wi th {extension "MSpecial Rul e"} /1 MyPDU3 and MyPDUW4 wi |l have the application
/'l specific extension attribute MySpecial Rul e

}
with
{
di splay "PDU'; /1 Al types of group nyPDUs will be displayed as PDU and
extension "MyRule"; // (if not overwitten) have the extension attribute M/Rule
}
/1 is identical to ..
group mnyPDUs
{
type record MyPDU1 { ...} with {display "PDU'; extension "M/Rule" }
type record MWPDU2 { ...} with {display "PDU'; extension "M/Rule" }
group mnySpeci al PDUs {
type record MWPDU3 { ...} with {display "PDU'; extension "M/Special Rule" }
type record MWPDU4 { ...} with {display "PDU'; extension "M/Special Rule" }
}
}

Attributes defined for a synonym type don't override existing attributes of fields or elements of this synonym type. The
attributes are applied to the fields or elements of synonym types only if the fields or elements have no valid attibutes.

EXAMPLE 3:

/'l Exanple of the use of attributes in synonymtypes
type record SourceTypel {
integer fieldl,
integer field2
} // neither the record nor its fields have a valid attribute

type record SourceType2 {
integer fieldl,
integer field2
} with { encode "Rulel" }
/1 the record and its fields have a valid encode attribute "Rul el"

type record SourceTypel SynonyniTypel with { encode "Rule2" }
/1 SynonyniTypel and all its fields will be encoded with Rul e2

type record SourceType2 Synonymlype2 with { encode "Rule3" }
/1 SynonyniType2 will be encoded with Rule3, but fieldl and field2 will be encoded with
/1 Rulel as SourceType2 definition already specifies the encode attribute of these fields

Attributes with the @ ocal modifier override attributes from higher scope, but they are valid for the associated
language element only. They do not affect definitions inside the associated language element asthe @ ocal attributeis
completely transparent to lower scopes. Attributes from higher scope will still affect attributesin lower scopes even if
the @ ocal attribute is between them.

NOTE: Attributeswiththe @ ocal modifier associated to modules and groups are valid, but do not affect the
definitions inside them.

ETSI

258 ETSI ES 201 873-1 V4.9.1 (2017-05)

EXAMPLE 4:

nmodul e M {
type record MyRec {
integer fieldl,
integer fieldl,
} with { encode @ocal "CodecB" }
/1 the record type M/Rec will be encoded with CodecB, but its fields with CodecA,
/'l because the local attribute CodecB doesn't affect fields of the M/Rec type.
} with { encode "CodecA" }

An attribute definition in alower scope or those inherited from a referenced type can be overwritten in a higher scope
by using the over ri de directive.

EXAMPLE 5:

type record MyRecordA
{

} with{ encode "Rul eA" }

/1 In the following, fieldA of a MyRecordB instance is encoded according to RuleB
type record MyRecordB
{

MRecordA fiel dA
} with { encode override (fieldA) "RuleB" }

Theover ri de directive overrides the specified attribute for all declarations at al lower scopes that do not also declare
the specified attribute. If the override directive is applied to atype reference, it doesn't affect the attributes of the
original referenced type.

An attribute definition directly attached to afield or element of a structured type overrides the corresponding attribute
of the structured type, as regards the identified field or element. Override attribute applied to a synonym type

(clause 6.4) overrides attributes of all fields or elements of the synonym type unless the synonym type definition
contains an explicit attribute definition for the field or element.

EXAMPLE 6:

/1 An instance of MyRecordA is encoded according to Rul eA
type record MyRecordA
{

} with { encode override "Rul eA" }

/1 In the following, fieldA of a MyRecordB instance (and all its sub-fields) is encoded
/1 according to "RuleB".

type record MyRecordB

{

M/RecordA fieldA
} with { encode override "RuleB" }

/1 The following tenplate will use "RuleA" as the override directive for M/RecordB affects only
/1 MyRecordB. fieldA but not the original MyRecordA.
tenpl ate MyRecor dA mw_nsg;

/1 In the following, rule "RuleB" is overridden by "RuleC'" for fieldC, but it is
/1 not overridden by "Rul eA" of the group because the direct attachment to fieldC and
/1 MyRecordC override the encode of the outer scope.

group nmyG oup {
type record MyRecordC
{

} wifh { encode override "Rul eB" }
type record MyRecordD
{
M/Recor dC fiel dC
} with { encode override (fieldC "RuleC' }

} with { encode override "Rul eA" }

/1 In the following, the tenplate nw nsg will be encoded with "Rul eB", because the
/'l override directive doesn't override the encode attribute in references. However,

ETSI

259 ETSI ES 201 873-1 V4.9.1 (2017-05)

/1 all fields of the nw nsg_tenplate will be encoded with "Rul eA", because the attributes
/1 fromthe references have higher precedence than attributes froma higher scope.

type record MyRecordE

{

} with { encode override "Rul eA" }

tenpl ate MyRecordE nmw _nsg : =

} with { encode "Rul eB" }

/1 MyRecordG and its "fieldl" menber will be encoded with "RuleB", but its field2 menber
/1 will be encoded with "Rul eA", because there's an encode attribute explicitly declared
/1 for this field.
type record MyRecordF {

integer fieldl,

integer field2
} with { encode "Rul eA" }

type MyRecordF MyRecordG with {
encode override "Rul eB";
encode(field2) "Rul eA"

27.1.21 Additional default overwriting rules for variant attributes

A vari ant attributeis always related to an encode attribute. Whereas a variant of an encoding may change, an
encoding shall not change without overwriting all current variant attributes.

The present document defines the default rules for variant attributes. Extension packages of TTCN-3, for example
specifying language mappings, may define their own overwriting rules for variant attributes. For variant attributes the
following default overwriting rules apply:

e avari ant attribute overwritesacurrent var i ant attribute according to the rules defined in clause 27.1.2;

. an encodi ng attribute, which overwrites acurrent encodi ng attribute according to the rules defined in
clause 27.1.2, also overwrites a corresponding current var i ant attribute, i.e. no new var i ant attributeis
provided, but the current var i ant attribute becomes inactive;

an encodi ng attribute, which changes a current encodi ng attribute of an imported language element according to
the rules defined in clause 27.1.3, aso changes a corresponding current var i ant attribute, i.e. no new var i ant
attribute is provided, but the current var i ant attribute becomes inactive.

EXAMPLE:

nodul e MyVar i ant Encodi nghbdul e {
éype charstring MyType; // Normally encoded according to "Encoding 1"
:group nyVari ant sOne {

iype record MyPDUone
{

i nt eger fieldl, // fieldl will be encoded according to "Encoding 2" only.
/1 "Encoding 2" overwites "Encoding 1" and variant "Variant 1"
M/ Type field3 // field3 will be encoded according to "Encoding 1" with

/1 variant "Variant 1".

}
with { encode (fieldl) "Encoding 2" }

with { variant "Variant 1" }

ETSI

260 ETSI ES 201 873-1 V4.9.1 (2017-05)

group nyVari ant sTwo

iype record MyPDUt wo
{

i nt eger fieldl, // fieldl will be encoded according to "Encoding 3"
/1 using encoding variant "Variant 3"
M/ Type field3 // field3 will be encoded according to "Encoding 1"

/'l using encoding variant "Variant 2"

}
with { variant (fieldl) "Variant 3" }
with { encode "Encoding 3"; variant "Variant 2"}
with { encode "Encoding 1" }

271.2.2 Overwriting rules for multiple encoding

Explicitly listed encode attributes that occur on the higher scope and are not overwritten will retain al variants related
to them.

An encoding related variant will overwrite only variants related to the same encoding.

EXAMPLE:

type integer Int with {
encode "CodecA"; variant "CodecA'."Rulel";
encode "CodecB"; variant "CodecB"."Rul e2";

}

/1 Modifying list of allowed encodi ngs

type Int Int2 with {
encode "CodecA"; // variant "CodecA"."Rulel" is kept
encode "CodecC'; variant "CodecC'."Rule6"; // new encoding and rel ated vari ant
/1 "CodecB" encoding together with its variant are discarded as "CodecB" is not
/1 explicitly referenced

}

/1 Overwiting variant with an encodi ng reference
type Int Int3 with {
variant "CodecB"."Rule4"; // new variant for encoding "CodecB" overwites
/1 the original variant "CodecB"."Rul e2"
/1 Variant "CodecA"."Rulel" is unchanged as this definition contains no reference
// to "CodecB"

27.1.3 Changing attributes of imported language elements

In general, alanguage element isimported together with its attributes. In some cases these attributes may have to be
changed when importing the language element, e.g. atype may be displayed in one module as ASP, then it isimported
by another module where it should be displayed as PDU. For such casesit is allowed to change attributes on the

i mport statement.

When resolving the attributes, thei nmpor t statement works as an additional higher scope unit on the top of the
imported module. Attributes set in the import statement are valid only within the importing module.

NOTE 1: Theimport statement occurs inside an importing module and sometimes inside a group. Because of the
scope rules, attributes of these scope units apply to the imported modul e too.

NOTE 2: If awi t h statement is added to an import of a definition where alocal definition also hasawi t h
statement, the local definition’s attributes overwrite the attributes added to the import statement in the
normal way. Thus, if the attributes of alocal definition shall be changed via the import statement, the
override directive needs to be used.

ETSI

261 ETSI ES 201 873-1 V4.9.1 (2017-05)

EXAMPLE:
import from MyModul e {
type MyType
with { display "ASP" } /'l MyType will be displayed as ASP

import from MyMudul e {
group nyG oup

with {
di splay "PDU'; /1 By default all types will be displayed as PDU
extensi on "M/Rul "

27.2 The With statement

The with statement is used to associate attributes to TTCN-3 language elements (and sets thereof).

Syntactical Structure

w th
{ (encode | variant | display | extension | optional)

[override | @ocal]

["(" DefinitionRef | FieldReference | AllRef ")"]

[(FreeText | ("{" FreeText { "," FreeText } "}")) "."] FreeText [";"] }

Y
Semantic Description
There are five kinds of attributes that can be associated to language elements:
a) di spl ay: alowsthe specification of display attributes related to specific presentation formats;
b) encode: alowsreferencesto specific encoding rules;
c¢) vari ant: alowsreferencesto specific encoding variants,
d) extensi on: alowsthe specification of user-defined attributes;
€) optional: alowstheimplicit setting of optiona fieldsin records and sets to omit.
The syntax for the argument of thewi t h statement (i.e. the actual attributes) is defined as a free text string.

DefinitionRef and FieldReference identify a definition or field respectively which is within the module, group or
definition to which the wi t h statement is associated.

AllRef can be used to apply attributes to multiple language el ements defined within the scope to which thewi t h
statement is associated. AllRef provides a flexible mechanism to select al language elements or all language el ements of
acertain kind defined in a given scope. Individual language elements that are not affected by an attribute can be
excluded from a set of selected language elementsintheexcept clause.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) DéefinitionRef and Fiel dReference shall refer to a definition or field respectively which is within the module,
group or definition to which the with statement is associated.

b) Incase multiple attributes of the same type are allowed, all of them shall be without an additional modifier
(overri de, @ ocal) or the modifier shal be the same for all attributes.

¢) Dot notation in the FreeText part is allowed for variant attributes only.

ETSI

262 ETSI ES 201 873-1 V4.9.1 (2017-05)

EXAMPLE:
type record MyService {

integer i,
float f

}

with { display "ServiceCall" } /1 MyRecord will be displayed as a ServiceCall
group G{

} WIth{ encode(tenplate all except (mv_nmsgl)) "Rulel" }

/1 with the exception of nw nsgl, all tenplates defined in this group will be encoded
/1 using the "Rulel" encoding

27.3 Display attributes

Display attributes allow the specification of display attributes related to specific presentation formats.
Syntactical Structure

di spl ay
Semantic Description

All TTCN-3 language elements can have di spl ay attributes to specify how particular language elements shall be
displayed in, for example, atabular format.

Specid attribute strings related to the display attributes for the graphical presentation format can be found in ETSI
ES 201 873-3[i.2].

Other di spl ay attributes may be defined by the user.

NOTE: Because user-defined attributes are not standardized, the interpretation of these attributes may differ
between tools or even may not be supported.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) At most one display attribute shall be applied to each definition, each individual field reference or
language element to which awi t h statement is associated.

EXAMPLE:

type record MyService {
integer i,
float f

}
with { display "ServiceCall" } /1 MyRecord will be displayed as a ServiceCall

27.4 Encoding attributes

In TTCN-3, general or particular encoding rules can be specified by using encode and var i ant attributes. Encoding
attributes allow references to specific encoding rules.

Syntactical Structure

encode
Semantic Description

Encoding rules define how a particular value, template, etc. shall be encoded and transmitted over a communication
port and how received signals shall be decoded. TTCN-3 does not have a default encoding mechanism. This means
that encoding rules or encoding directives are defined in some external manner to TTCN-3.

The encode attribute allows the association of some referenced encoding rule or encoding directive to be made to a
TTCN-3 definition.

ETSI

263 ETSI ES 201 873-1 V4.9.1 (2017-05)

The manner in which the actual encoding rules are defined (e.g. prose, functions, etc.) is outside the scope of the present
document. If no specific rules are referenced then encoding shall be a matter for individual implementation.

In most cases encoding attributes will be used in a hierarchical manner. The top-level isthe entire module, the next
level isagroup and the lowest isan individual type or definition:

a nodul e: encoding appliesto all types defined in the module, including TTCN-3 types (built-in types);
b) group: encoding appliesto a group of user-defined type definitions;

c) type or definition: encoding appliesto asingle user-defined type or definition;

d) field:encodingappliestoafieldinarecord orset typeort enpl at e.

Thewi t h statement may contain more than one encode attribute. In this case, multiple encodings are supported in the
context where the attribute is used. The encoding used in the encoding and decoding operations can be selected
dynamically by using the set encode operation (clause 27.9), as a parameter of predefined codec functions

(clause C.5) or inside the codec implementation.

Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

EXAMPLE:
nodul e MyFi r st nodul e
{ :
i mport from MySecondModul e {

type MyRecord

with { encode "MyRule 1" } // Instances of MyRecord will be encoded according to M/Rule 1

iype charstring MyType; // Normally encoded according to the "d obal encoding rule"

Qroup myRecor ds
{ :
type record MyPDUL
{

i nt eger fieldl, /1 fieldl will be encoded according to "Rule 3"
bool ean field2, /1 field2 will be encoded according to "Rule 3"
M/t ype field3 /] field3 will be encoded according to "Rule 2"

with { encode (fieldl, field2) "Rule 3" }
13
with { encode "Rule 2" }

with { encode "d obal encoding rule" }

27.5 Variant attributes

In TTCN-3, general or particular encoding rules can be specified by using encode and var i ant attributes. Variant
attributes allow references to specific encoding variants.

Syntactical Structure

vari ant
Semantic Description

To specify arefinement of the currently specified encoding scheme instead of its replacement, thevar i ant attribute
shall be used. The variant attributes are different from other attributes, because they are closely related to encode
attributes. Therefore, for variant attributes, additional overwriting rules apply (see clause 27.1.2.1).

ETSI

264 ETSI ES 201 873-1 V4.9.1 (2017-05)

Special variant strings.

The following strings are the predefined (standardized) var i ant attributes for simple basic types (see clause E.2.1):

a)

b)

0)

d)

e

"8 bit"and"unsi gned 8 bit" mean, when applied to integer and enumerated types, that the integer
value or the integer numbers associated with enumerated values shall be handled as it was represented on
8-bits (single byte) within the system.

"16 bit"and"unsi gned 16 bit" mean, when applied to integer and enumerated types, that the integer
value or the integer numbers associated with enumerated val ues shall be handled as it was represented on
16-bits (two bytes) within the system.

"32 bit"and"unsi gned 32 bit" mean, when applied to integer and enumerated types, that the integer
value or the integer numbers associated with enumerated values shall be handled asit was represented on
32-bits (four bytes) within the system.

"64 bit"and"unsi gned 64 bit" mean, when applied to integer and enumerated types, that the integer
value or the integer numbers associated with enumerated values shall be handled as it was represented on
64-bits (eight bytes) within the system.

"I EEE754 fl oat","| EEE754 doubl e", "I EEE754 extended fl oat" and
"I EEE754 ext ended doubl e" mean, when applied to afloat type, that the value shall be encoded and
decoded according to the standard IEEE™ 754 [6] (see annex E).

The following strings are the predefined (standardized) var i ant attributesfor char stri ng and uni ver sal
charstring (seeclauseE.2.2):

a)

b)

0)

d)

f)

9)

h)

"UTF- 8" means, when applied to the universal charstring type, that the value shall be encoded and decoded
according to the UCS encoding scheme UTF-8 as defined in clause 10.1 of 1SO/IEC 10646 [2].

"UTF- 16" means, when applied to the universal charstring type, that the value shall be encoded and decoded
according to the UCS encoding scheme UTF-16 as defined in clause 10.4 of 1SO/IEC 10646 [2].

"UTF- 16LE" means, when applied to the universal charstring type, that each character of the value shall be
individually encoded and decoded according to the UCS Encoding scheme UTF-16LE as defined in
clause 10.3 of 1SO/IEC 10646 [2].

"UTF- 16BE" means, when applied to the universal charstring type, that the value shall be encoded and
decoded according to the UCS Encoding scheme UTF-16BE as defined in clause 10.2 of 1SO/IEC 10646 [2].

"UTF-32" means, when applied to the universal charstring type, that the value shall be encoded and decoded
according to the UCS Encoding scheme UTF-32 as defined in clause 10.7 of 1SO/IEC 10646 [2].

"UTF-32LE" means, when applied to the universal charstring type, that the value shall be encoded and
decoded according to the UCS Encoding scheme UTF-32LE as defined in clause 10.6 of 1SO/IEC 10646 [2].

"UTF-32BE" means, when applied to the universal charstring type, that the value shall be encoded and
decoded according to the UCS Encoding scheme UTF-32BE as defined in clause 10.5 of 1SO/IEC 10646 [2].

"8 bi t" means, when applied to charstring and universal charstring types, that each character of the value
shall be individually encoded and decoded according to the coded representation as specified in
ISO/IEC 10646 [2] (an 8-bit coding).

NOTE: TheUCS Encoding schemes allow an optional signature (also known as byte order mark, BOM) to be

present in encoded character strings. The above UCS encoding scheme variant attributes does not specify,
if signatures are present in the encoded values or not, thisis an option for the encoder. It is expected that
decoders are able to process signatures in the decoding process.

The following strings are the predefined (standardized) var i ant attributes for structured types (see clause E.2.2.4):

a)

"IDL: fi xed FORMAL/ 01-12-01 v. 2. 6" means, when applied to arecord type, that the value shall be
handled asan IDL fixed point decimal value (see annex E).

ETSI

265 ETSI ES 201 873-1 V4.9.1 (2017-05)

These variant attributes can be used in combination with the more general encode attributes specified at a higher level.
For exampleauni ver sal char st ri ng specified withthevar i ant attribute "UTF-8" within a module which
itself has aglobal encoding attribute "BER:1997" (see clause 12.2 of ETSI ES 201 873-7 [i.5]) will cause each character
of the values within the string to first be encoded following the UTF-8 rules and then this UTF-8 value will be encoded
following the more global BER rules.

Invalid encodings

If it isdesired to specify invalid encoding rules then these shall be specified in a referenceable source external to the
module in the same way that valid encoding rules are referenced.

M ultiple encodings

If multiple encodings (see clause 27.4) are used, thevar i ant attribute value shall be composed of two parts separated
by adot. Such variant attributes are called encoding related variant attributes. The first part of the attribute specifies the
encodings the variant is related to. There are two possible notations: either a simple string when the variant is related to
asingle encode attribute or acomma separated list of strings enclosed in curly brackets if the variant isrelated to
multiple encodings. The second part of the attribute (following the dot symbol) is a simple string that specifies the
variant value.

The encoding related attributes are valid only when the related encoding is selected.

Itisnot alowed to definevar i ant attributes with no encoding reference if multiple encodings are used.
Multiplevariants

Thewi t h statement can contain any number of variant attributes.

Restrictions

In addition to the general static rulesof TTCN-3 givenin clause 5, the following restrictions apply:

ad) When dot notation is used in the variant attribute value for an element, the strings preceding the dot symbol
shall resolve into one of the encode attribute val ues associated with the same element.

EXAMPLE:

nodul e MyTTCNnodul el
{ éype charstring MyType; // Normally encoded according to the "d obal encoding rule"
;:]roup nyRecor ds

iype record MyPDUL
{

i nt eger fieldl, /] fieldl will be encoded according to "Rule 2"
/1 using encoding variant "length form 3"
M/t ype field3 /1 field3 will be encoded according to "Rule 2"

/1 using any possible | ength encodi ng format

with { variant (fieldl) "length form3" }

}
with { encode "Rule 2" }

type charstring Multi with {
encode "Codecl"; variant "Codecl"."Rulel";
encode "Codec2"; variant "Codec2"."Rul e3";

}; /1 multiple encodings ("Codecl", "Codec2"), the variant "Rulel" is valid
/Il for the "Codecl" encoding only, while the variant "Rul e3" applies only
/1 for the "Codec2" encoding

type charstring Multi2 with {
encode "Codecl"; encode "Codec2";
variant {"Codecl", "Codec2"}."Rul el";
}; /1 multiple encodings ("Codecl", "Codec2"), variant "Rulel" applies to both of them

type charstring Multi3 with {
encode "Codecl"; encode "Codec2";
variant "Rul el";

} /1 the statenent will produce an error as there are nultiple encodings and the
/] variant attribute doesn't specify encodi ng reference

ETSI

266 ETSI ES 201 873-1 V4.9.1 (2017-05)

with { encode "d obal encoding rule" }

27.6 Extension attributes

Extension attributes can be used for proprietary extensionsto TTCN-3. Thewi t h statement may contain any number
of extension attributes.

Syntactical Structure

ext ensi on
Semantic Description
All TTCN-3 language elements can have ext ensi on attributes specified by the user.

NOTE: Because user-defined attributes are not standardized the interpretation of these attributes between tools
supplied by different vendors may differ or even not be supported.

Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

Examples

testcase TC MyTestcase() runs on MICType {

with { extension "Test Purpose: This test case is used to check .." }

27.7 Optional attributes

Theopt i onal attribute can be used to indicate that optional fields of constants, module parameters, templates,
variables and template variables of record and set types areimplicitly settoomi t .

Syntactical Structure

opti onal
Semantic Description

TTCN-3 constants, module parameters, templates, variables and template variables can have an opt i onal attribute.
Also, TTCN-3 language elements that contain such definitions, i.e. module, group, function, altstep, test case, control,
and component type definitions can have an opt i onal attribute. Whenan opt i onal attribute is associated to a
function, atstep, test case, control or component type definitions, it shall have effect on all the constants, module
parameters, templates, variables and template variables declared within these definitions and not on the enframing
definition itself.

Special optional strings:
The following strings are the predefined (standardized) opt i onal attributes:

a "inplicit om t" meansthat al optional fields, that have no assigned value definition in the statement on
which the attribute operates, are set to oni t . This applies recursively to the optional fields of the entity and to
subfields of the mandatory fields.

b) "explicit omt" meansthat al optional fields, that have no assigned value definition in the statement on
which the attribute operates, are left undefined. This applies recursively to the optional fields of the entity and
to subfields of the mandatory fields.

ETSI

267 ETSI ES 201 873-1 V4.9.1 (2017-05)

For variables and template variables associated withan i npl i cit omi t " optiona attribute, recursive procedureis
applied to their optiona fields after each assignment or usage asout or i nout actua parameter in the scope of their
declaration (e.g.after re-assinging parts or al of avariable's value) setting al optional fields that have no assigned value
definitiontoomi t .

NOTE: Assingingthe"i nplicit onit" atribute to avariable can have a negative runtime performance
impact. Tool vendors are encouraged to identify and optimize particular cases where these operations are
not needed (e.g. where it is possible to decide statically that no optional fields of the structure could have
become undefined).

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Datatype, port type, procedure signature and import statements shall not have an opt i onal attribute
associated to them directly. When an opt i onal attributeis associated to module, group, function, altstep,
test case, control or component type containing such definitions, it shall not have any effect on the included
data type, port type, procedure signature or import statement.

b) At most one optiona attribute shall be applied to each definition, each individual field reference or language
element to which awi t h statement is associated.

EXAMPLE:

type record MyRecordl {
i nteger a,
bool ean b opti onal

}

type record M/Record2 {
MyRecordl m

}

Il reference tenplates with explicitly set
tenpl ate MyRecordl nw _nyTenplatel :={ a :
tenpl ate MyRecord2 nw_nyTenplate2 :={ m:
Il reference tenplates

tenpl ate MyRecordl nw_nyTenpl at ela :
tenpl ate MyRecordl nw_nyTenpl atelb :
undef i ned

?} /! b is undefined
? } with {optional "explicit omt"} // bis

I
P ta)

D
1 n

tenmpl ate MyRecord2 nw_nyTenpl at e2a :
tenmpl ate MyRecord2 nw_nyTenpl at e2b :

{} // mand its subfields are undefined
{m:={ a:=2}}; // mb is undefined

/] tenplates with attribute

tenpl ate MyRecordl mw nyTenplatell := { a := ? } with {optional "inplicit omt"}
I/l same as mw_nyTenplatel, b is set to omt

tenpl ate MyRecord2 nw nyTenplate2l :={ m:={ a :=?}} with {optional "inplicit omt"}
/'l sanme as nw_nyTenpl ate2, by recursive application of the attribute

tenpl ate MyRecord2 nmw _nyTenpl ate22 := { m:= nw_nyTenplatela } with {optional "inplicit omt"}
/'l same as nw_nyTenpl ate2, by recursive application of the attribute

tenpl ate MyRecord2 nw_nyTenpl ate23 := {} with {optional "inplicit omt"}
/1 sanme as nw_nyTenpl ate2a, mrenai ns undefi ned

tenpl ate MyRecord2 nw _nyTenplate24 := { m:= nw_nyTenplatelb } with {optional "inplicit omt"}
/'l same as mw_nyTenpl ate2b, the attribute on the | ower scope is not overwitten

tenpl ate MyRecord2 nw nyTenpl ate25 := { m:= MyTenpl atelb }
with {optional override "inplicit omt"}
/] same as mw_nyTenpl ate2, the attribute on the |ower scope is overwitten

[/l inplicitly omtted fields stay omtted after assignnent
tenpl ate MyRecordl nw nyTenpl ate3a : = nw_nyTenpl atela with {optional "inplicit omt"}

/1 same as mw_nyTenplatel, b is set to omt
tenpl ate MyRecordl nw_nyTenpl ate3b : = mw_nyTenpl at e3a;

/'l same as mw_nyTenplatel, b is set to omt, by inplicit omt attribute of mv_nyTenpl at e3a
tenpl ate MyRecordl nmw nyTenpl ate3c := nmw_nyTenpl ate3a with {optional "explicit omt"}

[/ same as mw_nyTenplatel, b is set to onmit, by inplicit onmit attribute of mn_nyTenpl at e3a

/] inplicitly omtted fields stay omtted after assignnent

ETSI

268 ETSI ES 201 873-1 V4.9.1 (2017-05)

tenpl ate M/Recordl nmw nyTenpl ate3a : = mw_nyTenpl atela with {optional "inplicit omt"}

/] same as mw_nyTenplatel, b is set to omt
tenpl ate MyRecordl nw_nyTenpl ate3b : = mw_nyTenpl at e3a;

[l same as mw_nyTenplatel, b is set to onmit, by inplicit onmt attribute of mn_nyTenpl at e3a
tenpl ate MyRecordl nw_nyTenpl ate3c := mw _nyTenplate3a with {optional "explicit omt"}

/Il same as mw_nyTenplatel, b is set to omt, by inplicit omt attribute of mnv_nyTenpl at e3a

function f_hel per1() return MyRecordl {
var MyRecordl v_temp :={ 1, true };
return v_tenp;

}
function f_hel per2(out MyRecordl p_par) {

p_par :={ 11},
Il p_par is { 1, <undefined>}, no inplicit onmt attribute is in effect here

}

function f_function() {
var MyRecord2 v_varl;
v_varl.ma :=5;
/1 at this tine v_.varl.mb is set to omt for the "inplicit omt" attribute

v_varl.m:= f_hel perl();
/1l v_varl.mb is true, checking of v_varl m ght be skipped given strong static checks

f_helper2(v_varl.m);
/1 at this tine v_varl.mb is set to onmit for the "inplicit omt" attribute

} with {optional "inmplicit onit"}

27.8 Retrieving attribute values

TTCN-3 provides a set of operations that can be used for retrieving attribute val ues associated with a type, template,
variable, constant or module parameter.

Syntactical Structure

(Type | Tenplatelnstance) "." (display | encode | variant | extension | optional)
["(" Expression ")"]

Semantic Description

The operation returns the actual value of an attribute associated with the type, template, variable, constant or module
parameter that precedes the dot symbol. The value preceding the dot symbol may be unitialized. The attribute kind is
denoted by the keyword following the dot symbol.

The return value of the operations for retrieving attribute valuesis of auni ver sal char st ri ng typein case of
attributes that can be present only once (di spl ay, opti onal) . If such an attribute is not defined, the operation
returns an empty string. If the attribute can occur multiple times (encode, var i ant , ext ensi on), the operation
returnsar ecord of universal charstring type. If suchan attribute is not present, the operation returns an
empty record of value.

The operation for getting avar i ant attribute value may be followed by an optional parameter. If no parameter is
present, the operation returns only variants that are not bound to any particular encoding. If the parameter is present, the
returned value will containt variants that are bound to the encoding referenced by the parameter.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Theoptiona parameter of the operation shall be used only for getting variant attributes.
b) The Expression in optional parameter of the operation shall be of theuni ver sal char stri ng type.

c¢) Anerror shal be produced if the Expression in the optional parametersis not one of the valid encode
attributes.

ETSI

269 ETSI ES 201 873-1 V4.9.1 (2017-05)

EXAMPLE:

/1 MyPDUL will be displayed as PDU
type record MPDUL { ... } with {
di splay "blue";

variant "CommonRul e";

encode "Codecl";

vari ant "Codecl"."Rul elA";

variant "Codecl"."Rul elB";

encode " Codec2";

vari ant "Codec2"."Rul e2A";

vari ant "Codec2"."Rul e2B";

}
type record of universal charstring RUC
control {
var MyPDULl v_pdu;
var universal charstring v_display;
var RUC v_encodi ng, v_variants;
v_di splay := MyPDUL. di spl ay; /1 v_display will contain "blue"
v_display := v_variants. display; /1 v_display will contain "" as no display attribute is
/1 defined for v_variants
v_encoding : = v_pdu. encode; /1l v_encoding will contain { "Codecl", "Codec2" }
v_variants := v_pdu.variant; /1l v_variants will contain { "ComonRul e" }
/Il retrieve variants for all defined encodi ngs
for (var integer i :=0; i < sizeof(v_encoding); i :=i + 1) {
v_variants := v_pdu.variant(v_encoding[i]);
v_variants := v_variants.encode; // v_variants will contain {} as no encode attribute is
/1 defined for v_variants
v_variants := v_pdu. vari ant (" UnknownCodec") ; /'l produces an error as there is no such
/'l encode attribute as "UnknownCodec"
}

27.9 Dynamic configuration of encoding used by ports

The set encode operation can be used on a port or set of portsto dynamically select for the affected portsasingle
encode attribute val ue to be used for atype that has multiple encode attributes attached to it.

Syntactical Structure

(Port | (all port) | self) "." setencode"(" Type "," SingleExpression ")"
optional

Semantic Description

The set encode operation dynamically restricts the number of encode attribute values of areferenced type or its fields
or elementsto a single value. Dependent on the language element preceding the dot, the encoding configuration isvalid
either for all sending and receiving operations of a single port (single port reference), sending and receiving operations
of al ports of the current component (al | port notation) or for all codec function and communication operation of
the current component (sel f keyword).

If the referenced type contains multiple encode attributes and the expression provided in the set encode operation is
equal to one of these encode attribute val ues, the statement reduces the list of encode attributes to the selected one. The
procedure is applied recursively to al elements and fields or the referenced type. After executing the operation, all other
encode attributes and variants related to them are dynamically disabled and invisible to the codec.

Repeated call of the set encode operation always uses the static attributes that are valid for the referenced type.
Previous calls of the set encode operation referencing the type are not considered in this case. Thisway it is possible
to change the encoding during test execution using different encodings.

It isallowed to reference afield or element of atype using an extended type reference in the set encode operation.
This operation is useful for payload fields of container protocols and allows dynamic configuration of the proper
encoding for payload fields. If the extended type reference is used, following calls of the set encode operation for the
whole type or any element that contains the the referenced payload field won't change the encoding that was
dynamically configured for thisfield or element (and its sub-fields).

Restrictions

ETSI

270 ETSI ES 201 873-1 V4.9.1 (2017-05)

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Iftheset encode operationisapplied to asingle port, the referenced type shall be either listed inthei n or
out typelist of the related port type or it shall be areference to afield or element on any level of nesting of a
typelisted inthei n or out typelist of the related port type.

b) The SngleExpression used in the second parameter of the set encode operation shall be compatible with the
uni versal charstri ng type.

EXAMPLE:

type port P nessage {
i nout PDU,
}

type conponent C {
port P p;
}

/] Payload type with two encodi ng options
type record Payl oad {

} with { encode "Payl oadCodecl"; encode "Payl oadCodec2" }

/1 PDU type with two encoding options
type record PDU {
charstring source,
charstring destination,
Payl oad payl oad
} with { encode "PduCodecl"; encode "PduCodec2" }

tenplate PDU m nmsg : = {

source := "source address",
destination := "destination address",
payload := { ... }

testcase TCOL1() runs on C {
p. set encode(PDU. payl oad, "Payl oadCodec2");
p. setencode (PDU, "PduCodecl");
p.send(mnsg); // mnsg will be sent with its encode attribute set to "PduCodecl"
/1 and its payload field will have its encode attribute set to "Payl oadCodec2"
p. setencode (PDU, -); // resets encoding of the PDU to the original state (two supported
/'l encodings), the payload field will remain set to "Payl oadCodec2"

ETSI

271 ETSI ES 201 873-1 V4.9.1 (2017-05)

Annex A (normative):
BNF and static semantics

A1 TTCN-3 BNF

A.1.0 General

This annex defines the syntax of TTCN-3 using extended BNF (henceforth just called BNF).

A.1.1 Conventions for the syntax description

Table A.1 defines the metanotation used to specify the extended BNF grammar for TTCN-3.

Table A.1l: The syntactic metanotation

n= is defined to be definition of non-terminal
abc xyz abc followed by xyz concatenation

[alternative alternative

[abc] 0 or 1 instances of abc optional

{abc} 0 or more instances of abc repetition 1

{abc}+ 1 or more instances of abc repetition 2

{abc}#(n, m) n to m instances of abc repetition 3

(-..) textual grouping grouping

Abc the non-terminal symbol abc |non-terminal

"abc" a terminal symbol abc terminal

NOTE: The metanotation defined in table A.1 is parsed from left to right. The metanotation operators have the
following precedence, from highest (binding tightest) at the top, to lowest (loosest) at the bottom:

Repetition, Optional
Grouping
Concatenation
Alternative

Definition

A.1.2 Statement terminator symbols

In general all TTCN-3 language constructs (i.e. definitions, declarations, statements and operations) are terminated with
asemi-colon (;). The semi-colon is optional if the language construct ends with a right-hand curly brace (}) or the
following symbol isaright-hand curly brace (}), i.e. the language construct is the last statement in a statement block.

A.1.3 Identifiers

TTCN-3 identifiers are case sensitive and shall only contain lowercase letters (a-z) uppercase letters (A-Z), numeric
digits (0-9) and the underscore (_) symbol. Anidentifier shall begin with aletter (i.e. not with a number and not an

underscore).

ETSI

272

A.1.4 Comments

ETSI ES 201 873-1 V4.9.1 (2017-05)

Comments written in free text may appear anywhere in a TTCN-3 specification. Comments may contain any graphical
character defined in ISO/IEC 10646 [2]. Block comments shall be opened by the symbol pair /* and closed by the

symbol pair */.
EXAMPLE 1

/* This is a bl ock comrent
spread over two |ines */

Block comments shall not be nested.

/* This is not /* a legal */ coment */

Line comments shall be opened by the symbol pair // and closed by a <newline> or <end-of-file>.

EXAMPLE 2:

/1 This is a |line coment
/1 spread over two |ines

EXAMPLE 3:

/1 The followi ng is not |egal
const // This is MyConst integer c_nyConst := 1;
/1 A block comment should have been used i nstead
const /* This is MyConst */ integer c_nmyConst :=
/1 Aline comment like this works as well
const // This is M/Const

integer c_myConst := 1,

A.1.5 TTCN-3 terminals

A.1.5.0 General

1;

TTCN-3 terminal symbols and reserved words are listed in tables A.2 and A.3.

