ETSIES 201 873-4 va5.1 (2016-07

<. —

ETSI STANDARD

Methods for Testing and Specification (MTS);
The Testing and Test Control Notation version 3;
Part 4: TTCN-3 Operational Semantics

2 ETSI ES 201 873-4 V4.5.1 (2016-07)

Reference
RES/MTS-201873-4 T3 ed451 OS

Keywords
language, testing, TTCN

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

The present document can be downloaded from:
http://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any
existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the
print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
https://portal.etsi.orq/TB/ETSIDeliverableStatus.aspx

If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying
and microfilm except as authorized by written permission of ETSI.
The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2016.
All rights reserved.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members.
3GPP™and LTE™ are Trade Marks of ETSI registered for the benefit of its Members and
of the 3GPP Organizational Partners.
GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.

ETSI

http://www.etsi.org/standards-search
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

3 ETSI ES 201 873-4 V4.5.1 (2016-07)

Contents

Intellectual Property RIGNES.... ..ot e e b e 8
01 Yo (o ST 8
AV TeTo = L= g oS = 011 070] oo | OSSPSR 8
1 o0 0L SR 9
2 L= £ 101 S 9
21 NOFMBLIVE FEFEIEINCEScutieiitiite ittt ettt sttt h ettt e e besb e ek e s bt e bt e ae e e e s bese e besheeb e e ae e s e eean e besaeebenneennennen 9
2.2 INfOrMELIVE FEFEIENCES. ... ettt e b b bbbt e e e e se e b e s bt eb e et e e e e e se e et e saeebeeneennennens 9
3 Definitions and @DDreVIaLiONS...........coviieieeeee et 9
31 D= T 0T (0] USRS 9
3.2 Y o] 1=V = 0] 1SR 9
4 100 [Tox A o SRS 10
5 Structure of the PreSent AOCUMENL ..ot nenn e 10
6 RESIIICHIONS. ...ttt bttt s st b e e bt e e et et e bt e b e bt s b e st et et et e e e nenr e b ee 10
7 Replacement Of SN0 FOMMISoo.iiiiiee e 11
7.0 LT 0T PSSR 11
7.1 Order Of rEPIACEMENE SIEPDS......eiveieie ettt ettt sttt b e st b e b et b e e et b e s e et e b e s b et b e b e 12
7.2 Replacement of global constants and Mmodule ParamELErS..........coveieeieeiecce e 12
7.3 Embedding single receiving operations into alt StAlEMENLS..........cevveieereeie s 12
7.4 Embedding stand-alone altstep callsinto alt StAateMENTS.........ccceieeieeiiece e s 13
75 Replacement of iNterleave StAlEMENLScoci i et e e et e e be e reeaeeneeenes 13
7.6 Replacement Of trigQer OPErELIONS.........ceiuiiee e st ese et et et e e e e s te e sreesreesteenteessessaesseesseesseeseensenneennns 26
1.7 Replacement Of SElECt-CaSE SLALEMENLS.........cciiiii et et esre e te e te e teesreeeenneennes 26
7.8 Replacement of Simple break SLALEMENES...........coviiiiiiicre e 28
79 Replacement Of CONLINUE SEAEEMENTSo.iiiiiiiiree et b e 28
7.10 Adding default parameters to disconnect and unmap operations without parameters...........coeeverecneneene, 29
711 Adding default ValUES O PAraIMELETS.........cuiirieiiriiieierte sttt b e b e eas 29
8 Flow graph semantiCs Of TTCN-3.......oiieeeeer et n e 29
8.0 GBNENEL ...ttt bbb b bR R e R Re R e R £ SR e e R £ e R e R e AR e AR eb e Rt R e e e e b e Rt eRe bt e Rt enee e ennas 29
8.1 L 10T A =T 1 S 30
8.1.0 (CT= 0T o SO PRPSPPN 30
8.1.1 L L0V A 0= N == 30
812 FIOW QI8 NOOES.......o.eiiiteiee ettt ettt b e et b e et b et b e et b e e et b bbb 30
8.1.2.0 L= 1= TSR 30
8121 IS 00 U= TSP SRRSRSS 30
8.1.22 o 1T (=R 30
8.1.2.3 L2 ST ol o L= SRS 30
8.1.24 REFEIENCE NOUES ...ttt e sttt e e st et e s eesbesaeebeeneeneeeensesbesaesseeneenseneens 31
8.1.24.0 LC T g1 - ST S 31
81241 OR combination Of referenCe NOOESc.eieeieieiere e 31
8.1.24.2 Multiple occurrences Of referenCe NOUES.eccuveieeiesie e 31
8.13 FLOW TINES ...ttt b e bt bt h e h e e e e b e s et e Rt e bt eh e eb e e he e s e e e e e e besbeebe e e ennennen 32
8.14 FIOW Qraph SEOMENESceieeecieee ettt e e et e e e s e e saeesae e se e aeenteentesseeste e seeseenseeneenneennes 33
8.1.5 (000111011 11T USRS 33
8.1.6 Handling of fIow graph deSCIPLIONS........ceiviieiieieie e e 34
8.2 Flow graph representation Of TTCN-3 DENAVIOUIcoeiiiriiiiiricreeeee e 34
8.2.0 (€71 PR 34
821 Flow graph CONSLIUCION PrOCEOUNEcoeiviieiirieeeie ettt bbbt sb e 34
822 Flow graph representation of MOdUIE CONEIOLcoiirieiiireesereee e 35
8.2.3 Flow graph representation Of tESL CASESciieiieiieie ettt et e et e e teseesneeenes 36
8.24 Flow graph representation Of FUNCLIONSccviiiciiie et 36
8.25 Flow graph representation Of @lTSIEPSccuveiiiieiiereese et teeae e e sneeenes 37
8.2.6 Flow graph representation of component type definitions...........cccveceeerieeseese e 38