Table A.2: List of TTCN-3 special terminal symbols
Begin/end block symbols { 1}
Begin/end list symbols ()
Element specifier symbols [1]
Range symbol .
Line and block comments rox
Statement separator symbol ;
Arithmetic operator symbols + -7
Concatenation operator symbol &
Relational operator symbols I= == >= <= < >
Shift operator symbols << >>
Rotate operator symbols <@ @>
String enclosure symbols '
Wildcard/matching symbols ? %
Assignment symbol =
Communication operation assignment ->
Bitstring, hexstring and Octetstring values B H O
Float exponent E
List element separator symbol ,
Field reference .
Decoded field reference =>

The predefined function identifiers defined in table 14 and described in annex C shall also be treated as reserved words.

ETSI

273

ETSI ES 201 873-1 V4.9.1 (2017-05)

Table A.3: List of TTCN-3 terminals which are reserved words

action fail nobl ock sel ect
activate fal se none sel f
addr ess f | oat not send
alive for not 4b sender
al | friend nowai t set
al t from nul | setverdi ct
al tstep function si gnature
and octetstring start
and4b getverdi ct of stop
any getcall om t subset
anyt ype getreply on super set
goto opti onal system
bitstring group or
bool ean or 4b tenpl ate
br eak hal t out test case
hexstring override ti meout
case timer
cal | i f par am to
catch i fpresent pass trigger
char i mport pattern true
charstring in permut ati on type
check i nconc port
cl ear infinity pr esent uni on
conpl ement i nout private uni ver sal
conponent i nteger procedure unmap
connect i nterl eave public
const val ue
conti nue kill rai se val ueof
control killed read var
create receive vari ant
| abel record verdicttype
deactivate | anguage
decnat ch I ength recursive whi | e
def aul t | og rem with
di sconnect repeat
di spl ay map reply xor
do mat ch return xor 4b
done nmessage runni ng
m xed runs
el se nod
encode nmodi fi es
enuner at ed nmodul e
error nmodul epar
except ntc
exception
execut e
ext ends
ext ensi on
ext erna

The TTCN-3 terminaslisted in table A.3 shall not be used asidentifiersin a TTCN-3 module. These terminals shall be

written in al lowercase letters.

Additionally, there are special TTCN-3 terminals consisting of an @-symbol, directly followed by an identifier. These
terminals shall also be written in all lowercase letters.

NOTE: Theseterminals can be used in combination with the @-symbol, which resultsin a specific semantics for
the annotated language element. They can also be used like any other identifier without any special
meaning.

ETSI

274 ETSI ES 201 873-1 V4.9.1 (2017-05)

Table A.4: List of TTCN-3 terminals which are modifiers

@lecoded @uzzy @ azy @ocase
@lef aul t @ ndex @ ocal
@letermni stic

A.1.5.1 Use of whitespaces and newlines

The elements of the TTCN-3 syntax (reserved words, identifiers, terminal symbols and literal values) shall be separated
by whitespace or by special terminal symbolslisted in table A.2 according to the TTCN-3 syntax.

In representing whitespace, any one or more of the following characters of the CO set of Recommendation
ITU-T T.50[4] and of annex A of Recommendation ITU-T T.50 [4] may be used in any combination:

e HT-HORIZONTAL TABULATION (9)
e LF-LINEFEED (10)

e VT-VERTICAL TABULATION (11)

e FF-FORM FEED (12)

e CR-CARRIAGE RETURN (13)

e SP-SPACE(32)

The characters of the CO set of Recommendation ITU-T T.50 [4] and of annex A of Recommendation ITU-T T.50 [4]
below are denoting newline (end of ling). A single CR(13) character directly followed by an LF(10) character denote a
single end of line (i.e. the sequence CRLFCRLFVT denotes 3 lines):

e LF-LINEFEED (10)
. VT - VERTICAL TABULATION (11)
e FF-FORM FEED (12)
. CR - CARRIAGE RETURN (13)
Any character or character sequence that isavalid newlineis also avalid whitespace.

NOTE: Itisrecommended that for newline only the CR and LF and for whitespace only the HT, LF, CR and SP
control characters are used asthe VT and FF characters may cause problems with some conventional text
editors.

A.1.6 TTCN-3 syntax BNF productions

A.1.6.0 TTCN-3 module

1. TTCN3Mbdul e :: = TTCN3Mbdul eKeyword Modul eld "{" [Mdul eDefinitionsList]
[Modul eControl Part] "}" [WthStatenent] [Seni Col on]

2. TTCN3Modul eKeyword :: = "nodul e"

3. Mduleld ::= Identifier [LanguageSpec]

4. LanguageSpec ::= LanguageKeyword FreeText {"," FreeText}

5. LanguageKeyword ::= "| anguage"

A.1.6.1 Module definitions part

A.1.6.1.0 General

6. Modul eDefinitionsList ::= {Mdul eDefinition [Sem Col on]}+
7. Modul eDefinition ::= (([Visibility] (TypeDef |
Const Def |
Tenpl at eDef |

ETSI

275
Modul ePar Def |
Functi onDef |

Si gnat ur eDef |
Test caseDef |

Al t st epDef |

| mpor t Def |

Ext Functi onDef |
Ext Const Def

)|
(["public"] G oupDef) |
(["private"] FriendMbdul eDef)
) [WthStatenent]

8.Visibility ::= "public" |
"friend" |
"private"
A.1.6.1.1 Typedef definitions
9. TypeDef ::= TypeDef Keyword TypeDef Body
10. TypeDef Body ::= StructuredTypeDef | SubTypeDef
11. TypeDef Keyword ::= "type"
12. Struct ur edTypeDef = RecordDef |
Uni onDef |
Set Def |
Recor dOf Def |
Set Of Def |
EnunDef |
Por t Def |
Conponent Def
13. Recor dDef = Recor dKeyword St ruct Def Body
14. Recor dKeyword ::= "record"
15. Struct Def Body ::= (ldentifier | AddressKeyword) "{"

16.

17.

18.

19.

20.

28

[** STATIC SEI\/ANTi CS: at nost one Uni onFi el dDef of Uni onDef Body or

Struct Fi el dDef

ETSI ES 201 873-1 V4.9.1 (2017-05)

[Struct Fi el dDef
.

"y
= (Type | NestedTypeDef) ldentifier [ArrayDef] [SubTypeSpec]

Struct Fi el dDef }]

[Opti onal Keywor d]
;.= Nest edRecor dDef |
Nest edUni onDef |
Nest edSet Def |
Nest edRecor dOf Def |
Nest edSet Of Def |
Nest edEnunDef

Nest edTypeDef

Nest edRecor dDef

Recor dKeyword "{" [StructFiel dDef {","

Struct Fi el dDef}]

}
Nest edUni onDef ::= Uni onKeyword "{" Uni onFi el dDef {","

Uni onFi el dDef }

Nest edSet Def

Struct Fi el dDef}]

}
- SetKeyWOrd "{" [StI'UCtFi el dDef {","

. Nest edRecor dOf Def

Recor dKeyword [StringLength] O Keyword (Type |

. Nest edSet Of Def

Nest edTypeDef)

. Nest edEnunDef = EnunKeyword "{" EnunerationList "}"

. Opti onal Keyword ::= "optional"

. Uni onDef ::= Uni onKeyword Uni onDef Body

. Uni onKeyword ::= "uni on"

. Uni onDef Body ::= (ldentifier | AddressKeyword) "{"
. Uni onFi el dDef

::= SetKeyword [StringLength] O Keyword (Type | NestedTypeDef)

Uni onFi el dDef {","

Uni onFi el dDef }

"y
::= [Defaul t Modifier] (Type | NestedTypeDef) Identifier [ArrayDef] [SubTypeSpec]

Def aul t Modi fier */

Nest edUni onDef shall contain a

29. Set Def ::= Set Keyword Struct Def Body
30. Set Keyword ::= "set"
31. Recor dOf Def = RecordKeyword [StringlLength] O Keyword Struct O Def Body
32. O Keyword ::= "of"
33. Struct O Def Body ::= (Type | NestedTypeDef) (ldentifier | AddressKeyword)
[SubTypeSpec
34.Set Of Def ::= SetKeyword [StringLength] O Keyword Struct O Def Body
35. EnunDef = EnunKeyword (ldentifier | AddressKeyword) "{" EnunerationLi st
DY
36. EnunKeyword ::= "enunerated"
37. EnunerationList ::= Enunmeration {"," Enuneration}
38. Enuneration ::= ldentifier ["(" IntegerValueO Range {"," IntegerValueO Range } ")"]
39. I nteger Val ueOrRange ::= IntegerValue [".." |ntegerVal ue
40. I ntegerVal ue ::= [M nus] Nunber
41. SubTypeDef ::= Type (ldentifier | AddressKeyword) [ArrayDef] [SubTypeSpec]
42. SubTypeSpec ::= Al owedVal uesSpec [StringlLength] | StringlLength

ETSI

276 ETSI ES 201 873-1 V4.9.1 (2017-05)

/* STATI C SEMANTICS - Al |l owedVal ues shall be of the sanme type as the field being subtyped */

43. Al | owedVal uesSpec ::= "(" ((Tenpl ateOrRange {"," Tenpl at eOr Range}) |
Char Stringhvatch) ")*"
44. Tenpl at eOr Range :: = RangeDef |
Tenpl at eBody |
Type

/* STATI C SEMANTI CS - RangeDef production shall only be used with integer, charstring, universal
charstring or float based types */

/* STATI C SEMANTI CS - Wen subtyping charstring or universal charstring range and val ues shall not
be mi xed in the same SubTypeSpec */

45. RangeDef ::= Bound ".." Bound
46. StringLength ::= LengthKeyword " (" Singl eExpression [".."(Singl eExpression | InfinityKeyword)]
my

/* STATI C SEMANTICS - StringLength shall only be used with String types or to limt set of and
record of. SingleExpression and Bound shall evaluate to non-negative integer values (in case of
Bound including infinity) */

47. Lengt hKeyword ::= "l ength"

48. Port Def ::= PortKeyword Port Def Body

49. Port Def Body ::= ldentifier PortDefAttribs
50. Port Keyword ::= "port"

51. PortDef Attribs ::= MessageAttribs |

ProcedureAttribs |
M xedAttribs
52. MessageAttribs ::= MessageKeyword "{" {(AddressDecl |
MessagelLi st |
Conf i gPar anDef

) [Semi Colon]}+ "}
MapPar anDef | UnnmapPar anDef

53. Conf i gPar anDef

54. MapPar anDef ::= MapKeyword ParanKeyword " (" Formal Val uePar {"," For nal Val uePar}
DE
55. UnmapPar anDef ::= UnmapKeyword ParanKeyword " (" Fornal Val uePar {","

For nal Val uePar}

my
56. Addr essDecl ::= AddressKeyword Type
57. MessagelList ::= Direction Al O Typeli st
58.Direction ::= | nParKeyword |

Qut Par Keyword |

| nQut Par Keywor d

59. MessageKeyword ::= "nmessage"
60. Al l O TypeList ::= Al Keyword | Typeli st
/* NOTE: The use of AllKeyword in port definitions is deprecated */
61. Al | Keyword ::= "all"
62. TypeLi st ::= Type {"," Type}
63. ProcedureAttribs ::= ProcedureKeyword "{" {(AddressDecl |
ProcedurelLi st |
Conf i gPar anDef
) [SemiColon]}+ "}"
64. Procedur eKeyword ::= "procedure"
65. ProcedureList ::= Direction All O Signatureli st
66. All OrSignatureList ::= Al Keyword | Signatureli st
67.SignatureList ::= Signature {"," Signature}
68. M xedAttribs ::= M xedKeyword "{" {(AddressDecl |
M xedLi st |
Conf i gPar anDef
) [Semi Colon]}+ "}"
69. M xedKeyword ::= "m xed"
70. M xedLi st ::= Direction ProcO Typeli st
71. ProcOr TypeList ::= All Keyword | (ProcO Type {"," ProcO Type})
72.ProcOr Type ::= Signature | Type
73. Conponent Def ::= Conponent Keyword | dentifier [ExtendsKeyword Conponent Type

{"," Conponent Type}] "{"
[Conponent Def Li st] "}"

74. Component Keyword :: = "conponent"

75. Ext endsKeyword ::= "extends"

76. Conponent Type :: = Extendedl dentifier

77. Component Def Li st :: = {Conponent El enent Def [WthStatenent] [Seni Col on]}
78. Conmponent El ement Def ::= Portlnstance |

Var | nst ance |
Ti nerl nstance |
Const Def |

Tenpl at eDef
79. Portlnstance ::= PortKeyword Extendedldentifier PortEl enent {"," PortEl enent}

ETSI

277 ETSI ES 201 873-1 V4.9.1 (2017-05)

80. PortEl ement ::= ldentifier [ArrayDef]

A.1.6.1.2 Constant definitions

81. Const Def ::= ConstKeyword Type ConstLi st

82. ConstList ::= SingleConstDef {"," SingleConstDef}

83. Singl eConstDef ::= Identifier [ArrayDef] Assignment Char Constant Expression
84. Const Keyword ::= "const"

A.1.6.1.3 Template definitions

85. Tenpl at eDef ::= Tenpl at eKeyword [Tenpl at eRestriction] [FuzzyMdifier]

BaseTenpl ate [DerivedDef] Assi gnnent Char Tenpl at eBody
86. BaseTenplate ::= (Type | Signature) ldentifier ["(" Tenpl ateOr Val ueFor mal Par Li st

my

87. Tenpl at eKeyword ::= "tenpl ate"
88. DerivedDef ::= MdifiesKeyword Extendedldentifier
89. Modi fi esKeyword ::= "nodifies"
90. Tenpl at eOr Val ueFor mal Par Li st ::= Tenpl at eOr Val ueFor mal Par {"," Tenpl at eOr Val ueFor nal Par }
91. Tenpl at eOr Val ueFor mal Par ::= Formal Val uePar | For mal Tenpl at ePar

/* STATI C SEMANTI CS - Fornmal Val uePar shall resolve to an in paraneter */
92. Tenpl at eBody ::= (Si npl eSpec |
Fi el dSpeclLi st |
ArrayVal ueOrAttrib
) [ExtraMatchi ngAttri butes]

/* STATIC SEMANTICS - Wthin Tepl ateBody the ArrayVal ueOrAttrib can be used for array, record,
record of and set of types. */

93. Si npl eSpec ::= (Singl eExpression ["&" SinpleTenpl ateSpec]) | Sinpl eTenpl at eSpec
94. Si npl eTenpl at eSpec :: = Singl eTenpl at eExpressi on ["&" Si npl eSpec]
95. Si ngl eTenpl at eExpressi on ::= Mt chi ngSynbol

{Tenpl at eRef Wt hPar Li st [Ext endedFi el dRef erence]) |
Ext endedl denti fi er Enunienpl at eExt ensi on
/** STATIC Semantics: Extendedldentifier shall refer to an enunerated value w th associ ated val ue */

96. Enunilenpl at eExtension ::= "(" TenplateBody {"," TenplateBody } ")"
/** STATIC Semantics: each Tenpl ateBody shall be an integer tenplate */
97. Fi el dSpecList ::="{" FieldSpec {"," FieldSpec} "}"
98. Fi el dSpec :: = Fi el dRef erence Assi gnnent Char (Tenpl ateBody | M nus)
99. Fi el dRef erence ::= StructFi el dRef |

ArrayOrBit Ref |

Par Ref
100. StructFi el dRef ::= ldentifier |

Predef i nedType |
TypeRef erence

/* STATI C SEMANTI CS - PredefinedType and TypeReference shall be used for anytype val ue notation
only. PredefinedType shall not be AnyTypeKeyword. */
101. ParRef ::= ldentifier

/* STATIC SEMANTICS - Identifier in ParRef shall be a fornal paraneter identifier fromthe
associ ated signature definition */
102. ArrayOrBitRef ::= "[" FieldOBitNunber "]"

/* STATI C SEMANTICS - ArrayRef shall be optionally used for array types and TTCN-3 record of and set
of . The sanme notation can be used for a Bit reference inside an TTCN-3 charstring, universal
charstring, bitstring, octetstring and hexstring type */

103. Fi el dOr Bi t Nunber ::= Si ngl eExpressi on
/* STATI C SEMANTICS - Singl eExpression will resolve to a value of integer type */
104. ArrayVal ueOrAttrib ::= "{" [ArrayEl enent SpecList] "}"
105. ArrayEl enent SpecLi st ::= ArrayEl enent Spec {"," ArrayEl enent Spec}
106. ArrayEl enent Spec ::= Mnus |
Per nut ati onMatch |
Tenpl at eBody
107. Mat chi ngSynbol ::= Conpl enent |

(AnyVal ue [W | dcardLengt hMatch]) |
(AnyOrOnit [WIdcardLengt hMatch]) |
Li st Of Tenpl ates |

Range |

Bit Stringhatch |

HexStri nghMat ch |

Cctet StringMatch |

Char Stri nghvat ch |

Subset Mat ch |

Super set Mat ch |

ETSI

278 ETSI ES 201 873-1 V4.9.1 (2017-05)

DecodedCont ent Mat ch
108. DecodedCont ent Mat ch :: = DecodedMat chKeyword ["(" [Expression] ")"] Tenpl at el nstance
109. DecodedMat chKeyword :: = "decmat ch"

/* STATI C SEMANTI C — W dcardLengt hMatch shall be used when Matchi ngSynbol is used in fractions of a
concatenated string or list (see clause 15.11) and shall not be used in other cases. In this case,
the Conpl enent, ListCOf Tenpl ates, Range, BitStringhMatch, HexStringMwatch, CctetStringhatch,
Char Stri ngvat ch, Subset Mat ch and Superset Match productions shall not be used. */
110. ExtraMat chi ngAttributes ::= StringlLength |

| f Present Keyword |

(Stri ngLengt h | fPresent Keywor d)

111.BitStringMatch :: = " {BinOrMatch} "B
112.BinOrMatch ::= Bin |
AnyVal ue |
AnyOr Omi t
113. HexStringMatch ::= """ {HexOrMatch} "'" "H'
114. HexOr Match @ := Hex |
AnyVal ue |
AnyOr Omi t
115. Cctet Stringvatch ::= """ {CctOrvatch} "' " O
116. Cct OrMatch @ := Cct |
AnyVal ue |
AnyOr Omi t
117. Char StringMatch ::= PatternKeyword [Casel nsenModifier] PatternParticle {"&" PatternParticle}
118. PatternParticle ::= Pattern | ReferencedVal ue
119. PatternKeyword ::= "pattern”
120. Pattern ::= """ {PatternEl enent}
121. PatternEl enent ::= (("\" ("?2" | "*" | “\" | (" | "1 "{" | "}" |
S A G A I - I A B
wpottt) "n") "t] "s" | "b"
D G B N S R K
Yy | ("[" ["~"] [{Patternd assChar ["-"

Patt ernd assChar]}]

"1y
("{" ["\"] Referencedvalue "}") | ("\" "N'
(Ref erencedVal ue |

Type) "}") |
(et
("(" PatternElenent ")") |
("# (Num |
e Nunber [Nunber] 1" |
(GG NurTber))|
)(" [T)" Num)
) | PatternChar
122. PatternChar ::= NonSpeci al PatternChar | PatternQuadruple
/* STATICSEI\/AI\FI’ICS Characters "?2", "*" t\" [t U]t,ot{t, o tRt,otttYLOU|tM,ot(t, otM)y"t, t#, U+,
“d", "A", "N' have special senmantics - they are netacharacters for the definition of pattern

elements — only if they follow the BNF as defined above, if not they are interpreted |ike nornmal
characters */
123. NonSpeci al PatternChar ::= Char
124. Patternd assChar ::= NonSpeci al Patternd assChar |
Pat t er nQuadrupl e |
"\" EscapedPatt er nC assChar
125. NonSpeci al Patt ernd assChar ::= Char

/* STATI C SEMANTI CS: Characters "[", "-", "A" "1", "\", "q", "have special semantics — they are
net acharacters for the definition of pattern cI ass characters — onIy if they follow the BNF as
defined above, if not they are |nterpret ed |like normal characters */

126. EscapedPatternd assChar ::= "[" | "-" | "~" | "]"

127. PatternQuadruple ::="\" "qg" "(" Nunber "," Nunber "," Nunmber ",k"
Nunber ")*"

128. Conpl enent ::= Conpl enent Keyword Li st Of Tenpl at es

129. Conpl enent Keyword ::= "conpl enrent"

130. Li stOf Tenpl ates ::= "(" TenplatelListltem{"," TenplatelListlten} ")"

131. Tenpl atelLi stltem ::= Tenpl ateBody | AllEl enentsFrom

132. Al | El ement sFrom :: = Al | Keyword FronkKeyword Tenpl at eBody

133. Subset Mat ch ::= Subset Keyword Li st Of Tenpl at es

134. Subset Keyword ::= "subset"

135. Super set Mat ch :: = Superset Keyword Li st Of Tenpl at es

136. Super set Keyword ::= "superset"

137. Permut ati onMat ch :: = Pernutati onKeyword ListOf Tenpl ates

/* STATI C SEMANTICS: Restrictions on the content of Tenpl ateBody within the ListOf Tenpl ates are
given in clause B.1.3.3. */
138. Per nut ati onKeyword ::= "pernutation"

ETSI

279 ETSI ES 201 873-1 V4.9.1 (2017-05)

139. AnyVal ue ::= "?"

140. AnyOrQmt .= "*"

141. Wl dcardLengt hMat ch :: = Lengt hKeyword " (" Singl eExpression ")"

/* STATI C SEMANTI CS: Singl eExpression shall evaluate to type integer */
142. 1 f Present Keyword ::= "ifpresent"

143. Present Keyword ::= "present"

144. Range ::= "(" Bound ".." Bound ")"

145.Bound ::= (["!"] SingleExpression) | ([Mnus] |nfinityKeyword)

/* STATI C SEMANTI CS - Bounds shall evaluate to types integer, charstring, universal charstring or
float. In case they evaluate to types charstring or universal charstring, the string I ength shall be
1. infinity as lower bound and —infinity as upper bound are allowed for float types only. */

146. InfinityKeyword ::= "infinity"
147. Act ual Par Assignnment ::= ldentifier ":=" Tenpl atel nstance
/* STATIC SEMANTICS — if a value paranmeter is used, an in-line tenplate shall evaluate to a value */
148. Tenpl at eRef Wt hPar Li st ::= Extendedldentifier [Actual ParlList]
149. Tenpl atel nstance ::= [(Type | Signature) Colon] [DerivedRef WthParList Assignnent Char]
Tenpl at eBody
150. Deri vedRef Wt hPar Li st ::= MdifiesKeyword Tenpl at eRef Wt hPar Li st
151. Actual ParList ::="(" [(Actual Par {"," Actual Par })

{"," Actual Par Assi gnnent}) |
(Act ual Par Assi gnnent {"," Actual ParAssignnent})]

152. Actual Par ::= Tenpl atel nstance | M nus

/* STATI C SEMANTI CS - When the corresponding fornal paraneter is not of tenplate type the
Tenpl at el nst ance production shall resolve to one or nore Singl eExpressions */

153. Tenpl ateCps ::= MatchOp | Val ueof Op

154. Mat chOp ::= MatchKeyword " (" Expression "," Tenpl atel nstance ")"
155. Mat chKeyword :: = "nmatch"

156. Val ueof Op ::= Val ueof Keyword " (" Tenpl at el nst ance")"

157. Val ueof Keyword ::= "val ueof"

A16.14 Function definitions

158. Functi onDef ::= FunctionKeyword [Deterninistichdifier] ldentifier
"(" [FunctionFormal ParList] ")" [RunsOnSpec] [M cSpec]
[Syst enSpec] [ReturnType] StatenentBl ock

159. Functi onKeyword ::= "function"
160. Funct i onFor mal Par Li st ::= FunctionFornal Par {"," Functi onFor nal Par}
161. Functi onFor mal Par ::= For mal Val uePar |

For nal Ti ner Par |
For nal Tenpl at ePar |
For mal Port Par

162. ReturnType ::= ReturnKeyword [Tenpl at eKeyword | RestrictedTenpl at e]
Type

163. Ret urnKeyword ::= "return"

164. RunsOnSpec :: = RunsKeyword OnKeyword Conponent Type

165. RunsKeyword ::= "runs"

166. OnKeyword ::= "on"

167. M cSpec ::= MICKeyword Conponent Type

168. MTCKeyword ::= "ntc"

169. Statenent Bl ock ::= "{" [FunctionDeflList] [FunctionStatenentlList] "}"

170. FunctionDef Li st ::= {(FunctionLocal Def | FunctionLocallnst) [WthStatenent]

[Seni Col on] } +

171. FunctionStatenent Li st ::= {FunctionStatenent [Seni Colon]}+

172. Functi onLocal I nst ::= Varlnstance | Tinerlnstance

173. Functi onLocal Def ::= ConstDef | Tenpl at eDef

174. FunctionStatenment ::= ConfigurationStatenents |

Ti ner St atenents |

Conmuni cati onStatenents |
Basi cSt atenents |

Behavi our St at enent s |

Set Local Verdict |

SUTSt at enent s |

Test caseQper ati on

175. Functionl nstance ::= FunctionRef "(" [Actual ParlList] ")"
176. FunctionRef ::= [ldentifier Dot] (ldentifier | PreDefFunctionldentifier)
177. PreDef Functionldentifier ::= ldentifier [CaselnsenMdifier]

/* STATI C SEMANTI CS - The ldentifier shall be one of the pre-definedpredefined TTCN-3 function
identifiers fromAnnex C of ES 201 873-1. CaselnsenMdifier shall be present only if ldentifier is
"regexp". */

/* STATIC SEMANTICS — if a value paraneter is used, an in-line tenplate shall evaluate to a value */

ETSI

280 ETSI ES 201 873-1 V4.9.1 (2017-05)

A.1.6.1.5 Signature definitions

178. Si gnatureDef ::= SignatureKeyword ldentifier "(" [SignatureFornal ParlList]
")" [ReturnType | NoBl ockKeyword] [Excepti onSpec]

179. Si gnat ur eKeyword ::= "signature"

180. Si gnat ur eFor nal Par Li st ::= Formal Val uePar {"," Formal Val uePar}

181. Excepti onSpec ::= ExceptionKeyword "(" TypeList ")"

182. Excepti onKeyword ::= "exception"

183. Signature ::= Extendedldentifier

184. NoBl ockKeyword ::= "nobl ock"

A.1.6.1.6 Testcase definitions

185. Test caseDef ::= TestcaseKeyword ldentifier "(" [TenplateO Val ueFor mal ParLi st]
")" ConfigSpec StatenentBl ock

186. Test caseKeyword ::= "testcase"

187. Confi gSpec ::= RunsOnSpec [Syst enfspec]

188. Syst enfSpec :: = Syst enKeyword Conponent Type

189. Syst enKeyword ::= "systent

190. Test casel nstance ::= ExecuteKeyword " (" Extendedldentifier "(" [Actual ParlList]

"Y' ["," (Expression | Mnus) ["," SingleExpression]]
191. Execut eKeyword :: = "execute"

A.1.6.1.7 Altstep definitions

192. Al tstepDef ::= AltstepKeyword ldentifier "(" [FunctionFormal ParlList]
")" [RunsOnSpec] [M cSpec] [SystenSpec] "{" AltstepLocal DeflLi st
Al t QuardLi st "}"

193. Al t stepKeyword ::= "al tstep"
194. Al tsteplLocal DefList ::= {A tsteplLocal Def [WthStatenent] [Sem Col on]}
195. Al t st epLocal Def ::= Varlnstance |
Ti mer | nst ance |
Const Def |
Tenpl at eDef
196. Al tstepl nstance ::= Extendedldentifier "(" [Actual ParlList]
DE

A.1.6.1.8 Import definitions

197. I nportDef ::= | nportKeyword | nportFronSpec (A IWthExcepts | ("{" |nportSpec "}"))
198. | nport Keyword ::= "inport"

199. Al Il Wt hExcepts ::= All Keyword [Except sDef]

200. Except sDef ::= Except Keyword "{" ExceptSpec "}"

201. Except Keyword ::= "except"

202. Except Spec ::= {Except El ement [Semi Col on]}

203. Except El emrent :: = Except G oupSpec |

Except TypeDef Spec |
Except Tenpl at eSpec |
Except Const Spec |
Except Test caseSpec |
Except Al t st epSpec |
Except Functi onSpec |
Except Si gnat ur eSpec |
Except Modul ePar Spec

204. Except G oupSpec ::= G oupKeyword (QualifiedldentifierList | AllKeyword)
205. ldentifierListOA Il ::=IldentifierList | AlKeyword

206. Except TypeDef Spec ::= TypeDef Keyword IdentifierListOAll
207. Except Tenpl at eSpec :: = Tenpl at eKeyword I dentifierListOAll
208. Except Const Spec :: = Const Keyword IdentifierListOAll

209. Except Test caseSpec ::= TestcaseKeyword ldentifierListOAllI
210. Except Al t stepSpec ::= Al tstepKeyword IdentifierListOAll
211. Except Functi onSpec ::= Functi onKeyword |dentifierListOAll
212. Except Si gnatureSpec ::= SignatureKeyword IdentifierListOAll
213. Except Modul ePar Spec :: = Mdul ePar Keyword | dentifierListOAll
214. | mport Spec ::= {lnportEl ement [Semni Col on]}

215. I mport El ement ::= | nport G oupSpec |

| npor t TypeDef Spec |

| npor t Tenpl at eSpec |
| npor t Const Spec |

| nport Test caseSpec |
| nport Al t st epSpec |

| npor t Funct i onSpec |
| npor t Si gnat ur eSpec |

ETSI

281 ETSI ES 201 873-1 V4.9.1 (2017-05)

| npor t Modul ePar Spec |
| npor t | nport Spec

216. | mport FronmBpec ::= FronKeyword Mdul el d [Recur si veKeywor d]

217. Recur si veKeyword ::= "recursive"

218. | mport GroupSpec ::= G oupKeyword (G oupRefListWthExcept | Al G oupsWthExcept)
219. GroupRef Li st Wt hExcept ::= QualifiedldentifierWthExcept {"," QualifiedldentifierWthExcept}
220. Al | GroupsW t hExcept ::= Al Keyword [Except Keyword Qualifi edl dentifierlList]

221. QualifiedldentifierWthExcept ::= Qualifiedldentifier [ExceptsDef]

222. 1dentifierListOA IWthExcept ::= ldentifierList | Al WthExcept

223. | mport TypeDef Spec ::= TypeDef Keyword ldentifierListO A | WthExcept

224. Al WthExcept ::= Al Keyword [Except Keyword I dentifierlList]

225. | nport Tenpl at eSpec :: = Tenpl at eKeyword | dentifierListO A |WthExcept

226. | mport Const Spec ::= ConstKeyword |dentifierListO A lWthExcept

227. I mport Al tstepSpec ::= Al tstepKeyword ldentifierListO A |WthExcept

228. 1 mport Test caseSpec ::
229. | nport Functi onSpec ::

Test caseKeyword ldentifierListO Al WthExcept
Functi onKeyword I dentifierListO Al WthExcept
230. | nport Si gnatureSpec ::= SignatureKeyword ldentifierListOA|lWthExcept
231. | mpor t Modul ePar Spec :: = Mdul ePar Keyword | dentifierListO A |WthExcept
232. I mport !l nmportSpec ::= | nportKeyword Al |l Keyword

A.1.6.1.9 Group definitions

233. GroupDef ::= G oupKeyword ldentifier "{" [Mdul eDefinitionsList] "}"
234. GroupKeyword ::= "group"

A.1.6.1.10 External function definitions

235. Ext Functi onDef ::= Ext Keyword Functi onKeyword [Determ nistichMdifier]
Identifier "(" [FunctionFornal ParList] ")" [ReturnType]
236. Ext Keyword ::= "external "

A.1.6.1.11 External constant definitions

237. Ext Const Def ::= Ext Keyword Const Keyword Type l|dentifierlList

A.1.6.1.12 Module parameter definitions
238. Modul ePar Def ::= Mdul ePar Keyword (Mdul ePar | ("{" MiltitypedMdul eParLi st

1))
239. Modul ePar Keyword :: = "nodul epar”
240. Mul titypedModul ePar Li st ::= {Mdul ePar [Sem Col on]}
241. Modul ePar ::= Type Mdul ePar Li st
242. Modul ePar List ::= ldentifier [AssignnentChar ConstantExpression] {","
I dentifier [AssignnentChar Constant Expression]}

A.1.6.1.13 Friend module definitions

243. Fri endModul eDef ::= "friend" "nodul e" |dentifierList [Sen Col on]

A.1.6.2 Control part

244, Modul eControl Part ::= Control Keyword "{" Modul eControl Body "}" [WthStatenent]
[Seni Col on
245. Control Keyword ::= "control"
246. Modul eControl Body ::= [Control Statement O Def Li st]
247. Control Statenent O DefLi st ::= {Control Statenent O Def [Seni Col on]}+
248. Control Statement Or Def ::= (FunctionLocal Def | FunctionLocal Inst) [WthStatenment] |
Cont r ol St at enent
249. Control Statenent ::= TinerStatenents |

Basi cStatenments |
Behavi our St at enent s |
SUTSt at enent s |

St opKeywor d

ETSI

282 ETSI ES 201 873-1 V4.9.1 (2017-05)

A.1.6.3 Local definitions

A.1.6.3.1 Variable instantiation

250. Var I nstance ::= VarKeyword (([LazyModifier | FuzzyModifier] Type Varlist) |
((Tenpl at eKeyword | RestrictedTenpl ate)
[LazyModi fier | FuzzyModifier] Type TenpVarlist))
251. VarList ::= SingleVarlnstance {"," SingleVarlnstance}
252.Singl eVarlnstance ::= Identifier [ArrayDef] [AssignmentChar Expression]
253. Var Keyword ::= "var"
254, TempVar Li st ::= Singl eTenpVarlnstance {"," SingleTenpVarl nstance}
255. Si ngl eTenpVar I nstance ::= |ldentifier [ArrayDef] [AssignnmentChar Tenpl at eBody]
256. Vari abl eRef ::= ldentifier [ExtendedFi el dRef erence]

A.1.6.3.2 Timer instantiation

257. Timer| nstance ::= Ti mer Keyword VarLi st
258. Ti mer Keyword ::= "tinmer"
259. ArrayldentifierRef ::= Identifier {ArrayOBitRef}

A.1.6.4 Operations

A.1.6.41 Component operations

260. Configurati onStatenments ::= Connect St atenent |
MapSt at enent |
Di sconnect St at enent |
UnmapSt at enent |
DoneSt at enent |
Ki |l | edSt at enent |
Start TCSt at enent |
St opTCSt at enent |
Ki I | TCSt at enent
261. ConfigurationOps ::= CreateQp |
Sel fOp |
Syst enKeyword |
MrCKeyword |
Runni ngQ |
AliveQp
262. Create(Qp ::= Conponent Type Dot CreateKeyword ["(" (Singl eExpression |
Mnus) ["," SingleExpression] ")"] [AliveKeyword
263.Sel fQp ::= "sel f"

264. DoneSt at emrent :: = Conponent O Any Dot DoneKeyword [Port Redirect Synbol
[ValueStoreSpec] [I ndexSpec] 1]
| * STATI C SEMANTICS — |If PortRedirectSynbol is present, at |east one of ValueStoreSpec and | ndexSpec
shal | be present*/
265. Conponent O Any :: = Conponent O Def aul t Ref erence |
(AnyKeyword (Conmponent Keyword | FronKeyword Vari abl eRef)) |
(Al | Keyword Conponent Keywor d)

266. Val ueSt oreSpec :: = Val ueKeyword Vari abl eRef

267. | ndexAssi gnnment ::= PortRedirect Synbol | ndexSpec

268. | ndexSpec ::= | ndexModifier Val ueStoreSpec

269. Ki | | edSt at enent ::= Conponent O Any Dot Kill edkeyword [Port Redirect Synbol

[ValueStoreSpec] [|ndexSpec]]
| * STATI C SEMANTICS — |If PortRedirectSynbol is present, at |east one of ValueStoreSpec and | ndexSpec
shal | be present*/

270. DoneKeyword :: = "done"
271. Ki | | edKeyword ::= "killed"
272. Runni ngOp ::= Conponent O Any Dot Runni ngKeyword [| ndexAssi gnnent]
273. Runni ngKeyword ::= "runni ng"
274. AliveQp ::= Conponent Or Any Dot AliveKeyword [ndexAssignment]
275. CreateKeyword ::= "create"
276. Al i veKeyword ::= "alive"
277. Connect St at enent ::= Connect Keyword Si ngl eConnecti onSpec
278. Connect Keyword ::= "connect"
279. Si ngl eConnectionSpec ::= "(" PortRef "," PortRef ")"
280. Port Ref ::= Conponent Ref Colon ArrayldentifierRef
281. Conponent Ref ::= Conponent O Def aul t Ref erence |
Syst enKeyword |
Sel fOp |
MrCKeywor d
282. Di sconnect St at ement :: = Di sconnect Keyword [Si ngl eConnecti onSpec |