ETSI

4 ETSI ES 201 873-4 V4.5.1 (2016-07)

8.2.7 Retrieval of start NOdes Of FIOW grapiS.........ccuv it 39
8.3 State definitions fOr TTCN-3 MOUUIES.......c.couiiiiieeee et s b et e b eae e e 39
8.3.0 (CT= 0T o SO PPSPPSN 39
831 IMIOTUIE SEBLE. ...ttt bbbt b e bbbt b et e e e e e eR e e bt sheeb e e ae e s e e e e s e nbesbeebeeneenneneen 40
8.3.1.0 LC T o1 - TR 40
8311 ACCESSING the MOAUIE STALE ... oo s st e st e et e sreesaeesneeteenneens 40
8.3.1a CONFIGUIBLION SEALE. ...ttt ettt ettt ettt bbbt b e bt eb e b e e e bt s b e s e e b e e b e se e bt sb e e et e s b e e ebenbeneenesbennenea 40
8.3.1a0 LT 0 P RRRSR 40
8.3.1al Accessing the CoNfigUIation SLALE............coeiiieiee e et 40
832 ENLITY SEALES. ...ttt et et b b e b e b e Rt R et b et b et b et b e 41
8.3.20 LT 07 SRR 41
8321 ACCESSING ENLILY SIALES ...euviieeiceeesteese et ee s e e te e e e e s te e e et e eseesreesseeteesteensesseesneesneesneanseensenns 43
8.3.2.2 Datastate and variabl € DiNAINGccveiieie e nnees 44
8.3.2.3 ACCESSING AL SLALES.c.ueeieeeieeeite e e ee st e te e te s e e e seeste e teesteestesseesseesseesseesesneesneesneesseaseensenns 45
8.3.24 Timer state and timer DINGINGccveieeieeie e te s e sre e e e teeneesneeenes 45
8.3.25 ACCESSING LHMEE SLALES....c.ueeieeeieeesie e ete et ee e e e te e e s e e s te e te et e esaesseessaesseesseensesseesnnesneesseanseensenns 46
8.3.2.6 Port references and port DINAINGcoiee e 47
8327 ACCESSING POIT FEFEIBNCES ...ttt et b et b bt b e e et eb e et b e n e 48
8.3.3 PO SLALES. ...ttt a e et sa e e s et e s a b e e R e e s a bt e e Rt e eR b e e e aR e e ehe e e e Rr e e aRr e e s neennreeenreenars 438
8.3.3.0 L= 1= TSR 48
8331 Handling of CONNECLIONS @MONQ POITS......c.eiviieririereeteriereetesee ettt eb e se b b e b sre b sreseeneas 49
8332 HEaNAITNG OF POIT SLAEESveeeeeeeert ettt b ettt b e e bt et ebesb e e b e sbeneenea 49
8.3.3a COmMPONENE VEITICl SEALES.cveiveeeeeiteeet ettt ettt b bbbt sb e et sb e e et e sb e e ebesbennenen 50
834 General functions for the handling of MOAUIE SLALESccvecieieie s 50
84 Messages, procedure calls, replies and EXCEPLIONS..........ccvecirieiie it re e ee e 51
8.4.0 (CT= 0T o SO PPSPPSN 51
84.1 Y SS= 0 < PSR STRPTR 51
8.4.2 Procedure CallS @and FEPIIEScveeieee ettt et e s et e e b e re e teeneeneeenes 51
8.4.3 (0T 0] TP 52
8.4.4 Construction of messages, procedure calls, replies and eXCEPLIONS...........cooeerereerireerereee e 52
8.4.5 Matching of messages, procedure calls, replies and EXCEPLIONScoeererirereneneree e 52
8.4.6 Retrieval of information from reCelVed ItBMS..........c.ooi it 53
8.5 Call records for functions, altStePS aNd tESE CASES.......cc.erirereie et se et sae e neeneas 53
8.5.0 (€71 SRS 53
85.1 [P10l | TN o o) = | =T oS 53
8.6 The evaluation procedure for a TTCN-3 MOUUIEcceeiueiieiieceer e sreesneas 54
8.6.1 Y T 0] 0] 7= S-S 54
8.6.1.0 LC T o1 - TSP 54
8.6.1.1 Phase |2 INITTBIIZAHON. ..ottt sb et e bbbt b e e e ne e 54
8.6.1.2 Phase [1: UPOEEE.........eiueeeieiieieie sttt sttt sttt sttt et et e st et e besbe e ebesbe e ebesaeneenesbeseenens 55
8.6.1.3 PhEase 12 SEIECHION ...ttt et s ae et ese et e e e e e tesbeseeeneeneeneeseens 55
8.6.14 PhEaSe [V: EXECULION. ... ettt ettt ettt et e e ese et emeeseestesaesaeeseeneenseneensesbesaeesesneenseneens 55
8.6.2 (€10l o 7= I 1T (o PR 56
9 Flow graph segmentS for TTCN-3 CONSLIUCESc..coueiviriirieieieiee s 56
9.0 (€T 0T PO U O PR USROURP 56
9.1 ACTION SEBEEMENT ... ettt ettt ettt b e b a s e e e s et b e e bt ehe e R e e e e s e e e eEeebeebeeb e e Rt ease b e nbenbesaeebe e e ennees 56
9.2 ACHIVALE SEBEEIMENT ...ttt ettt b bt a e bt e e e e s ekt s bt eb e e aeeae e e e sb e b e saeeh e e Rt ene e b e nb e besbeeb e e e ennees 57
9.2a AlIVE COMPONENE OPEIGLIONcveeiveeiteeteeteeteeteesee e e steeeesstesseesse e teesteesteastessaesseesseeaseenseeneesseeseenseenseensessensses 58
9.2a0 GBINENEL ...t b et bR Rt R R R e e e R e eRe R e Rt Rt Rt e e e b e bR e ebesaeene e e nres 58
9.2al Flow graph segment <aliVe-COMP-CE>ooiiiiiiieirieeeie ettt 60
9.2a2 Flow graph segment <aliVe-COMP-SNADSccciiirieiirieriee ettt be et b e et b et sbe e 61
9.3 F LA = 1= 0 1= o | 61
9.3.0 (€71 PR 61
931 Flow graph segment <take-SNPSNOESc..oiiiiriiieiriere ettt 63
932 Flow graph segment <reCeiVing-branCh> ... e 64
9.3.3 Flow graph segment <altstep-call-branch>.............ccoooe i 65
9.34 Flow graph segment <elSe-DranCh> ..o e s 66
9.35 Flow graph segment <default-eVOCation™............cccciiiirieiie et 67
94 N L= o o SRS 68
9.5 ASSIGNMENE SEALEIMIENT ... ecueeeie e ceese et e e e e e e e e et e s e seesreesseeseesseeseesse e seenseensesseesseesaeesseenseenseenseensensensnnns 68
9.5a Break StalemeNntS iN @ltSlES.ui i ieeciesec et et ettt e et e et e e teeneeseesaeenreenreereen 68

ETSI

9.6
9.6.0
9.6.1
9.6.1a
9.6.2
9.6.3
9.6.4
9.6.5
9.6.6
9.7
9.8
9.8.0
9.8.1
9.8.2
9.8a
9.8a.0
9.8a1
9.8a.2
9.9
9.10
9.11
9.12
9.13
9.13.0
9.13.1
9.13.2
9.14
9.14.0
9.14.1
9.14.2
9.14.3
9.14.4
9.145
9.15
9.16
9.16.0
9.16.1
9.17
9.17.0
9.17.1
9.17.2
9.17.3
9.18
9.18.0
9.18.1
9.18.2
9.18.3
9.184
9.19
9.20
9.20a
9.20b
9.21
9.22
9.23
9.24
9.24.0
9.24.1
9.24.2
9.24.3
9.24.3a
9.24.4

5 ETSI ES 201 873-4 V4.5.1 (2016-07)

(0= 0] = = 11 oo TS 69
GBINENEL ...t b h e bR Rt R R R e E e R e R R e Rt e Rt Rt et e R e bR e nbesaeeneenenras 69
Flow graph segment <nb-Call-With-ONE-rECEIVEI>..........ccooce e 71
Flow graph segment <nb-call-with-multiple-TECEIVErS>.......ccco et 71
Flow graph segment <nb-Call-WithOUL-TECEIVE>..........ccue e 73
Flow graph segment <b-call-WithoUt-dUration>cccceiieiieiecce e e 73
Flow graph segment <b-Call-With-dUration> ..o e 74
Flow graph segment <call-reCeption-Part>..........ccccccuiieveiirieriei sttt ae s 75
Flow graph segment <CatCh-timeOUL-EXCEPLION..........couiiiiirieireree et 76

102 (01 o] o< = [0] 0 EEN OSSR PSPV PRR 76

CRECK OPEIALTON. ...ttt ettt b et b e et h e et eb e E et e bt e e et e b e b e bt e b e s e e st e b e s e e st eb e s b et ebe e e eee 77
GBINENEL ...ttt h e bR R R R k£ e E e R e R eE e Rt e Rt ehe e e e b e bRt ebeeneeneenenras 77
Flow graph segment <CheCK-WIth-SENAEr>cviiiiieiieceee et 78
Flow graph segment <CheCK-WithOUL-SENAEI>............cocieiieriee e 79