Al | Connecti onsSpec |

ETSI

283 ETSI ES 201 873-1 V4.9.1 (2017-05)

Al | PortsSpec |
Al | ConpsAl | Port sSpec

]

283. Al | ConnectionsSpec ::= "(" PortRef ")"

284. Al l PortsSpec ::= "(" ConponentRef ":" Al Keyword PortKeyword ")"

285. Al | ConpsAl | PortsSpec ::= "(" Al Keyword Conponent Keyword ":" Al | Keyword
Port Keyword ")"

286. Di sconnect Keyword ::= "di sconnect"

287. MapSt at ement :: = MapKeyword Si ngl eConnecti onSpec [ParanC ause]

288. Par anCl ause ::= ParanKeyword Actual ParLi st

289. MapKeyword ::= "map"

290. UnmapSt at ement @ : = UnmapKeyword [Si ngl eConnecti onSpec [ParanC ause] |

Al | Connecti onsSpec [ParanC ause] |

Al | PortsSpec |
Al | ConpsAl | Port sSpec

]

291. UnmapKeyword ::= "unmap"
292. Start TCStatement ::= Conmponent O Def aul t Ref erence Dot St art Keywor d
"(" (Functionlnstance | Altsteplnstance) ")"
293. StartKeyword ::= "start"
294. St opTCSt at ement :: = St opKeyword | (Conponent Ref erenceOLiteral | Al Keyword
Conponent Keywor d) Dot St opKeywor d

295. Conmponent Ref erenceOrLiteral ::= Conponent O Def aul t Ref erence |

MICKeywor d |

Sel f Op
296.Kil I TCStatenment ::= Kill Keyword | ((ConponentReferenceO Literal |

Al | Keyword Conponent Keyword) Dot Kil | Keywor d)

297. Conponent O Def aul t Ref erence :: = Variabl eRef | Functionl nstance
298. Ki | | Keyword ::= "kill"

A.1.64.2 Port operations

299. Conmmuni cati onStatenments ::= SendSt atenment |
Cal | Statenent |
Repl ySt at enent |
Rai seSt at enent |
Recei veSt at enent |
Trigger Statenment |
Cet Cal | St at enent |
Cet Repl ySt at enent |
Cat chSt at enent |
CheckSt at enent |
Cl ear St atenent |
Start Statenent |
St opSt at emrent |
Hal t St at enent |
CheckSt at eSt at enent
Arrayl dentifierRef Dot PortSendOp

300. SendSt at enent

301. Port SendQ ::= SendOpKeyword "(" Tenpl atel nstance")" [Tod ause]
302. SendOpKeyword ::= "send"
303. Tod ause ::= ToKeyword (Tenpl at el nst ance|

Addr essRef Li st |
Al | Keywor d Conponent Keywor d

)
304. AddressRef List ::= "(" Tenplatelnstance{"," Tenpl atel nstance} ")"
305. ToKeyword ::= "to"
306. Cal | St at enment = ArrayldentifierRef Dot PortCall Qp [PortCall Body]
307.PortCall Op ::= Call OpKeyword " (" Call Paraneters ")" [Tod ause]
308. Cal | OpKeyword ::= "cal|"
309. Cal | Paraneters ::= Tenplatelnstance ["," CallTi nerVal ue]
310. Cal | Ti ner Val ue ::= Expression | NowaitKeyword
311. Nowai t Keyword ::= "nowait"
312. PortCal | Body ::= "{" CallBodyStatenentList "}"
313. Cal | BodySt at ement Li st ::= {Cal | BodySt at ement [Seni Col on] } +
314. Cal | BodySt at ement :: = Cal | BodyCGuard St at ement Bl ock
315. Cal | BodyGuard ::= Al t GuardChar Cal | BodyQOps
316. Cal | BodyOps ::= GetReplyStatenent | CatchStatenent
317. ReplyStatenment ::= ArrayldentifierRef Dot PortReplyOp
318. Port Repl yOp ::= Repl yKeyword " (" Tenpl atel nstance [ReplyValue] ")" [Tod ause]
319. Repl yKeyword ::= "reply"
320. Repl yVal ue ::= Val ueKeyword Tenpl at eBody

/* STATI C SEMANTI CS - Tenpl at eBody shall be type conpatible with the return type. It shall evaluate
to a value or tenplate (literal or tenplate instance) conforming to the tenplate(val ue)
restriction. */

321. Rai seStatenment ::= ArrayldentifierRef Dot PortRai seQp
322. Port Rai se(p ::= Rai seKeyword "(" Signature "," Tenpl at el nstance")"
[Tod ause]

ETSI

284 ETSI ES 201 873-1 V4.9.1 (2017-05)

323. Rai seKeyword ::= "raise"
324. Recei veStatement ::= PortOrAny Dot PortRecei veQp
325.PortOrAny ::= ArrayldentifierRef | (AnyKeyword (PortKeyword | FronKeyword Variabl eRef))
326. Port Recei veOp :: = Recei veOpKeyword ["("Tenpl atel nstance")"] [FronC ause] [PortRedirect]
327. Recei veOpKeyword ::= "recei ve"
328. FronCl ause ::= FronKeyword (Tenpl at el nstance |
Addr essRef Li st |
AnyKeywor d Conponent Keywor d
329. FronKeyword ::= "front
330. Port Redirect ::= PortRedirectSynbol ((ValueSpec [SenderSpec] [IndexSpec]) |
(Sender Spec [ndexSpec]) |
| ndexSpec
)
331. Port Redi rect Synbol ::= "->"
332. Val ueSpec ::= Val ueKeyword (VariableRef | ("(" SingleValueSpec {"," SingleValueSpec} ")"))
333. Si ngl eVal ueSpec ::= Vari abl eRef [Assignnent Char [DecodedMbdifier ["(" [Expression] ")"]]

Fi el dRef erence Ext endedFi el dRef er ence]

| * STATI C SEMANTI CS — Fi el dRef erence shall not be ParRef and Ext endedFi el dRef erence shall not be
TypeDef | dentifier*/

334. Val ueKeyword ::= "val ue"
335. Sender Spec :: = Sender Keyword Vari abl eRef
336. Sender Keyword ::= "sender"
337.TriggerStatenent ::= PortOrAny Dot PortTrigger Op
338. PortTriggerQp ::= Trigger OpKeyword ["(" Tenpl atelnstance ")"] [FronC ause]
[Port Redi r ect
339. Tri gger OpKeyword ::= "trigger"
340. Get Cal | Statement ::= PortOrAny Dot PortCGetCall Op
341. PortGetCal |l Op ::= GetCal | OpKeyword ["(" Tenpl atel nstance ")"] [FronC ause]
[Port Redi rect Wt hPar ani
342. Get Cal | OpKeyword ::= "getcal "
343. Port Redi rect Wt hParam : : = Port Redi rect Synbol Redirect Wt hPar anSpec
344. Redi rect Wt hPar anSpec :: = (ParanfSpec [Sender Spec] [IndexSpec]) |
(Sender Spec [ndexSpec]) |
| ndexSpec
345. Par anspec :: = ParanKeyword ParamAssi gnnent Li st
346. Par anKeyword ::= "parant
347. Par amAssi gnnment List ::= "(" (AssignnentlList | VariableList) ")"
348. Assi gnnment Li st ::= Variabl eAssignnent {"," Variabl eAssi gnnent}
349. Vari abl eAssi gnnment ::= Vari abl eRef Assi gnnment Char [DecodedModifier ["(" Expression] ")"]
I dentifier
350. Variabl eList ::= VariableEntry {"," Variabl eEntry}
351. Variabl eEntry ::= Variabl eRef | M nus
352. Get Repl yStatenent ::= Port Or Any Dot Port Get Repl yOp
353. Port Get Repl yOp :: = Get Repl yOpKeyword [" (" Tenpl at el nst ance [Val ueMat chSpec]

")"] [FronC ause] [PortRedirectWthVal ueAndPar anj
Por t Redi r ect Synbol Redirect Wt hVal ueAndPar anfSpec
(Val ueSpec [Paranftspec] [Sender Spec]
[ndexSpec]) | Redirect Wt hParanSpec

354, Port Redi rect Wt hVal ueAndPar am : :
355. Redi rect Wt hVal ueAndPar anSpec : :

356. Get Repl yOpKeyword :: = "getreply"
357. Val ueMat chSpec :: = Val ueKeyword Tenpl at el nst ance
358. CheckSt at enent Port Or Any Dot Port CheckOp

359. Port CheckQp ::= CheckOpKeyword ["(" CheckParaneter ")"]

ETSI

285 ETSI ES 201 873-1 V4.9.1 (2017-05)

360. CheckOpKeyword :: = "check"
361. CheckPar anet er = CheckPort OpsPresent |
FronC ausePresent |
Redi r ect Present
362. FronCl ausePresent ::= FronCl ause [Port Redirect Synbol ((Sender Spec
[I ndexSpec]) |
| ndexSpec)]
363. Redirect Present ::= PortRedirectSynbol ((SenderSpec [|ndexSpec]) |
| ndexSpec)
364. CheckPort OpsPresent ::= PortReceiveQp |
PortGetCal | Op |
Port Get Repl yOp |
Por t Cat chOp
365. Cat chSt at enent = Port Or Any Dot Port Cat chOp
366. Port Cat chQp ::= CatchOpKeyword ["(" CatchQpParameter ")"] [FronC ause] [PortRedirect]
367. Cat chOpKeyword ::= "catch"
368. Cat chQpPar aneter ::= Signature "," Tenplatelnstance | Ti meout Keyword
369. G earStatenent ::= Port O All Dot d ear OpKeyword
370.PortOrAll ::= ArrayldentifierRef | Al Keyword PortKeyword
371. C ear OpKeyword ::= "clear"
372. StartStatement ::= PortOrAll Dot StartKeyword
373. StopStatement ::= PortOrAll Dot StopKeyword
374. St opKeyword ::= "stop"
375. HaltStatement ::= PortOrAll Dot Halt Keyword
376. Hal t Keyword ::= "halt"
377. AnyKeyword ::= "any"
378. CheckStateStatenent ::= PortOrAll Any Dot CheckStat eKeyword "(" Singl eExpression
e
379.Port Al l Any ::= Port O Al | AnyKeyword Port Keyword
380. CheckSt at eKeyword :: = "checkstate"
A.1.6.4.3 Timer operations
381. TinmerStatenments ::= StartTi ner Statenent |
St opTi ner St at enent |
Ti neout St at emrent
382. TimerOps ::= ReadTinmer® | Runni ngTi mer Op
383.StartTinerStatenent ::= ArrayldentifierRef Dot StartKeyword ["(" Expression ")"]
384. StopTimerStatenent ::= TinerRef O All Dot StopKeyword
385. TimerRef O All ::= ArrayldentifierRef | Al Keyword Ti mer Keywor d
386. ReadTimerQp ::= ArrayldentifierRef Dot ReadKeyword
387. ReadKeyword ::= "read"
388. Runni ngTi merOp :: = TinmerRef O Any Dot Runni ngKeyword [|ndexAssi gnment]
389. Ti meout St atenent ::= Ti mer Ref O Any Dot Ti neout Keyword [| ndexAssi gnnent]
390. TimrerRef O Any ::= ArrayldentifierRef |
(AnyKeyword Ti ner Keyword) |
(AnyKeyword FronKeyword |dentifier)
391. Ti meout Keyword ::= "timeout"
A.1.6.44 Testcase operation
392. TestcaseCperation ::= TestcaseKeyword "." StopKeyword ["(" { Logltem[","] } ")"]
A.1.6.5 Type
393. Type ::= PredefinedType | ReferencedType
394. PredefinedType ::= BitStri ngkeyword |
Bool eanKeyword |
Char St ri ngKeyword |
Uni versal CharString |
| nt eger Keyword |
Cctet StringKeyword |
HexStri ngKeyword |
Ver di ct TypeKeyword |
Fl oat Keyword |
Addr essKeyword |
Def aul t Keyword |
AnyTypeKeywor d
395.BitStringKeyword ::= "bitstring"
396. Bool eanKeyword :: = "bool ean"
397. I ntegerKeyword ::= "integer"
398. Cctet StringKeyword ::= "octetstring”
399. HexStringKeyword ::= "hexstring"
400. Ver di ct TypeKeyword ::= "verdicttype"
401. Fl oat Keyword ::= "float"

ETSI

286 ETSI ES 201 873-1 V4.9.1 (2017-05)

402. Addr essKeyword ::= "address"

403. Def aul t Keyword ::= "defaul t"

404. AnyTypeKeyword ::= "anytype"

405. Char StringKeyword ::= "charstring"

406. Uni versal Char String ::= Universal Keyword Char St ri ngKeyword

407. Uni ver sal Keyword ::= "universal"

408. Ref erencedType ::= Extendedl dentifier [ExtendedFi el dRef erence]
409. TypeReference ::= Extendedl dentifier

410. ArrayDef ::={"[" Singl eExpression [".." Singl eExpression] "]"}+

/* STATI C SEMANTICS - ArrayBounds will resolve to a non negative value of integer type */

A.1.6.6 Value

411. Val ue ::= PredefinedVal ue | ReferencedVal ue
412. PredefinedVal ue ::= Bstring |
Bool eanVal ue |
Char Stri ngVal ue |
Nunber | /* |ntegerValue */
GCstring |
Hstring |
Ver di ct TypeVal ue |
Fl oat Val ue |
Addr essVal ue |

Oni t Keyword

413. Bool eanVal ue ::= "true" | "fal se"
414. Ver di ct TypeVal ue ::= "pass" |

"fail" |

"inconc" |

"none" |

“error"
415. Char StringValue ::= Cstring | Quadruple | USIIikeNotation
416. Quadrupl e ::= CharKeyword "(" Nunmber "," Nunber "," Nunmber "," Nunmber ")"
417.USl | i keNotation ::= CharKeyword "(" UDike { "," UDike } ")"
418.UDike ::= ("U|"u") {"+} {Hex}#(1,8)
419. Char Keyword ::= "char"
420. Fl oat Val ue ::= Fl oat Dot Not ati on |

Fl oat ENot ati on |
NaNKeywor d

421. NaNKeyword ::= "not_a_nunber"
422. Fl oat Dot Not ati on ::= Nurmber Dot Deci mal Nunber
423. Fl oat ENot ati on : : = Nunber [Dot Decimal Nunber] Exponential [M nus] Nunber
424. Exponential ::="E'
425. Ref erencedVal ue :: = Extendedl dentifier [ExtendedFi el dReference | ExtendedEnunReference]

[** STATI C Semantics: ExtendedEnunReference shall be present if and only if Extendedldentifier
refers to an enunerated val ue with an attached vaI ue list */

426. Ext endedEnunRef erence ::= "(" _IntegerValue ")"

427. Nunmber :: = (NonZeroNum{NurT}) | "o"

428. NonZeroNum ::= "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"

429. Deci mal Nunber o= { Num}+

430. Num ::= "0" | NonZeroNum

431.Bstring ::="'"" { Bin | BinSpace } ' "B"

432.Bin ::="0" | "1"

433. Hstring ::= " { Hex | BinSpace } "'" "H'

434.Hex ::= Num| "A" | "B" | "C" | "D" | "E' | "F" | "a" | "b" | "c" |
dr] "e" | "f"

435.Cstring ::= """ { Cct | BinSpace } "'" "O

436. Cct ::= Hex Hex

437.Cstring ::= """ {Char}

438. Char ::=/* REFERENCE - A character defined by the relevant CharacterString type. For charstring

a character fromthe character set defined in ITUT T.50. For universal charstring a character from
any character set defined in | SO|EC 10646 */

439. | dentifier ::= A pha {A phaNum | Underscore}
440. Al pha ::= Upper Al pha | Lower Al pha
441. Al phaNum ::= Al pha | Num
442. UpperAlpha ::="A" | "B" | "C" | "D' | "E"| "F" | "G | "H | "I" |
S S T BV e N e A o I e B
"STpUTT O UtV W X Y |
443. Lower Alpha ::="a" | "b" | "c¢" | "d" | "e" | "f" | "g" | "h" | "i" |
0T L T B O O B I B
LI I I O U N A
444, Ext endedAl phaNum : : = /* REFERENCE - A graphical character fromthe BASIC LATIN or fromthe
LATI N-1 SUPPLEMENT character sets defined in 1SQ | EC 10646 (characters fromchar (0,0,0,32) to char
(0,0,0,126), fromchar (0,0,0,161) to char (0,0,0,172) and fromchar (0,0,0,174) to char (0,0, 0, 255)
*/
445. FreeText ::= """ {Ext endedAl phaNunt """
446. AddressValue ::= "nul "

ETSI

287 ETSI ES 201 873-1 V4.9.1 (2017-05)

447. Om t Keyword ::= "omt"
448. BinSpace ::= " " | "\" NLChar
449. NLChar ::=/* REFERENCE - Any sequence of new ine characters that constitute a newine by using

the following @ control characters: LF(10), VT(11), FF(12), CR(13) (see Recomendation ITU-T T.50
[4]) (jointly called newine characters, see clause A 1.5.1) fromthe character set defined in
Recomrendation | TU-T T.50 [4].*/

A.1.6.7 Parameterization

450. | nPar Keyword ::= "in"

451. Qut Par Keyword ::= "out"

452. | nQut Par Keyword ::= "inout"

453. For mal Val uePar ::= [(lnParKeyword |

| nQut Par Keyword |
Qut Par Keywor d
)] [LazyModifier | FuzzyModifier] Type Identifier
[":=" (Expression | Mnus)]
454. Formal Port Par ::= [l nQut Par Keyword] ldentifier ldentifier

/* The first Identifier refers to the port type. The second Identifier refers to the port paraneter
identifier */
455. Formal Ti mer Par ::= [l nQut Par Keyword] Ti mer Keyword |dentifier
456. For mal Tenpl atePar ::= [(| nPar Keyword |
Qut Par Keywor d |
| nQut Par Keywor d
)] (Tenpl at eKeyword | RestrictedTenpl ate) [LazyModifier |
FuzzyModi fi er]

Type ldentifier [":=" (Tenplatelnstance | M nus)]
457. RestrictedTenplate ::= OmtKeyword | (Tenpl at eKeyword Tenpl ateRestriction)
458. Tenpl ateRestriction ::= "(" (OnmtKeyword |

Val ueKeyword |
Pr esent Keywor d

)"
A.1.6.8 Statements
A.1.6.8.1 With statement
459. WthStatenment ::= WthKeyword WthAttriblList
460. Wt hKeyword ::= "with"
461. WthAttribList ::="{" MiltiWthAttrib "}"
462. Mul ti WthAttrib ::= {SingleWthAttrib [Sem Col on]}
463. Singl eWthAttrib ::= StandardAttribute |
VariantAttribute
464. St andardAttribute ::= Attri bKeyword [Overri deKeyword | Local Modifier] [AttribQualifier]
FreeText
465. VariantAttribute ::= VariantKeyword [(OverrideKeyword | Local Modifier)]
[AttribQualifier] [RelatedEncoding "."] FreeText
466. Rel atedEncoding ::= FreeText | ("{" FreeText { "," FreeText } "}")

467. Attri bKeyword ::= EncodeKeyword |
Di spl ayKeyword |
Ext ensi onKeyword |
Opt i onal Keywor d
468. EncodeKeyword :: = "encode"

469. Vari ant Keyword ::= "variant"

470. Di spl ayKeyword ::= "displ ay"

471. Ext ensi onKeyword ::= "extension"

472. OverrideKeyword ::= "override"

473. Local Modifier ::= "@ocal"

474. AttribQualifier ::="(" DefOFieldRefList ")"

475. Def O Fiel dRef List ::= Def O FieldRef {"," Def O Fi el dRef}

476. Def O Fiel dRef ::= Qualifiedldentifier |
((FieldReference | "[" Mnus "]") [ExtendedFi el dRef erence]) |
Al | Ref

477. Qualifiedldentifier ::= {ldentifier Dot} Identifier

478. Al Ref ::= (G oupKeyword Al | Keyword [Except Keyword "{" QualifiedldentifierlList

"1"1) | ((TypeDef Keyword |
Tenpl at eKeyword |

Const Keyword |

Al t st epKeyword |
Test caseKeyword |
Functi onKeyword |
Si gnat ur eKeywor d |

ETSI

288 ETSI ES 201 873-1 V4.9.1 (2017-05)

Modul ePar Keywor d
) Al Keyword [Except Keyword
"{" ldentifierlList
"D

A.1.6.8.2 Behaviour statements

479. Behavi our St at ements :: = Test casel nstance |
Functi onl nst ance |
Ret ur nSt at enent |
Al t Construct |
I nterl eavedConstruct |
Label St at enent |
Cot oSt at ement |
Repeat St at enent |
Deacti vat eSt at enent |
Al t st epl nstance |
ActivateOp |
Br eakSt at enent |
Cont i nueSt at enent

480. Set Local Verdi ct ::= SetVerdi ct Keyword "(" Singl eExpression {"," Logltent
e
481. Set Verdi ct Keyword ::= "setverdict"
482. Get Local Verdict ::= "getverdict"
483. SUTSt atenments :: = ActionKeyword " (" ActionText {StringQp ActionText}
e
484. ActionKeyword ::= "action"
485. ActionText ::= FreeText | Expression
486. ReturnStatenment ::= ReturnKeyword [Tenpl at el nst ance]

/* STATI C SEMANTI CS - Tenpl atel nstance shall evaluate to a value of a type conpatible with the
return type for functions returning a value. It shall evaluate to a value, tenplate (literal or

tenpl ate i nstance), or a matching nechani smconpatible with the return type for functions returning

a tenplate. */

487. Al tConstruct ::= Al tKeyword "{" AltGuardList "}"

488. Al t Keyword ::= "alt"

489. Al t GuardLi st ::= {CGuardStatenment | El seStatenent [Semni Col on]}

490. GuardStatenment ::= Al tCGuardChar (Al tsteplnstance [StatenentBl ock] |
GuardOp St at enent Bl ock)

491. El seStatenment ::= "[" El seKeyword "]" StatenentBl ock

492. Alt GuardChar ::= "[" [Bool eanExpression] "]"

493. GuardQp :: = Ti neout St atement |

Recei veSt at enent |
Trigger St at ement |
CGet Cal | St at ement |
Cat chSt at enent |
CheckSt at enent |
Cet Repl ySt at enent |
DoneSt at enent |

Ki | | edSt at enent

494. I nterl eavedConstruct ::= Interl eavedKeyword "{" |nterl eavedGuardLi st
495. I nterl eavedKeyword ::= "interl eave"

496. I nterl eavedGuardLi st ::= {Interl eavedGuar dEl ement [Sem Col on] }+

497. I nterl eavedGuar dEl enent ::= Interl eavedGuard Statenent Bl ock

498. I nterl eavedGuard ::= "[" "]" QuardOp

499. Label Statenent ::= Label Keyword |dentifier

500. Label Keyword ::= "I abel "

501. Got oSt atenent :: = CGotoKeyword ldentifier

502. Got oKeyword ::= "goto"

503. Repeat Statenent ::= "repeat"

504. ActivateQp ::= ActivateKeyword "(" Al tsteplnstance ")"

505. ActivateKeyword ::= "activate"

506. DeactivateStatenment ::= DeactivateKeyword ["(" Conponent O Def aul t Ref er ence
507. Deact i vat eKeyword ::= "deactivate"

508. BreakSt at ement ::= "break"

509. Conti nueStatenent ::= "continue"

A.1.6.8.3 Basic statements

510. Basi cStatements :: = Assi gnnment |

LogSt at enent |

LoopConstruct |
Condi ti onal Construct |

Sel ect CaseConstruct |
St at enent Bl ock

ETSI

289 ETSI ES 201 873-1 V4.9.1 (2017-05)

511. Expression ::= Singl eExpression | ConpoundExpressi on
512. ConpoundExpressi on ::= Fi el dExpressionLi st | ArrayExpression

/* STATI C SEMANTI CS - Wt hin ConmpoundExpression the ArrayExpression can be used for Arrays, record,
record of and set of types. */

513. Fi el dExpressionList ::= "{" Fiel dExpressionSpec {"," Fi el dExpressi onSpec}
514. Fi el dExpressi onSpec :: = Fi el dRef erence Assi gnnment Char Not UsedOr Expr essi on
515. ArrayExpression ::= "{" [ArrayEl ement ExpressionList] "}"

516. ArrayEl ement Expressi onLi st ::= Not UsedOr Expression {"," Not UsedOr Expressi on}
517. Not UsedOr Expression ::= Expression | M nus

518. Const ant Expressi on :: = Singl eExpressi on | ConpoundConst Expr essi on

519. Bool eanExpressi on ::= Si ngl eExpressi on

/* STATI C SEMANTI CS - Bool eanExpression shall resolve to a Value of type Bool ean */
520. ConpoundConst Expressi on :: = Fi el dConst Expressi onLi st | ArrayConst Expression

/* STATI C SEMANTICS - W thin ConpoundConst Expressi on the ArrayConst Expression can be used for
arrays, record, record of and set of types. */

521. Fi el dConst ExpressionList ::= "{" Fi el dConst Expressi onSpec {"," Fi el dConst Expressi onSpec} "}"
522. Fi el dConst Expressi onSpec :: = Fi el dRef erence Assi gnment Char Const ant Expr essi on

523. ArrayConst Expression ::= "{" [ArrayEl enent Const ExpressionList] "}"

524. ArrayEl ement Const Expr essi onLi st ::= Constant Expression {"," Constant Expression}

525. Assi gnnent ::= Variabl eRef Assignnent Char Tenpl at eBody

/* STATI C SEMANTI CS - The Tenpl at ebody on the right hand side of Assignnent shall evaluate to an
explicit value of a type conpatible with the type of the left hand side for value variables and
shall evaluate to an explicit value, tenplate (literal or a tenplate instance) or a matching
mechani sm conpatible with the type of the left hand side for tenplate variables. */

526. Si ngl eExpression ::= Xor Expression {"or" Xor Expression}

/* STATIC SEMANTICS - If nore than one Xor Expression exists, then the Xor Expressions shall eval uate
to specific values of conpatible types */
527. Xor Expression ::= AndExpression {"xor" AndExpression}

/* STATIC SEMANTICS - If nore than one AndExpression exists, then the AndExpressions shall eval uate
to specific values of conpatible types */
528. AndExpression ::= Not Expression {"and" Not Expression}

/* STATIC SEMANTICS - If nore than one Not Expression exists, then the Not Expressions shall eval uate
to specific values of conpatible types */
529. Not Expression ::= ["not"] Equal Expression

/* STATI C SEMANTI CS - Operands of the not operator shall be of type bool ean or derivatives of type
Bool ean. */
530. Equal Expression ::= Rel Expressi on {Equal Op Rel Expression}

/* STATIC SEMANTICS - If nore than one Rel Expression exists, then the Rel Expressions shall eval uate
to specific values of conpatible types. If only one Rel Expression exists, it shall not derive to a
ConpoundExpr essi on. */

531. Rel Expression ::= ShiftExpression [Rel Op ShiftExpression] | ConpoundExpression

/* STATIC SEMANTICS - If both ShiftExpressions exist, then each ShiftExpression shall evaluate to a
specific integer, Enunerated or float Value or derivatives of these types */
532. ShiftExpression ::= BitO Expression {ShiftQp BitO Expression}

/* STATI C SEMANTICS - Each Result shall resolve to a specific Value. If nore than one Result exists
the right-hand operand shall be of type integer or derivatives and if the shift opis "<<" or ">>"
then the | eft-hand operand shall resolve to either bitstring, hexstring or octetstring type or
derivatives of these types. |If the shift opis " */

533. Bi t Or Expression ::= BitXor Expression {"or4b" Bit Xor Expression}

/* STATIC SEMANTICS - |If nore than one Bit Xor Expression exists, then the BitXor Expressions shall
evaluate to specific values of conpatible types */
534. Bi t Xor Expression ::= Bi t AndExpressi on {"xor4b" Bit AndExpressi on}

/* STATIC SEMANTICS - If nore than one BitAndExpression exists, then the BitAndExpressions shall
evaluate to specific values of conpatible types */
535. Bi t AndExpressi on :: = BitNot Expression {"and4b" Bit Not Expression}

/* STATIC SEMANTICS - If nore than one BitNot Expression exists, then the BitNot Expressions shall
evaluate to specific values of conpatible types */
536. Bi t Not Expression ::= ["not4b"] AddExpression

/* STATIC SEMANTICS - |If the not4b operator exists, the operand shall be of type bitstring,
octetstring or hexstring or derivatives of these types. */

ETSI

290 ETSI ES 201 873-1 V4.9.1 (2017-05)

537. AddExpression ::= Mil Expressi on {AddOp Mil Expressi on}

/* STATI C SEMANTI CS - Each Mul Expression shall resolve to a specific Value. If nore than one

Mul Expressi on exi sts and the AddOp resolves to StringOp then the Mil Expressions shall be valid
operands for StringOQp. If nmore than one Mil Expression exists and the AddOp does not resolve to
StringQp then the Mul Expression shall both resolve to type integer or float or derivatives of these
types. If only one Mul Expression exists, it shall not derive to a ConpoundExpression. */

538. Mul Expression ::= UnaryExpression {MiltiplyOp UnaryExpression} | ConpoundExpression

/* STATI C SEMANTI CS - Each UnaryExpression shall resolve to a specific Value. |If nore than one
Unar yExpr essi on exi sts then the UnaryExpressions shall resolve to type integer or float or
derivatives of these types. */

539. UnaryExpression ::= [UnaryOp] Primary

/* STATIC SEMANTICS - Primary shall resolve to a specific Value of type integer or float or
derivatives of these types.*/

540.Primary ::= OpCall |
Val ue |
"(" Singl eExpression ")"
541. Ext endedFi el dRef erence ::= {(Dot (ldentifier | PredefinedType)) |

ArrayOrBit Ref |

("[" Mnus "T") |

DecodedFi el dRef er ence
1+

/* STATIC SEMANTIC - The Identifier refers to a type definition if the type of the Varlnstance or
Ref er encedVal ue in which the ExtendedFi el dReference is used is anytype. ArrayOrBitRef shall be used
when referencing el enents of values or arrays. The square brackets with dash shall be used when
referencing inner types of a record of or set of type. DecodedFi el dRef erence shall not appear on the
LHS of assignnents and in type references*/

542. DecodedFi el dRef erence ::= "=>" DecodedFi el dType
543. DecodedFi el dType ::= PredefinedType |
I dentifier
"(" Type ["," Expression] ")"

/* The Identifier shall resolve into a type */

544. Cal | ::= ConfigurationQps |
Get Local Verdict |
Ti mer Qps |
Test casel nst ance |
(Functi onl nst ance [Ext endedFi el dRef erence]) |
(Tenpl at eOps [Ext endedFi el dRef erence]) |

ActivateQp |
Cet AttributeOp

545 AddCp ::= "+" |
e
StringOp
/* STATI C SEMANTICS - QOperands of the "+" or "-" operators shall be of type integer or float or
derivations of integer or float (i.e. subrange) */
546. Mul tiplyQo ::="*" | "/" | "mod" | "renf

/* STATI C SEMANTI CS - Operands of the "*", "/", remor nod operators shall be of type integer or
float or derivations of integer or float (i.e. subrange) */

547. UnaryQp ::= "+" | "-"

/* STATI C SEMANTI CS - Operands of the "+" or "-" operators shall be of type integer or float or
derivations of integer or float (i.e. subrange) */

548.Rel Op ::= "<" | ">" | ">=" | "<="

/* STATI C SEMANTI CS - the precedence of the operators is defined in Table 6 */

549. Equal Op ::= "==" | "I="

550. String®p ::= "&"

/* STATI C SEMANTI CS - Operands of the |list operator shall be bitstring, hexstring, octetstring,
(universal) character string, record of, set of, or array types, or derivates of these types */
551. ShiftQp ::="<<" | ">>" | "<@ | "@"

552. LogStatenment ::= LogKeyword "(" Logltem{"," Loglten} ")"
553. LogKeyword ::= "l 0g"

554. Logltem :: = FreeText | Tenpl atel nstance

555. LoopConstruct ::= For Statenent |

Whi | eSt at enent |
DoWhi | eSt at enent

556. For Statenment ::= ForKeyword "(" Initial Sem Col on Bool eanExpressi on
Seni Col on Assignnent ")" StatenentBl ock
557. For Keyword ::= "for"

ETSI

291 ETSI ES 201 873-1 V4.9.1 (2017-05)

558.Initial ::= Varlnstance | Assignnent
559. Whi |l eStatenment ::= Wil eKeyword "(" Bool eanExpression ")" StatenentBl ock
560. Whi | eKeyword ::= "while"
561. Dowi | eSt at enent ::= DoKeyword Stat enent Bl ock Wil eKeyword " (" Bool eanExpr essi on
DE
562. DoKeyword ::= "do"
563. Condi ti onal Construct ::= |fKeyword "(" Bool eanExpression ")" StatenentBl ock
{El sel fd ause} [El sed ause]
564. | f Keyword ::= "if"
565. El sel f O ause ::= El seKeyword | fKeyword "(" Bool eanExpression ")" StatenentBl ock
566. El seKeyword ::= "el se"
567. El seCl ause ::= El seKeyword St at ement Bl ock
568. Sel ect CaseConstruct ::= Sel ect Keyword [Uni onKeyword] " (" Singl eExpression ")" Sel ect CaseBody
569. Sel ect Keyword ::= "sel ect"
570. Sel ect CaseBody ::= "{" {Sel ect Case}+ [CaseElse] "}"
571. Sel ect Case ::= CaseKeyword ("("Tenpl atel nstance {"," Tenpl at el nst ance}

)" | El seKeyword) StatenentBl ock

[** STATI C SEMANTI CS Tenpl at el nstance-s shall be ldentifier-s if the UnionKeyword is present in the

surroundi ng Sel ect CaseConstruct (see clause 19.3.2)*/

572. CaseEl se :: = CaseKeyword El seKeyword St at ement Bl ock

573. CaseKeyword ::= "case"

574. Extendedl dentifier ::= [ldentifier Dot] Identifier

/** STATI C SEMANTI CS The optional Identifier Dot part shall not be used for enunerated val ues*/
575.ldentifierList ::= ldentifier {"," ldentifier}

576. QualifiedldentifierList ::= Qualifiedldentifier {"," Qualifiedldentifier}

577. Get AttributeQ ::= (Type | Tenplatelnstance) "." GetAttributeSpec

578. Get Attri buteSpec ::= EncodeKeyword |

Vari ant Keyword ["(" FreeText ")"] |
Di spl ayKeyword |

Ext ensi onKeyword |

Opt i onal Keywor d

A.1.6.9 Miscellaneous productions

579.Dot ::=".

580.Mnnus ::="-"

581. Sem Colon ::="

582.Colon ::=":"

583. Underscore ;:= "__

584. Assi gnnent Char ::= ":="
585. I ndexModi fier ::= "@ ndex"

586. Determnisticvdifier ::= "@etermnistic"
587. LazyModifier ::="@azy"

588. FuzzyModifier ::= "@uzzy"

589. Casel nsenModi fier ::= "@ocase"

590. DecodedModi fier ::= "@lecoded"

591. Defaul t Modifier ::= "@lefaul t"”

ETSI

292 ETSI ES 201 873-1 V4.9.1 (2017-05)

Annex B (normative):
Matching values

B.1 Template matching mechanisms

B.1.0 General

This annex specifies the matching mechanisms that may be used in TTCN-3 templates (and only in templates).

B.1.1 Matching specific values

Specific values are the basic matching mechanism of TTCN-3 templates. Specific values in templates are expressions
which do not contain any matching mechanisms or wildcards.

Unless otherwise specified, atemplate field matches the corresponding field value if, and only if, the field value has
exactly the same value as the value to which the expression in the template eval uates.

Restrictions
No specific restrictions in addition to the genera static rules of TTCN-3 given in clause 5.

Examples

/1 Gven the nessage type definition
type record MyMessageType

{

i nt eger fieldl,
charstring field2,

bool ean field3 optional,
i nt eger field4[4]

}

/1 A nessage tenplate using specific values could be
tenpl ate MyMessageType m nyTenpl ate: =

fieldl := 3+2, /'l specific value of integer type

field2 := "M string", // specific value of charstring type
field3 := true, /'l specific value of boolean type
fieldd := {1, 2,3, 4} /'l specific value of integer array

B.1.2 Matching mechanisms instead of values

B.1.2.0 General

The following matching mechanisms may be used in place of explicit values.

B.1.2.1 Template list

A template list denotes alist of acceptable values. It can be used for values of all types. A template list may contain
values, templates obeying the template (present) restriction (see clause 15.8), and membersadded by al | from
clauses. Anal | fromclause comprisesall elementsof an existingr ecord of orset of templateinto the
template list.

A template field that uses a template list matches the corresponding field if, and only if, the field value matches any one
of the values or templatesin the template list, after resolving al al | f r omclauses. Each value or template in the
template list shall be of the type declared for the template field in which this mechanism is used.

ETSI

293 ETSI ES 201 873-1 V4.9.1 (2017-05)

Restrictions

a) Thetype of the template list and the member type of thetemplateintheal | f r omclause shall be
compatible.

b) Thetemplateintheal | fr omclause asawhole shall not resolve into a matching mechanism. Its elements

may contain any of the matching mechanisms or matching attributes with the exception of those described in
the following restriction.

¢) Individual members of thetemplateintheal | fr omclause shall not resolve to any of the following
matching mechanisms. AnyElementsOrNone, permutation.

d) Eachvaue or template in the template list shall be of the type declared for the template field in which this
mechanism is used.

e) Templatesinthetemplatelist shall obey the template (present) restriction (see clause 15.8).
Examples

EXAMPLE 1.

tenpl ate MyMessageType mw_nyTenpl ate: =

fieldl := (2,4,6), /1 list of integer val ues
field2 := ("Stringl", "String2"), /1 list of charstring val ues
}
EXAMPLE 2:

type record of integer Rol;
tenplate Rol mwroll := {1, 2, (6..9)};

tenplate Rol mwrol2 := {1, *, 3};

tenplate integer mw.il := (all fromnw.roll, 100);
/1 results in (1, 2, (6..9), 100)

tenplate integer nw.i2 := (0, all fromnw_rol2);
/'l causes an error because nw_rol 2 contains AnyEl enent sOr None

template Rol nwrol3 := (all fromnwroll);

/Il causes an error because nenber type of mw roll (integer)
/1 is not conpatible with the list tenplate type (Rol)
tenplate Rol nwrol4d := 7?;

tenplate Rol nwrol5 := (all fromnw.rol4);
/] causes an error, because nwrol4 as a whole resolves into a natching nechani sm

B.1.2.2 Complemented template list

The keyword conpl enent denotes alist of values that will not be accepted asvalues (i.e. it is the complement of a
templatelist). It can be used on all values of all types. A complemented value list may also contain templates obeying
the present template restriction (see clause 15.8).

A template field that uses complement matches the corresponding field if and only if the corresponding field's value
does not match any of the values or templates listed in the template list. The template list may be a single value, of
course.

Besides specifying individual values, it is possible to add all elements of an existingr ecord of orset of template
into a complement templatelist usinganal | f r omclause.

Restrictions

a) Thetype of the complemented template list and the member type of the templateintheal | f r omclause
shall be compatible.

ETSI

294 ETSI ES 201 873-1 V4.9.1 (2017-05)

b) Thetemplateintheal | fr omclause asawhole shall not resolve into a matching mechanism (i.e. its
elements may contain any of the matching mechanisms or matching attributes with the exception of those
described in the following restriction).

¢) Individual fields of thetemplateintheal | fr omclause shall not resolve to any of the following matching
mechanisms: AnyElementsOrNone, permutation.

d) Eachvaueor templatein thelist shall be of the type declared for the template field in which the complement
isused.

e) The complement of atemplate list shall not matchomi t .
f) Templatesin the complement of atemplate list shall obey the present template restriction (see clause 15.8).
Examples

EXAMPLE 1.

type record MyMessageType

{
i nt eger fieldl,

bool ean field2

}
tenpl ate MyMessageType mw_nyTenpl ate: =

fieldl := conplenment (1,3,5), /1 1ist of unacceptable integer values
field2 := conpl ement (true) /1 will nmatch false

}

EXAMPLE 2:

type record of integer Rol;
tenplate Rol nwroll := {1, 2, (6..9)};
tenplate Rol nwrol2 := {1, *, 3};

template integer mv_il := conplenent(all fromnwroll, 100);
/1 matches integer values different from1, 2, 6, 7, 8 9 and 100

tenplate integer mw_i2 := conplenent(0, all frommwn_rol?2);
/] causes an error because nw_rol 2 contains AnyEl ement sO None

tenplate Rol nwrol3 := conplenent(all fromnw.roll);

/| causes an error because nenber type of mw roll (integer) is not conpatible
/1 with the conplenmented list tenplate type (Rol)

tenplate Rol nwrol4 := ?;

tenplate Rol nwrol5 := conplenment (all fromnmw_rol4);
/1 causes an error because nw rol4 resolves into a matchi ng nmechani sm

B.1.2.3 Any value

The matching symbol "?* (AnyValue) matches any value of the specified type. It can be used on values of all types.

A template field that uses the any value mechanism matches the corresponding field if, and only if, the field evaluates to
asingle element of the specified type.

Restrictions
No specific restrictions in addition to the genera static rules of TTCN-3 given in clause 5.

Examples

tenpl ate MyMessageType mw_nyTenpl ate: =

fieldl := 2, /1 will match any integer

field2 := 2, /1 will match any non-enpty charstring val ue
field3 := 2, /1 will match true or false

fieldd :=7? /1 will match any sequence of integers

ETSI

295 ETSI ES 201 873-1 V4.9.1 (2017-05)

B.1.2.4 Any value or none

The matching symbol "*" (AnyValueOrNone) is used to indicate that any valid value and the omission of the given
optional field are acceptable. It can be assigned to templates of any type as a whole or to optional fields of set or
recor d templates.

A template field that uses this symbol matches the corresponding field if, and only if, either the field evaluates to any
element of the specified type, or if thefield is absent.

Restrictions
a) It can be assigned to templates of any type as awhole or to optional fields of set or r ecor d templates.

b) At thetime of matching during areceiving operation, it shall be applied to optional fields of record and set
templates only.

Examples
type record MyMessageType2
{
i nt eger fieldl,
MyRecor dof Type field2 optional,
bool ean field3 optional
}

type record of integer MyRecordof Type;
const MyMessageType2 c_nyMessage : = { {42}, omt, false }

tenpl ate MyMessageType2 mw_nyMessageTenpl ate: =

fieIdS::* /1 matches true or false or omtted field3

}
tenpl ate MyMessageType2 mw_nyMessageTenpl at e2: =
fieldl := *, /'l causes an error as fieldl is nandatory
) :
tenpl ate MyRecor dof Type mw_nyRecof Tenpl ate : = *; /'l this assignnent is allowed
tenpl at e bool ean mw_nyBool Tenpl ate : = *; /1 this assignnent is allowed as well

tenpl ate MyMessageType2 nmw_nyMessageTenpl at e3: =

fieldl := 42,
field2 := mwv_nyRecof Tenpl at e,

/1 matches any valid value allowed by nw nyRecordof or absent field2
field3 : = nw_nyBool Tenpl at e

/1 matches true or false or omtted field3

}

v_nybool eanVar : = match (c_nyMessage. fiel d2, mv_nyRecof Tenpl at e)
/1 matches and returns true

v_nybool eanVar := match ({}, mv_nyRecof Tenpl ate);
/1 matches and returns true

v_nybool eanVar := match (fal se, nw_nyBool Tenpl ate);
/1 matches and returns true

v_nybool eanVar : = match ({42, onit, true}, nw_nyMessageTenpl at e3);
/1 matches and returns true

ETSI

296 ETSI ES 201 873-1 V4.9.1 (2017-05)

B.1.2.5 Value range
Ranges indicate a bounded range of acceptable values, including or excluding the boundaries.

A template field that uses a range matches the corresponding field if, and only if, the field value is equal to one of the
valuesin the range.

Restrictions

a Whenused for valuesof i nt eger orf | oat types(and integer or float subtypes), a boundary value shall be
either:

1) infinity or -infinity;
2) anexpression that evaluates to a specific integer or float value.

b) Thelower boundary shall be put on the left side of the range, the upper boundary at the right side. The lower
boundary shall be less than the upper boundary.

c) When used in templates or template fields of charstring or universal charstring types, the boundaries shall
evaluate to valid character positions according to the coded character set table(s) of the type (e.g. the given
position shall not be empty).

d) Empty positions between the lower and the upper boundaries are not considered to be valid values of the
specified range.

Examples

tenpl ate MyMessageType mw_nyTenpl ate: =

fieldl := (1 .. !6), /1 range of integer type from1l to 5

}
/1 other entries for fieldl mght be (-infinity to 8) or (!12 to infinity)

B.1.2.6 SuperSet

Super Set is denoted by the keyword super set . SuperSet matches a set of valuesif, and only if, the set of values
contains at least all of the elements defined within the Super Set, and may contain more. The successful match shall be
produced only if there exists such a one-to-one mapping from the Super Set elements to the elements of the set of values
where each Super Set element matches the element of set of valuesit is mapped to. The Super Set matching mechanism
may contain templates (including template variables) obeying the present template restriction (see clause 15.8) and
matching mechanisms with the restrictions given below. However, the length matching attribute may be attached to the
Super Set itself.

NOTE: The SuperSet matching mechanism imposes an implicit length restriction on the matched set of values:
the set of values shall contain at least as many elements as the Super Set template in order to produce a
successful match.

Besides specifying individual values, it ispossible to add all elementsof ar ecord of orset of templateinto
SuperSetsusinganal | f r omclause.

Restrictions
a) SuperSetisan operation for matching that shall be used only on values of set of types.
b) Individual members of the Super Set's argument shall be of the type replicated by theset of .

¢) Themember type of the set of associated with the Super Set template and the member type of the template in
theal I fr omclause shall be compatible.

d) Thetemplateintheal | fr omclause asawhole shall not resolve into a matching mechanism (i.e. its
elements may contain any of the matching mechanisms or matching attributes with the exception of those
described in the following restriction).

ETSI

297 ETSI ES 201 873-1 V4.9.1 (2017-05)

€) Theindividua members of the Super Set's argument and the elements of the templateintheal | f r omclause
shall not be the matching mechanisms omit, Super Set, SubSet and the matching attributes (length restriction
and ifpresent). In addition, the individual members shall not resolve to AnyValueOrNone and individual
elements of the templateintheal | f r omclause shall not resolve to AnyElementsOrNone or permutation.

f) If thelength matching attribute is attached to the Super Set, the minimal length allowed by the length attribute
shall not be less than the number of the elements in the Super Set.

g) Templatesin SuperSet's argument shall obey the present template restriction (see clause115.8).

Examples

any

B.

EXAMPLE 1:
type set of integer MySetOf Type (0 .. 10);

tenpl ate MySet O Type nw_nyTenpl atel : = superset (1, 2, 3);
/'l matches any sequence of integers which contains at |east one occurrences of the nunbers
/1 1, 2 and 3 in any order and position

tenpl ate MySet O Type nw_nyTenpl at e2_AnyVal ue : = superset (1, 2, ?);

/1 matches any sequence of integers which contains at |east one occurrences of the nunbers

/1 1, 2 and at |east one nore valid integer value (i.e. between 0 and 10, inclusively), in any
/1 order and position

tenpl ate MySet O Type mw_nyTenpl ate3 : = superset (1, 2, (3, 4));
/'l matches any sequence of integers which contains at |east one occurrences of the nunbers
/1 1, 2 and a nunber with the value 3 or 4, in any order and position

tenpl ate MySet O Type nw_nyTenpl ate4 : = superset (1, 2, conplenment(3, 4));
/1 any sequence of integers matches which contains at |east one occurrences of the nunbers
/1 1, 2 and a valid integer value which is not 3 or 4, in any order and position

tenpl ate MySet Of Type nw_nyTenpl ate6 : = superset (1, 2, 3) length (7);
/1 matches any sequence of 7 integers which contains at |east one occurrences of the nunbers
/1 1, 2 and 3 in any order and position

tenmpl ate MySet O Type nw_nyTenpl ate7 : = superset (1, 2, ?) length (7 .. infinity);

/1 matches any sequence of at least 7 integers which contains at |east one occurrences of the

/'l nunbers 1, 2 and at least 5 nore valid integer values (i.e. between 0 and 10, inclusively) in
order and position

tenpl ate MySet O Type nmw_nyTenpl ate8 : = superset (1, 2, 3) length (2 .. 7);

/! causes an error, the lower bound of the length attribute contradicts to the m ni mum nunber
/1 of elenents inposed by the superset argunent

EXAMPLE 2:

type record of integer Rol;

type set of integer Sol;

tenplate Rol mwroll := {1, 2, ?};

tenplate Sol nw soll := superset(all frommuroll);
/Il results in superset(1, 2, ?)

1.2.7 SubSet

SubSet is denoted by the keyword subset . SubSet matches a set of valuesif, and only if, the set of values contains
only elements defined within the SubSet, and may contain less. The successful match shall be produced only if there
exists such a one-to-one mapping from the elements of the set of val ues to the SubSet elements where each element of

the

set of valuesis matched by the SubSet element it is mapped to. The SubSet matching mechanism may contain

templates (including template variables) obeying the present template restriction (see clause 15.8) and matching
mechani sms with the restrictions given below. However, the length matching attribute may be attached to the SubSet
itself.

NOTE: The SubSet matching mechanism imposes an implicit length restriction on the matched set of values: the
set of values shall contain at most as many elements as the SubSet template in order to produce a
successful match.

ETSI

298 ETSI ES 201 873-1 V4.9.1 (2017-05)

Besides specifying individual values, it ispossible to add all elementsof ar ecord of orset of templateinto
QubSetsusinganal | f r omclause.

Restrictions
a) SubSetisan operation for matching that can be used only on values of set of types.
b) Individual members of the SubSet's argument shall be of the type replicated by theset of .

¢) Themember type of the set of type associated with the SubSet and the member type of the templatein the al |
f r omclause shall be compatible.

d) Thetemplateintheal | fr omclause asawhole shall not resolve into a matching mechanism (i.e. its
elements may contain any of the matching mechanisms or matching attributes with the exception of those
described in the following restriction).

€) Theindividua members of the SubSet's argument and the elements of the templateintheal | f r omclause
shall not be the matching mechanisms omit, Super Set, SubSet and the matching attributes (Iength restriction
and ifpresent). In addition, individual members shall not resolve to AnyValueOrNone and individual fields of
thetemplateintheal | f r omclause shall not resolve to AnyElementsOrNone or permutation.

f) If thelength matching attribute is attached to the SubSet, the maximum length allowed by the length attribute
shall not exceed the number of the elementsin the SubSet.

g) Templatesin SubSet's argument shall obey the present template restriction (see clause 15.8).
Examples

EXAMPLE 1.

tenpl ate MySet O Type mw_nyTenpl at el: = subset (1, 2, 3);
/1 matches any sequence of integers which contains zero or one occurrences of the nunbers
/1 1, 2 and 3 in any order and position

tenpl ate MySet O Type mw_nyTenpl at el: = subset (1, 2, ?);
/1 matches any sequence of integers which contains zero or one occurrences of the nunbers
/1 1, 2 and a valid integer value (i.e. between O and 10, inclusive) in any order and position

tenpl ate MySet O Type nw_nyTenpl atel: = subset (1, 2, (3, 4));
/1 matches any sequence of integers which contains zero or one occurrences of the nunbers
/1 1, 2 and one of the nunbers 3 or 4, in any order and position

tenpl ate MySet O Type nw_nyTenpl atel: = subset (1, 2, conplenent (3, 4));
/1 matches any sequence of integers which contains zero or one occurrences of the nunbers
/1 1, 2 and a valid integer nunber which is not 3 or 4, in any order and position

tenpl ate MySet O Type nmw_nyTenpl at el: = subset (1, 2, 3) length (2);
/'l matches any sequence of two integers which contains zero or one occurrences of
/1 the nunbers 1, 2 and 3, in any order and position

tenpl ate MySet Of Type nw_nyTenpl atel: = subset (1, 2, ?) length (0 .. 2);
/'l matches any sequence of zero, one or two integers which contains zero or one occurrences of
/1 the nunmbers 1, 2 and of a valid integer value, in any order and position

tenpl ate MySet O0f Type nw_nyTenpl atel: = subset (1, 2, 3) length (0 .. 4);

/] causes an error, the upper bound of length attribute contradicts to the maxi mum nunber of
/1 elenents inposed by the subset argunent

EXAMPLE 2:

type record of integer Rol;

type set of integer Sol;

tenplate Rol mwroll := {1, 2, ?};

tenplate Sol nw soll := subset(all fromnwroll);
Il results in subset(1, 2, ?)

ETSI

299 ETSI ES 201 873-1 V4.9.1 (2017-05)

B.1.2.8 Omitting optional fields

The keyword omi t denotes that an optional field shall be absent. If used as a matching mechanism, it matches an
optional field if and only if it is absent.

Restrictions
a) It can be assigned to templates of any type asawhole or to optional fieldsof set or r ecor d templates.

b) Atthetime of matching during areceiving operation, it shall be applied to optional fields of r ecor d and set
templates only.

Examples
type record MyMessageType2
{
i nt eger fieldl,
MyRecor dof Type field2 optional,
bool ean field3 optional
}

const MyMessageType2 c_nyMessage := { 42, omt, false }

tenpl ate MyMessageType2 m nyMessageTenpl ate: =

field3::om't /] omts the optional field field3
}

tenpl ate MyMessageType2 m nyMessageTenpl at e2: =

fieldl := omt, // causes an error as fieldl is nandatory
} :
tenpl ate MyRecordof m nyRecof Tenplate := onmit; // this assignnent is allowed
tenpl at e bool ean m nyBool Tenpl ate := onit; /1 this assignnent is allowed as well
tenpl ate MyMessageType2 m nyMessageTenpl at e3: =

fieldl := 42,

field2 := mnyRecof Tenpl at e,

/1 matches if field2 is absent

field3 : = m.nyBool Tenpl at e
/1 matches if field3 is absent
}

v_nyBool eanVar := match (c_nyMessage. fi el d2, m nyRecof Tenpl at e)
/'l matches and returns true

v_nyBool eanVar := match ({}, m_nmyRecof Tenpl at e)
/1 does not nmatch and returns false

v_nyBool eanVar := match (fal se, m mnyBool Tenpl ate);
/1 does not match and returns fal se

v_nyBool eanVar := match ({42,omt,onit}, m nyMessageTenpl at e3)
/1 matches and returns true

B.1.2.9 Matching decoded content

The matching symbol MatchDecodedContent decat ch is used for checking encoded payload fields. The matching
symbol is composed of the decrmat ch keyword, an optional encoding format parameter and a mandatory template
instance called decoding target.

A template field that uses this symbol matches the corresponding field if, and only if, the field can be successfully
decoded as an instance of the same type as the decoding target and if the decoded instance can be successfully matched
by the decoding target.

ETSI

300 ETSI ES 201 873-1 V4.9.1 (2017-05)

The optional encoding format parameter may specify one of the UCS encoding formats (see clause C.5.4) that shall be
used for the decoding trial, i.e. it overrides any variant attribute attached to the decoding target or the type of the
decoding target (for example, for predefined variant attributes see clause 27.5).

Restrictions

a)

b)
©)

d)

It can be assigned to templates and template fieldsof bi t st ri ng, hexstri ng,octetstring,
charstringanduni versal charstring types.

The decoding target can be atemplate of any data type.

The optional encoding format parameter can be used only for fieldsof r uni ver sal char st ri ng types.
The parameter value shall be of the char st ri ng type and it shall contain one of the strings allowed for the
decval ue_uni char predefined function (specified in clause C.5.4). Any other value shall cause an error.

If the template field isof char st ri ng typeorisof uni ver sal char st ri ng type and the encoding
format is missing, the default value "UTF-8" shall be used.

NOTE: The model of the behaviour of thisimplicit decoding isthe following. At first, hexst ri ng and

oct et string vauesareimplicitly converted to abi t st ri ng value using the predefined hex2bi t
and oct 2bi t functions (specified in clauses C.1.18 and C.1.22) and char st ri ng vaues are implicitly
convertedtouni ver sal char stri ng values. Prior to decoding, thebi t st ri ng and uni ver sal
char st ri ng values are stored into a temporary anonymous variable. Decoding is then performed by
implicitly calling the predefined decval ue function (specified in clause C.5.2) for bi t st ri ng values
and decval ue_uni char functionfor uni versal charstring val ues. Theanonymous
variable containing the encoded value is passed as the first parameter to the function, the second
parameter contains another temporary variable called decoded instance. The decoded instance is of the
same type as the decoding target. If the optional encoding format parameter is present, it is passed as the
third parameter to thedecval ue_uni char function. Decoding is successful only if the decoding
function returns 0 and the first parameter contains an empty string (i.e. the whole encoded value has been
successfully decoded). The matching mechanism will generate an unsuccessful match if decoding hasn't
succeeded.

Examples

type record MyBi naryMessageType

{

}

octetstring payl oad

type record MyText MessageType

}

uni versal charstring payl oad

type record MyPayl oadType
{

}

i nt eger fieldl,
i nt eger field2

tenpl ate MyBi naryMessageType mav t1l : =

)/ The payl oad field can be matched only if it contains an encoded val ue of the M/Payl oad
/1 type and if the fieldl of the decoded value is equal to 1.
payl oad : = decrmatch MyPayl oad: {fieldl := 1, field2 := ? }

tenpl ate MyText MessageType mnw t2 : =

{

}

)/ The payload field can be matched only if it contains an encoded val ue of the MyPayl oadType
/1 type in the UTF-8 format and if the fieldl of the decoded value is equal to 2 or 3.
payl oad : = decmatch("UTF-8") MyPayl oadType: {fieldl := (2, 3), field2 := ?}

ETSI

301 ETSI ES 201 873-1 V4.9.1 (2017-05)

B.1.2.10 Matching enumerated value with value list

To match an enumerated value with an associated value list in its definition, the enumerated value name shall be
referenced followed by a non-empty list of integer templates in parenthesis.

The template matches only those enumerated val ues of the same name where the associated integer values is matched
by at least one of the integer templates.

Examples
type enunerated Days

Christmas(0), Easter(1l), Oher(2..365)
}

tenpl ate i nteger mw _greater20 := conplenent(0 .. 20);

tenplate nw_daysl := Qther(5..6, greater20); // natches Qther(5), Oher(6) and
/1 Other(21) .. Oher(365)

tenplate mw_days2 := OGther(?); // matches Other(2) .. Oher(365)

B.1.3 Matching mechanisms inside values

B.1.3.0 General

The following matching mechanisms may be used inside explicit values of strings, records, records of, sets, sets of and
arrays.

B.1.3.1 Any element

B.1.3.1.0 General

The matching symbol "?" (AnyElement) is used to indicate that it replaces single elements of a string (except character
strings, see table 4 for the lengths of the units being matched by "?" inastring), ar ecord of ,aset of or anarray.

Restrictions
a) It shall beused only within values of string types, r ecor d of types, set of typesand arrays.

Examples

tenpl ate MyMessageType mw_nyTenpl ate: =

fiel d2 := "abcxyz",
field3 :="'10???'B, /1 where each "?" nay either be 0 or 1
fieldd := {1, 2, 3} /1 where ? nay be any integer val ue

}

NOTE: The"?'infi el d4 can beinterpreted as AnyValue as an integer value, or AnyElement insidear ecor d
of ,set of orarray. Since both interpretations lead to the same match no problem arises.
B.1.3.1.1 Using single character wildcards

If it isrequired to expressthe "?" wildcard in character strings it shall be done using character patterns
(see clause B.1.5). For example: "abcdxyz", "abcexyz", "abexxyz" etc. will all match pat t er n "abc?xyz". However,
"abexyz", "abedefxyz”, etc. will not.

ETSI

302 ETSI ES 201 873-1 V4.9.1 (2017-05)

B.1.3.2 Any number of elements or no element

B.1.3.2.0 General

The matching symbol "*" (AnyElementsOrNone) is used to indicate that it replaces none or any number of consecutive
elements of a string (except character strings), ar ecord of ,aset of oranarray. The"*" symbol matchesthe
longest sequence of elements possible, according to the pattern as specified by the symbols surrounding the "*".

If a"*" appears at the highest level inside astring, ar ecor d of , set of orarray, it shal be interpreted as
AnyElementsOrNone.

NOTE: Thisrule prevents the otherwise possible interpretation of "*" as AnyValueOrNone that replaces an
element insideastring, r ecord of ,set of orarray.

Restrictions

a) Itshal beused only within values of string types, r ecor d of types, set of typesand arrays and inside
the permutation matching mechanism.

Examples

tenpl ate MyMessageType mw_nyTenpl ate: =

1;i el d2 : = "abcxyz",
field3 :='10*11'B, /1 where "*" may be any sequence of bits (possibly enpty)
fieldd := {*, 2, 3} /1 where "*"nay be any nunber of integer values or onitted

}

type charstring MyStrings[4];
myPCO. r ecei ve(MyStrings: {"abyz", *, "abc" });

B.1.3.2.1 Using multiple character wildcards

If it isrequired to expressed the "*" wildcard in character stringsit shall be done using character patterns
(see clause B.1.5). For example: "abexyz", "abedefxyz" "abcabexyz" etc. will al match pat t er n "abc*xyz".

B.1.3.3 Permutation

Permutation is an operation for matching that shall be used only on valuesof r ecor d of and array types.
Permutation is denoted by the keyword per nut at i on. Permutation elements shall obey the restrictions given below.

A permutation without AnyElementsOrNone in place of asingle record of element means that any series of elementsis
acceptable provided that there is a one to one mapping between elements in the record of and in the permutation list
such that each element matches its corresponding element in the permutation list.

AnyElementsOrNone used inside permutation (directly or via reference) replaces none or any number of elements
within the segment of the record of value matched by permutation. The permutation matching is successful, if a subset
of the elementsin the record of matches the permutation list without the AnyElementsOrNone. If both permutation and
AnyElementsOrNone are used in arecord of template, they shall be evaluated jointly.

NOTE 1: AnyElementsOrNone used inside permutation has a different effect as AnyElementsOrNone used in
conjunction with permutation as in the latter AnyElementsOrNone replaces consecutive elements only.
For example, {per mut at i on(1,2,*)} isequivaent to ({*,1,*,2,*} ,{*,2,*,1,*}), while
{per mut ati on(1,2),*} isequivalent to ({1,2,*} {2,1,*}).

NOTE 2: When AnyElementsOrNone is inside a permutation, alength attribute may be applied to
AnyElementsOrNone to restrict the number of elements matched by AnyElementsOrNone (see also
clauseB.1.4.1).

ETSI

303 ETSI ES 201 873-1 V4.9.1 (2017-05)

Besides specifying al individual values, it is possible to add all elements of ar ecor d of orset of templateinto
permutationsusinganal | fromclause.

Restrictions
a) Eachindividua member listed in the permutation shall be of the type replicated by ther ecor d of or array
type.
b) The member type of the permutation and the member type of thetemplateintheal | fr omclause shal be
compatible.

¢) Thetemplatereferencedintheal | fr omclause as awhole shall not resolve into a matching mechanism
other than a SpecificValue (see clause B.1.1), and it shall not contain permutations.

d Void.

e) Templates except AnyElementsOrNone listed in the permutation shall obey the present template restriction
(see clause 15.8).

Examples

EXAMPLE 1:
type record of integer MySequenceO Type;

tenpl ate MySequenceOf Type nw_nyTenplatel :={ pernmutation (1, 2, 3), 5 };
/1 matches any of the follow ng sequences of 4 integers: 1,2,3,5; 1,3,2,5; 2,1,3,5;
/1 2,3,1,5; 3,1,2,5; or 3,2,1,5

tenpl ate MySequenceOf Type nw_nyTenplate2 := { pernmutation (1, 2, ?), 5 };
/1 matches any sequence of 4 integers that ends with 5 and contains 1 and 2 at |east once in
/1 other positions

tenpl ate MySequenceOf Type nw_nyTenplate3 := { permutation (1, 2, 3), * };
/'l matches any sequence of integers starting with 1,2,3; 1,3,2; 2,1,3; 2,3,1; 3,1,2 or 3,2,1

tenpl ate MySequenceXf Type nw _nyTenplate4 := { *, pernutation (1, 2, 3)};
/'l matches any sequence of integers ending with 1,2,3; 1,3,2; 2,1,3; 2,3,1; 3,1,2 or 3,2,1

tenpl ate MySequenceOf Type nw _nyTenplate5 := { *, pernutation (1, 2, 3),* };
/'l matches any sequence of integers containing any of the follow ng substrings at any position:
/1 1,2,3;, 1,3,2; 2,1,3; 2,3,1; 3,1,2 or 3,2,1

tenpl ate MySequenceXf Type nw_nyTenpl ate6 := { pernutation (1, 2, *), 5};
/1 matches any sequence of integers that ends with 5 and containing 1 and 2 at least once in
/] other positions

tenpl ate MySequenceXf Type nw_nyTenplate7 :={ pernmutation (1, 2, 3), * length (0..5)};
/1 matches any sequence of three to eight integers starting with 1,2,3; 1,3,2; 2,1,3; 2,3,1;
/1 3,1,2 or 3,2,1

tenplate integer mv_nylntl := (1,2,3);
tenplate integer mvnylnt2 := (1,2,7);
tenplate integer mv nylnt3 := ?;

:*

tenpl ate i nteger mv_nylnt4 :

tenpl ate MySequenceO Type nw_nyTenpl atel0 := { permutation (mv_nylntl, 2, 3), 5 1};
/1 matches any of the sequences of 4 integers:

/1 1,3,2,5; 2,1,3,5; 2, 3,1,2,5; or 3,2,1,5;
/1 2,3,2,5 2,2,3,5; 2, 3, 2, 5, 3,2,2,5; or 3,2,2,5;
/1 3,3,2,5, 2,3,3,5, 2,33,5; 3,3,2,5; or 3,2,3,5;

tenpl ate MySequenceXf Type nw_nyTenpl atell := { pernutation (mw_nylnt2, 2, 3), 51};
/1 matches any sequence of 4 integers that ends with 5 and contains 2 and 3 at |east once in
/] other positions

tenpl ate MySequenceXf Type nw_nyTenpl atel2 := { pernutation (mw_nylnt3, 2, 3), 51};
/1 matches any sequence of 4 integers that ends with 5 and contains 2 and 3 at |east once in
/] other positions

tenpl ate MySequenceXf Type nw_nyTenpl atel3 := { pernutation (nw_nylnt4, 2,
/1 matches any sequence of integers that ends with 5 and containing 2 and
/1 other positions

5}
at least once in

w w
~

ETSI

304 ETSI ES 201 873-1 V4.9.1 (2017-05)

tenpl ate MySequenceOf Type nw_nyTenpl ateld := { pernutation (mw_nylnt3, 2, ?), 51};
/1 matches any sequence of 4 integers that ends with 5 and contains 2 at |east once in
/1 other positions

tenpl ate MySequenceOf Type nw_nyTenpl atel5 := { permutation (mv_nylnt4, 2, *), 5 1};
/'l matches any sequence of integers that ends with 5 and contains 2 at |east once in
/'l other positions

tenpl ate MySequenceOf Type nw_nyTenpl atel6 := { pernmutation (2, 2, 3), 5 };

/1 matches any sequence of integers of length 4 that ends with 5 and contains 2 in
/1 two other positions and 3 in the renaining position

EXAMPLE 2:

type record of integer Rol;
tenplate Rol mwroll := {1, 2, *};

tenplate Rol nwrol2 := {pernutation(0O, all fromnwroll), 4, 5};
I/l results in {pernutation(0, 1, 2, *), 4, 5}

B.1.4 Matching attributes of values

B.1.4.0 General

The following attributes may be associated with matching mechanisms.

B.1.4.1 Length restrictions

Thel engt h restriction attribute is used to restrict the length of string val ues matching the template or the number of
elementsinaset of ,record of orarray structure.

It can also be used in conjunction with thei f pr esent matching attribute. The syntax for | engt h can be found in
clause 6.2.3.

NOTE: Whenthel engt h attribute is used with atemplate list, elements of the list may be disabled by the
attribute.

The units of length are to be interpreted according to table 4 in the main body of the present document in the case of
string values. For set of , record of typesand arraysthe unit of length is the replicated type.

A template field that uses length as an attribute of a symbol matches the corresponding field if, and only if, the field
matches both the symbol and its associated attribute. The length attribute matches if the length of the field is greater
than or equal to the specified lower bound and less than or equal to the upper bound. In the case of a single length value
the length attribute matches only if the length of the received field is exactly the specified value.

It isallowed to use alength restriction in conjunction with the special valueom t , however in this case the length
attribute has no effect (i.e. with omi t it isredundant). With AnyValueOrNoneandi f pr esent it placesarestriction
on thevalue, if any.

Restrictions

a) Thelength restriction shall be used only as an attribute of the following matching mechanisms: template list,
complemented template list, AnyValue, AnyValueOrNone, AnyElement, AnyElementsOrNone, superset, subset,
and pattern.

b) It shall not be used directly with templates and template fields produced by concatenation (see clause 15.11). If
the length of atemplate or template field produced by concatenation is wished to be restricted, the
concatenation shall be enclosed into a pair of parentheses.

¢) Theboundaries of the length restriction shall be denoted by expressions which resolve to specific non-negative
i nt eger values. Alternatively, the keyword i nf i ni ty can be used as avalue for the upper boundary in
order to indicate that there is no upper limit of length.

ETSI

305 ETSI ES 201 873-1 V4.9.1 (2017-05)

d) Thelength specifications for the template shall not conflict with the length for restrictions (if any) of the
corresponding type.

€) When both the complement and the length restriction matching mechanisms are used for a template or
template field, restrictions implied by them shall apply to the template or template field independently.

Examples

/1 G ven the nessage type definition
type record MyMessageType3

record of integer fieldl,

charstring field2,

charstring field3,

charstring field4
}
tenpl ate MyMessageType3 nw_nyTenpl ate: =
{

fieldl := conplenment ({4,5},{1,4,8,9}) length (1 .. 6), // any value containing 1, 2, 3,

4,/1 5 or 6 elenents is accepted provided it is not {4,5} or {1,4,8,9}

field2 := "ab*ab" | ength(5), /1 matches the character string "ab*ab" only

field3 := "ab*ab" length(13), // never natches as the specific value is of length 5

/1 and not of length 13
fieldd := pattern "ab*ab" I ength(13),
/1 max | ength of the AnyEl enentsOrNone string is 9 characters

}

B.1.4.2 The IfPresent indicator
Thei f present indicates that a match may be made if an optional field is present (i.e. not omitted).

A template field that usesi f pr esent matches the corresponding field if, and only if, the field matches according to
the associated matching mechanism, or if the field is absent.

Restrictions

a) ThisIfPresent indicator shall be used only for matching mechanismsin templates of any type as a whole or for
optional fields of set or r ecor d templates.

b) Atthetime of matching during areceiving operation, it shall be applied to optional fields of r ecor d and set
templates only.

Examples
type record MyMessageType2
{
i nt eger fieldl,
My/Recor dof Type field2 optional,
bool ean field3 optional
}
tenpl ate MyMessageType2 mw_nyMessageTenpl ate: =
{
1.‘ield2 :={ 1, 2, 3} ifpresent, I/l matches { 1, 2, 3} if not onmitted
}
tenpl ate MyMessageType mw_nyMessageTenpl at e2: =
fieldl := 1 ifpresent, /] causes an error as fieldl is nandatory
}
tenpl ate MyRecor dof Type mw_nyRecof Tenplate := { 1, 2, 3} ifpresent; // this assignment is
al | owed
tenpl ate bool ean mw_nyBool Tenpl ate := true ifpresent; // this assignment is also allowed

tenpl ate MyMessageType2 nmw_nyMessageTenpl at e3: =

fieldl : = 42,

ETSI

306 ETSI ES 201 873-1 V4.9.1 (2017-05)

field2 : = nw_nyRecof Tenpl at e,
I/l if field2 is not absent, it matches the value { 1, 2, 3}
field3 := mw_nyBool Tenpl ate
/1 if field3 is not absent, it matches the val ue true
}

v_nybool eanVar : = nmatch ({}, nw_nyRecof Tenpl ate);
/'l mayches and returns true

v_nybool eanVar : = match ({42, onit, true}, nw_nyMessageTenpl at e3) ;
/1 matches and returns true

NOTE: AnyValueOrNone has exactly the same meaningas? i f pr esent .

B.1.5 Matching character pattern

B.1.5.0 General

Character patterns can be used in templates to define the format of arequired character string to be received. Character
patterns can be used to match char st ri ng and uni ver sal char st ri ng values. In addition to literal characters,
character patterns allow the use of meta-characters (e.g. ? and * within a character pattern means matching any
character and any number of any character respectively).

EXAMPLE 1:
tenpl ate charstring nw_nyTenpl ate: = pattern "ab??xyz*0";

Thistemplate will match any character string that consists of the characters"ab", followed by any two characters,
followed by the characters "xyz", followed by any number of any characters (including any number of "0"-s) before the
closing character "0".