(019150116 =1 (= o0 0] 0= 1 o o SRS 80
GBINENEL ...t b e e bR R R R R e e e R e R R e Rt Rt Rt e e e R e bt eheebesneeneenenras 80
Flow graph segment <ChECK-POIt-SIAlUSSccoiiiiiiesieseese ettt snaeseesneeenes 8l
Flow graph segment <Check-port-CONNECTIONS ..ot e 81

ClEAI POt OPEIBEIION.cteeeetete sttt ettt ettt b ettt b e se st b e s e e st e b e s e e bt eh e s e e bt b e s e e h e e b e s e e bt e b e se e st ebeneeneebene et ebenneneees 83

1600] 010 1< ol fe 0= £ 1o o USSP O SRR USSP PRR 83

(000171 o =11 111 Ko o 1SS 84

1@< (=X o] o< = 0] o USSR TSRV PROR 85

DEBCEIVALE SLEEEMENT ... eeeee ettt sttt e et e testesaesteeseeae e e e seseeseeabesaeebeeneeneensesseabesaeeseeneeneensens 86
GBINENAL ...t bt e bR Rt R e R e AR R e R e R b e Rt e Rt R e e e b e bRt benaeene e e enres 86
Flow graph segment <deactivate-One-default>.............cccceveeiiieiieie e 87
Flow graph segment <deactivate-all-defaultS>...........cccooeiieiieiiece s 87

(D11 o0l 0= ot o o= (0] o 1SS 88
GBINENAL ...t b e bR R SR e E e R e R e SRR e R Rt ekt e e e R e bRt ebesaeeneenennas 88
Flow graph segment <diSCONNECE-0NE-PaI-PaAIT>c.cciuereererrierieeieeseeseesreesseeeeseesseesseeseesessesnssssesnes 88
Flow graph segment <diSCONNECE-al1>cccciiiiiieiiece et 90
Flow graph segment <diSCONNECE-COMPciuiiiiiieeieieierie ettt te st st e e e seeseesteseesbeeneeneeneens 91
Flow graph segment <diSCONNECI-POM>........cccciiiieiiieiieise et sttt sae e s resa e besae e eresseneens 92
Flow graph segment <di SCONNECE-tWO-PAr-PaITS>.........ccuririeiriiriee ettt be e sbe e 92

(D0 T =R = 1= 1= o SRS 93

DONE COMPONENE OPEIGLION.eiueeieeesieesteeteeeeeteesteeste e teeteseessaesreesseesseeseessseseesseesseesseessesnsessessneesseesseansennsenns 94
GBINENAL ...ttt b b e bR R R e E e R e R e AR SRRt Rt R e et e b e bt sheeheeaeene et enres 94
Flow graph segment <AONE-aSSIGNIMENTSccviiiiieriesee e ere e s e e e reete e aesraesraesreeteeneesneesnes 96

EXECULE SLALEMIENLttt h e e e e s st e n e e s b e e b e e E e e an e s an e E e e s e e s e sanesmeesreenne e reenneens 96
GBINENAL ...t bt e bR R SR e E AR R e R e Rt eh e R e e Rt ekt et e b e bR e ebenneeneenenras 96
Flow graph segment <exeCute-WithOUL-tiIMEOULSccceeieeiesie e 97
Flow graph segment <eXECULE-TIMEOUES.............oiiiieieiee ettt se e eeseesre e eneeneens 98
Flow graph SEgment <OYN@AMIC-EITOIS>...........ccviiiieeeesieeeeseee e stese e e ste e stesteseesesteseesesteseesestesessessesessessenens 99

1 £=== T o o OSSO 99
(€71 PR 99
Flow graph Segment KHE-VAIUEScoiiie et e e e 100
Flow graph SEgmMENt SVAI-VBIUEScc.ciiiuiriiiiiieiei ettt et b e 100
Flow graph segment <fUNC-0P-Call>..........ocuiiiie et se e enreeneens 101
Flow graph segment <OPEralor-aPPl>ccuviueiierieeeie e e et s et et e e tesaesreesaeesneenseesenns 101

Flow graph segment <finalize-CoOmMPONENE-iNIt>cccoiiiiieiice e 102

Flow graph segment <init-COMPONENT-SCOPESceiiiieiieiiesteese e ete st e e e e e see e e sreesaeenseensessaesseesseessens 102

Flow graph segment <init-SCOPE-WIth-FUNS-0N>ccciiieiicie e snees 103

Flow graph segment <init-SCOPe-WIthOUL-TUNS-0N>ccooeiieiicice e 103

Flow graph segment <parameter-handling™..........cocooeriiiriniene e e 104

Flow graph segment <statement-DIOCK™coi i e e 104

FFOP SEAEEIMENT ...t ettt e st e et e st e s et e e s b e e eas e e s ane e abe e e saseeenbeesaneesabeeenneesnres 105

L0 Tox o o o SRR 106
LT 1 PP RRRN 106
Flow graph segment <value-par-Cal CUlaLION>.............cceveeieeieee e ee e saeenreeeeens 108
Flow graph segment <ref-par-Var-CalC>cccciiiiie i e e s se e st e e enreeneens 108
Flow graph segment <ref-par-timer-CalC>covuiiieiie et ene s 109
Flow graph segment <ref-par-port-CalC>..........oouiiieiieieie e esreenreereens 109
Flow graph segment <user-def-fUNC-Call>............ccooiieiiiie e 110

ETSI

9.245
9.25
9.26
9.27
9.28
9.28a
9.29
9.29a
9.29a.0
9.2%a.1
9.29a.2
9.29a.3
9.29b
9.29b.0
9.29b.1
9.29c
9.30
9.31
9.32
9.33
9.34
9.35
9.35.0
9.35.1
9.35.1a
9.35.2
9.36
9.37
9.37.0
9.37.1
9.37.2
9.37.3
9.38
9.39
9.39.0
9.39.1
9.39.1a
9.39.2
9.40
9.40.0
9.40.1
9.40.2
9.41
9.41.0
9.41.1
9.41.2
9.42
9.43
9.44
9.44.0
9.44.1
9.44.1a
9.44.2
9.45
9.46
9.47
9.48
9.48.0
9.48.1
9.48.2
9.49
9.49.0

6 ETSI ES 201 873-4 V4.5.1 (2016-07)

Flow graph segment <predef-ext-fUNC-Call>.............ccooiiiiiici e 110
LT or= | oo < =1 111
LT = oY 0] = 1 e o T 111
LT V= o [To 0] = o] o 112
GOLO SLBLEMIENL. ...ttt st r e b et ae s b e s b e e b e e Re e e e e e e sae e she e Rt e e e em s e emnenmeenbeenbeenreeneenne s 112
L L 00 0] 1= (o] o S 113
[F-E1SE SEALEIMIENL ...ttt ettt ettt st te s ae e s e e et e eeseesbesaeeseeneeneenseneeseesaeeneeneenseneenes 113
Kill COMPONENE OPEIEIION........ecueitieeieiteseet sttt ettt e bt b e bt b e bt b e e st b e s e sesb et e e e s nn e ens 114
LT 1 PPN 114
Flow graph Segment SKiTI-MIECS ... e 116
Flow graph segment <Kill-COMPONENEScouiiiiiiiiirieeresee s 117
Flow graph segment <Kill-all-COmMP>.........cui et sneenreenneens 118
Kl EXECULION SEBEEIMIENLc.eeieeetieeeieete stttk ettt ettt b et e b b e sh e b e s bt eb e e e e e e b e sbeebeemeese e e e e e 118
GBINENAL ...ttt h e h e R R R R R e e e R Rt R Rt Rt Rt Reeh e e e e benbeeheeneenenrenrea 118
Flow graph segment <Kill-CONLIOI>coiiiieiiie et esaeenreereens 119
Killed COMPONENT OPEFBLIONccuveieieseeeie e see sttt ee et e et e e estees e sseesaeesreesseenseasaesseenseenseenseensennensnnes 120
LADEI SEAEEIMENT ...t b b bttt e bbbt h e st e h e et e e e b b aeen e e e e ne e 122
L O SEAIEIMENT ... e s s e e s sae e 122
= o X o o= = (o o OO PE RSP USURPS 123
A oR ool = 1T o] o TR PE RSP USURPS 123
Lo 0 (= o == 4o o SR 124
REISE OPEIBLION ...ttt ettt bbbtk b e bt b ekt b b E e bR e R bR Rt Rt Rt e n e ens 124
L7 1 PPN 124
Flow graph segment <rai Se-With-0Ne-rE€CEIVEIr-0P>.........ccciviiuiieesieeeesee e ete e sae e e e sreesaeeeesseenseeneens 125
Flow graph segment <raise-With-muUltiple-reCEIVEIrS-0P>........occviiieeieeee e ens 125
Flow graph segment <rai Se-WithOUL-FECEIVEr-0>ccveiieiieeieeseeseesteee e see e ste e teeaesee e e saeenseenneens 127
LR e o R U0 1= e o 1< (0] o S 127
LR LS oS A= o o< - (] o) o S 128
L€ 1 PSP S PP PRURORPRN 128
Flow graph segment <reCelVe-WIth-SENUEr>..........cocooiiiiiie e 129
Flow graph segment <receiVe-WithOUE-SENOEr>...........cooiiiiriiiee e 131
Flow graph segment <reCEiVE-assiGNIMENTS.........ccciiiueiiirieerisieesesie e e ste s e et sesse e e esestesessesseseens 132
REPEEL SLALEMEIL ... e s e e e s s e e s n e e e sra e 132
REPIY OPEIGLION ...ttt ettt et b e et b e bt eb e s e et ekt s b et ekt s b e e bt e b e ne e bt e b e ne bt ebe e eneas 133
L€ 1 PSP S PP PRURORPRN 133
Flow graph segment <reply-With-0Ne-reCEIVEIr-0P>cccveiieieiiieeieseese e e sae e e saeesae e e sreeseeeneens 134
Flow graph segment <reply-with-multiple-reCEIVErS-0p>cccvicieeieriecice e 134
Flow graph segment <reply-WithOUL-FECEIVEr-0P>cccceieieeeiee et ee e e e e aesee e e saeenseeneens 136
S (U R = =11 | PSPPI 136
L€ 1 PSP S PP PRURORPRN 136
Flow graph segment <return-With-ValUE>.............cooiiiiiiiee e 138
Flow graph segment <return-WithOUE-VEIUES ..o e 139
RUNNING COMPONENE OPEIEEION ...ttt sttt sttt b et ae b et b e e e bese e e et e sb e e eb e e ebesbe e ebesbeneeneas 140
LT 1 PPN 140
Flow graph segment <running-COMP-8CE>couiiiiieieiee ettt s st st sne e e e 141
Flow graph segment <running-COMP-SNaD™ccciteerriererereesteseeseeseeseeseesressesseeseeseesseseessessessessesseensenes 142
RUNNING TIMEN OPEIBLION. ... ee e ieeese et ce ettt e et e et esae e te e e estessaesseesseesseeseenseeseesaeenseenseensesneessansnnns 143
TS 0 0 <= 1) 144
= T0 [T o 1= = 1o o 1 144
L€ 1 PSP S PP PRURORPRN 144
Flow graph segment <send-With-0Ne-reCEIVEr-0P>ccoccie i iee e 145
Flow graph segment <send-with-multiple-reCeIVErS-0P>cccevieeiicii e 145
Flow graph segment <send-WithOUE-TECEIVEr-0[>c.ccuiirieiiisieisiseese e sae et sae s 147
SEIVEIAICT OPEIGLION. ... ettt bbbt bbb et b e bt b e b st bbb b 147
Start COMPONENT OPEFBLION.ciuieeuerterteirtest ettt b e bttt b b e e e bt b e e e b e b e e e st e b e b e st e b e b et ebenbe e e 148
SEAMT POIT OPEFELION......c.eceeetieeieetee ettt e a et s bbbt b e st b et e st s b b et b e s eae e b e b e st e b et e e e b e b 150
SEAME TIMEN OPEILIONttt bbb bbbt bbb et b e b b e st bbb b e 150
L€ 1 PSP S U PRTPRURURTPRN 150
Flow graph segment <start-timer-op-default™ ... e 151
Flow graph segment <start-timer-op-dUration >ccceiieiieiieeiieeseese e e se e sae e e e enreeneens 152
StOP COMPONENT OPEFBLION......eueeeteeteeieeieseeseeseesteesteeteestessaesseesseesseesseeseasseassesseasseenseesenseesseessessseenseenseanes 152
L€ 1 PSP S U PRTPRURURTPRN 152

ETSI

7 ETSI ES 201 873-4 V4.5.1 (2016-07)

9.49.1 Yoo TR 154
9.49.2 Flow graph segment <stop-aliVe-COMPONENTES..........cccueiieieiie e seese e ee e ete e sae e e sreesaeenaeseesreenseenneens 154
9.49.3 Flow graph segment <SEOP-all-COMPScviiiiiiece et a e s re e sneenreeneens 155
9.50 SEOP EXECULTION SLBLEIMIENT ... eeieeieeee e see sttt ettt e et e e e ee s e saeesreesaeenseeseeese e seensenseanseesseesseenseenseeneennes 156
9.51 S0 oI o0 0] 0= = 1 oo I 157
9.52 S o] UL 00T= e o< = (o) o P 158
9.53 SYSEEIM OPEIALTON ...ttt bt bbbt bbb bR s st bt b e st b e bt e s e bt b e b et b e bbb 158
9.53a TESE CASE SLOP OPEFALTION ...ttt bt b e e h e b et b e st et b s b et b e s b et b e b et eb e s b et ebe b e 159
9.54 QLI 0= (<ot =T o o S 159
9.54.0 LT 1 PR 159
9.54.1 Flow graph segment <timer-decl-default>..............cooeiiiii e 160
9.54.2 Flow graph segment <timer-deCl-NO-0Ef> ..o e 160
9.55 L= e L T 1= e o= (o) o S 161
9.56 L0 10T 007z 0] o]0 1= (0] o S 162
9.56.0 (1= 0T - OSSPSR 162
9.56.1 Flow graph segment <UNMEPR-al1>cooui ittt te e naeeaesaeesneenreenneens 164
9.56.2 Flow graph segment <UNMED-COMMP™ccviieeieerieeieeieseeseeseesseesseeeeesseessesseessaesseesseesssenssessesseenseensenns 165
9.56.3 Flow graph SEgment <UNMAPR-POME>.........ccuiueieiieieisiieesesiessees e tees e seses e tessesestessesessessesessessesessessenens 166
9.57 V2= = o L= L= o = T o o SRS 166
9.57.0 LT 1 PPN 166
9.57.1 Flow graph segment <var-declaration-iNit>............coeiiiirine e 167
9.57.2 Flow graph segment <var-declaration-Undef> ... e 167
9.58 LT 0 | S 168
10 Listsof operationa SemantiC COMPONENLSccurerrirerierierieeeeeesesseste e sseseeseeseesee e e sessessessessensens 168
101 FUNCLIONS @NO SEALES.....cceeeeeeeee sttt b et e b bbbt e st eb e e e e e e b e sbeebeeaeen e e e eneenes 168
10.2 S0 o = =Yoo o 170
10.3 Flow graphs of TTCN-3 behaviour deSCriptioNS..........cociiirieerireereeer e 170
104 FLOW QI SEOIMENTS.ccuiitiietiiteeet ettt b et b et b e s bt e st b s e bt s et b et e e b et e e st nn e enis 171
[T (PSPPSR 174

ETSI

8 ETSI ES 201 873-4 V4.5.1 (2016-07)

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential |PRs, if any, ispublicly available for ETSI member s and non-member s, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards', which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (https://ipr.etsi.org/).