If it isrequired to interpret any metacharacter literally it shall be preceded with the metacharacter "\".
EXAMPLE 2:

tenpl ate charstring nw _nyTenpl ate: = pattern "ab?\ ?xyz*";

This template would match any character string which consists of the characters "ab", followed by any character,
followed by the characters " ?xyz", followed by any number of any characters.

Thelist of meta characters for TTCN-3 patternsis shown in table B.1. Metacharacters shall not contain whitespaces
except a whitespace preceded by a newline character before or inside a set expression.

Table B.1: List of TTCN-3 pattern metacharacters

Metacharacter Description
? Match any character (see notes 1 and 2)
* Match any character zero or more times; shall match the longest possible number of
characters (see example 1 above) (see notes 1 and 2)
\ Cause the following metacharacter to be interpreted as a literal (see note 3). When

preceding a character without defined metacharacter meaning "\" and the character
together match the character following the "\" (see note 4)

[] Match any character within the specified set, see clause B.1.5.1 for more details

- Has a metacharacter meaning in a set expression. It allows to specify a range of
characters; see clause B.1.5.1 for more details

A Has a metacharacter meaning in a set expression. It causes to match any character
complementing the set of characters following this metacharacter;

see clause B.1.5.1 for more details

\g{group,plane,row,cell} or |Match one or more universal character. Both the quadruple and the USI-like syntaxes

\g{Uxxxx, Uxxx} specified in clause 6.1.1 can be used
{reference} Insert the referenced user defined string and interpret it as a regular expression.
See clause B.1.5.2 for more details
{\reference} Insert the referenced user defined string and interpret it as a set of literals.
See clause B.1.5.2 for more details
\ N{reference} Matches a single character from the (sub)set of characters denoted; see clause B.1.5.4

for more details

ETSI

307 ETSI ES 201 873-1 V4.9.1 (2017-05)

Metacharacter Description
\d Match any numerical digit (equivalent to [0-9])
\w Match any alphanumeric character (equivalent to [0-9a-zA-Z])
\t Match the CO control character HT(9) (see Recommendation ITU-T T.50 [4])
\n Match any of the following CO control characters: LF(10), VT(11), FF(12), CR(13) (see
Recommendation ITU-T T.50 [4]) (jointly called newline characters, see clause A.1.5.1)
\r Match the CO control character CR (see Recommendation ITU-T T.50 [4])
\s Match any one of the following CO control characters: HT(9), LF(10), VT(11), FF(12),

CR(13), SP(32) (see Recommendation ITU-T T.50 [4]) (jointly called white-space
characters, see clause A.1.5.1)

\'b Match a word boundary (any graphical character except SP or DEL is preceded or
followed by any of the whitespace or newline characters)

\" Match the double quote character

Match the double quote character

| Used to denote two alternative expressions

() Used to group an expression
#(n, m) Match the preceding expression at least n times but no more than m times (postfix).
See clause B.1.5.3 for more details
#n Match the previous expression exactly n times (where n is a single digit) (postfix); the
same as #(n). See clause B.1.5.3 for more details
+ Match the preceding expression one or several times (postfix); the same as #(1,). See

clause B.1.5.3 for more details

NOTE 1:

NOTE 2:

NOTE 3:

NOTE 4:

Metacharacters ? and * are able to match any characters of the character set of the root type of the
template or template field in which they are used (i.e. not considering type constraints applied). However,
it shall not be forgotten, that receiving operations require type checking of the received message before
attempting to match it. Therefore received values not complying with the subtype specification of the
template or template field are never provided for matching.

In some other languages/notations ? and * has different meaning as metacharacters. However inTTCN-3
these characters are traditionally used for matching in the sense as specified in this table.

Consequently the backslash character can be matched by a pair of backslash characters without space
between them (\\), e.g. the pattern "\d" will match the string "\d"; opening or closing square brackets can
be matched by "\[" and "\]" respectively, etc.

Such use of the metacharacter "\" is deprecated as further metacharacters can be defined later.

The symbols that can appear as |exical marks in metacharacter definitions are called metacharacter symbols.They
include the following characters: "#", "(",")", "*", "+", =", "2, "[", "\", "1, ", “{".)"['."}". When any of the
metacharacter symbols are present in a pattern, but do not form a valid metacharacter, they retain their literal value.

NOTE:

This rule assures that no format error can occur during pattern template instantiation. However, errors
caused by invalid references can still appear (see clauses B.1.5.2 and B.1.5.4 for more details).

Character patterns may be composed from several fragments using the concatenation operation. The fragments of the
pattern shall be concatenated before any evaluation of the pattern expression. See also the shorthand notation for
referenced definitions at concatenation in clause B.1.5.2.

EXAMPLE 3:

tenpl ate charstring nmw_nyTenpl ate: = pattern "ab?\?" & "xyz*"; // results in the sane pattern as

/1 in exanple 2

Pattern definitions may contain references to values or templates. The referred value or template shall be of the
charstring or universal charstring type and it shall contain either a specific value or pattern. When the referenced
template contains a pattern, the character pattern definition of this pattern is used as a fragment for creating the new

pattern.

EXAMPLE 4:

tenpl ate charstring nw tenplatel :
tenpl ate charstring nw_ tenplate2 :
tenpl ate charstring nw_ tenplate3 :

"ab?";
pattern "?xyz*0";
5.

tenplate charstring nw_ tenplate4 := pattern nw_ tenplatel & nw_tenpl ate2;
/'l the sane tenplate as in exanple 1, i.e. pattern "ab??xyz*0Q"
tenpl ate charstring nw tenplate5 := pattern nw_tenpl ate3

/1 produces as error as mv_tenpl ate3 doesn't contain a value or pattern

ETSI

308 ETSI ES 201 873-1 V4.9.1 (2017-05)

B.1.5.1 Set expression

A list of characters enclosed by apair of "[" and "]" matches any single character in that list. The set expressionis
delimited by the "[" "]" symbols. In addition to character literals, it is possible to specify character ranges using the
hyphen "-" as separator. The range consist of the character immediately before the separator, the character immediately
after it and al characters with a character code between the codes of the two bordering characters. A hyphen character
"-" inside the list but without preceding or following character |oses its special meaning.

The set expression can aso be negated by placing the caret " character asthe first character after the opening square
bracket. Negation takes precedence over character ranges. Therefore a hyphen "-" immediately following a negating
caret "' shall be processed as aliteral character.

An empty list and an empty negated list are not allowed. Therefore a closing square bracket "]" immediately following
an opening square bracket "[" or a caret following the opening square bracket "[" and immediately followed by a
closing square bracket "]" shall be processed as literal characters.

All metacharacters, except those listed below, lose their special meaning inside the list:
. "1" not at the first position and not immediately following a"" at the first position;
. "-" not at thefirst or last positionsin thelist;
. "N at the first position in the list except when immediately followed by a closing square bracket;
o M\, M, M, M, M, s and M\b";
o "\g{group,planerow,cell}";
o "\N{ reference}".

NOTE 1: Embedded lists are not allowed. For example in pattern "[ab[r-Z]]" the second "[" denotes aliteral "[", the
first"]" closesthelist and the second "]" retainsits literal value as no related opening bracket precedes it
in the pattern. The pattern will match character strings containing two elements, with the first element
equal to "a", "b", "[" or anything in the range "r"-"Zz" and the second character equal to "]".

NOTE 2: Toinclude aliteral caret character "~", place it anywhere except in the first position or precede it with a
backslash. To include alitera hyphen "-", placeit first or last in the list, or precede it with a backslash.
Toinclude aliteral closing square bracket "1 ", place it first or precede it with a backsash. If the first
character inthelist isthe caret "~", then the characters - " and "] " also match themselves when they
immediately follow that caret.

EXAMPLE:
tenpl ate charstring nw regExpl: = pattern "[a-z]"; //this will natch any character froma to z
tenpl ate charstring nw regExp2: = pattern "["a-z]"; //this will nmatch any character except a to z

tenpl ate charstring nw regExp3: = pattern "[AC E][0-9][0-9][0-9] YKE";

/1 mnv regExp3 will match a string which starts with the letter A or a letter between
/1 Cand E (but not e.g. B) then has three digits and the letters YKE

B.1.5.2 Reference expression

In addition to direct string values, it is aso possible within the pattern to use references to templates, constants,
variables, formal parameters, module parameters, or to their fields, containing either a character string value or pattern
matching. The reference shall be enclosed within the"{" "}" characters and reference shall resolve a compatible
character string type. The opening bracket can be optionally followed by a backs ash.

If the backslash character is missing, the referenced character string or pattern shall be inserted into the pattern being
constructed and shall be handled as aregular expression. Each expression shall be dereferenced only once, before the
insertion (i.e. the expression dereferenced and inserted into the referencing pattern shall not be dereferenced again).

ETSI

309 ETSI ES 201 873-1 V4.9.1 (2017-05)

If the backslash character is present, the referenced item shall contain a character string value in this case. The character
string isinserted into the pattern being constructed so that it all characters contained in it can keep their literal value (i.e.
all metacharacter symbols are automatically escaped).

If the reference cannot be resolved or if the referenced symbol does not fulfil the requirements set by this clause, an
error shall be generated.

EXAMPLE 1:
const charstring c_nyString: = "ab?";

tenpl ate charstring nw nyTenpl ate: = pattern "{c_nyString}";
/I matches any character string that consists of the characters "ab" foll owed by any character

tenpl ate charstring nw _nyTenpl ate2: = pattern "{\c_nyString}";
/lresolves into pattern "ab\?" and matches the string"ab?" only

tenpl ate universal charstring mwv _nyTenpl ate3: = pattern "{c_nyString}de\q{1, 1, 13, 7}";

/I mat ches any universal character string which consists of the characters "ab", followed by
/lany character, followed by the characters "de", followed by the character in |1S0OL0646-1 with
/1 group=1, plane=1, row=13 and cell =7.

If areferenced definition or field of a definition contains one or more reference expressions, then these references shall
recursively be dereferenced before inserting their contents into the referencing pattern.

If afragment of a pattern contains a single reference only, it is allowed, as a shorthand notation, to reference the
definition or the field of the definition directly, i.e. leave out double quotes (" ") and the pair of curly brackets ({ }).

EXAMPLE 2:

const charstring c_nmyConst2 : = "ab";

tenpl ate charstring nw regExpl := pattern "{c_nyConst2}";
/1 matches the string "ab"

tenpl ate charstring nw regExpla := pattern c_nyConst 2;
/1 the sane as above, matches the string "ab"

tenpl ate charstring nw regExp2 := pattern "{nw_regExpl}{nw regExpl}";
/1 matches the string "abab"

tenpl ate charstring nw regExp2a := pattern "{nw regExpl}" & "{mwn_regExpl}";
/1 the sane as above, matches the string "abab"

tenpl ate charstring nw regExp2b := pattern nw regExpl & nw regExpl;
/'l the same as above, matches the string "abab"

tenpl ate charstring nw regExp3 := pattern "c{nw_regExp2}d";
/'l matches the string "cababd"

tenpl ate charstring nw regExp4 := pattern "{nw_reg";
tenpl ate charstring nw regExp5 := pattern "Expl}";
tenpl ate charstring nw regExp6 : = pattern "{mw_regExp4}{mv_regExp5}";
/1 matches the string "{mv regExpl}" only (i.e. shall not be handled as a reference
/] expression after insertion)
tenpl ate charstring nmw regExp7 := pattern "{mnv reg" & "Expl}";
/1 note the difference to the previous exanple; in this case the fragments of the

/1 pattern are joined before any evaluation, i.e. this tenplate will match the string "ab"
EXAMPLE 3:
tenpl ate charstring mrefO:= "My String";
tenplate charstring mrefl:= "{mre";
tenpl ate charstring mref2:= "f0}";

tenplate charstring mref3:= "{mrefl}{mref2}";
//this matches "{mref0O}"
/li.e. there is no further dereferencing

/las mrefl and mref2 do not contain a reference

tenpl ate charstring mref4:
tenpl ate charstring mref5:="";
tenpl ate charstring mref6:= "{mrefd}{mref5}";
//this matches "My String" — here mrefO is dereferenced, because mref4 contains
//the reference expression {mrefO} with the reference mrefO

"{mref0}";

EXAMPLE 4.
type record MyRecordType {

integer i,
charstring ¢

ETSI

310 ETSI ES 201 873-1 V4.9.1 (2017-05)

const MyRecordType c_referencedRecord: = {1,"this"}

const charstring c_referencedConstant : = c_referencedRecord. c;

tenpl ate charstring mreferencingPattern := pattern "{c_referencedConstant}"
//this matches "this" as the c_referencedConstant is dereferenced

B.1.5.3 Match expression n times

To specify that the preceding expression should be matched a number of times one of the following syntaxes shall be
used: "#(n, m)", "#(n,)", "#(, m)", "#n)", "#n", "H()", "#()" or "+".

The form "#(n, m)" specifies that the preceding expression shall be matched at least n times but not more than m times.
The metacharacter postfix "#(n,)" specifies that the preceding expression shall be matched at least n times while
"#(, m)" indicates that the preceding expression shall be matched not more than m times.

M etacharacters (postfixes) "#(n)" and "#n" specify that the preceding expression shall be matched exactly n times (they
are equivalent to "#(n, n)"). In the form "#n" n shall be asingle digit.

The forms "#(,)" and "#()" are shorthand notations for "#(0,)", i.e. matches the preceding expression any number of
times.

The metacharacter postfix "+" denotes that the preceding expression shall be matched at least 1 time (equivalent to
"H(L)").

EXAMPLE:

tenpl ate charstring nw regExp4: = pattern "[a-z]#(9, 11)"; //nmatch at least 9 but no nore than 11
/1l characters froma to z

tenpl ate charstring nw regExp5a: = pattern "[a-z]#(9)"; /1 match exactly 9

/1l characters froma to z
tenpl ate charstring nw_regExp5b: = pattern "[a-z]#9"; /1 match exactly 9

/1 characters froma to z
tenpl ate charstring nw regExp6: = pattern "[a-z]#(9,)"; /1 match at least 9

/1l characters froma to z
tenpl ate charstring nw regExp7: = pattern "[a-z]#(, 11)"; // match no nore than 11

/1 characters froma to z
tenpl ate charstring nw regExp8: = pattern "[a-z]+"; /1 match at least 1

/1 characters froma to z,

B.1.5.4 Match a referenced character set

A notation of the form "\ N{ reference} ", where reference is denoting a one-character-length template, constant,
variable, formal parameter or module parameter, matches the character in the referenced value or template.

If the reference cannot be resolved or if the referenced symbol is anything else than atemplate, constant, variable,
formal parameter or module parameter containing a character string of length 1, an error shall be generated.

A notation of the form "\ N{ typereference} " , where "typereference” isareferencetoachar stri ng or uni ver sal
char st ri ng type, matches any character of the character set denoted by the referenced type.

NOTE 1. Cases when the referenced set of charactersis not a subset of values allowed by the type definition of the
template or template field for which the character pattern is used, are not be treated as an error (but e.g.
matching never can occur if the two sets do not overlap).

NOTE 2: \N{char st ri ng} isequivalent to ? when the latter is applied to atemplate or template field of
charstring typeand\N{uni versal char stri ng} isequivaentto ?when the latter is applied to
atemplate or template field of uni ver sal char st ri ng type (but causes an error if applied to a
template or template field of char st ri ng type).

EXAMPLE:

type charstring MyChar RangeType ("a".."z");
type charstring MyCharlListType ("a", "z");
const MyChar RangeType c_nyCharR := "r";

tenpl ate charstring nw nyTenpPattl := pattern "\N{c_nyCharR}";
/1 mw_nyTenpPattl shall natch the string "r" only

ETSI

311 ETSI ES 201 873-1 V4.9.1 (2017-05)

tenpl ate charstring nw nyTenpPatt2 : = pattern "\ N{ MyChar Range}";
/1 mnv_nyTenpPatt2 shall match any string containing a single character froma to z

tenpl ate MyChar RangeType nw_nyTenpPatt3 : = pattern "\ N{M/CharList}";
/1 mw_nyTenpPatt3 shall natch strings "a" or "z" only

B.1.5.5 Type compatibility rules for patterns

For the purpose of referenced patterns (see clause B.1.5.2) and references character sets (see clause B.1.5.3) specific
type compatibility rules apply: areferenced type, template, constant, variable or module parameter of the type

char st ri ng always can be used in the pattern specification of atemplate or template field of uni ver sal

char st ri ng type; areferenced type, template or value of thetypeuni ver sal char stri ng canbe usedinthe
pattern specification of atemplate or template field of char st ri ng typeif al characters used in the referenced
template or value and the character set allowed by the referenced type has their corresponding charactersin the

char st ri ng type (see definition of corresponding charactersin clause 6.3.1).

B.1.5.6 Case insensitive pattern matching

Whenthe"@ocase" modifier is used after the pattern keyword, the matching is evaluated in a case insensitive way,
i.e. at positions, where without the "@ocase" modifier asmall letter alphabethical character would be matched, with
the"@ ocase" modifier also capital letter counterpart - but only that - shall be accepted. For example, at positions
where the pattern matches the character d (latin small letter d with stroke), also its counterpart b (latin capital letter d
with stroke) shall be accepted, but the similarly looking graphical characters B (latin capital |etter eth) and D (latin
capital letter african d) shall not.

EXAMPLE 1:

tenpl ate charstring nw_nyTenpl at eNoCase: = pattern @ocase "ab??xyz*0";

//This tenplate would match any character string that start with the characters "ab" or "Ab"
/lor "aB" or "AB", followed by any two characters, followed by the characters "xyz" or "Xyz"
[lor "xYz" or "xyZ" or "XYz" or "xYZ' or "XyZ"' or "XYZ', followed by any nunber of any
//characters (including any nunber of "0"-s) before the closing character "0".

When referencing a pattern from inside another pattern (see clause B.1.5.2), the case sensitivity property of the
referenced pattern is not inherited. 1.e. - after dereferencing, possibly recursively - only the resulting string part of the
referenced pattern isinserted into the referencing pattern. The whole resulting pattern is always evaluated according to
the case-sensitivity of the referencing pattern.

EXAMPLE 2:
const charstring c_nyString: = "ab?";

tenpl ate charstring nw_nyTenpl ate: = pattern @ocase "{c_nyString}";
/I matches any character string that consists of the characters "ab" or "Ab" or "aB" or "AB",
/1 followed by any character

tenpl ate universal charstring mwv_nyTenpl ate3: = pattern "{mw_nyTenpl ate}de\qg{1, 1, 13, 7}";
/I matches any character string which consists of the characters "ab", followed by any
//character, followed by the characters "de", followed by the character in |S0OL0646-1 with
/1 group=1, plane=1, row=13 and cell =7 (.

ETSI

312 ETSI ES 201 873-1 V4.9.1 (2017-05)

Annex C (normative):
Predefined TTCN-3 functions

C.0 General exception handling procedures
This annex defines the TTCN-3 predefined functions.

When the general restrictions specified in clause 16.1.2 are not met, this shall cause a compile time or runtime error.
Error situations for which no explicit exception-handling rule is defined in the relevant clauses of this annex shall cause
a TTCN-3 compile-time or runtime error. Which error situation causes compile-time and which one runtime error isa
tool implementation option.

C.1 Conversion functions

C.1.1 Integer to character

int2char(in integer invalue) return charstring

Thisfunction convertsani nt eger vaueintherange of 0 to 127 (8-bit encoding) into a single-character-length
char st ri ng value. The integer value describes the 8-bit encoding of the character.

In addition to the general error causesin clause 16.1.2, error causes are;

. i nval ue islessthan O or greater than 127.

C.1.2 Integer to universal character

i nt2uni char (in integer invalue) return universal charstring

Thisfunction convertsani nt eger valuein the range of 0 to 2 147 483 647 (32-bit encoding) into a
single-character-length uni ver sal char st ri ng value. The integer val ue describes the 32-bit encoding of the
character.

In addition to the general error causesin clause 16.1.2, error causes are:

e inval ueislessthan O or greater than 2147483647.

C.1.3 Integer to bitstring

int2bit(in integer invalue, in integer length) return bitstring

Thisfunction convertsasingle i nt eger valuetoasinglebi t stri ng value. The resulting string is| engt h bits
long.

For the purposes of this conversion, abi t st ri ng shall be interpreted as a positivebase 2i nt eger vaue. The
rightmost bit isleast significant, the leftmost bit is the most significant. The bits 0 and 1 represent the decimal values 0
and 1 respectively. If the conversion yields a value with fewer bits than specified inthe | engt h parameter, then the
bi t st ri ng shall be padded on the left with zeros.

In addition to the general error causesin clause 16.1.2, error causes are;
. i nval ue islessthan zero;

e theconversion yields areturn value with more bits than specified by | engt h.

ETSI

313 ETSI ES 201 873-1 V4.9.1 (2017-05)

C.1.4 Integer to enumerated

int2enum (in integer inpar, out Enunerated_type outpar)

This function converts an integer val ue into an enumerated value of a given enumerated type. The integer value shall be
provided asin parameter and the result of the conversion shall be stored in an out parameter. The type of the out
parameter determines the type into which the in parameter is converted.

The general error causesin clause 16.1.2 apply.

EXAMPLE:

type enunerated MyFirstEnunType {
Monday, Tuesday, Wednesday, Thursday, Friday, Wekend(6..7)
s

type enunerated MySecondEnuniType {
Saturday(-3), Sunday (0), Monday
b

//wi thin a dynamic | anguage el enent:
var MyFirst EnunType v_first Enum : = Tuesday;
var MySecondEnunilype v_secondEnum : = Sunday;

i nt2enun(0, v_firstEnum /1 v_first Enum == Monday
i nt 2enun(1, v_secondEnun /1 v_secondEnum == Monday
int2enum(6, v_firstEnum /1 v_firstEnum == Weekend(6)

C.1.5 Integer to hexstring

int2hex(in integer invalue, in integer length) return hexstring

Thisfunction convertsasinglei nt eger valueto asinglehexst ri ng value. The resulting string is| engt h
hexadecimal digits long.

For the purposes of this conversion, ahexst r i ng shall beinterpreted as a positive base 16 i nt eger value. The
rightmost hexadecimal digit isleast significant, the leftmost hexadecimal digit is the most significant. The hexadecimal
digits O to F represent the decimal values 0 to 15 respectively. If the conversion yields a value with fewer hexadecimal
digits than specified in thel engt h parameter, then the hexst ri ng shall be padded on the left with zeros.

In addition to the general error causesin clause 16.1.2, error causes are:
e inval ueislessthan zero;

e theconversion yields areturn value with more hexadecimal characters than specified by | engt h.

C.1.6 Integer to octetstring

int2oct(in integer invalue, in integer length) return octetstring

Thisfunction convertsasinglei nt eger valuetoasingleoct et st ri ng value. Theresulting stringisl engt h
octets long.

For the purposes of this conversion, an oct et st ri ng shall be interpreted as a positive base 16 i nt eger value. The
rightmost hexadecimal digit is least significant, the leftmost hexadecimal digit is the most significant. The number of
hexadecimal digits provided shall be multiples of 2 since one octet is composed of two hexadecimal digits. The
hexadecimal digits O to F represent the decimal values O to 15 respectively. If the conversion yields a value with fewer
hexadecimal digits than specified inthel engt h parameter, then the hexst r i ng shall be padded on the left with
Zeros.

In addition to the general error causesin clause 16.1.2, error causes are:
o i nval ue islessthan zero;

. the conversion yields a return value with more octets than specified by | engt h.

ETSI

314 ETSI ES 201 873-1 V4.9.1 (2017-05)

C.1.7 Integer to charstring
int2str(in integer invalue) return charstring
This function converts the integer value into its string equivalent (the base of the return string is always decimal).

The general error causesin clause 16.1.2 apply.

EXAMPLE:

int2str(66) /1 will return the charstring val ue "66"
int2str(-66) /1 will return the charstring value "-66"
int2str(0) /1 will return the charstring value "0"

C.1.8 Integer to float

int2float(in integer invalue) return float
Thisfunction convertsani nt eger valueinto af | oat vaue.
The general error causesin clause 16.1.2 apply.

EXAMPLE:

int2float(4) = 4.0

C.1.9 Floatto integer

float2int(in float invalue) return integer

Thisfunction convertsaf | oat valueinto ani nt eger value by removing the fractional part of the argument and
returning the resulting i nt eger .

In addition to the general error causesin clause 16.1.2, error causes are:
. invalueisinfinity,-infinityornot_a_nunber.
EXAMPLE:

float2int(3.12345E2) = float2int(312.345) = 312

C.1.10 Character to integer

char2int(in charstring invalue) return integer

This function converts a single-character-length char st r i ng value into an integer value in the range of 0 to 127. The
integer val ue describes the 8-bit encoding of the character.

In addition to the general error causesin clause 16.1.2, error causes are;

e lengthof i nval ue doesnot equal 1.

C.1.11 Character to octetstring

char2oct(in charstring invalue) return octetstring

Thisfunction convertsachar stri ngi nval ue toanoct et st ri ng. Each octet of theoct et st ri ng will
contain the Recommendation ITU-T T.50 [4] codes (according to the IRV) of the appropriate charactersof i nval ue.

ETSI

315 ETSI ES 201 873-1 V4.9.1 (2017-05)

The general error causesin clause 16.1.2 apply.

EXAMPLE:

char2oct ("Tinky-Wnky") = '54696E6B792D57696E6B79' O

C.1.12 Universal character to integer

uni char 2int (i n uni versal charstring invalue) return integer

This function converts a single-character-length uni ver sal char st ri ng valueinto an integer value in the range of
0to 2 147 483 647. The integer value describes the 32-bit encoding of the character.

In addition to the general error causesin clause 16.1.2, error causes are:

. length of i nval ue doesnot equal 1.

C.1.13 Bitstring to integer
bit2int(in bitstring invalue) return integer
Thisfunction convertsasingle bi t st ri ng valueto asinglei nt eger vaue.

For the purposes of this conversion, abi t st ri ng shall beinterpreted as a positive base 2i nt eger value. The
rightmost bit isleast significant, the leftmost bit isthe most significant. The bits 0 and 1 represent the decimal values 0
and 1 respectively.

NOTE: Onred test systemstheinteger interpretation of i nval ue may lead to an overflow problem that causes
compile time or runtime error. However, thisis out of the scope of the present document.

The general error causesin clause 16.1.2 apply.

C.1.14 Bitstring to hexstring

bi t 2hex(in bitstring invalue) return hexstring

Thisfunction convertsasingle bi t st ri ng valueto asingle hexst ri ng. Theresulting hexst ri ng represents the
samevalueasthebi t st ri ng.

For the purpose of this conversion, a bitstring shall be converted into a hexstring, where the bitstring is divided into
groups of four bits beginning with the rightmost bit. Each group of four bitsis converted into a hex digit as follows:

'0000B — '0'H, '0001B — '1'H, '0010B — '2'H, '0011B — '3'H, '0100B — '4'H, '0101'B — '5'H,
'0110B — '6'H, '0111'B — '7'H, '1000B — '8'H, '1001'B — '9'H, '1010'B — '‘A'H, '1011'B — 'B'H,
'1100B — 'CH, '1101'B — 'D'H, '1110B — 'E'H, and '1111'B — 'F'H.

When the leftmost group of bits does contain less than 4 bits, this group isfilled with '0'B from the left until it contains
exactly 4 bitsand is converted afterwards. The consecutive order of hex digits in the resulting hexstring is the same as
the order of groups of 4 bitsin the bitstring.

The general error causesin clause 16.1.2 apply.

EXAMPLE:

bit2hex ('111010111'B)= '1D7'H

ETSI

316 ETSI ES 201 873-1 V4.9.1 (2017-05)

C.1.15 Bitstring to octetstring

bit2oct(in bitstring invalue) return octetstring

Thisfunction convertsasingle bi t st ri ng valuetoasingleoct et st ri ng. Theresultingoct et stri ng
represents the same value asthe bi t st ri ng.

For the conversion the following holds: bit2oct(val ue)=hex2oct(bit2hex(val ue)).
The general error causesin clause 16.1.2 apply.

EXAMPLE:

bit 2oct (' 111010111' B)= ' 01D7' O

C.1.16 Bitstring to charstring

bit2str(in bitstring invalue) return charstring

Thisfunction convertsasinglebi t st ri ng valuetoasinglechar st ri ng. Theresultingchar st ri ng hasthe
samelength asthe bi t st ri ng and contains only the characters'0' and '1".

For the purpose of this conversion, abi t st ri ng shal be converted into achar st r i ng. Each bit of the
bi t stri ng isconverted into acharacter '0' or '1' depending on the value O or 1 of the bit. The consecutive order of
charactersin theresulting char st ri ng isthe same asthe order of bitsinthebi t stri ng.

The general error causesin clause 16.1.2 apply.

EXAMPLE:

bit2str('1110101'B) will return "1110101"

C.1.17 Hexstring to integer

hex2i nt (i n hexstring invalue) return integer
Thisfunction convertsasingle hexst ri ng valueto asinglei nt eger value.

For the purposes of this conversion, ahexst ri ng shall be interpreted as a positive base 16 i nt eger vaue. The
rightmost hexadecimal digit is least significant, the leftmost hexadecimal digit is the most significant. The hexadecimal
digits O to F represent the decimal values O to 15 respectively.

NOTE: Onred test systemstheinteger interpretation of i nval ue may lead to an overflow problem that causes
compile time or runtime error. However, thisis out of the scope of the present document.

The general error causesin clause 16.1.2 apply.

C.1.18 Hexstring to bitstring

hex2bit (i n hexstring invalue) return bitstring

Thisfunction convertsasingle hexst ri ng valuetoasingle bi t st ri ng. Theresulting bi t st ri ng represents the
same value asthe hexst ri ng.

For the purpose of this conversion, ahexst ri ng shall be converted into abi t st ri ng, where the hex digits of the
hexst ri ng are converted in groups of bits as follows:

'‘O'H — '0000B, '1'H —'0001'B, '2’H — '0010'B, '3'H — '0011'B, '4'H — '0100'B, '5'H — '0101'B,
'6'H — '0110B, '7H — '0111'B, '8H — '1000'B, '9'H — '1001'B, 'A'H — '1010B, 'B'H — '1011'B,

'CH — '1100B, 'D'H — '1101'B, 'E'H — '1110B, and 'FH — "1111'B.

ETSI

317 ETSI ES 201 873-1 V4.9.1 (2017-05)

The consecutive order of the groups of 4 bitsin the resulting bi t st ri ng isthe same as the order of hex digitsin the
hexstri ng.

The general error causesin clause 16.1.2 apply.

EXAMPLE:

hex2bit (' 1D7' H= ' 000111010111' B

C.1.19 Hexstring to octetstring

hex2oct (i n hexstring invalue) return octetstring

Thisfunction convertsasingle hexst ri ng valueto asingleoct et st ri ng. Theresultingoct et st ri ng
represents the same value asthe hexst ri ng.

For the purpose of this conversion, ahexst ri ng shall be converted into aoct et st ri ng, where the

oct et st ri ng contains the same sequence of hex digitsasthe hexst r i ng when the length of the hexstri ng
modulo 2 is 0. Otherwise, the resulting oct et st ri ng contains 0 as leftmost hex digit followed by the same sequence
of hex digitsasinthehexst ri ng.

The general error causesin clause 16.1.2 apply.

EXAMPLE:

hex2oct (' 1D7' H)= ' 01D7' O

C.1.20 Hexstring to charstring

hex2str(in hexstring invalue) return charstring

This function converts a single hexstring value to a single charstring. The resulting charstring has the same length as the
hexstring and contains only the characters'0' to '9'and ‘A’ to 'F'.

For the purpose of this conversion, ahexst ri ng shall be converted into achar st ri ng. Each hex digit of the
hexst ri ng isconverted into a character '0' to '9' and 'A’ to 'F' depending on the value 0 to 9 or A to F of the hex digit.
The consecutive order of charactersin the resulting char st ri ng isthe same as the order of digitsin the

hexstri ng.

The general error causesin clause 16.1.2 apply.

EXAMPLE:

hex2str (' AB801'H) // will return "AB801"

C.1.21 Octetstring to integer
oct2int(in octetstring invalue) return integer
Thisfunction convertsasingleoct et st ri ng valueto asinglei nt eger vaue.

For the purposes of this conversion, an oct et st ri ng shall be interpreted as a positive base 16 i nt eger vaue. The
rightmost hexadecimal digit isleast significant, the leftmost hexadecimal digit is the most significant. The number of
hexadecimal digits provided shall be multiples of 2 since one octet is composed of two hexadecimal digits. The
hexadecimal digits O to F represent the decimal values 0 to 15 respectively.

NOTE: Onred test systemstheinteger interpretation of i nval ue may lead to an overflow problem that causes
compile time or runtime error. However, thisis out of the scope of the present document.

The general error causesin clause 16.1.2 apply.

ETSI

318 ETSI ES 201 873-1 V4.9.1 (2017-05)

C.1.22 Octetstring to bitstring

oct2bit(in octetstring invalue) return bitstring

Thisfunction convertsasingleoct et st ri ng valueto asingle bi t st ri ng. Theresulting bi t st ri ng represents
the samevalueastheoct et st ri ng.

For the conversion the following holds: oct2bit(value)=hex2bit(oct2hex(val ue)).
The general error causesin clause 16.1.2 apply.

EXAMPLE:

oct2bit ('01D7' O =' 0000000111010111' B

C.1.23 Octetstring to hexstring

oct 2hex(in octetstring invalue) return hexstring

Thisfunction convertsasingleoct et st ri ng valueto asingle hexst ri ng. Theresulting hexst ri ng represents
the samevalueastheoct et st ri ng.

For the purpose of this conversion, aoct et st ri ng shall be converted into ahexst r i ng containing the same
sequence of hex digitsastheoct et st ri ng.

The general error causesin clause 16.1.2 apply.

EXAMPLE:

oct 2hex(' 1D74' O = ' 1D74' H

C.1.24 Octetstring to character string
oct2str(in octetstring invalue) return charstring

Thisfunction convertsanoct et st ri ng i nval ue toanchar st ri ng representing the string equivalent of the
input value. Theresulting char st ri ng shall have the same length asthe incoming oct et stri ng.

For the purpose of this conversion each hex digit of i nval ue isconverted into a character '0', '1', '2', '3, '4','5', '6', "7,
'8,'9,'A', 'B','C, 'D’, 'E' or 'F' echoing the value of the hex digit. The consecutive order of charactersin the resulting
charstri ng isthe same asthe order of hex digitsinthe oct et st ri ng.

The general error causesin clause 16.1.2 apply.

EXAMPLE:

oct 2str (' 4469707379' O = "4469707379"

C.1.25 Octetstring to character string, version Il

oct2char(in octetstring invalue) return charstring

Thisfunction convertsanoct et st ri ngi nval ue toachar st ri ng. Theinput parameter i nval ue shal not
contain octet values higher than 7F. The resulting char st r i ng shall have the same length as the input

oct et st ri ng. The octets are interpreted as Recommendation ITU-T T.50 [4] codes (according to the IRV) and the
resulting characters are appended to the returned vaue.

The general error causesin clause 16.1.2 apply.

EXAMPLE:

oct 2char (' 4469707379' O = "Di psy"

ETSI

319 ETSI ES 201 873-1 V4.9.1 (2017-05)

NOTE: The character string returned may contain non-graphical characters, which cannot be presented between
the double quotes.

C.1.26 Charstring to integer
str2int(in charstring invalue) return integer
Thisfunction convertsachar st ri ng representing ani nt eger valuetothe equivaenti nt eger .
In addition to the general error causesin clause 16.1.2, error causes are:
e inval ue contains characters other than"0", "1","2","3", "4","5","6","7","8","9" and "-".
. i nval ue containsthe character "-" at another position than the leftmost one.

NOTE: Onreal test systemsthe integer interpretation of i nval ue may lead to an overflow problem that causes
compile time or runtime error. However, thisis out of the scope of the present document.

EXAMPLE:

str2int("66") /1 will return the integer value 66
str2int("-66") // will return the integer value -66
str2int("6-6") // wll cause an error
str2int("abc") // will cause an error

str2int("0") /1 will return the integer value O

C.1.27 Character string to hexstring

str2hex(in charstring invalue) return hexstring
Thisfunction converts a string of thetype char stri ngtoahexstri ng. Thestringi nval ue shal contain the
"o',"1","2","3", "4","5", "6", "7, "8","9", "a", "b", "c", "d", "e" "f*, "A","B", "C", "D", "E" or "F" graphical
characters only. Each character of i nval ue shall be converted to the corresponding hexadecimal digit. The resulting
hexst ri ng will have the same length asthe incoming char st ri ng.
In addition to the general error causesin clause 16.1.2, error causeis:
. i nval ue contains characters other than specified above.