Pursuant to the ETSI IPR Palicy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given asto the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword

ThisETSI Standard (ES) has been produced by ETSI Technical Committee Methods for Testing and Specification
(MTS).

The present document is part 4 of a multi-part deliverable. Full details of the entire series can be found in part 1 [1].

NOTE: All formatting in the present document has been done intentionally. Underlined words denote special
elements of the formal semantics. Their meaning is described in clauses 7 and 8.

Modal verbs terminology

In the present document “shall”, "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and
"cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of
provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

ETSI

https://ipr.etsi.org/
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx

9 ETSI ES 201 873-4 V4.5.1 (2016-07)

1 Scope

The present document defines the operational semantics of TTCN-3. The present document is based on the TTCN-3
core language defined in ETSI ES 201 873-1 [1].

2 References

2.1 Normative references

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
https://docbox.etsi.org/Reference/.

NOTE: While any hyperlinksincluded in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are necessary for the application of the present document.

[1] ETSI ES 201 873-1: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 1: TTCN-3 Core Language'.

2.2 Informative references

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

NOTE: While any hyperlinksincluded in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

Not applicable.

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions givenin ETSI ES 201 873-1 [1] apply.

3.2 Abbreviations

For the purposes of the present document, the following abbreviations apply:

BNF Backus-Nauer Form

MTC Master Test Component

SUT System Under Test

TTCN Testing and Test Control Notation

ETSI

https://docbox.etsi.org/Reference/

10 ETSI ES 201 873-4 V4.5.1 (2016-07)

4 Introduction

This clause defines the meaning of TTCN-3 behaviour in an intuitive and unambiguous manner. The operational
semantics is not meant to be formal and therefore the ability to perform mathematical proofs based on this semanticsis
very limited.

This operational semantics provides a state oriented view on the execution of a TTCN module. Different kinds of states
are introduced and the meaning of the different TTCN-3 constructsis described by:

1) using state information to define the preconditions for the execution of a construct; and
2) defining how the execution of a construct will change a state.

The operational semanticsis restricted to the meaning of behaviour in TTCN-3, i.e. functions, altsteps, test cases,
module control and language constructs for defining test behaviour, e.g. send and r ecei ve operations, i f -el se-, or
whi | e- statements. The meaning of some TTCN-3 constructs is explained by replacing them with other language
constructs. For example, i nt er | eave statements are short forms for series of nested al t statements and the meaning
of eachi nt er | eave statement is explained by its replacement with a corresponding series of nested alt statements.

In most cases, the definition of the semantics of alanguage is based on an abstract syntax tree of the code that may be
described. This semantics does not work on an abstract syntax tree but requires a graphical representation of TTCN-3
behaviour descriptions in form of flow graphs. A flow graph describes the flow of control in afunction, alt step, test
case or the module control. The mapping of TTCN-3 behaviour descriptions onto flow graphsis straightforward.

NOTE: The mapping of TTCN-3 statements onto flow graphsisan informal step and is not defined by using the
BNF rulesin ETSI ES 201 873-1 [1]. The reason for thisis that the BNF rules are not optimal for an
intuitive mapping because several static semantic rules are coded into BNF rulesin order to allow static
semantic checks during the syntax check.

5 Structure of the present document

The present document is structured into four parts:

1) Thefirst part (see clause 6) describes restrictions of the operational semantics, i.e. issues related to the
semantics, which are not covered by the present document.

2) The second part (see clause 8) defines the meaning of TTCN-3 short cut and macro notations by their
replacement with other TTCN-3 language constructs. These replacementsin a TTCN-3 module can be seen as
pre-processing step before the module can be interpreted according to the following operational semantics
description.

3) Thethird part (see clause 9) describes the operational semantics of TTCN-3 by means of flow graph
interpretation and state modification.

4) Thefourth part (see clause 10) specifies the mapping of the different TTCN-3 statements onto flow graph
segments, which provide the building blocks for flow graphs representing functions, at steps, test cases and
module control.

6 Restrictions

The operational semantics only covers behavioural aspects of TTCN-3, i.e. it describes the meaning of statements and
operations. It does not provide:

a) A semanticsfor the data aspects of TTCN-3. Thisincludes aspects like encoding, decoding and the usage of
data imported from non-TTCN-3 specifications.

b) A semanticsfor the grouping mechanism. Grouping is related to the definitions part of a TTCN-3 module and
has no behavioural aspects.

ETSI

©)

d)

11 ETSI ES 201 873-4 V4.5.1 (2016-07)

A semanticsfor thei nport statement. The import of definitions has to be done in the definitions part of a
TTCN-3 module. The operational semantics handlesimported definitions as if they are defined in the
importing module.

A semantics for the visibility of definitions. The correct usage of imported definitions declared with publ i c,
privat e andfri end vishility hasto be checked by other means.

A semantics for fuzzy and lazy evaluation of variables and parameters. However, notes in the appropriate
clauses of this standard refer to places where fuzzy and lazy evaluation has to be considered.

2

7.0

Replacement of short forms

General

Short forms have to be expanded by the corresponding complete definitions on a textual level before this operational
semantics can be used for the explanation of TTCN-3 behaviour.

TTCN-3 short forms are:

lists of module parameter, constant and variable declarations of the same type and lists of timer declarations;
stand-alone receiving operations;

stand-alone altsteps calls,

tri gger operations,

missing r et ur n and st op statements at the end of function and test case definitions;

missing st op execution statements;

i nterl eave statements;

sel ect - case gstatements;

break and conti nue statements,

di sconnect and unmap operations without parameters; and

default values of missing actual parameters.

In addition to the handling of short forms, the operational semantics requires a specia handling for module parameters,
global constants, i.e. constants that are defined in the module definitions part, and pre-processing macros. All references
to module parameters, global constants and pre-processing macros shall be replaced by concrete values. This means, it
is assumed that the value of module parameters, global constants and pre-processing macros can be determined before
the operational semantics becomes relevant.

NOTE 1: The handling of module parameters and global constants in the operational semantics will be different

from their handling in a TTCN-3 compiler. The operational semantics describes the meaning of TTCN-3
behaviour and is not a guideline for the implementation of a TTCN-3 compiler.

NOTE 2: The operational semantics handles parameters of and local constants in test components, test cases,

functions and module control like variables. The wrong usage of local constantsor i n, out andi nout
parameters has to be checked statically.