EXAMPLE:

str2hex("54696E6B792D57696E6B7") = ' 54696E6B792D57696E6B7' H

C.1.28 Character string to octetstring

str2oct(in charstring invalue) return octetstring
Thisfunction converts a string of thetype charstringtoanoctetstring. Thestringi nval ue shall contain
the IIOII, Illll, lI2lI, II3II7 Il4-ll7 Il5ll1 ll6ll, ll7ll, ll8ll, ll9ll, llall, Ilbll, "C", IIdlI, Ilell Ilfll, IIAII, " Bll, IICII, IIDII, IIEII Or lIF!I graphical
characters only. When the string i nval ue contains even number charactersthe resulting oct et st ri ng contains 0
as leftmost character followed by the same sequence of charactersasinthechar stri ng.

| engt hof (seeclause C.2.1for theresulting oct et st ri ng) will return half of | engt hof of theincoming
char st ri ng. In addition to the genera error causesin clause 16.1.2, error causesis.

. i nval ue contains characters other than specified above.

ETSI

320 ETSI ES 201 873-1 V4.9.1 (2017-05)

EXAMPLE:

str2oct ("54696E6B792D57696E6B79") = ' 54696E6B792D57696E6B79' O
str2oct ("1D7")= "01D7' O

NOTE: The semantic of the str2oct function cause asymmetric behaviour:

oct2str(str2oct("1D7"))// results in the charstring value "01D7"

C.1.29 Character string to float

str2float(in charstring invalue) return float

Thisfunction convertsachar st ri ng comprising anumber into af | oat value. The format of the number in the
char st ri ng shal follow rulesin clause 6.1.0, items @) or b) with the following exceptions:

e leading zeros are alowed,;

. leading "+" sign before positive valuesis allowed;

e "-0.0"isalowed;

J no numbers after the dot in the decimal notation are allowed.
In addition to the general error causesin clause 16.1.2, error causes are;

e theformat of invalueis different than defined above.

NOTE: Onreal test systems the float interpretation of i nval ue may lead to an overflow problem that causes
compile time or runtime error. However, thisis out of the scope of the present document.

EXAMPLE:

str2fl oat("12345.6") Il is the same as str2float("123. 456E+02")
str2float("1.6") /] returns a float value equal to 1.6
str2fl oat ("+001.") Il returns a float value equal to 1.0
str2fl oat ("+001") Il returns a float value equal to 1.0
str2float("-0.0") /1 returns a float value equal to -0.0

C.1.30 Enumerated to integer

enun®int (in Enunmerated_type inpar) return integer

This function accepts an enumerated value and returnsthe i nt eger value associated to the enumerated val ue (see also
clause 6.2.4). The actua parameter passed to inpar always shall be a typed object (see clause 6.2.4 and the definition
"type context" in clause 3.1).

The general error causesin clause 16.1.2 apply.

EXAMPLE:

type enunerated M/First EnunType {
Monday, Tuesday, Wednesday, Thursday, Friday, Wekend(5..6)
b

type enunerated MySecondEnuniType {
Saturday(-3), Sunday (0), Monday
b

//within a dynam c | anguage el ement:
var MFirst EnuniType v_first Enum: = Monday;
var MySecondEnuniType v_secondEnum : = Monday;

enunRint(v_firstEnum) // returns O
enun®i nt (v_secondEnum) // returns 1

v_first Enum : = Wednesday;
v_secondEnum : = Sat ur day;
enunRint(v_firstEnum) // returns 2
enun®i nt (v_secondEnum) // returns -3

ETSI

321 ETSI ES 201 873-1 V4.9.1 (2017-05)

v_firstEnum: = Friday;

v_secondEnum : = Sunday;
enun2int(v_firstEnum) // returns 4
enun®i nt (v_secondEnum) // returns O
v_firstEnum: = Weekend(6);
enunRint(v_firstEnum) // returns 6

C.1.31 Octetstring to universal character string

oct2uni char(in octetstring invalue, in charstring string_encoding := "UTF-8")
return universal charstring

Thisfunction convertsanoct et stri ng i nval uetoauni ver sal charstring by useof thegiven
string_encoding. The octets are interpreted as mandated by the standardized mapping associated with the given
string_encoding and the resulting characters are appended to the returned value. If the optional string_encoding
parameter is omitted, the default value "UTF-8".

The following values (see | SO/IEC 10646 [2]) are allowed as string_encoding actual parameters (for the description of
the codepoints see clause 27.5):

a "UTF-8"
b) "UTF-16"
c) "UTF-16LE"
d) "UTF-16BE"
e "UTF-32"
f) UTF-32LE"
g "UTF-32BE"

Thei nval ue parameter shall not include the optional signature (see clause 10 of ISO/IEC 10646 [2], also known as
byte order mark).

In case of "UTF-16" and "UTF-32" big-endian ordering shall be used (as described in clauses 10.4 and 10.7 of
ISO/IEC 10646 [2]).

The general error causesin clause 16.1.2 apply.

EXAMPLE:

oct 2uni char (' C384C396C39CC3A4C3B6C3BC O) = "AQUasU";
oct 2uni char (' 00C400D600DCO0E400F600FC O, " UTF- 16BE")
oct 2uni char (' C400D600DCO0E400F600FC00" O, " UTF- 16LE")

" AQUasU"
" AQUEGU" ;

NOTE: The character string returned may contain non-graphical characters, which cannot be presented between
the double quotes.

C.1.32 Universal character string to octetstring

uni char 2oct (i n universal charstring invalue, in charstring string_encoding := "UTF-8")
return octetstring

Thisfunction convertsauni ver sal charstringi nval uetoanoct et stri ng. Each octet of the octetstring
will contain the octets mandated by mapping the characters of inval ue using the standardized mapping associated with
the given string_encoding in the same order as the characters appear in inpar. If the optional string_encoding parameter
is omitted, the default value"UTF-8".

The following values (see | SO/IEC 10646 [2]) are allowed as string_encoding actual parameters (for the description of
the UCS encoding scheme see clause 27.5):

a "UTF-8"

ETSI

322 ETSI ES 201 873-1 V4.9.1 (2017-05)

b) "UTF-16"
¢ "UTF-16LE"
d) "UTF-16BE"
e "UTF-32"

f) "UTF-32LE"
g "UTF-32BE"

The general error causesin clause 16.1.2 apply.

EXAMPLE:

uni char 2oct (" A(lhou) = ' C384C396C39CC3A4C3B6C3BC O
uni char 2oct (" AQUaou", " UTF- 16BE") ' 00C400D600DCOOE4A00F600FC O
uni char 2oct (" AQUadu", " UTF- 16LE") ' CA00D600DCO0E400F600FC00" O

C.1.33 Value or template to universal charstring

any2uni str(in tenplate any_type invalue) return universal charstring

This function converts the content of avalue or templateto asingleuni ver sal char st ri ng. Theresulting

uni ver sal char stri ng isthe same as the string produced by the log operation containing the same operand as
the one passed to the any2uni st r function. The value or template passed as a parameter to the any2uni char
function may be uninitialized, partially or completely initialized.

The general error causesin clause 16.1.2 apply.
EXAMPLE:
var integer v_intl :=5, v_int2;
var tenplate integer nwintl := ?;

var tenplate integer nwint2 := -1 ifpresent;
var universal charstring v_chrl, v_chr2, v_chr3, v_chr4;

v_chrl := any2unistr(v_intl); // after the assignnment v_chrl will be "5"

v_chr2 := any2unistr(v_int2); // after the assignnment v_chr2 will be "UN N TI ALI ZED"
v_chr3 := any2unistr(mnv_intl); // after the assignnment v_chr3 will be "?"

v_chr4 := any2unistr(mv_int2); // after the assignment v_chr3 will be "-1 ifpresent”

C.2 Length/size functions

C.2.1 Length of strings and lists
I engthof (in tenplate (present) any_string_ or_list_type inpar) return integer

This function returns the length of avaue or template that is of typebi t st ri ng, hexstri ng, oct et stri ng,
charstring, universal charstring, record of,set of,orarray. Theunitsof length for each string
type are defined in table 4 in the present document.

For values or templates of r ecor d of or set of type, the value to be returned is the maximum of the minimal length
restriction value of the type, or O for types with no minimal length restriction, and the index of the last initialized
element plus 1.

The length value returned in case of length restricted string or list type shall be at least the minimum length according to
the type definition. In particular, the length of afixed lengthr ecord of orset of value will always be the fixed
length according to the type definition. For array values or templates, the value to be returned is the fixed length of the
corresponding r ecor d of type.

NOTE 1. Asi n formal parameters does not allow passing in uninitialized values or templates, even in these cases
i npar will be at least partidly initialized.

ETSI

323 ETSI ES 201 873-1 V4.9.1 (2017-05)

Thelength of anuni ver sal char stri ng shal be calculated by counting each combining character and hangul
syllable character (including fillers) on its own (see |SO/IEC 10646 [2], clauses 23 and 24).

When the function | engt hof isapplied to string-type templates, i npar shall only contain the following matching
mechanisms: specific value, value list, complemented value list, pattern, "?' (AnyValue instead of value), "*"
(AnyValueOrNone instead of value), "?' (AnyElement inside value) and "*" (AnyElementsOrNone inside value) and the
length restriction matching attribute. In case of string-type templatesi npar shall match values of the same length only.
If i npar contains uninitialized elements, each of them shall be counted as 1 element, i.e. they shall be matched as if
they contained the "?" (AnyElement inside value) matching character in case of binary strings or asif they werea™?"
(Match any character) character pattern for textual strings.

When the function | engt hof isapplied to templates of record of or set of types, i npar shall only contain the
following matching mechanisms: specific value, value list, complemented value list, "?* (AnyValue instead of value),
"*" (AnyValueOrNone instead of value), Super Set, QubSet, "?' (AnyElement inside value) and "*" (AnyElementsOrNone
inside value), permutation and the length restriction matching attribute. The parameter i npar shall only match values,
for which thel engt hof function would give the same result. If i npar contains uninitialized elements, each of them
shall be counted as 1 element, i.e. they shall be matched asif they contained the "?* (AnyElement inside value)
matching character.

NOTE 2: In case of record ofs and set ofs and arrays only elements of the TTCN-3 object, which is the parameter of
the function are calculated; i.e. no elements of nested types are taken into account when determining the
return value.

In addition to the general error causesin clause 16.1.2, error causes are;

e inpar isastring-type template and it can match string values with different length or the length restriction
matching attribute contradicts the number of string elements in the template body;

e inpar isarecord of or set of type template and it can match values of different lengths or the length
restriction matching attribute contradicts the number of elements in the template body.

NOTE 3: Onreal test systems the length calculation of i npar may lead to an overflow problem that causes
compile time or runtime error. However, thisis out of the scope of the present document.

EXAMPLE 1: Using lengthof for values
| engt hof (' 010' B) /] returns 3
| engt hof (' F3' H) /] returns 2
I engt hof (' F2' O /] returns 1

| engt hof (universal charstring : "Length_of _Exanple") // returns 17

/1l Gven
type record |l ength(0..10) of integer MyList;
var MWyList v_nyListvar :={ 0, 1, -, 2, - };

| engt hof (v_nyLi st Var) ;
/1 returns 4 without respect to the fact, that the elenent v_nyListVar[2] is not initialized

EXAMPLE 2: Using lengthof for string-type templates
| engt hof (charstring : "HELLO") Il returns 5
| engt hof (octetstring : ('12'Q '34'0) [// returns 1
| engt hof (' 1??1' B) /] returns 4
| engt hof (uni versal charstring : ? length(8)) // returns 8
| engt hof (' 1*F' H) /1 shall cause an error
I engthof (" 1*F' H l ength (8)) /'l returns 8
I engthof (bitstring : ? length(2..infinity)) // shall cause an error
| engt hof (' 00*FF' O |l ength(1..2)) /1 returns 2

I engt hof (' 1*49' H l ength(1..2)) /1 shall cause an error

ETSI

324 ETSI ES 201 873-1 V4.9.1 (2017-05)

I engt hof (' 1' B 1 engt h(3)) /1 shall cause an error
I engt hof (' 1*1' B | engt h(10. . 20)) /1 shall cause an error
EXAMPLE 3:

I

1, pernutation(2, 3), ?}
1, % (2 3}

1, *, 10 } length(5)

1, 2, 3, * } length(1..2)
1, 2, 3, * } length(1l..3)

type record of integer
tenplate Rol nwroll :
tenplate Rol nw_rol2
tenmplate Rol nw rol3
template Rol nwrol4 :
tenplate Rol nwrol5

A - @

I engthof (nmw roll) // returns 4
I engthof (nw_rol2) // shall cause an error
| engthof (mw.rol3) // returns 5
| engthof (nw_rol4) // shall cause an error

| engthof (mw_rol5) // returns 3

C.2.2 Number of elements in a structured value

sizeof (in tenplate (present) any_record_set_type inpar) return integer

This function returns the actual number of elements of avalue or template of ar ecor d or set type (see note).

The function si zeof isapplicableto templates of record and set types. The function is applicable only if the si zeof

function gives the same result on all values that match the templ ate.

NOTE: Only elements of the TTCN-3 object, which is the parameter of the function are calculated; i.e. no
elements of nested types/values are taken into account at determining the return value.

In addition to the general error causesin clause 16.1.2, error causes are:
. wheni npar isatemplate and it can match values of different sizes.

EXAMPLE:

/1 Gven
type record MyPDU
{ bool ean fieldl optional,
integer field2

b
tenpl ate MyPDU m nyTenpl ate : =

{ fieldl := onit,

field2 :=5

h
si zeof (m. nyTenpl ate); /Il returns 1
type set S {

integer f1,

bitstring f2 optional,
charstring f3 optional

}

tenplate Smv sl :={ f1 :=(0..99), f2 :=omt, f3:=7?}
template Smws2 :={ f3:=*, f1 :=1, f2 :="'00'B ifpresent }
template Smw s3 := ({ f1:=1, f2 :=omt, f3 := "ABC' },
{f1:=2, f3:=omt, f2 :="1B},
{ f3:=omt, f1:=3, f2 :="1?1'B}

)
tenplate S nw.s4 :=?

si zeof (mw_s1) // returns 2
sizeof (mw_s2) // shall cause an error
sizeof (mw_s3) // returns 2
si zeof (mnv_s4) // shall cause an error

ETSI

325 ETSI ES 201 873-1 V4.9.1 (2017-05)

C.3 Presence checking functions

C.3.1 The IsPresent function

ispresent(in tenplate any_ type inpar) return bool ean
Thisfunction is alowed for templates of all data types and returns:
e thevaluet r ue if the data object reference fulfils the (present) template restriction as described in clause 15.8;
e thevauef al se otherwise.

NOTE 1: When the argument of i spresent isasubfield of atemplate field to which the"?" (AnyValue) matching
is assigned, the extension mechanism specified in clause 15.6.2 applies.

NOTE 2: This meansthat whenever i spresent (m nyTenpl at e) returnstr ue:

- m nyTenpl at e can safely be assigned to a non-optional field of the type of the templatein a
template variable;

- m nyTenpl at e can safely be used as an actual template(present) parameter or assigned to avariable
of kind template(present).

When applying thei spr esent function to a semantically correct data object reference (see table 14 in clause 16.1.2),
it shall never result in an error, even if using the reference would normally cause a runtime error when being used e.g. in
an expression.

EXAMPLE:

/1 Gven
type record MyRecord
{
record {
bool ean innerFi el dl optional,
i nteger innerField2 optional,
M/Record i nnerFi el d3 opti onal
} fieldl optional,
integer field2

}
var M/Record v_nyRecord := { fieldl := {}, field2 :=5}
/Il type of fieldl is record with fields, therefore fieldl renains uninitialized
/1 after this assignnent (no value is assigned to any of the fields of vl_MRecord.fieldl)

i spresent (v_nyRecord.fieldl) // returns fal se

v_nyRecord.fieldl := omt

i spresent (v_nyRecord.fieldl) // returns false
/1 and therefore, v_nyRecord.fieldl.innerFieldl is an inaccessible reference

i spresent (v_nyRecord.fieldl.innerField3.field2) // shall return false because innerField3 is
/1 unintialized and therefore, v_nyRecord.fieldl.innerField3.field2 is an
/'l inaccessible reference

i spresent (v_nyRecord.fieldl.innerFieldl) // shall return false because fieldl is omtted
var tenplate M/Record v_nyRecordT :={ fieldl :=?, field2 := 5}

i spresent (v_nyRecordT.fieldl) // returns true

i spresent (v_nyRecordT.fieldl.innerFieldl) // returns fal se because fieldl is AnyVal ue

/Il (pls. note, that at expansion of fieldl the optional field innerFieldl obtains "*"

/1 that can match both a present and an onitted field

type record R{ integer f1 optional, integer f2 optional }

template Rmw tl := {f1 :=1, f2 :=(2 .. 4) }

template Rmw t2 := { f1 := omt, f2 := (5, 7) ifpresent }
tenplate Rmw t3 := {f1 :=* f2 :=?}

ETSI

ispresent(nmw tl1l.f1) // returns

ispresent(nmw t1.f2) // returns

ispresent(nmw t2.f1) // returns

ispresent(nw t2.f2) // returns

ispresent(nmw t3.f1) // returns

ispresent(nmw t3.f2) // returns

326

true
true
fal se
fal se
fal se

true

ETSI ES 201 873-1 V4.9.1 (2017-05)

C.3.2 The IsChosen function

i schosen(in tenplate any_union_type_field inpar) return bool ean

Thisfunction is alowed for templates of all data types that are a union-field-reference or atype alternative of an
anyt ype. Thisfunction returns:

. thevaluet r ue if and only if the data object reference specifies the variant of the uni on type or the type

aternative of theanyt ype that isactualy selected for the given data object;

) in al other casesf al se.

Thefunctioni schosen isapplicable to templates of uni on types or of anyt ype containing a specific value or a
valuelist. It returnst r ue if al the values matched by i npar have the given aternative selected. Theresult isf al se
if thereis another alternative of theuni on typeor anyt ype onwhichi schosen would return true.

NOTE: Please notethat in case of anyt ype-s, no type compatibility is considered when determining the
selected alternative; i.e. at the evaluation only the exact type chosen for the given value will satisfy the

above criteria

The application of thei schosen function to a semantically correct data object reference shall never result in an error,

even if using the reference would normally cause a runtime error when being used e.g. in an expression.
EXAMPLE 1. Usingi schosen for uni on types

/1 inside nodule M

type union U { integer f1, octetstring f2 }

tenplate U mul := {f1 := 1}

tenplate Umwu2 := {f2 := ?}

template U mv u3 : = ?

template Umu4 := ({ f1:=21}, {f2:="AB0O})

tenplate Umwv u5 := ({ f2 :='12?'0}, { f2 :="'*34'0Olength(2) })

i schosen(mul.f1) // returns true
i schosen(mul.f2) // returns false
i schosen(nmw u2.f1) // returns false
i schosen(nmw_u2.f2) // returns true
i schosen(nmw u3.f1) // returns fal se
i schosen(nmw u3.f2) // returns fal se
i schosen(mu4.f1) // returns fal se
i schosen(mu4.f2) // returns false
i schosen(nmw_ u5.f1) // returns false
i schosen(mw_u5.f2) // returns true

type record R { U u optiona
template Rmrl :={ omt }

}

ischosen(mr1l.u.f1) // returns false

ETSI

327 ETSI ES 201 873-1 V4.9.1 (2017-05)

EXAMPLE 2: Usingi schosen for anyt ype

tenpl ate anytype mv_a

1 { U:=mvu5}
tenpl ate anytype mv_ a2 :

{ MU:={ fl:=mul.f1} }

i schosen(mv_al. U) /1 returns true

i schosen(mv_al. M U) /1 returns true

i schosen(nmw_al.integer) // returns false

i schosen(mv_a2. U) /'l returns true
EXAMPLE 3:

/1 Gven

type uni on MyUni on
{ PDU_t ypel p1,
PDU_t ype2 p2,
PDU_t ype p3
}

/1 and given that nw nyPDU is a tenplate of MyUnion type

/1 and v_receivedPDU is al so of MyUnion type

/1 then

myPort . recei ve(mv_nyPDU) -> val ue v_recei vedPDU

i schosen(v_recei vedPDU. p2)

/l returns true if the actual instance of nw nyPDU carries a PDU of the type PDU type2

C.3.3 The IsValue function

isvalue(in tenplate any_type inpar) return bool ean;

Thisfunction is allowed for templates of all data types, component and address types and default values. The function
shall returnt r ue, if i npar iscompletely initialized and resolves to a specific value. If i npar isof recor d or set
type, omitted optional fields shall be considered asinitialized, i.e. the function shall also return true if optional fields of
i npar are set to omit. The function shal return f al se otherwise.

Thenul | value assigned to default and component references shall be considered as concrete values.

The application of thei sval ue function to a semantically correct data object reference shall never result in an error,
even if using the reference would normally cause a runtime error when being used e.g. in an expression.

EXAMPLE 1. Simpletypes

tenpl ate charstring mcharO :
tenplate charstring mcharl :

"ABCD'; //tenplate containing a specific value matching

"AB?D'; //tenplate containing a specific value matching
/Inote, that "?" is not a matching synbol in this case

tenplate charstring nw char2 := pattern "ABCD'; // a pattern natching a single value only

tenpl ate charstring nw char3 := pattern "AB?D'; // pattern natching

tenpl ate charstring mchar4 := ("ABCD'); // tenplate containing a specific value (expression)

tenpl ate charstring nw char5 := ("ABCD',"EFCGH'); // a value list matching a single value only

i svalue(mchar0); // shall return true

i svalue(mcharl); // shall return true

i sval ue(nw_char2); // shall return false

i sval ue(nw_char3); // shall return false

i svalue(mchar4); // shall return true simlarly to e.g. isvalue((2)) shall return true
i sval ue(mwv_char5); // shall return fal se

EXAMPLE 2: Special types

var default v_default := null;
i sval ue(v_default); // shall return true

EXAMPLE 3: Record/set types
type record M/Rec {

integer f1 optional,
integer f2 optional

}

var MyRec v_nyRec;
var tenplate MyRec v_nyRecT,;

i sval ue(v_nyRec); /1 shall return false

ETSI

i sval ue(v_nyRecT); /1 shall
v_nyRec ={ fl:=5 f2.:=
v_nyRecT :={ fl1:=72, f2:=
i sval ue(v_nyRec); /'l shal

i sval ue(v_nyRec.f2); [/ shall
i sval ue(v_nyRecT); /1 shall
i sval ue(v_nyRecT.f1); // shall
i sval ue(v_nyRecT.f2); // shall

v_nyRecT.f2 := onmt;

i sval ue(v_nyRecT.f2); // shall
EXAMPLE 4: Uniontypes

type uni on MyUnion {

i nteger chi,
i nteger ch2

}
tenpl ate MyUnion mnyUnion : =

return fal se

I return true
return fal se;
return fal se
return fal se
return true

return fal se

{ chl :=5}

tenmpl ate MyUnion mw_nyUnion :={ chl :=?}

i sval ue(m_nyUni on);
i sval ue(mw_nyUni on) ;

/1 shall
/1 shall
i sval ue(mnv_nyUni on.chl); // shall

328

return true
return fal se
return fal se

ETSI ES 201 873-1 V4.9.1 (2017-05)

/'l note, this is different fromischosen(nw_nyUnion.chl) as isvalue checks the content of the
/1 choice chl, while ischosen is checking if chl has been sel ected or not

i sval ue(mw_nyUni on.ch2); // shall

EXAMPLE5: Nested types

type record MyRecord {
MyUni on u opti onal
}

tenpl ate MyRecord m nyRecord

tenpl ate MyRecord nw_nyRecord :
tenpl ate MyRecord m nyRecord2 :

i sval ue(m._nyRecord. u.chl); [/
i sval ue(mw_nyRecord. u.chl); //
i sval ue(mwv_nyRecord. u.ch2); //
i sval ue(m nyRecord. u.ch2); [/

1o u

ccCcCc
1o u

shall return true
shall return false
shall return false
shall return fal se

C.3.4 The IsBound function

i sbound(in tenplate any_type i

npar) return bool ean;

return fal se

m_nyUni on }
mwv_nyUni on }
omt }

Thisfunction is alowed for templates of all datatypes. The function shal returnt r ue, if i npar isat least partially
initialized. If i npar isof arecord or set type, omitted optional fields shall be considered asinitialized, i.e. the
function shall also returnt r ue if at least one optiona field of i npar issettoom t . The function shal returnf al se
otherwise. Inaccessible fields (e.g. non-selected alternatives of uni on types, subfields of omitted record and set types
or subfields of non-selected union fields) shall be considered as uninitialized, i.e. isbound shall return for themf al se.

Thenul | value assigned to default and component references shall be considered as concrete values.

The application of thei sbound function to a semantically correct template reference shall never result in an error,
even if using the reference would normally cause a runtime error when being used e.g. in an expression.

EXAMPLE 1: Simpletypes

var tenplate charstring v_char;
shall return false as v_char is uninitialized;

i sbound(v_char); I

v_char := "AB?D';

/'l tenplate containing a specific value

i sbound(v_char); /1 shall return true
v_char := pattern "AB?D'; //tenplate containing a pattern natching
i sbound(v_char); /1 shall return true

ETSI

329 ETSI ES 201 873-1 V4.9.1 (2017-05)

EXAMPLE 2: Special types

var default v_default := null;
i sbound(v_default); /1 shall return true

EXAMPLE 3: Record/set types

type record MyRec {
integer f1,
M/Rec f2 optional
}

var MyRec v_nyRec;
i sbound(v_nyRec); /1 shall return false

v_nyRec.f2 := onit;
i sbound(v_nyRec); /1 shall return true as v_nyRec is partially initialized,
/1 field f2 is set to omt

v_nyRec :={ fl:=5 f2:=omt }

i sbound(v_nyRec); /1 shall return true as v_nyRec is conpletely initialized

i sbound(v_nyRec.f2.f1); /1 shall return false as v_nyRec.f2.f1 is inaccessible

i sbound(v_nyRec.f1/0); /1 shall cause an error already during evaluating the argunent

/1 as division by zero is not allowed

type union MyUnion {

i nteger chi,
M/Rec ch2
}
var tenplate MyUni on v_myUnion;
i sbound(v_mnyUni on); /1 shall return false, as v_myUnion is uninitialized
i sbound(v_nyUni on. chl); /1 shall return false, as alternative chl is uninitialized

v_nyUnion := { chl := 5 };

i sbound(v_mnyUni on); /1 shall return true
i sbound(v_nyUni on. chl); /'l shall return true
i sbound(v_nmnyUni on. ch2); /1 shall return false as the ch2 alternative is not selected

i sbound(v_nyUnion.ch2.f1); // shall return false as the field f1 is inaccessible
i sbound(v_nyUni on.ch1/0); // shall cause an error already during evaluating the argunent
/1 as division by zero is not allowed

C.3.5 Matching mechanism detection
istenplatekind (in tenplate any_type invalue, in charstring kind) return bool ean
Thisfunction allows to examine if atemplate contains a certain kind of the matching mechanisms.

If the matching mechanism kind enquired is matching a specific value (clause B.1.1), a matching mechanism instead of
values (clause B.1.2) or matching character pattern (clause B.1.5), the function shall return t r ue if the content of the
invalue parameter is of the same kind.

If the matching mechanism kind enquired is a matching mechanism inside values (clause B.1.3), the function shall
returnt r ue if the template in the inval ue parameter contains this kind of matching mechanism on the first level of
nesting.

If the matching mechanism kind enquired is a matching attribute (clause B.1.4), the function shall returnt r ue if the
template in the invalue parameter has this kind of matching attribute attached to it directly (i.e. it doesn't count if the
attribute is attached to afield of invalue at any level of nesting).

In all other casesthe function returnsf al se.

The ki nd parameter shall be one of the strings listed in table C.1.

ETSI

330 ETSI ES 201 873-1 V4.9.1 (2017-05)

Table C.1: Allowed values of kind parameter

Value of kind parameter Searched matching mechanism
Name Clause reference

"value" Specific value B.1.1

"list" Template list B.1.2.1
"complement" Complemented template list B.1.2.2
"AnyValue", "?" Any value B.1.2.3
"AnyValueOrNone", "*" Any value or none B.1.2.4
"range" Value range B.1.2.5
"superset" SuperSet B.1.2.6
"subset" SubSet B.1.2.7
"omit" Omit B.1.2.8
"decmatch” Matching decoded content B.1.2.9
"AnyElement" Any element B.1.3.1
"AnyElementsOrNone" Any number of elements or none B.1.3.2
"permutation” Permutation B.1.3.3
"length” Length restriction B.1.4.1
"ifpresent” The IfPresent indicator B.1.4.2
"pattern” Matching character pattern B.1.5

NOTE: Clause E.2.2.5 includes the type definition TemplateKind and a constant for each of the allowed val ues of
the kind parameter. It is recommended to use the istemplatekind function in combination with this type
and these constants to ease the checking of correct usage and to improve the readability of test specs.

Restrictions
In addition to the general error causes given in clause 16.1.2, the following restrictions apply:

a) Cdlingthei st enpl at eki nd function with a different second parameter than stated in table C.1 shall lead
to an error.

EXAMPLE:
type record of integer Rol;
var tenplate integer v_t1 :=?, v_t2 :=(0,1,2) ifpresent;

var tenplate Rol v_t3:= { pernutation(1, 2, 3), ?};
var bool ean v_res;

v_res := istenplatekind(v_t1, "AnyValue"); Il true
v_res := istenplatekind(v_t1l, "AnyValueOrNone"); // false
v_res := istenplatekind(v_t2, "conplenent"); /1 false
v_res := istenplatekind(v_t2, "list"); Il true
v_res := istenplatekind(v_t2, "ifpresent"); Il true
v_res := istenplatekind(v_t3, "pernutation"); Il true
v_res := istenplatekind(v_t3, "AnyElenent"); /'l true

C.4 String/list handling functions

C.4.1 The Regexp function

regexp [@ocase] (
in tenplate (value) any_character_string_type inpar,
in tenplate (present) any_character_string_type expression,
in integer groupno

) return any_character_string_type

This function first matches the parameter i npar (orincasei npar isatemplate, its value equivalent)against the
expr essi on inthe second parameter according to the pattern matching specified in clause B.1.5. If expr essi on is
not a template containing a pattern matching mechanism, it shall be processed by this predefined function asif it wasa
character pattern as described in clause B.1.5. If the @iocase modifier is present, this and all subsequent matchings
shall be donein a case-insensitive way, as specified in clause B.1.5.6. If i npar isaliteral (i.e. typeis not explicitly
given) the corresponding type shall be retrieved from the val ue contents.

ETSI

331 ETSI ES 201 873-1 V4.9.1 (2017-05)

If this matching is unsuccessful, an empty string shall be returned.

If this matching is successful, the substring of i npar shall be returned, which matched the gr oupno-s group of
expr essi on during the matching. Group numbers are assigned by the order of occurrences of the opening bracket of
agroup and counted starting from 0 by step 1.

The parametersi npar and expr essi on shal be avalue or atemplate of char st ri ng or uni ver sal

char string types. Incasei npar isatemplate, it shall contain the specific value matching mechanism only. When
expr essi on isatemplateit shall contain the specific value or pattern matching mechanisms only. The parameter
gr oupno shall be anon-negative integer. The type of the character string returned is the root type of i npar .

NOTE: Thisfunction differs from other well-known regular expression matching implementations in that:
a) It shal match the whole inpar string instead of only a substring.

b) It starts counting groups from 0, while in some other implementations the first group is referenced
by 1 and the whole substring matched by the expression is referenced by 0.

In addition to the general error causesin clause 16.1.2, error causes are:
e wheni npar isatemplate, it contains other matching mechanism than specific value or character pattern;

e whenexpressi on isatemplate, it contains other matching mechanism than specific value or character
pattern;

e inpar isof charstring type and expr essi on isof universal charstring type;
. gr oupno isanegative integer;
. thereisno gr oupno -sgroup inexpr essi on.

EXAMPLE:

/1 Gven
var charstring v_nylnput :=" sinple text for a regexp exanmple “;
var charstring v_nyString;

v_nyString : = regexp(v_nylnput, charstring:"?+(text)?+",0);
/1 will return "text"

v_nyString : = regexp(v_nylnput, charstring:"?+(text)?+",1);
/] causes an error as there is no group with index 1

v_nyString : = regexp(v_nyl nput, charstring:"(?+)(text)(?+",0);
/'l will return " simple "

v_nyString := regexp(v_nylnput, charstring:"(?+)(text)(?+)",2);
/1 will return " for a regexp exanple "

v_nyString := regexp(v_nylnput, charstring:"((?+)(text)(?+))",0);
/1 will return the whole inpar, i.e. " sinple text for a regexp exanple

v_nyString : = regexp(v_nylnput,charstring:"(([1+)(text)(?+))",0);
/1 will return an enpty string as expression does not matches inpar

v_nyString : = regexp(v_nyl nput, universal charstring:"?+(text)?+",0);
/1 will cause an error as inpar is of type charstring, while
/'l expression is of type universal charstring

v_nylnput :=" date: 2001-10-20 ; msgno: 17; exp “;

var tenplate charstring v_nyPattern :=
pattern "([\t]#(0,)date:[\d\-1#(0,);[\t]#(0,)msgno: (\d#(1,3)); (exp)#(0,1)) [\t]#(0,)";
Il please note, that only the very first opening bracket and the bracket before "\d#(1,3)"
/1 denotes groups; "#(0,)", "#(1,3)" and "#(0,1)" denotes matching the precedi ng expression
/1l several tine

v_nyString := regexp(v_nylnput, v_nyPattern,0);

/1 will return the input string but the whitespace at the end,
/Il i.e. ™ date: 2001-10-20 ; msgno: 17; exp"

ETSI

332 ETSI ES 201 873-1 V4.9.1 (2017-05)

v_nyString : = regexp(v_nylnput, v_nyPattern,1);
/1 will return the value "17"

/1 An exanpl e of a wapper function to count groups from1l and return the conplete p_inpar
[1if p_groupno equals O
function f_regexp0O(
in tenplate charstring p_inpar,
in tenplate charstring p_expression,
in integer p_groupno)
return charstring {
var tenplate charstring v_extendedExpr := pattern "({p_expression})";
return regexp(p_i npar, v_extendedExpr, p_groupno)

C.4.2 The Substring function

substr (
in tenplate (present) any_string_or_sequence_type inpar,
in integer index,
in integer count

) return input_string_or_sequence_type

This function returns a substring or subsequence from avalue that is of abinary string type (bi t st ri ng,
hexstring, oct et st ring), acharacter stringtype (char stri ng, uni ver sal charstri ng), or asequence
type (record of,set of orarray). If i npar isalitera (i.e. typeisnot explicitly given) the corresponding type
shall be retrieved from the value contents. The type of the substring or subsequence returned is the root type of the input
parameter. The starting point of substring or subsequence to return is defined by the second parameter (i ndex).
Indexing starts from zero. The third input parameter (count) defines the length of the substring or subsequence to be
returned. The units of length for string types are as defined in table 4 of the present document. For sequence types, the
unit of length is element.

NOTE: Please note that the root types of arraysisr ecor d of , thereforeif i npar isan array the returned type
isrecord of. This, in some cases, may lead to different indexingini npar and in the returned value.

When used on templates of character string types, only the inside matching mechanisms AnyElement and
AnyElementsOrNone are allowed ini npar and the function shall return the character representation of the matching
mechanisms, i.e. "?' for AnyElement and "*" for AnyElementsOrNone. When inpar is atemplate of binary string or
sequence type or is an array, only the specific value and AnyElement matching mechanisms are allowed and the
substring or subsequence to be returned shall not contain AnyElement.

In addition to the general error causesin clause 16.1.2, error causes are:
e index islessthan zero;

. count islessthan zero;

. i ndex+count isgreater than| engt hof (i npar);

. i npar isatemplate of acharacter string type and contains a matching mechanism other than AnyElement or
AnyElementsOrNone;

. i npar isatemplate of abinary string or sequence type or array and it contains other matching mechanism as

specific value and AnyElement;

. i npar isatemplate of abinary string or sequence type or array and the substring or subsequence to be
returned contai ns the AnyElement matching mechanism.

EXAMPLE:
substr('00100110' B, 3, 4) /1 returns '0011'B
substr (' ABCDEF' H, 2, 3) /1 returns 'CDE H
substr (' 01AB23CD O 1, 2) [/ returns 'AB23' O

substr("My nanme is JJ", 11, 2) // returns "JJ"

substr({ 4, 5, 6}, 1, 2) /1 returns {5, 6}

ETSI

333 ETSI ES 201 873-1 V4.9.1 (2017-05)

C.4.3 The Replace function

repl ace(
in any_string_or_sequence_type inpar,
in integer index,
in integer len,
in any_string_or_sequence_type repl
) return any_string_or_sequence type

This function replaces the substring or subsequence of valuei npar atindex i ndex of length | en with the string or
sequence valuer epl and returns the resulting string or sequence. i npar shall not be modified. If | en isO the string
or sequencer epl isinserted. If i ndex isO, r epl isinserted at the beginning of i npar . If i ndex is

| engt hof (i npar),repl isinserted at theend of i npar . If i npar isalitera (i.e. typeisnot explicitly given) the
corresponding type shall be retrieved from the value contents. i npar andr epl , and the returned string or sequence
shall be of the same root type. The function replace can be applied to bi t st ri ng, hexstri ng, octetstring,or
any character string, r ecord of ,set of, or arrays. Note that indexing in strings starts from zero.