ETSI

12 ETSI ES 201 873-4 V4.5.1 (2016-07)

7.1 Order of replacement steps

The textua replacements of short forms, global constants and module parameters have to be done in the following
order:

1) replacement of lists of module parameter, constant, variable and timer declarations with individual
declarations;

2) replacement of global constants and module parameters by concrete val ues;

3) replacement of all sel ect - case statements by equivalent nested i f - el se statements;

4) embedding stand-alone receiving operationsinto al t statements;

5) embedding stand-alone altstep callsinto al t statements;

6) expansionofi nterl eave statements;

7) replacement of al t ri gger operationsby equivalentr ecei ve operationsand r epeat statements;

8) addingr et ur n at the end of functions without r et ur n statement, adding sel f .st op operations at the end
of testcase definitions without ast op statement;

9) adding st op at the end a module control part without stop statement;

10) expansion of break statements;

11) expansion of continue statements;

12) adding default parametersto di sconnect and unnap operations without parameters; and
13) adding default values of parameters.

NOTE: Without keeping this order of replacement steps, the result of the replacements would not represent the
defined behaviour.

7.2 Replacement of global constants and module parameters

Constants declared in the modul e definitions part are global for module control and all test components that are created
during the execution of a TTCN-3 module. Module parameters are meant to be global constants at run-time.

All references to global constants and module parameters shall be replaced by the actual values before the operational
semantics starts the interpretation of the module. If the value of a constant or module parameter is given in form of an
expression, the expression has to be evaluated. Then, the result of the evaluation shall replace al references of the
constant or module parameter.

7.3 Embedding single receiving operations into alt statements

TTCN-3 receiving operations are: r ecei ve,tri gger,getcal | ,getrepl y,catch,check,ti meout, and
done.

NOTE: Theoperationsr ecei ve,trigger,getcall,getreply,catch andcheck operate on portsand
they allow branching due to the reception of messages, procedure calls, replies and exceptions. The
operationst i meout and done are not real receiving operations, but they can be used in the same
manner as receiving operations, i.e. asalternativesinal t statements. Therefore, the operational
semantics handlest i neout and done like receiving operations.

A receiving operation can be used as stand-al one statement in afunction, an altstep or atest case. Thet i neout
operation can also be used as stand-al one statement in modul e control. In such a case the receiving operation as
considered to be shorthand for an al t statement with only one alternative defined by the receiving operation. For the
operational semanticsan al t statement in which the receiving statement is embedded shall replace all stand-alone
occurrences of receiving operations.

ETSI

13 ETSI ES 201 873-4 V4.5.1 (2016-07)

EXAMPLE:
/1 The stand-al one occurrence of

M/CL. trigger(MType: ?);

/1 shall be replaced by

ait {
} [1 MCL.trigger (MType:?) { }

Il or

WPTC. done;

/1 shall be replaced by

al't {
[T MPTC. done { }
}

7.4 Embedding stand-alone altstep calls into alt statements

TTCN-3 alows calling altsteps like functions in functions, altsteps, test cases and module control. The meaning of a
stand-alone call of an altstep isgiven by anal t statement with one branch only that calls the altstep. Theal t
statement is responsible for the snapshot that is eval uated within the altstep and for the invocation of the default
mechanism if none of the alternativesin the altstep can be chosen.

NOTE: An atsteps used in module control can only include alternatives witht i meout operationsand an el se
branch.

EXAMPLE:
/1 The stand-al one occurrence of

@AI tstep(MyParlval);

/1 shall be replaced by

ait {
[T nyAltstep(MyParlval) { }
}

7.5 Replacement of interleave statements

Themeaning of ani nt er | eave statement is defined by its replacement by a series of nested al t statements that has
the same meaning. The algorithm for the construction of the replacement for ani nt er | eave statement is described in
this clause. The replacement shall be made on a syntactical level.

Withinani nt er| eave statement it is not allowed:

1) tousethe control transfer statementsf or , whi | e, do-whi | e, got 0, acti vat e, deacti vat e, st op,
repeat andreturn;

2) tocal atsteps,
3) tocal user-defined functions which include communication operations;

4) toguard branches of thei nt er | eave statement with Boolean expressions; and

5) to specify el se branches.

ETSI

14 ETSI ES 201 873-4 V4.5.1 (2016-07)

Due to these restrictions, al not mentioned stand-alone statements (e.g. assignment, | og, send or r epl y), blocking
call operations and the compound statementsi nt er | eave, i f-el se andal t canbeused withinani nt erl eave
statement.

NOTE 1: Blockingcal | operationsandi f - el se statements can be treated like stand-alone statementsiif they
have no embedded al t statements. In case of embedded al t statements, the alternatives contribute to
thei nt er | eave statement and need a special handling. For simplicity, the algorithm below does not
distinguish between these two cases.

NOTE 2: Non-blocking cal | operations are also allowed in interleave statements, they are considered to be
stand-alone statements.

The algorithm described in this clause only worksfor i nt er | eave statements without embedded i nt er | eave
statements. In case of ani nt er | eave statement that has embedded i nt er | eave statements, the embedded
i nt er| eave statements have to be replaced before the algorithm can be applied.

NOTE 3: Duetorestrictions1to 5, it isaways possible to find finite replacements for nested embeddings of
i nt erl eave statements.

The replacement algorithm works on a graph representation of an interleave statement and transformsit into a
semantically equivalent tree structure describing a series of nested al t statements. For this, a graph representation of
stand-alone statements, the compound statementsi f - el se, blockingcal | ,alt andi nt er| eave isneeded.

A stand-alone statement is described by a node with the statement as inscription. A sequence of stand-alone statements
is described by a set of nodes connected by aflow lines. Thisis shownin figure 1.

P1. send(MyVar); P1. send(MyVar);

(a) TTCN-3 stand-alone statement (b) graph representation of (a)

P1. send(MyVar);

P1. send(MyVar);
X =7+ 5;

(c) Sequence of TTCN-3 stand-alone statements (d) graph representation of (c)

Figure 1. Graph representation of TTCN-3 stand-alone statements

The graph representation of ani f - el se statement isshown infigure2. Ani f - el se statement is represented by an
IF node with two flow lines connected to the first statement in the two alternatives. Ani f - el se statement without

EL SE branch is represented in the same manner, if there are statementsfollowing thei f - el se statement. In this case
the flow line representing the el se branch is connected to the first statement following thei f - el se statement. An

i f-el se statement without EL SE branch and without following statements is represented by an IF node with one flow
line only.

NOTE 4: Theinscriptions on the flow linesin figure 1 are introduced for readability purposes only. The algorithm
only uses the relation expressed by the flow line and not the inscription.

ETSI

15 ETSI ES 201 873-4 V4.5.1 (2016-07)

if (x <7) {
P1. send(MyVar);

el se {
X :=7 + 5
}

X =X * 2

(a) TTCN-3 if-else statement

(b) Graph representation of (a)

if (x <7) {
P1. send(MyVar);
}

X =X * 2

(c) TTCN-3 if-else statement without else branch

(d) Graph representation of (c)

Figure 2: Graph representation of TTCN-3 if-else statements

The graph representation of ablocking cal | statement is shown infigure 3. A blocking cal | statement is represented
by aBLOCKING-CALL node with flow lines connected to the get r epl y and cat ch statements of the different

alternatives.