NOTE: Please note that the root types of arraysisr ecor d of , thereforeif i npar orr epl or both arean
array, thereturned typeisr ecor d of . This, in some cases, may |lead to different indexing ini npar
and/or r epl and in the returned value.

In addition to the general error causesin clause 16.1.2, error causes are:

. i npar orrepl arenot of string, record of ,set of, or array type;
. i npar andr epl are of different root type;

. i ndex islessthan O or greater than | engt hof (i npar) ;

. | enislessthan O or greater than| engt hof (i npar) ;

. i ndex+l en isgreater than| engt hof (i npar) .

EXAMPLE:

replace ('00000110'B, 1, 3, '111'B) /] returns '01110110'B
replace (' ABCDEF' H, 0, 2, '123'H) /'l returns '123CDEF H

replace ('01AB23CD O 2, 1, 'FF96' O /1 returns '01ABFF96CD O
replace ("My narme is JJ", 11, 1, "xx") [/ returns "My nane is xxJ"

replace ("My nane is JJ", 11, 0, "xx") [/ returns "My nane is xxJJ"

replace ("My name is JJ", 2, 2, "x") /1 returns "Myxane is JJ",

replace ("My nane is JJ", 12, 2, "xx") [/ produces test case error
replace ("My nane is JJ", 13, 2, "xx") [/ produces test case error
replace ("My name is JJ", 13, 0, "xx") [/ returns "My nane is JJIxx"

C.5 Codec functions

C.5.1 The encoding function

encval ue(in tenplate (value) any_type inpar,
in universal charstring encoding_info :="",
in universal charstring dynam c_encoding := "") return bitstring

ETSI

334 ETSI ES 201 873-1 V4.9.1 (2017-05)

Theencval ue function encodes avalue or template into a bitstring. When the actual parameter that is passed to

i npar isatemplate, it shall resolve to a specific value (the same restrictions apply as for the argument of the send
statement). The returned bitstring represents the encoded value of i npar , however, the TTCN-3 test system need not
make any check on its correctness. The optional encodi ng_i nf o parameter is used for passing additional encoding
information to the codec and, if it is omitted, no additional information is sent to the codec.

The optional dynam ¢_encodi ng parameter is used for dynamic selection of encode attribute of thei npar vaue
for thissingleencval ue call. Therulesfor dynamic selection of the encode attribute are described in clause 27.9.

In addition to the general error causesin clause 16.1.2, error causes are:

. Encoding fails due to a runtime system problem (i.e. no encoding function exists for the actua type of
i npar).

C.5.2 The decoding function

decval ue(inout bitstring encoded_val ue,
out any_type decoded_val ue,
in universal charstring decoding_info :="",
in universal charstring dynam c_encoding := "") return integer

Thedecval ue function decodes a bitstring into a value. The test system shall suppose that the bitstring
encoded_val ue represents an encoded instance of the actual type of decoded_val ue. The optional

decodi ng_i nf o parameter is used for passing additional decoding information to the codec and, if it is omitted, no
additional information is sent to the codec.

Theoptional dynam ¢_encodi ng parameter is used for dynamic selection of encode attribute of the
decoded_val ue parameter for thissingledecval ue call. Therulesfor dynamic selection of the encode attribute
are described in 27.9.

If the decoding was successful, then the used bits are removed from the parameter encoded_val ue, therestis
returned (in the parameter encoded_val ue), and the decoded value is returned in the parameter decoded_val ue.
If the decoding was unsuccessful, the actual parameters for encoded_val ue and decoded_val ue are not
changed. The function shall return an integer value to indicate success or failure of the decoding below:

. The return value 0 indicates that decoding was successful.

. The return value 1 indicates an unspecified cause of decoding failure. Thisvalueis also returned if the
encoded_val ue parameter contains an unitialized value.

. The return value 2 indicates that decoding could not be completed asencoded_val ue did not contain
enough bits.

Therestrictionsin clause 16.1.2 apply.

C.5.3 The encoding to universal charstring function

encval ue_uni char(in tenplate (value) any_type inpar,
in charstring string_serialization := "UTF-8",
in universal charstring encoding_info :=""
in universal charstring dynam c_encoding :="")
return universal charstring

Theencval ue_uni char function encodes avalue or template into a universal charstring. When the actual
parameter that ispassed to i npar isatemplate, it shall resolve to a specific value (the same restrictions apply as for
the argument of the send statement). The returned universal charstring represents the encoded value of i npar ,
however, the TTCN-3 test system need not make any check on its correctness. If the optional string_serialization
parameter is omitted, the default value "UTF-8" is used. The optional encodi ng_i nf o parameter is used for passing
additional encoding information to the codec and, if it is omitted, no additional information is sent to the codec.

ETSI

335 ETSI ES 201 873-1 V4.9.1 (2017-05)

Theoptional dynam ¢_encodi ng parameter is used for dynamic selection of encode attribute of thei npar vaue
for thissingleencval ue_uni char call. Therulesfor dynamic selection of the encode attribute are described in
clause 27.9.

The following values (see | SO/IEC 10646 [2]) are allowed as string_serialization actual parameters (for the description
of the UCS encoding scheme see clause 27.5):

a "UTF8"
b) "UTF-16"
c) "UTF-16LE"

d) "UTF-16BE"
e "UTF-32'

f) "UTF-32LE"
g "UTF-32BE"

The serialized bitstring shall not include the optional signature (see clause 10 of ISO/IEC 10646 [2], aso known as byte
order mark).

In case of "UTF-16" and "UTF-32" big-endian ordering shall be used (as described in clauses 10.4 and 10.7 of
ISO/IEC 10646 [2]).

The specific semantics of this function are explained by the following TTCN-3 definition:

function encval ue_uni char(in tenpl ate(value) any_type inpar
in charstring enc
in universal charstring encoding_info :=""
in universal charstring dynam c_encoding :="")
return universal charstring {
return oct2uni char (bit2oct (encval ue(i npar, encodi ng_i nfo, dynani c_encoding)), enc)

The encval ue_uni char function first invokes the encvalue function in order to encode the val ue
passed in the inpar paraneter to a bitstring. The bitstring is then converted to an octetstring by
the bit2oct function and subsequently to a universal charstring using the oct2unichar function. The
string_serialization paranmeter defines how the encoded octets (in fact the encoded bitstring

recei ved fromthe codec) contain the characters. The universal charstring value is then returned as
the result of the encval ue_unichar function.

In addition to the general error causesin clause 16.1.2, error causes are:

. Encoding fails due to a runtime system problem (i.e. no encoding function exists for the actual type of
i npar).

e Thegiven string encoding is not recognized.

C.5.4 The decoding from universal charstring function

decval ue_uni char (i nout universal charstring encoded_val ue,
out any_type decoded_val ue,
in charstring string_serialization:= "UTF-8",
in universal charstring decoding_info :=""
in universal charstring dynam c_encoding :="")
return integer

Thedecval ue_uni char function decodes (part of) auniversal charstring into avalue. The test system shall
suppose that a prefix of the universal charstring encoded_val ue represents an encoded instance of the actual type of
decoded_val ue. Theoptional decodi ng_i nf o parameter is used for passing additional decoding information to
the codec and, if it is omitted, no additional information is sent to the codec.

ETSI

336 ETSI ES 201 873-1 V4.9.1 (2017-05)

Theoptional dynam ¢_encodi ng parameter is used for dynamic selection of encode attribute of the
decoded_val ue parameter for thissingledecval ue_uni char cal. Therulesfor dynamic selection of the
encode attribute are described in clause 27.9.

If the decoding was successful, then the characters used for decoding are removed from the parameter

encoded_val ue, therest isreturned (in the parameter encoded_val ue), and the decoded value is returned in the
parameter decoded_val ue. If the decoding was unsuccessful, the actual parametersfor encoded_val ue and
decoded_val ue are not changed. The function shall return an integer value to indicate success or failure of the
decoding below:

e Thereturnvaue 0 indicates that decoding was successful.

. The return value 1 indicates an unspecified cause of decoding failure. Thisvalueis also returned if the
encoded_val ue parameter contains an unitialized value.

e Thereturnvaue 2 indicates that decoding could not be completed asencoded_val ue did not contain
enough bits.

If the optional string_serialization parameter is omitted, the default value "UTF-8" is used.

The following values (see ISO/IEC 10646 [2]) are allowed as string_serialization actual parameters (for the description
of the UCS encoding scheme see clause 27.5):

a "UTF-8"
b) "UTF-16"
¢ "UTF-16LE"

d) "UTF-16BE"
e "UTF-32"

f) "UTF-32LE"
g "UTF-32BE"

The serialized bitstring shall not include the optional signature (see clause 10 of 1SO/IEC 10646 [2], aso known as byte
order mark).

In case of "UTF-16" and "UTF-32" big-endian ordering shall be used (as described in clauses 10.4 and 10.7 of
ISO/IEC 10646 [2]).

The semantics of the function can be explained by the following TTCN-3 function:

function decval ue_uni char (inout universal charstring encoded_val ue,
out any_type decoded_val ue,

in charstring string_encoding := "UTF-8"",
in universal charstring decoding_info :="",
in universal charstring dynam c_encoding := "") return integer {
var bitstring v_str = oct2bit (unichar2oct(encoded_val ue, string_encoding));
var integer v_result := decval ue(v_str, decoded_val ue, decoding_info, dynam c_encoding);
if (v_result == 0) { // success
encoded_val ue : = oct 2uni char (bit2oct(v_str), string_encoding);

}

return v_result;

}

Thedecval ue_uni char function first converts the universal charstring value passed intheencoded_val ue
parameter into an octetstring using theuni char 2oct function. Thest ri ng_encodi ng parameter controls how
the characters are converted into octets (in fact how the bitstring sent to the codec contains the characters). The
octetstring is subsequently converted into a bitstring by the oct 2bi t function. This bitstring is then passed as a
parameter to the standard decval ue function that performs the actual decoding. In case of successful decoding, the
undecoded part of the message is automatically converted from bitstring to octetstring by the bi t 2oct function and
then to universal charstring using theoct 2uni char function. This universal charstring isthen assigned to the
encoded_val ue parameter. The result of decoding isthen returned to the TE, finishing thedecval ue_uni char
call.

ETSI

337 ETSI ES 201 873-1 V4.9.1 (2017-05)

Therestrictionsin clause 16.1.2 apply.

C.5.5 The encoding to octetstring function

encval ue_o(in tenplate (value) any_type inpar,
in universal charstring encoding_info :="") return octetstring

Theencval ue_o function encodes ava ue or template into an octetstring. When the actual parameter that is passed
toi npar isatemplate, it shall resolve to a specific value (the same restrictions apply as for the argument of the send
statement). The returned octetstring represents the encoded value of i npar , however, the TTCN-3 test system need not
make any check on its correctness. The optional encodi ng_i nf o parameter is used for passing additional encoding
information to the codec and, if it is omitted, no additional information is sent to the codec.

In addition to the general error causesin clause 16.1.2, error causes are:

. Encoding fails due to a runtime system problem (i.e. no encoding function exists for the actual type of
i npar).

C.5.6 The decoding from octetstring function

decval ue_o(i nout octetstring encoded_val ue,
out any_type decoded_val ue,
in universal charstring decoding_info :="") return integer

Thedecval ue_o function decodes an octetstring into a value. The test system shall suppose that the octetstring
encoded_val ue represents an encoded instance of the actual type of decoded_val ue. The optional

decodi ng_i nf o parameter is used for passing additional decoding information to the codec and, if it is omitted, no
additional information is sent to the codec.

If the decoding was successful, then the used octets are removed from the parameter encoded_val ue, therestis
returned (in the parameter encoded_val ue), and the decoded value is returned in the parameter decoded_val ue.
If the decoding was unsuccessful, the actual parameters for encoded_val ue and decoded_val ue are not
changed. The function shall return an integer value to indicate success or failure of the decoding below:

e Thereturnvaue 0 indicates that decoding was successful.

. The return value 1 indicates an unspecified cause of decoding failure. Thisvalueis also returned if the
encoded_val ue parameter contains an unitialized value.

. The return value 2 indicates that decoding could not be completed asencoded_val ue did not contain
enough octets.

The restrictionsin clause 16.1.2 apply.

C.5.7 Retrieving the type of string encoding
get _stringencoding(in octetstring encoded_val ue) return charstring

The get_stringencoding function analyses the encoded value and returns the UCS encoding scheme according to
clause 10 of ISO/IEC 10646 [2] (see aso clause 27.5 of the present document). The identified encoding scheme, or the
value "<unknown>", if the type of encoding cannot be determined unanimously, shall be returned as a character string.

NOTE: Theinitia octet sequence (also known as byte order mark, BOM), when present, allows identifying the
encoding scheme unanimously. When it is not present, other symptoms may be used to identify the
encoding scheme unanimoudly; for example, only UTF-8 may have odd number of octets and bit
distribution according to table 2 of clause 9.1 of ISO/IEC 10646 [2].

EXAMPLE:

mat ch (get_stringencodi ng(' 6869C3BA7A' O charstring: "UTF-8")) // true
//(the octetstring contains the UTF-8 encoding of the character sequence "hiuz")

ETSI

338 ETSI ES 201 873-1 V4.9.1 (2017-05)

C.5.8 Removing BOMs of UCS encoding schemes

renmove_bon(in octetstring encoded_val ue) return octetstring

Ther enove_bomfunction removes the optional FEFF ZERO WIDTH NO-BREAK SPACE sequence that may be
present at the beginning of a stream of serialized (encoded) universal character strings to indicate the order of the octets
within the encoding form, as defined in clause 10 of 1SO/IEC 10646 [2]. If no FEFF ZERO WIDTH NO-BREAK
SPACE sequence present in the encoded_val ue parameter, the function shall return the value of the parameter
without change.

Table C.2: Overview of initial octet sequences used for BOM

Coding scheme initial octet sequence comments

UTF-8 EF BB BF signature not required / no effect

UTF-16BE FE FF no signature meaning

UTF-16LE FF FE no signature meaning
FE FF signature

UTF-16 FF FE (default FE FF)

UTF-32BE 00 00 FE FF no signature meaning

UTF-32LE FF FE 00 00 no signature meaning
00 00 FE FF signature

UTF-32 FF FE 00 00 (default 00 00 FE FF)

EXAMPLE:

renove_bon(' FEFFO068006900FA007A O) // returns ' 0068006900FA007A" O

renove_bon('BC O) // returns 'BC O
/1 note that this octetstring doesn't contain valid UCS character

| exanpl e use: autonatic decodi ng of encoded character strings:
oct 2uni char (renove_bon(v_nyEncodedChar act er Sequence) ,
get _stringencodi ng(v_nyEncodedChar act er Sequence))

C.6 Other functions

C.6.1 The random number generator function

rnd([in float seed]) return float

Ther nd function returns a (pseudo) random number less than 1 but greater or equal to 0. The random number
generator isinitialized per test component and for the control part by means of an optional seed value (a numerical float
value). If no new seed is provided, the last generated number will be used as seed for the next random number. Without
apreviousinitialization avalue calculated from the system time will be used as seed value whenr nd isused the first
time in atest component or the control part.

Eachtimether nd function isinitialized with the same seed value, it shall repeat the same sequence of random
numbers.

NOTE: For the purpose of keeping parallel testing deterministic, each test component, as well as the control part
has its own random seed. This allows for better reproduciblity of test executions. Thus, the rnd function
will always use the seed of the component or control part which callsit.

To produce a random integers in a given range, the following formula can be used:

f | oat 2i nt (i nt 2f | oat (upper bound - | owerbound +1)*rnd()) + | owerbound
/1 Here, upperbound and | ower bound denote highest and | owest nunber in range.

In addition to the general error causesin clause 16.1.2, error causes are;

. seed isinfinity,-infinityornot_a_nunber.

ETSI

339 ETSI ES 201 873-1 V4.9.1 (2017-05)

C.6.2 The testcasename function

testcasenane() return charstring
Thet est casenane function shall return the unqualified name of the actually executing test case.
EXAMPLE 1:
nodul e MyTCMVbdul e {

testcase TC MyTest Casel () runs on MIC system TSI

{
var charstring v_tcNane := testcasenane ();
/1 will return the charstring "TC M/Test Casel"
}
t est case TC MyTest Case2 () runs on MIC system TSI
{

y

}
modul e MyTSMWbdul e {
functi on f_nyStart APTC() runs on PTC {
var charstring v_tcNane : = testcasenane ();
/1 will return charstring "TC M/Test Casel", if the function is
/1 called by a test conmponent during the execution of TC MyTest Casel

/1 will return charstring "TC MyTest Case2", if the function is
// called by a test conponent when TC MyTest Case2 is being executed

}

When the functiont est casenane is called if the control part is being executed but no testcase, it shall return the
empty string.

EXAMPLE 2:
nodul e MyModul e {

control

{
var charstring v_tcNane := testcasenane () // wll return charstring ""

}

The general error causesin clause 16.1.2 apply.

C.6.3 The hostld function

hostid(in charstring idkind := "Ipvdorl Pv6") return charstring

Thehost i d function shall return the host id of the test component or module control executing the host i d function
in form of acharacter string. Thei n parameter i dki nd allows to specify the expected id format to be returned.

Predefined i dki nd values are:

. "I pvdor | Pv6" : The contents of the returned character string is an Ipv4 address. If no |pv4 address, but an
Ipv6 addressis available, a character string representation of the Ipv6 addressis returned.

. "l pv4" : The contents of the returned character string shall be an 1pv4 address.

. "1 pv6": The contents of the returned characterstring shall be an 1pv6 address.

Thehost i d function shall return the empty string, if it cannot retrieve any host id or ahost id of akind different from
the kind defined by the actual idkind parameter.

ETSI

340

The general error causesin clause 16.1.2 apply.

EXAMPLE:
/'l assune

testcase TC MyTestCase () runs on MIC system TSI
{

;/ar charstring v_nyHostld := hostid ("Ipv4");

/1 assune further the follow ng statement in nodule control

execute(TC MyTest Case(), -, "127.0.0.1");

ETSI ES 201 873-1 V4.9.1 (2017-05)

/1 In this setting, v_nmyHostld will have the value "127.0.0.1" after the execution of hostid

ETSI

341 ETSI ES 201 873-1 V4.9.1 (2017-05)

Annex D (normative):
Preprocessing macros

D.O General

This annex defines a set of preprocessing macros. A preprocessing macro isa macro that is replaced by a preprocessor
or acompiler withachar st ri ng ori nt eger value respectively before compilation. Preprocessing macros shall not
be replaced inside literal char st ri ng values and templates and not in TTCN-3 comments. In the TTCN-3 code, it
can beused likeachar st ri ng or ani nt eger value respectively.

D.1 Preprocessing macro _ MODULE

The __ MODULE__ preprocessing macro denotes the module name in which the macro is used. A preprocessor or
compiler shall replace all occurrencesof _ MODULE__ with the actual module name in form of achar st ri ng value.

D.2 Preprocessing macro _ FILE

The __FI LE__ preprocessing macro denotes the canonical (absolute) file name, i.e. the full path and the basic file
name, in which the macro is used. A preprocessor or compiler shall replace al occurrencesof __ FI LE__ withthe
actual canonical (absolute) file namein form of achar st ri ng value.

NOTE: Theformat of the canonical file name depends on the operating system and is not specified by the present
document.

EXAMPLE:

const charstring c_nmyConst:= _ _FILE__;
//c_nyConst is for exanple "/honme/ nyhome/ MyTest. ttcn"

D.3 Preprocessing macro _ BFILE

The __BFI LE__ preprocessing macro denotes the basic (relative) file name, i.e. without path, in which the macro is
used. A preprocessor or compiler shall replace all occurrencesof __ BFI LE__ with the actual basic (relative) file name
informof achar st ri ng value.

NOTE: Theformat of the basic file name depends on the operating system and is not specified by the present
document.

EXAMPLE:

const charstring c_nyConst:= _ BFILE__;
/1 c_nyConst is for exanple "MyTest.ttcn"

D.4 Preprocessing macro _ LINE

The LI NE__ preprocessing macro denotes the line number of the file in which the macro is used. A preprocessor or
compiler shall replace each occurrenceof __ LI NE__ with the actual line number in form of ani nt eger value.

A file starts with line number 1. Each newline shall increase the line number by 1 (see clause A.1.5.1). Also newlines
of commented lines shall increase the line number by 1.

ETSI

342 ETSI ES 201 873-1 V4.9.1 (2017-05)

D.5 Preprocessing macro _ SCOPE___

The __ SCOPE__ preprocessing macro denotes the unqualified name of the lowest named basic scope unit in which the
macro is used. According to clause 5.2, basic scope units of TTCN-3 are module definitions part, module control part,
component types, functions, altsteps, test cases, statement blocks, templates and user defined named types. Statement
blocks have no name and therefore, a_ SCOPE__ preprocessing macro used in a statement block refersto the next
higher named basic scope unit.

A preprocessor or compiler shall replace all occurrencesof _ SCOPE__ withachar st ri ng value which includes:
a) themodule name, if the lowest named scope unit is the module definitions part;
b) rcontrol ", if thelowest named scope unit is the module control part;
c) acomponent type name, if the lowest named scope unit is a component type definition;
d) atest case name, if the lowest named scope unit is atest case definition;
€) anatstep name, if the lowest named scope is an altstep definition;
f) afunction name, if the lowest named scopeis a function definition;
g) atemplate name, if the lowest named scope is atemplate definition (local or global); or
h) thetype name, if the lowest named scope is a user defined named type definition.

NOTE: The__ SCOPE__ preprocessing macro cannot be used to retrieve the names of other kinds of definitions,
like for example names of groups of definitions or names of global constants.

EXAMPLE 1: Using__ SCOPE__ in constant and template definitions
nodul e MyModul e

const charstring c_nyConst := _ SCOPE__; /1 c_nyConst contains "M/NModul e"
tenplate charstring mnyTenplate := _ SCOPE__; // mnyTenplate contains "mnyTenpl ate"

type record MyRecordl

charstring fieldll,
charstring fieldl2

}
tenpl ate MyRecordl m nyTenpl atel (charstring p_p := __ SCOPE_) :=
fieldll := p_p,
fieldl2 := _ SCOPE__ /1 fieldl2 contains "mnyTenpl atel"

}

function f_nyFunction() {
var tenplate MyRecordl v_nyvarl := mnyTenpl atel;
/1 fieldll of mnyTenplatel will contain the default value of parameter p_p,
Il i.e. "mnyTenpl atel"
I
}

EXAMPLE2: Using__ SCOPE__ inastructured type scope

type record MyRecord2 {
charstring field21,
charstring field22 ("a", "b", _ SCOPE _
[/l list constrained field: a |egal values are "a", "b" or "MRecord2"

}

tenpl ate MyRecord2 mnnyTenpl ate2 : = {
field2l := "a",
field22 := "M/Record2" /1 a valid specific val ue natching

ETSI

343 ETSI ES 201 873-1 V4.9.1 (2017-05)

tenpl ate M/Record2 mnyTenpl ate3 : = {
field21 := "a",
field22 := _ SCOPE__
/] Causes an error as _ SCOPE__ is replaced with "mnyTenpl ate3",
/1 which is violating the list constraint of field22
}

EXAMPLE 3: Using__ SCOPE__ in an embedded structured type scope

type record MyRecord3 {
charstring fiel d31,

record {
charstring field321 ("a", "b", _ SCOPE _
/1 list constrained field: a |l egal value shall be "a", "b" or "MRecord3"
} field32
}
tenpl ate MyRecord3 mnyTenpl ated4 : =
field31 := "a",
field32 : =
field321 := "M/Record3" /1 a valid specific value natching
}
}
tenpl ate MyRecord3 mnyTenpl ate5 : =
field31 := "a",
field32 :=
field321 := _ SCOPE__

/] Causes and error as _ SCOPE__ is replaced with "mnyTenpl at e5",
/1 which is violating the list constraint of field321

ETSI

344 ETSI ES 201 873-1 V4.9.1 (2017-05)

Annex E (informative):
Library of Useful Types

E.1 Limitations

Names of types added to thislibrary are to be unique within the whole language and within the library (i.e. are not to be
one of the names defined in annex C). Names defined in this library are not to be used by TTCN-3 users as identifiers of
other definitions than given in this annex.

NOTE: Therefore type definitions given in this annex may be repeated in TTCN-3 modules but no type distinct
from the one specified in this annex can be defined with one of the identifiers used in this annex.

E.2 Useful TTCN-3 types

E.2.1 Useful simple basic types

E.2.1.0 Signed and unsigned single byte integers

These types support integer values of the range from -128 to 127 for the signed and from 0 to 255 for the unsigned type.
The value notation for these types is the same as the value notation for the integer type. Values of these types are to be
encoded and decoded as they were represented on a single byte within the system independently from the actual
representation form used.

NOTE: Encoding of values of these types may be the same or may differ from each other and from the encoding
of the integer type (the root type of these useful types) depending on the actual encoding rules used.
Details of encoding rules are out of the scope of the present document.

Type definitions for these types are:
type integer byt e (-128 .. 127) with { variant "8 bit" };

type integer unsi gnedbyt e (0 .. 255) with { variant "unsigned 8 bit" };

E.2.1.1 Signed and unsigned short integers

These types support integer values of the range from -32 768 to 32 767 for the signed and from 0 to 65 535 for the
unsigned type. The value notation for these typesis the same as the value notation for the integer type. Values of these
types are to be encoded and decoded as they were represented on two bytes within the system independently from the
actual representation form used.

NOTE: Encoding of values of these types may be the same or may differ from each other and from the encoding
of the integer type (the root type of these useful types) depending on the actual encoding rules used.
Details of encoding rules are out of the scope of the present document.

Type definitions for these types are:
type integer short (-32768 .. 32767) with { variant "16 bit" };

type integer unsi gnedshort (0 .. 65535) with { variant "unsigned 16 bit" };

ETSI

345 ETSI ES 201 873-1 V4.9.1 (2017-05)

E.2.1.2 Signed and unsigned long integers

These types support integer values of the range from -2 147 483 648 to 2 147 483 647 for the signed and from O to

4 294 967 295 for the unsigned type. The value notation for these typesis the same as the value notation for the integer
type. Values of these types are to be encoded and decoded as they were represented on four bytes within the system
independently from the actual representation form used.

NOTE: Encoding of values of these types may be the same or may differ from each other and from the encoding
of the integer type (the root type of these useful types) depending on the actual encoding rules used.
Details of encoding rules are out of the scope of the present document.

Type definitions for these types are:

type integer | ong (-2147483648 .. 2147483647)
with { variant "32 bit" };

type integer unsi gnedl| ong (0 .. 4294967295)
with { variant "unsigned 32 bit" };

E.2.1.3 Signed and unsigned longlong integers

These types support integer values of the range from -9 223 372 036 854 775 808 to 9 223 372 036 854 775 807 for the
signed and from O to 18 446 744 073 709 551 615 for the unsigned type. The value notation for these typesis the same
as the value notation for the integer type. Va ues of these types are to be encoded and decoded as they were represented
on eight bytes within the system independently from the actual representation form used.

NOTE: Encoding of values of these types may be the same or may differ from each other and from the encoding
of the integer type (the root type of these useful types) depending on the actual encoding rules used.
Details of encoding rules are out of the scope of the present document.

Type definitions for these types are:

type integer | ongl ong (-9223372036854775808 .. 9223372036854775807)
with { variant "64 bit" };

type integer unsi gnedl| ongl ong (0 .. 18446744073709551615)
with { variant "unsigned 64 bit" };

E.2.1.4 |EEE 754™ floats

These types support the ANSI/IEEE 754™ [6] for binary floating-point arithmetic. The type IEEE 754™ [6] float
supports floating-point numbers with base 10, exponent of size 8, mantissa of size 23 and a sign bit. The type

|EEE 754™ [6] double supports floating-point numbers with base 10, exponent of size 11, mantissa of size 52 and a
sign bit. The type IEEE 754™ [6] ext f | oat supports floating-point numbers with base 10, minimal exponent of size
11, minimal mantissa of size 32 and asign bit. The type IEEE 754™ [6] ext doubl e supports floating-point numbers
with base 10, minimal exponent of size 15, minima mantissa of size 64 and a sign hit.

Values of these types are to be encoded and decoded according to the IEEE 754™ [6] definitions. The value notation
for these types is the same as the value notation for the float type (base 10).

NOTE: Precise encoding of values of thistype depends on the actual encoding rules used. Details of encoding
rules are out of the scope of the present document.

Type definitions for these types are:

type fl oat | EEE754f | oat with { variant "|EEE754 float" };

type fl oat | EEE754doubl e with { variant "|EEE754 double" };

type fl oat | EEE754ext f | oat with { variant "|EEE754 extended float" };
type fl oat | EEE754ext doubl e with { variant "|EEE754 extended double" };

ETSI

346 ETSI ES 201 873-1 V4.9.1 (2017-05)

E.2.2 Useful character string types

E.2.2.0 UTF-8 character string "utf8string"

This type supports the whole character set of the TTCN-3type uni ver sal char st ri ng (see paragraph d) of
clause 6.1.1). Its distinguished values are zero, one, or more characters from this set. Values of thistype are entirely
(e.g. each character of the value individually) to be encoded and decoded according to the UCS Transformation

Format 8 (UTF-8) as defined in annex R of ISO/IEC 10646 [2]. The value notation for thistype is the same as the value
notation for theuni ver sal char stri ng type.

The type definition for thistypeis:

type universal charstring utf8string with { variant "UTF-8" };

E.2.2.1 BMP character string "bmpstring"

This type supports the Basic Multilingual Plane (BMP) character set of ISO/IEC 10646 [2]. The BMP represents all
characters of plane 00 of group 00 of the Universal Multiple-octet coded Character Set. Its distinguished values are
zero, one, or more characters from the BMP. Values of thistype are entirely (e.g. each character of the value
individually) to be encoded and decoded according to the UTF-16 coded representation form (see clause 9.2 of
ISO/IEC 10646 [2]). The value notation for this type is the same as the val ue notation for the uni ver sal
charstring type.

NOTE: Thetype"bmpstring" supports a subset of the TTCN-3 type uni ver sal charstri ng.

The type definition for thistypeis:

type universal charstring bnpstring (char (0,0,0,0) .. char (0,0, 255,255))
with { variant "UTF-16" };

E.2.2.2 UTF-16 character string "utf16string"

Thistype supports all characters of planes 00 to 16 of group 00 of the Universal Multiple-octet coded Character Set (see
ISO/IEC 10646 [2]). Its distinguished values are zero, one, or more characters from this set. Values of thistype are
entirely (e.g. each character of the value individually) to be encoded and decoded according to the UCS Transformation
Format 16 (UTF-16) as defined in annex Q of ISO/IEC 10646 [2]. The value notation for thistype is the same asthe
value notation for theuni ver sal charstri ng type

NOTE: Thetype"utf16string" supports a subset of the TTCN-3 type uni ver sal charstri ng.

The type definition for thistypeis:

type universal charstring utfl6string (char (0,0,0,0) .. char (O, 16, 255, 255))
with { variant "UTF-16" };

E.2.2.3 ISO/IEC 10646 character string "iso8859string"

Thistype supports all charactersin all aphabets defined in the multiparty standard | SO/IEC 10646 [2]. Its distinguished
values are zero, one, or more characters from the ISO/IEC 10646 [2] character set. Values of thistype are entirely (e.g.
each character of the value individually) to be encoded and decoded according to the coded representation as specified
in 1ISO/IEC 10646 [2] (an 8-bit coding). The value notation for this type is the same as the value notation for the

uni versal charstring type.

NOTE 1. Thetype "is08859string" supports a subset of the TTCN-3typeuni ver sal charstring.

NOTE 2: Ineach ISO/IEC 10646 [2] aphabet the lower part of the character set table (positions 02/00 to 07/14) is
compatible with the Recommendation ITU-T T.50 [4] character set. Hence all extra language specific
characters are defined for the upper part of the character table only (positions 10/00 to 15/15).

ETSI

347 ETSI ES 201 873-1 V4.9.1 (2017-05)

The type definition for thistypeis:

type uni versal
with { variant

charstring iso8859string (char (0,0,0,0) ..
"8 bit" };

char (0,0,0,255))

E.2.2.4 Status values for TTCN-3 objects

Type and constants defined in this clause support the secure usage of the checkstate port operation defined in
clause 22.5.5.

The type definition for thistypeis:

type charstring objState

("Started", "Halted", "Stopped", "Connected", "Mapped", "Linked");

Useful constant definitions for working with object states are:

const obj State STARTED := "Started";
const obj State HALTED : = "Hal ted";

const obj State STOPPED : = "Stopped";
const obj State CONNECTED : = "Connected";
const obj State MAPPED : = "Mapped";

const obj State LINKED : = "Linked";

E.2.2.5 Template kinds of TTCN-3 objects

Type and constants defined in this clause support the secure usage of the predefined i st enpl at eki nd function,
described in clause C.3.5.

The type definition for thistypeis:

type charstring TenplateKind ("value", "list", "conplenent", "AnyValue", "?", "AnyVal ueOr None",
"*" "range", "subset", "superset", "omt", "decmatch", "AnyEl ement", "AnyEl ementsO None",
"permutation", "length", "ifpresent", "pattern");

Useful constant definitions for working with template kinds are:

const Tenpl at eKi nd VALUE : = "val ue";

const TenplateKind LIST := "list";

const Tenpl at eKi nd COWLEMENT : = "conpl ement";

const Tenpl at eKi nd ANY_VALUE : = " AnyVal ue";

const Tenpl at eKi nd ANY_VALUE_OR_NONE : = " AnyVal ueOr None";
const Tenpl at eKi nd RANGE : = "range";

const Tenpl at eKi nd SUBSET : = "subset";

const Tenpl at eKi nd SUPERSET : = "superset";

const TenplateKind OMT := "omt";

const Tenpl at eKi nd DECVATCH : = "decnat ch";

const Tenpl at eKi nd ANY_ELEMENT : = "AnyEl enent";

const Tenpl at eKi nd ANY_ELEMENTS_OR_NONE : = "AnyEl ement sOr None";
const Tenpl at eKi nd PERMUTATI ON : = "pernutati on”;

const Tenpl ateKi nd LENGTH : = "l engt h";

const Tenpl ateKind | FPRESENT : = "ifpresent";

const Tenpl ateKi nd PATTERN : = "pattern";

E.2.3 Useful structured types

E.2.3.0 Fixed-point decimal literal

This type supports the use of fixed-point decimal literal as defined inthe IDL Syntax and Semantics version 2.6 [i.10].
It is specified by an integer part, adecimal point and afraction part. The integer and fraction parts both consist of a
sequence of decimal (base 10) digits. The number of digitsis stored in "digits' and the size of the fraction part is given
in"scale". The digitsitself are stored in "value ". Value notation for thistype is the same as the value notation for the
record type. Values of thistype are to be encoded and decoded as IDL fixed point decimal values.

NOTE: Precise encoding of values of thistype depends on the actual encoding rules used. Details of encoding

rules are out of the scope of the present document.

ETSI

348 ETSI ES 201 873-1 V4.9.1 (2017-05)

The type definition for thistypeis:

type record IDLfixed {
unsi gnedshort digits,
short scal e,
charstring value_

}
with { variant "IDL:fixed FORMAL/01-12-01 v.2.6" };

E.2.4 Useful atomic string types

E.2.4.1 Single Recommendation ITU-T T.50 character type

A type whose distinguished values are single characters of the version of Recommendation ITU-T T.50 [4] complying
to the International Reference Version (IRV) as specified in clause 8.2 of Recommendation ITU-T T.50 [4] (seeaso
note 1 to clause 6.1.1).

The type definition for thistypeis:

type charstring char646 length (1);
NOTE: The specia string "8 bit" defined in clause 27.5 may be used with this type to specify a given encoding
for itsvalues. Also, other properties of the base type can be changed by using attribute mechanisms.
E.2.4.2 Single universal character type
A type whose distinguished values are single characters from 1SO/IEC 10646 [2].

The type definition for thistypeis:

type universal charstring uchar length (1);

NOTE: Specid strings defined in clause 27.5 except "8 bit" may be used with this type to specify agiven
encoding for its values. Also, other properties of the base type can be changed by using attribute
mechanisms.

E.2.4.3 Single bit type

A type whose distinguished values are single binary digits.