Pl.call (MyProc:{-, true}, 20E-3) {

[1 Pl.getreply(MProc:{?,-} {
setverdi ct (pass);

}
[T Pl.catch(M/Proc, MyException) {}

[1 Pl.catch(timeout) {
setverdict(fail);
}

X :=7 + 5;

——

(a) TTCN-3 blocking call statement

Pl.call (MyProc:{-,true}

BLOCKI NG CALL
, 20E-3)

P1. getreply(MProc:{?,-})

setverdi ct (pass);

1. catch(M/Proc, MyExcepti on)

P1. catch(ti meout)

setverdict(fail);

(b) Graph representation of (a)

Figure 3: Graph representation of a TTCN-3 blocking call statement

ETSI

16 ETSI ES 201 873-4 V4.5.1 (2016-07)

The graph representation of an al t statement isshown infigure4. Anal t statement is represented by an alt-node
with several flow lines connected to the different alternatives.

alt {
[x<5] P1l.receive(M/MssageOne} {
setverdi ct (pass);

}
[T Pl.receive(M/MessageTwo) {}
[T Ti.tineout {
setverdict(fail);

—

(a) TTCN-3 alt statement

G —

P1. recei ve(MyMessageOne)
P1.recei ve(MyMessageTwo)

setverdict(fail);

setverdi ct (pass);

(b) Graph representation of (a)

Figure 4. Graph representation of a TTCN-3 alt statement

In general, the graph representations of i f - el se, blockingcal | andal t statements are directed graphs without
loops where the flow lines of the different alternatives join when leaving the statement. By means of duplication, it is
possible to transform such directed graphs into a semantically equivalent tree representation. Thisis showninfigure 5
for the alt statement in figure 4. The algorithm described below will construct such tree representations.

ETSI

17 ETSI ES 201 873-4 V4.5.1 (2016-07)

alt {

[x<5] P1l.receive(M/MssageOne} {
set verdi ct (pass);
X =7+ 5;

}
[T Pl.recei ve(M/MessageTwo) {
X :=7 + 5

}
[Ti.timeout {
setverdict(fail);
X =7+ 5;

(a) TTCN-3 alt statement that is semantically equivalent to figure 4(a)

S

P1.recei ve(MyMessageOne)

setverdi ct (pass);

Pl.recei ve(MyMessageTwo)

T1.ti meout

setverdict(fail);

(b) Graph representation of (a) (semantically equivalent to figure 4(b))

Figure 5. Graph representation of a TTCN-3 alt statement

ETSI

18

ETSI ES 201 873-4 V4.5.1 (2016-07)

Ani nt er | eave statement can be described by a graph that consists of a set of directed sub-graphs, each of whichis
constructed by means of stand-alone statements and the compound statementsi f - el se, blockingcal | andal t . The
directed sub-graphs describe the interleaved flows of control. An example is shown in figure 6. The node inscriptionsin
figure 6 (b) refer to the labels of the TTCN-3 statements in figure 6(a).

interleave {

}

[1 Pl.receive(M} { /1 L1
alt { /1 ALT
[1 Pl.receive(M) { /1 L2
setverdi ct (pass); /1 L3
}
[T Til.timeout { } /1 L4
} .
[1 P2.receive(M) { /Il L5
if (x <5) { Il IF
alt { /1 ALT
[1 P2.receive(M) { /Il L6
setverdi ct (pass); Il L7
}
[1 Conpl.done { } /1 L8
X =7 + 5 /1 L9
el se {
P3. cal | (MyProcTenpl, 20E-3) { /1 BC (= BLOCKI NG CALL)
[1 P3.getreply(ReplyTempl) { /1 L10
alt { /1 ALT
[T P2.receive(Ms) { } // L11
[1 P2.receive(Ms) { } /] L12
}
}
[1 P3.catch(tineout) { /1 L13
setverdict(fail); /1 L14

(a) TTCN-3 interleave statement

@

(b) Graph representation of (a)

Figure 6: Graph representation of a TTCN-3 interleave statement

ETSI

19 ETSI ES 201 873-4 V4.5.1 (2016-07)

Formally, ani nt er | eave statement can be described by a graph Gl = (S, F) where:
St isthe set of allowed TTCN-3 statements; and
Fc (St X St) describesthe flow relation.
The term allowed TTCN-3 statements refers to the static restrictions 1-5 above.
For the construction algorithm the following functions need to be defined:
. The REACHABLE function returns all statements that are reachable from a statement sin agraph Gl = (St, F):

REACHABLE (s Gl)={s}u
{ gtmt|stmte St A J(S=Xq, Xo, ... , X, = StMt) where x; € S,
ie{l..n} A (X, Xjzp)e F}

. The SUCCESSORS function returns all successors of a statement sinagraph Gl = (St, F):
UCCESORS (s, Gl) ={ stmt |stmt € St A (S, stmt) € F}

. The ENABLED function returns al statements of a graph Gl = (St, F) which have no predecessors:
ENABLED (Gl)={ stmt|stmt e St A (F " (S X {s}) = D)}

. The KIND function returns the kind or type of a TTCN-3 statement in a graph representing ani nt er | eave
statement.

. The DISCARD function deletes a statement s or a set of statements S from a graph Gl = (St, F) and returns the
resulting graph GI'= (St', F'):

For single nodes:

DISCARD (s, Gl) = GI" where: GI' = (St', F'), with St' = St\{ s} and
F'=F N (St{s} X St\{s}).

For sets of nodes:
DISCARD (S, Gl) = GI' where: GI' = (St', F'), with St' = St\Sand F' = F n (St\S X $t\S).
. The RECEIVING function takes a set of statements of agraph Gl and returns all receiving statements:

RECEIVING (9§ ={ stmt|stmt € S A KIND(stnt) e {receive, trigger, getcall, getreply, catch, check,
done, timeout} }

. The RANDOM function selects randomly an element s from a given set Sand returns s.
RANDOM (S) =swherese S
The construction algorithm (see figure 7) of the tree is a recursive procedure where in each recursive call the successor

nodes for a given node is constructed. The procedure is provided in a C-like pseudo-code notation that uses the
functions defined above and some additional mathematical notation.

ETSI

20 ETSI ES 201 873-4 V4.5.1 (2016-07)

CONSTRUCT- SUCCESSORS (st at enent Type *predecessor, graphType A) {
/1 - statenentType refers to the type of a node of the tree that is constructed
/1 - *predecessor refers to the | ast node that has been created
/1 - graphType denotes type of the graph of TTCN-3 statenents
/Il - d is called by value and refers to the subgraph consisting of all renaining TTCN-3
/] statements that have to be taken into consideration

var graphType nyG aph;

var statement Type i, nyStnt;

var statenent Type *newStnt, *firstinBranch; // pointers for new statenent nodes in the
/] tree that is constructed recursively

/'l Retrieving sets of TTCN-3 statenents that have no predecessors in 'd’

var statementSet enabStnts := ENABLED(Q); /1 all statements wi thout predecessor

var statement Set enabRecStnts : = RECEIVING enabStnts); // receiving statenments in 'enabStnts'
var statenent Set enabNonRecStnts : = enabStnts\enabRecStnts;

/1 non receiving statenments in 'enabStnts'

if (.St ==@) { /] It is assuned that G .St refers to the set of statenents in G
return; /1 No statenments are left, termnation criterion of Recursion
}

el seif (enabNonRecStnts != &) { // Handling of non receiving statements in 'enabStnts'

nyStnt : = RANDOM enabNonRecSt nt s) ;
/1 There can only be one statenent in 'enabNonRec', because the Al gorithm
/1 continues the construction until there is a branch that contributes to
I/l the interlave statenent.

newStnt := create(nyStnt, predecessor);
/] Creation of a new tree node representing 'nyStnt' in the tree
/1 and update of pointers in 'newStnt' and 'predecessor'.

if (KIND(nyStnt) == IF || KIND(nmyStnt) == BLOCKI NG CALL) {
for each i in SUCCESSORS(nyStnt, d) {

firstinBranch := create(i, newsStnt);
/] Creation of a second node for the first statement of in a branch due to
/1 an if-else statenent.
/1l Note, this create statenent will be used to create tree nodes
/'l representing the receiving statements in blocking call operations.

myGraph := DI SCARD({i, nyStnt} U REACHABLE(nyStnt, G)\REACHABLE(i, G))
/1 Rermoval of i, nyStnt and all statenents that are reachable from
/1 nyStmt but not reachable fromi. The latter considers the branching of
/1 a flow of control in a subgraph of Q.