The type definition for thistypeis:

type bitstring bit length (1);

E.2.4.4 Single hex type

A type whose distinguished values are single hexadecimal digits.

The type definition for thistypeis:

type hexstring hex length (1);

E.2.4.5 Single octet type
A type whose distinguished values are pairs of hexadecimal digits.

The type definition for thistypeis:

type octetstring octet length (1);

ETSI

349 ETSI ES 201 873-1 V4.9.1 (2017-05)

Annex F (informative):
Operations on TTCN-3 active objects

F.O General

This annex describes in a short form the semantics of operations on active objectsin TTCN-3 being test components,
timers and ports. This dynamic behaviour is written in the form of state machines with:

. the states being named and identified as nodes,
e theinitial state being identified by an incoming arrow;
. transitions between states connecting two states (not necessarily different states) and identified as arrows,

. transitions being marked with the enabling condition for that transition (i.e. operation or statement calls) and
the resulting condition (for example atest case error), both are separated by '/

- operation and statement calls are the TTCN-3 operations and statements applicable to the object (written
in bold);

- error as aresulting condition means testcase error (written in bold);

- null as aresulting condition means that except of a possible state change no other results apply (written
in bold);

- match/no match refers to the matching result of atransition (written in bold);

- concrete values are boolean or float results (written in bold italics);

- all other resulting conditions are textually described (written in standard font);
. notes are used to explain further details of the state machine.

For further details, please refer to the operational semantics of TTCN-3 [1]. In case of any contradiction between this
annex and the operational semantics of TTCN-3 [1] the latter takes precedence.

F.1 Test components

F.1.1 Test component references

Variables of test component types, the sel f and nt ¢ operations are used to reference test components. Thest art ,
st op, done and r unni ng operations are not directly applied on test components but on component references. The
test system hasto decide if the operation requested should affect the component object itself or other action is
appropriate (e.g. an error occurs when the reference of a stopped PTC isused in a component start operation). The

cr eat e operation used to create PTCs returns a unique reference to the created PTC, which istypically bound to a
variable of component type. The behaviour related to variables of component type themselvesis shown in figure F.1.

ETSI

350 ETSI ES 201 873-1 V4.9.1 (2017-05)

done/error killed/error

variable running/error alivelerror
declaration stop/error kill/error
start/error
Uninitialized . Error

(see note)

| —| "assignment of the return value of cr eat e"/"references created test component’

"assignment of the return value of cr eat e"/"references created
test component” (and "looses the previous reference’’)

Initialized

Whenever a test component enters its error state, the error verdict is assigned to its local verdict, the test

NOTE:
case terminates and the overall test case result will be error.

Figure F.1: Handling of test component references

F.1.2 Dynamic behaviour of PTCs

PTCs can be of non-alive type or dive-type. Non-alive type PTCs can be in Inactive, Running and Killed states. Their
dynamic behaviour is shown in figure F.2.

create/creation of anon-alive PTC

done/no match killed/no match
@ running/false aliveltrue
start/"component executes function”
done/no match killed/no match
running/true aliveltrue

/—("run-time error"/error |

Error
(see note 3)

start/error

stop/"'component terminates” (se note 2a)
kill/"component terminates” (see note 2b)

stop/"component terminates” (see note 1a)
kill/"component terminates” (see note 1b)
"return from function"/"component terminates"

"compl etion of function"/"component terminates"

stop/null (seenote2a) Kill/null (see note 2b)
done/match killed/match
running/false alive/false

NOTE 1: (a) Stop can be either a stop, self.stop or a stop from another test component.
(b) Kill can be either a kill, selfkill, a kill from another test component or a kill from the test system (in

error cases).
NOTE 2: (a) Stop can be from another test component only.
(b) Kill can be from another test component or from the test system (in error cases) only.

NOTE 3: Whenever a test component enters its error state, the error verdict is assigned to its local verdict, the test
case terminates and the overall test case result will be error.

Figure F.2: Dynamic behaviour of non-alive type PTCs

ETSI

351 ETSI ES 201 873-1 V4.9.1 (2017-05)

Alive-type PTCs can bein Inactive, Running, Stopped and Killed states. Their dynamic behaviour is shownin
figure F.3.

create alive/creation of an alive PTC

done/no match killed/no match
runningfalse aliveltrue

stop/"component stops” (see note 2a)
start/"component executes function”

done/no match killed/no match

Kill/"component terminates’ (see note 2b) }\
runningtrue aliveftrue

kill/"component terminates” (see note 1b) run-time error"/error

Error

(see note 3)

start/"component

stop/" component stops” (see note 1a)
executes function”

"return from function"/" component terminates"

"completion of function”/"component terminates’ stop/null (see note 2

done/match

killed/no matcl
runningfalse
aliveltrue

stop/null (see note 2a)
kill/null (see note 2b)

done/match Stopped

killed/match <

running/false \1 . .

alivelfalse kill/"component terminates" (see note 2b) start/error

NOTE 1: (a) Stop can be either a stop, self.stop or a stop from another test component.
(b) Kill can be either a kill, self kill, a kill from another test component or a kill from the test system (in

error cases).
NOTE 2: (a) Stop can be from another test component only. (b) Kill can be from another test component or from

the test system (in error cases) only.
NOTE 3: Whenever a test component enters its error state, the error verdict is assigned to its local verdict, the test
case terminates and the overall test case result will be error.

Figure F.3: Dynamic behaviour of alive-type PTCs

ETSI

352 ETSI ES 201 873-1 V4.9.1 (2017-05)

F.1.3 Dynamic behaviour of the MTC
The MTC can bein Running or Killed state. The dynamic behaviour of the MTC is shown in figure F.4.

execute/"creates the MTC" and "starts the testcase"

(see note 3)

stop/" component terminates” (see note 1a)
kill/"component terminates" (see note 1b)
"completing of the test case"/"component terminates"

done/no match killed/no match
running/true alive/true

start/error

stopfrom another component/error
kill from another component/error
"run-time error"/error

Killed

(see note 2)

NOTE 1: (a) Stop can be either a stop, self.stop, a stop from another test component.
(b) Kill can be either a kill, selfkill, a kill from another test component or a kill from the test system

(in error cases).

NOTE 2: All remaining PTCs are to be killed as well and the testcase terminates.

NOTE 3: Whenever the MTC enters its error state, the error verdict is assigned to its local verdict,the test case
terminates and the overall test case result will be error.

Figure F.4: Dynamic behaviour of the MTC

F.2 Timers

Timers can bein Inactive, Running or Expired state. The dynamic behaviour of atimer is shown in figure F.5.

Test component timers: "component created";
Other local timers: "testcase, function, altstep,

statement block entered or default activated” stop/null
v running/false
. read/0.0
Inactive timeout/no match

stop/stop timer

timeout/match
stop/null

start/"timer starts with
non-negative duration"

ﬂ start/"timer starts with non-negative duration”

N
start/"timer restarts with non-negative duration"

running/true
read/elapsed time
timeout/no match

Running

(see note 1)

running/false

read/0.0 Error

(see note 3)

(see note 2)

start with negative duration/err or

NOTE 1: For any scope unit, all timers in that scope being in Running state constitute the running-timer list.

NOTE 2: For any scope unit, all timers in that scope being in Expired state constitute the timeout-list.

NOTE 3: Whenever a timer enters its error state, the test component it belongs to enters also its error state,assigns
a local error verdict, the test case terminates and the overall test case result will be error.

Figure F.5: Dynamic behaviour of timers

ETSI

353 ETSI ES 201 873-1 V4.9.1 (2017-05)

F.3 Ports

F.3.0 General

Ports can bein Started or Stopped state. Astheir behaviour israther complex, the state machine has been split into a
state machine giving the dynamic behaviour of configuration operations (i.e. connect, disconnect, map and unmap), of
port controlling operations (i.e. start, stop and clear) and of communication operations (i.e. send, receive, cal, getcall,
raise, catch, reply, getreply and check). Astrigger is a shorthand for an alt together with receiveit is not considered

here.

F.3.1 Configuration Operations

The port configuration operations (i.e. connect, disconnect, map and unmap) are indifferent to the state of the port. They
show the behaviour shown in figure F.6.

connect/if ("legal connection")
then (if ("link not yet established")
then "establish thislink" else null)

disconnect/if ("link established") then "remove thislink" else null
map/if ("legal connection”)

then "store link to other port"

(if ("link not yet established")

then "establish thislink" else null)

unmap/if ("link established") then "remove thislink" else null

create/"creates

test component"
(see note 1)

connect/if ("illegal connection") then error
mapl/if ("illegal connection") then "store link to other port" error

Error

(see note

connect/if ("legal connection")
then (if ("link not yet established")
then "establish thislink" else null)
disconnect/if ("link established") then "remove thislink" else null
map/if ("legal connection")
then (if ("link not yet established")
then "establish thislink" else null)
unmap/if ("link established") then "remove thislink" else null

NOTE 1: When creating a PTC the ports of that PTC are created and started; when creating the MTC the ports of
the MTC and the ports of the TSI are created and started.

NOTE 2: Whenever a port enters its error state, the test component it belongs to enters also its error state, assigns
a local error verdict, the test case terminates and the overall test case result will be error.

Figure F.6: Dynamic behaviour of ports: port configuration operations

The transitions do not change the main state of the port, i.e. the port remainsin the Started or Stopped state.

ETSI

354 ETSI ES 201 873-1 V4.9.1 (2017-05)

F.3.2 Port Controlling Operations

The results of port controlling operations are shown in figure F.7.

create/"creates start/"clears queue”

test component”
(see note)

A clear/"clears queue’

halt/"puts halt marker
at the end of the queue” stop/null
start/"clears queue" and

A start/"clears queue”
"removes halt maker"

halt/"puts halt
marker at the
top of the queue"

clear/"clears queue”
stop/null

clear/"clears queue" and
"puts halt marker at the
top of the queue"
halt/null

stop/"removes halt maker"

NOTE: When creating a PTC the ports of that PTC are created and started; when creating the MTC the ports of
the MTC and the ports of the TSI are created and started.

Figure F.7: Dynamic behaviour of ports: port controlling operations

ETSI

355 ETSI ES 201 873-1 V4.9.1 (2017-05)

F.3.3 Communication Operations

The results of the communication operations send, receive, call, getcall, raise, catch, reply, getreply, check are shownin

figure F.8.

receivelif ("top queue element is halt marker")
then no match
elseif ("top queue element matches')
then match & "remove from queue”
elseno match
getcall/if ("top queue element is halt marker")
then no match
elseif ("top queue element matches')
then match & "remove from queue"
else no match
getreply/if ("top queue element is halt marker")
then no match
elseif ("top queue el ement matches')
then match & "remove from queue”
elseno match
catch/if ("top queue element is halt marker")
then no match
elseif ("top queue el ement matches')
then match & "remove from queue”
else no match
check/if ("top queue element is halt marker")
then no match
elseif ("top queue element matches")
then match
else no match

NOTE 1:

send/if (“unique receiver") then “transmit" (see note 2)
receivelif ("top queue element matches")
then match and "remove from queue”
else no match
call/if ("unique receiver") then "transmit" (see note 2)
getcall/if ("top queue element matches")
then match and "remove from queue”
else no match
reply/if ("unique receiver") then "transmit” (see note 2)
getreply/if ("top queue element matches")
then match and "remove from queue”
else no match
raisefif ("unique receiver") then "transmit" (see note 2)
catch/if ("top queue element matches")
then match and "remove from queue’
else no match
check/if ("top queue element matches")
then match
else no match

create/"creates
test component”
(seenote 1)

send/if ("ambiguous’ or "no receiver") error (seenote 2)
call/if ("ambiguous" or "no receiver") error (seenote2)

reply/if ("ambiguous' or "no receiver") error (seenote2)
raisefif ("ambiguous' or "no receiver") error (seenote2)

send/error
call/error

reply/error
raise/error

receive/no match
getcall/no match
getreply/no
match

catch/no match

When creating a PTC the ports of that PTC are created and started; when creating a MTC the ports of the

MTC and the ports of the TSI are created and started.

NOTE 2: A unique receiver exists if there is only one link for this port or if the to address expression references a
test component whose port is linked to this port (a terminated test component is not a legal receiver).

NOTE 3: Whenever a port enters its error state, the test component it belongs to enters also its error state, assigns
a local error verdict, the test case terminates and the overall test case result will be error.

NOTE 4: As trigger is a shorthand for an alt together with receive it is not considered here.

Figure F.8: Dynamic behaviour of ports: communication operations

ETSI

356 ETSI ES 201 873-1 V4.9.1 (2017-05)

Annex G (informative):
Deprecated language features

G.1 Group style definition of module parameters

Previous versions of the present document (up to and including V2.2.1) required to use a group-like syntax shown in the
example below to declare module parameters. The module parameter syntax has been unified with constant and variable
declaration syntax in this version but group-like syntax is not fully removed to leave atime period for tool providers

and users to change from the old syntax to the new one. The group-like syntax of module parameter declarations may be
fully removed in a future edition of the present document.

EXAMPLE (superfluous syntax):

nodul e MyModul eW t hPar anet er s

modul epar { integer PX Par0, PX Parl := 0;
bool ean PX_ Par2 := true

I
nodul epar { hexstring PX Par3 };

G.2 Recursive import

Previous versions of the present document (up to and including V2.2.1) allowed to import named definitionsimplicitly,
viaimporting other definitions of the same module using theminar ecur si ve mode. Thisfeature is deprecated and
may be fully removed in a future edition of the present document.

G.3 Usingal | in port type definitions

Previous versions of the present document (up to and including VV2.2.1) allowed to usethe al | keyword in port type
definitions instead of an explicit list of types and signatures allowed via the given port. This feature is deprecated and
may be fully removed in a future edition of the present document.

G.4 sizeof for length of lists

Previous versions of the present document (up to and including V3.2.2) allowed to use the built-in function si zeof to
compute thelength of recor d of ,set of ,andar r ay. Thishasbeen replaced by | engt hof . The use of
si zeof for list liketypesis deprecated and is planned to be fully removed in the next published version.

G.5 sizeoftype predefined function

The previous version of the present document (up to and including V3.3.1) defined the si zeof t ype predefined
function. This feature is deprecated in this version of the standard and may be fully removed in the next published
version.

G.6 Mixed ports

Previous versions of the present document (up to and including V3.2.2) allowed to use mi xed ports. Thisfeatureis
deprecated and may be fully removed in a future edition of the present document.

ETSI

357 ETSI ES 201 873-1 V4.9.1 (2017-05)

G.7 External constants

Previous versions of the present document (up to and including V3.4.1) allowed to use ext er nal const ants. This
feature is deprecated and may be fully removed in a future edition of the present document.

G.8 Prefixing enumerated values

Previous versions of the present document (up to and including V4.2.1) did not explicitly specify how to resolve name
conflicts between imported enumerated values and global names defined in the importing or in another TTCN-3
module. Some tool implementations resolved thisissue by allowing prefixing enumerated val ues with the name of the
module in which the given enumerated type is defined. Version 4.3.1 added in clause 8.2.3.1 arule to resolve such
name clashes, therefore prefixing enumerated values is deprecated.

G.9 Record of/arrays not compatible to record; set of not
compatible with set

Previous versions of the present document (up to and including V4.3.1) did define specia cases when record of types
and single-dimension arrays would be compatible with record types. These rules are deprecated.

G.10 The "UCS-2" predefined variant attribute string

Previous versions of the present document (up to and including V4.6.1) declared the "UCS-2 variant attribute string to
support the UCS-2 coded representation form of 1SO/IEC 10646:2003 [i.15] (see clause 14.1 9.2 of

I SO/IEC 10646:2003 [i.15]). The use of this string is deprecated, asit is replaced by the predefined variant attribute
string "UTF-16".

Similarly, the "UCS-2" and "UCS-4" values of st ri ng_encodi ng and serialization parameters, defined in earlier
versions of the present document for the oct 2uni char, uni char 2oct , encval ue_uni char and
decval ue_uni char predefined functions are deprecated.

G.11 Prefixing identifiers of local definitions with module
identifiers

Previous versions of the present document (up to and including V4.6.1) did not exclude the possibility to prefix
identifier of definitions without global visibility (e.g. templates defined in functions or test cases) with the local module
identifier. Prefixing identifiers of local definitions with module identifiersis deprecated and may be fully removed in a
future edition of the present document.

G.12 Matching expressions of incompatible types

Previous versions of the present document (up to and including V4.8.1) allowed to use operands of incompatible types
inthe mat ch operation, yielding f al se asthe result. Using an expression and template instance of incompatible types
inthe mat ch operation is deprecated and may be fully removed in afuture edition of the present document.

ETSI

358 ETSI ES 201 873-1 V4.9.1 (2017-05)

Annex H (informative):
Bibliography

. ETSI ES201 873-1 (V1.1.2): "Methods for Testing and Specification (MTS); The Tree and Tabular Combined
Notation version 3; Part 1: TTCN-3 Core Language”, 2001.

. ETSI ES 201 873-1 (V2.2.1): "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 1. TTCN-3 Core Language”, 2003.

o ETSI ES 201 873-1 (V3.1.1): "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 1: TTCN-3 Core Language", 2005.

. ETSI ES201 873-1 (V3.2.1): "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 1: TTCN-3 Core Language", 2007.

. ETSI ES201 873-1 (V3.3.2): "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 1: TTCN-3 Core Language", 2008.

o ETSI ES 201 873-1 (V3.4.1): "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 1: TTCN-3 Core Language", 2008.

. ETSI ES201 873-1 (V4.1.1): "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 1: TTCN-3 Core Language", 2009.

. ETSI ES201 873-1 (V4.2.1): "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 1: TTCN-3 Core Language”, 2010.

o ETSI ES 201 873-1 (V4.3.1): "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 1: TTCN-3 Core Language”, 2011.

. ETSI ES201 873-1 (V4.4.1): "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 1: TTCN-3 Core Language”, 2012.

. ETSI ES201 873-1 (V4.5.1): "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 1: TTCN-3 Core Language”, 2013.

. ETSI ES 201 873-1 (V4.6.1): "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 1: TTCN-3 Core Language”, 2014.

. ETSI ES201 873-1 (V4.7.1): "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 1: TTCN-3 Core Language”, 2014.

ETSI

359

ETSI ES 201 873-1 V4.9.1 (2017-05)

History
Document history

V111 March 2001 Publication

V112 June 2001 Publication

V221 February 2003 Publication

V311 June 2005 Publication

v3z21l February 2007 Publication

V3.3.2 April 2008 Publication

Vv34.1 September 2008 | Publication

V4.1.1 June 2009 Publication

V421 July 2010 Publication

V4.3.1 June 2011 Publication

V4.4.1 April 2012 Publication

V45.1 April 2013 Publication

V4.6.1 June 2014 Publication

V4.7.1 June 2015 Publication

V4.8.1 July 2016 Publication

V49.1 March 2017 Membership Approval Procedure MV 20170505: 2017-03-06 to 2017-05-05
V49.1 May 2017 Publication

ETSI

	Intellectual Property Rights
	Foreword
	Modal verbs terminology
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Introduction
	4.0 General
	4.1 The core language and presentation formats
	4.2 Unanimity of the specification
	4.3 Conformance

	5 Basic language elements
	5.0 General
	5.1 Identifiers and keywords
	5.2 Scope rules
	5.2.0 General
	5.2.1 Scope of formal parameters
	5.2.2 Uniqueness of identifiers

	5.3 Ordering of language elements
	5.4 Parameterization
	5.4.0 General
	5.4.1 Formal parameters
	5.4.1.0 General
	5.4.1.1 Formal parameters of kind value
	5.4.1.2 Formal parameters of kind template
	5.4.1.3 Formal parameters of kind timer
	5.4.1.4 Formal parameters of kind port

	5.4.2 Actual parameters

	5.5 Cyclic Definitions

	6 Types and values
	6.0 General
	6.1 Basic types and values
	6.1.0 Simple basic types and values
	6.1.1 Basic string types and values
	6.1.1.0 General
	6.1.1.1 Accessing individual string elements

	6.1.2 Subtyping of basic types
	6.1.2.0 General
	6.1.2.1 Lists of templates
	6.1.2.2 Lists of types
	6.1.2.3 Ranges
	6.1.2.4 String length restrictions
	6.1.2.5 Pattern subtyping of character string types
	6.1.2.6 Mixing subtyping mechanisms
	6.1.2.6.1 Mixing patterns, lists and ranges
	6.1.2.6.2 Using length restriction with other constraints

	6.2 Structured types and values
	6.2.0 General
	6.2.1 Record type and values
	6.2.1.0 General
	6.2.1.1 Referencing fields of a record type
	6.2.1.2 Optional elements in a record
	6.2.1.3 Nested type definitions for field types

	6.2.2 Set type and values
	6.2.2.0 General
	6.2.2.1 Referencing fields of a set type
	6.2.2.2 Optional elements in a set
	6.2.2.3 Nested type definition for field types

	6.2.3 Records and sets of single types
	6.2.3.0 General
	6.2.3.1 Nested type definitions
	6.2.3.2 Referencing elements of record of and set of types

	6.2.4 Enumerated type and values
	6.2.5 Unions
	6.2.5.0 General
	6.2.5.1 Referencing fields of a union type
	6.2.5.2 Option and union
	6.2.5.3 Nested type definition for field types

	6.2.6 The anytype
	6.2.7 Arrays
	6.2.8 The default type
	6.2.9 Communication port types
	6.2.10 Component types
	6.2.10.1 Component type definition
	6.2.10.2 Reuse of component types

	6.2.11 Component references
	6.2.12 Addressing entities inside the SUT
	6.2.13 Subtyping of structured types
	6.2.13.0 General
	6.2.13.1 Length subtyping of record ofs and set ofs
	6.2.13.2 List subtyping of structured types and anytype
	6.2.13.3 Subtyping of the iterated type of record ofs and set ofs
	6.2.13.4 Mixing subtyping mechanisms

	6.3 Type compatibility
	6.3.0 General
	6.3.1 Compatibility of non-structured types
	6.3.2 Compatibility of structured types
	6.3.2.0 General
	6.3.2.1 Compatibility of enumerated types
	6.3.2.2 Compatibility of record and record of types
	6.3.2.3 Compatibility of set and set of types
	6.3.2.4 Compatibility of union types
	6.3.2.5 Compatibility of anytype types
	6.3.2.6 Compatibility between sub-structures

	6.3.3 Compatibility of component types
	6.3.4 Type compatibility of communication and connection operations
	6.3.5 Type conversion

	6.4 Type synonym

	7 Expressions
	7.0 General
	7.1 Operators
	7.1.0 General
	7.1.1 Arithmetic operators
	7.1.2 List operator
	7.1.3 Relational operators
	7.1.4 Logical operators
	7.1.5 Bitwise operators
	7.1.6 Shift operators
	7.1.7 Rotate operators

	7.2 Field references and list elements
	7.3 Decoded field reference

	8 Modules
	8.0 General
	8.1 Definition of a module
	8.2 Module definitions part
	8.2.0 General
	8.2.1 Module parameters
	8.2.2 Groups of definitions
	8.2.3 Importing from modules
	8.2.3.0 General
	8.2.3.1 General format of import
	8.2.3.2 Importing single definitions
	8.2.3.3 Importing groups
	8.2.3.4 Importing definitions of the same kind
	8.2.3.5 Importing all definitions of a module
	8.2.3.6 Import definitions from other TTCN-3 editions and from non-TTCN-3 modules
	8.2.3.7 Importing of import statements from TTCN-3 modules
	8.2.3.8 Compatibility of language specifications in imports

	8.2.4 Definition of friend modules
	8.2.5 Visibility of definitions

	8.3 Module control part

	9 Port types, component types and test configurations
	9.0 General
	9.1 Communication ports
	9.2 Test system interface

	10 Declaring constants
	11 Declaring variables
	11.0 General
	11.1 Value variables
	11.2 Template variables

	12 Declaring timers
	13 Declaring messages
	14 Declaring procedure signatures
	15 Declaring templates
	15.0 General
	15.1 Declaring message templates
	15.2 Declaring signature templates
	15.3 Global and local templates
	15.4 In-line Templates
	15.5 Modified templates
	15.6 Referencing elements of templates or template fields
	15.6.0 General
	15.6.1 Referencing individual string elements
	15.6.2 Referencing record and set fields
	15.6.3 Referencing record of and set of elements
	15.6.4 Referencing signature parameters
	15.6.5 Referencing union alternatives

	15.7 Template matching mechanisms
	15.7.0 General
	15.7.1 Specific values
	15.7.2 Special symbols that can be used instead of values
	15.7.3 Special symbols that can be used inside values
	15.7.4 Special symbols which describe attributes of values

	15.8 Template Restrictions
	15.9 Match Operation
	15.10 Valueof Operation
	15.11 Concatenating templates of string and list types

	16 Functions, altsteps and testcases
	16.0 General
	16.1 Functions
	16.1.0 General
	16.1.1 Invoking functions
	16.1.2 Predefined functions
	16.1.3 External functions
	16.1.4 Invoking functions from specific places

	16.2 Altsteps
	16.2.0 General
	16.2.1 Invoking altsteps

	16.3 Test cases

	17 Void
	18 Overview of program statements and operations
	19 Basic program statements
	19.0 General
	19.1 Assignments
	19.2 The If-else statement
	19.3 The Select statements
	19.3.1 The Select case statement
	19.3.2 The Select union statement

	19.4 The For statement
	19.5 The While statement
	19.6 The Do-while statement
	19.7 The Label statement
	19.8 The Goto statement
	19.9 The Stop execution statement
	19.10 The Return statement
	19.11 The Log statement
	19.12 The Break statement
	19.13 The Continue statement
	19.14 Statement block

	20 Statement and operations for alternative behaviours
	20.0 General
	20.1 The snapshot mechanism
	20.2 The Alt statement
	20.3 The Repeat statement
	20.4 The Interleave statement
	20.5 Default Handling
	20.5.0 General
	20.5.1 The default mechanism
	20.5.2 The Activate operation
	20.5.3 The Deactivate operation

	21 Configuration Operations
	21.0 General
	21.1 Connection Operations
	21.1.0 General
	21.1.1 The Connect and Map operations
	21.1.2 The Disconnect and Unmap operations

	21.2 Test case operations
	21.2.0 General
	21.2.1 Test case stop operation

	21.3 Test Component Operations
	21.3.0 General
	21.3.1 The Create operation
	21.3.2 The Start test component operation
	21.3.3 The Stop test behaviour operation
	21.3.4 The Kill test component operation
	21.3.5 The Alive operation
	21.3.6 The Running operation
	21.3.7 The Done operation
	21.3.8 The Killed operation
	21.3.9 Summary of the use of any and all with components

	22 Communication operations
	22.0 General
	22.1 The communication mechanisms
	22.1.0 General
	22.1.1 Principles of message-based communication
	22.1.2 Principles of procedure-based communication
	22.1.3 Principles of unicast, multicast and broadcast communication
	22.1.4 General format of communication operations
	22.1.4.0 General
	22.1.4.1 General format of the sending operations
	22.1.4.2 General format of the receiving operations

	22.2 Message-based communication
	22.2.0 General
	22.2.1 The Send operation
	22.2.2 The Receive operation
	22.2.3 The Trigger operation

	22.3 Procedure-based communication
	22.3.0 General
	22.3.1 The Call operation
	22.3.2 The Getcall operation
	22.3.3 The Reply operation
	22.3.4 The Getreply operation
	22.3.5 The Raise operation
	22.3.6 The Catch operation

	22.4 The Check operation
	22.5 Controlling communication ports
	22.5.0 General
	22.5.1 The Clear port operation
	22.5.2 The Start port operation
	22.5.3 The Stop port operation
	22.5.4 The Halt port operation
	22.5.5 The Checkstate port operation

	22.6 Use of any and all with ports

	23 Timer operations
	23.0 General
	23.1 The timer mechanism
	23.2 The Start timer operation
	23.3 The Stop timer operation
	23.4 The Read timer operation
	23.5 The Running timer operation
	23.6 The Timeout operation
	23.7 Summary of use of any and all with timers

	24 Test verdict operations
	24.0 General
	24.1 The Verdict mechanism
	24.2 The Setverdict operation
	24.3 The Getverdict operation

	25 External actions
	26 Module control
	26.0 General
	26.1 The Execute statement
	26.2 The Control part

	27 Specifying attributes
	27.0 General
	27.1 The Attribute mechanism
	27.1.0 General
	27.1.1 Scope of attributes
	27.1.2 Overwriting rules for attributes
	27.1.2.0 General
	27.1.2.1 Additional default overwriting rules for variant attributes
	27.1.2.2 Overwriting rules for multiple encoding

	27.1.3 Changing attributes of imported language elements

	27.2 The With statement
	27.3 Display attributes
	27.4 Encoding attributes
	27.5 Variant attributes
	27.6 Extension attributes
	27.7 Optional attributes
	27.8 Retrieving attribute values
	27.9 Dynamic configuration of encoding used by ports

	Annex A (normative): BNF and static semantics
	A.1 TTCN-3 BNF
	A.1.0 General
	A.1.1 Conventions for the syntax description
	A.1.2 Statement terminator symbols
	A.1.3 Identifiers
	A.1.4 Comments
	A.1.5 TTCN-3 terminals
	A.1.5.0 General
	A.1.5.1 Use of whitespaces and newlines

	A.1.6 TTCN-3 syntax BNF productions
	A.1.6.0 TTCN-3 module
	A.1.6.1 Module definitions part
	A.1.6.1.0 General
	A.1.6.1.1 Typedef definitions
	A.1.6.1.2 Constant definitions
	A.1.6.1.3 Template definitions
	A.1.6.1.4 Function definitions
	A.1.6.1.5 Signature definitions
	A.1.6.1.6 Testcase definitions
	A.1.6.1.7 Altstep definitions
	A.1.6.1.8 Import definitions
	A.1.6.1.9 Group definitions
	A.1.6.1.10 External function definitions
	A.1.6.1.11 External constant definitions
	A.1.6.1.12 Module parameter definitions
	A.1.6.1.13 Friend module definitions

	A.1.6.2 Control part
	A.1.6.3 Local definitions
	A.1.6.3.1 Variable instantiation
	A.1.6.3.2 Timer instantiation

	A.1.6.4 Operations
	A.1.6.4.1 Component operations
	A.1.6.4.2 Port operations
	A.1.6.4.3 Timer operations
	A.1.6.4.4 Testcase operation

	A.1.6.5 Type
	A.1.6.6 Value
	A.1.6.7 Parameterization
	A.1.6.8 Statements
	A.1.6.8.1 With statement
	A.1.6.8.2 Behaviour statements
	A.1.6.8.3 Basic statements

	A.1.6.9 Miscellaneous productions

	Annex B (normative): Matching values
	B.1 Template matching mechanisms
	B.1.0 General
	B.1.1 Matching specific values
	B.1.2 Matching mechanisms instead of values
	B.1.2.0 General
	B.1.2.1 Template list
	B.1.2.2 Complemented template list
	B.1.2.3 Any value
	B.1.2.4 Any value or none
	B.1.2.5 Value range
	B.1.2.6 SuperSet
	B.1.2.7 SubSet
	B.1.2.8 Omitting optional fields
	B.1.2.9 Matching decoded content
	B.1.2.10 Matching enumerated value with value list

	B.1.3 Matching mechanisms inside values
	B.1.3.0 General
	B.1.3.1 Any element
	B.1.3.1.0 General
	B.1.3.1.1 Using single character wildcards

	B.1.3.2 Any number of elements or no element
	B.1.3.2.0 General
	B.1.3.2.1 Using multiple character wildcards

	B.1.3.3 Permutation

	B.1.4 Matching attributes of values
	B.1.4.0 General
	B.1.4.1 Length restrictions
	B.1.4.2 The IfPresent indicator

	B.1.5 Matching character pattern
	B.1.5.0 General
	B.1.5.1 Set expression
	B.1.5.2 Reference expression
	B.1.5.3 Match expression n times
	B.1.5.4 Match a referenced character set
	B.1.5.5 Type compatibility rules for patterns
	B.1.5.6 Case insensitive pattern matching

	Annex C (normative): Predefined TTCN-3 functions
	C.0 General exception handling procedures
	C.1 Conversion functions
	C.1.1 Integer to character
	C.1.2 Integer to universal character
	C.1.3 Integer to bitstring
	C.1.4 Integer to enumerated
	C.1.5 Integer to hexstring
	C.1.6 Integer to octetstring
	C.1.7 Integer to charstring
	C.1.8 Integer to float
	C.1.9 Float to integer
	C.1.10 Character to integer
	C.1.11 Character to octetstring
	C.1.12 Universal character to integer
	C.1.13 Bitstring to integer
	C.1.14 Bitstring to hexstring
	C.1.15 Bitstring to octetstring
	C.1.16 Bitstring to charstring
	C.1.17 Hexstring to integer
	C.1.18 Hexstring to bitstring
	C.1.19 Hexstring to octetstring
	C.1.20 Hexstring to charstring
	C.1.21 Octetstring to integer
	C.1.22 Octetstring to bitstring
	C.1.23 Octetstring to hexstring
	C.1.24 Octetstring to character string
	C.1.25 Octetstring to character string, version II
	C.1.26 Charstring to integer
	C.1.27 Character string to hexstring
	C.1.28 Character string to octetstring
	C.1.29 Character string to float
	C.1.30 Enumerated to integer
	C.1.31 Octetstring to universal character string
	C.1.32 Universal character string to octetstring
	C.1.33 Value or template to universal charstring

	C.2 Length/size functions
	C.2.1 Length of strings and lists
	C.2.2 Number of elements in a structured value

	C.3 Presence checking functions
	C.3.1 The IsPresent function
	C.3.2 The IsChosen function
	C.3.3 The IsValue function
	C.3.4 The IsBound function
	C.3.5 Matching mechanism detection

	C.4 String/list handling functions
	C.4.1 The Regexp function
	C.4.2 The Substring function
	C.4.3 The Replace function

	C.5 Codec functions
	C.5.1 The encoding function
	C.5.2 The decoding function
	C.5.3 The encoding to universal charstring function
	C.5.4 The decoding from universal charstring function
	C.5.5 The encoding to octetstring function
	C.5.6 The decoding from octetstring function
	C.5.7 Retrieving the type of string encoding
	C.5.8 Removing BOMs of UCS encoding schemes

	C.6 Other functions
	C.6.1 The random number generator function
	C.6.2 The testcasename function
	C.6.3 The hostId function

	Annex D (normative): Preprocessing macros
	D.0 General
	D.1 Preprocessing macro __MODULE__
	D.2 Preprocessing macro __FILE__
	D.3 Preprocessing macro __BFILE__
	D.4 Preprocessing macro __LINE__
	D.5 Preprocessing macro __SCOPE__

	Annex E (informative): Library of Useful Types
	E.1 Limitations
	E.2 Useful TTCN-3 types
	E.2.1 Useful simple basic types
	E.2.1.0 Signed and unsigned single byte integers
	E.2.1.1 Signed and unsigned short integers
	E.2.1.2 Signed and unsigned long integers
	E.2.1.3 Signed and unsigned longlong integers
	E.2.1.4 IEEE 754Ž floats

	E.2.2 Useful character string types
	E.2.2.0 UTF-8 character string "utf8string"
	E.2.2.1 BMP character string "bmpstring"
	E.2.2.2 UTF-16 character string "utf16string"
	E.2.2.3 ISO/IEC 10646 character string "iso8859string"
	E.2.2.4 Status values for TTCN-3 objects
	E.2.2.5 Template kinds of TTCN-3 objects

	E.2.3 Useful structured types
	E.2.3.0 Fixed-point decimal literal

	E.2.4 Useful atomic string types
	E.2.4.1 Single Recommendation ITU-T T.50 character type
	E.2.4.2 Single universal character type
	E.2.4.3 Single bit type
	E.2.4.4 Single hex type
	E.2.4.5 Single octet type

	Annex F (informative): Operations on TTCN-3 active objects
	F.0 General
	F.1 Test components
	F.1.1 Test component references
	F.1.2 Dynamic behaviour of PTCs
	F.1.3 Dynamic behaviour of the MTC

	F.2 Timers
	F.3 Ports
	F.3.0 General
	F.3.1 Configuration Operations
	F.3.2 Port Controlling Operations
	F.3.3 Communication Operations

	Annex G (informative): Deprecated language features
	G.1 Group style definition of module parameters
	G.2 Recursive import
	G.3 Using all in port type definitions
	G.4 sizeof for length of lists
	G.5 sizeoftype predefined function
	G.6 Mixed ports
	G.7 External constants
	G.8 Prefixing enumerated values
	G.9 Record of/arrays not compatible to record; set of not compatible with set
	G.10 The "UCS-2" predefined variant attribute string
	G.11 Prefixing identifiers of local definitions with module identifiers
	G.12 Matching expressions of incompatible types

	Annex H (informative): Bibliography
	History