CONSTRUCT- SUCCESSORS(fi rst | nBranch, nyG aph); /1 NEXT RECURSI ON STEP
}

}
elseif (KIND(nmyStnt) == ALT) {
for each (i in SUCCESSORS(nyStnt, d) {

CONSTRUCT- SUCCESSORS(nyst nt, DI SCARD(REACHABLE(nmyStnt, G)\ REACHABLE(i, d)));
/1 NEXT RECURSI ON STEP, the DI SCARD(REACHABLE(nyStnt, G)\REACHABLE(i, G))
/'l argunment considers the branching of a flow of control due to different
/] receiving events.

}

el se { /1 nystnt is a stand-al one statenent
CONSTRUCT- SUCCESSORS(newSonNode, DI SCARD(nyStnt, G));
/1 NEXT RECURSI ON STEP

}
else { // Handling of receiving events that interleave
if (KIND(predecessor) != ALT) { // an alt node is missing and has to be created, if the
/1 interleaving is not influenced by an enbedded alt statenent

predecessor := create(ALT, predecessor);

}

for each i in enabRecStnts) {
newStnt := create(i, predecessor); /1 New tree node
CONSTRUCT- SUCCESSORS(newSt nt, DI SCARD(i, G)); // NEXT RECURSI ON STEP(S)

}

Figure 7: Replacement algorithm for TTCN-3 interleave statements

ETSI

21 ETSI ES 201 873-4 V4.5.1 (2016-07)

Initialy, the CONSTRUCT-SUCCESSORS function (see figure 7) will be called with aroot node of an empty tree and
the graph of TTCN-3 statements describing thei nt er | eave statement that shall be replaced. After termination, the
root node can be used to access the constructed tree.

The application of the CONSTRUCT-SUCCESSORS function to thei nt er | eave statement shown in figure 6 leads
to the tree shown in figure 8. The labels refer to the statementsin figure 6(a). Multiple labels are the result of the
duplication of code. The TTCN-3 code that corresponds to the treein figure 8 is shown in figure 9.

NOTE 5: The example for the application of the algorithm in figure 7 (see figures 6, 8 and 9) is very
comprehensive. This example is provided in order to show most of the specia situations, i.e. branching
and joining of flow lines, an embedded al t statement, ablocking cal | statementandani f - el se
statement.

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)

22

T
< il
DD mie L o

€9 6) NS,
<t » 1
P CEP@ErE) € - :

LS
) 4
I F

Figure 8: Result of applying the algorithm in figure 7 to the interleave statement in figure 6
ETSI

23 ETSI ES 201 873-4 V4.5.1 (2016-07)

alt { /1 ALT
[T Pl.receive(M} { /1 L1
alt { /1 ALT
[T Pl.receive(M) { /1 L2
set verdi ct (pass); /1 L3
alt { /1 ALT
[1 P2.receive(M) { /1 L5
if (x <5) { Il 1F
alt { /1 ALT
[1 P2.receive(M) { /1 L6
setverdi ct (pass); /1 L7
X =7 +5; /1 L9
}
[1 Conpl.done { /1 L8
X =7+ 5 /1 L9
P} }
el se {
P3.cal | (MyProcTenpl, 20E-3) { // BC (= BLOCKI NG CALL)
[1 P3.getreply(ReplyTenmpl) { /1 L10
alt { /1 ALT
[T P2.receive(M) { } /1 L11
[T P2.receive(Ms) { } /1 L12
P}
[1 P3.catch(timeout) { /1 L13
setverdict(fail); /1 L14
;) by} }
[T Ti.tinmeout { /Il L4
alt { /1 ALT
[T P2.receive(M) { /1 L5
if (x <5) { Il 1F
alt { /1 ALT
[1 P2.receive(M) { /1 L6
set verdi ct (pass); /Il L7
X =7+ 5; /1 L9
}
[T Conpl.done { // L8
X =7+ 5; /Il L9
Pl }
el se {
P3. cal | (MyProcTenpl, 20E-3) { // BC (= BLOCKI NG CALL)
[1 P3.getreply(ReplyTenpl) { /1 L10
alt { /1 ALT
[1 P2.receive(M) { } /1 L11
[1 P2.receive(M) { } /1 L12
Pl
[T P3.catch(tinmeout) { /1 L13
setverdict(fail); /1 L14
b Y Y Y) }
[1 P2.receive(M) { /1 L5
if (x <5) { Il 1F
alt { /1 ALT
[1 P2.receive(Md) { /1 L6
setverdi ct (pass); Il L7
X =7 + 5; /1 L9
alt { /1 ALT
[T Pl.receive(M) { /Il L2
setverdi ct (pass); /1 L3
}
[T Ti.tineout { } Il L4
ol
[1 Conpl.done { /1 L8
X =7+ 5; /1 L9
alt { /1 ALT
[1 Pl.receive(M) { /1 L2
setverdi ct (pass); /1 L3
}
[T Ti.tineout { } Il L4
Pl
[1 Pl.receive(M) { /1 L2
setverdi ct (pass); /1 L3
alt { /1 ALT
[T P2.receive(M) { /1 L6
setverdi ct (pass); 11 L7
X :=7 + 5 /11 L9
}
[T Conpl.done { /1 L8
X =7+ 5 /1 L9
P} }

ETSI

24 ETSI ES 201 873-4 V4.5.1 (2016-07)

[T Ti.tineout { Il L4
alt { /1 ALT
[1 P2.receive(M) { /1 L6
set verdi ct (pass); /1 L7
X =7 + 5 /1 L9
}
[1 Conpl.done { /1 L8
X =7+ 5; /1 L9
P} P} }
el se {
P3. cal | (MyProcTenpl, 20E-3) { /1 BC (= BLOCKI NG CALL)
[T P3.getreply(ReplyTenpl) { /1 L10
alt { /1 ALT
[T Pl.receive(M) { /Il L2
setverdi ct (pass); /1 L3
alt { /1 ALT
[1 P2.receive(M) { } /1 L11
[1 P2.receive(M) { } /1 L12
P}
[T Ti.tineout { Il L4
alt { /1 ALT
[T P2.receive(M) { } /1 L11
[1 P2.receive(M) { } /1 L12
Pl
[T P2.receive(M) { /1 L11
alt { /1 ALT
[T Pl.receive(M) { /Il L2
setverdi ct (pass); /1 L3
}
[T Ti.tineout { } Il L4
P}
[1 P2.receive(M) { /1 L12
alt { /1 ALT
[T Pl.receive(M) { /1 L2
setverdi ct (pass); /1 L3
}
[T Ti.tineout { } Il L4
1} o)

[1 P3.catch(tineout) { /1 L13
setverdict(fail); /1 L14
alt { /1 ALT

[T Pl.receive(M) { /1 L2
setverdi ct (pass); /1 L3
}
[T Ti.tineout { } /Il L4
P} I P}
[T P2.receive(M) { /1 L5
if (x <5) { /Il 1F
alt { /1 ALT

[T P2.receive(M) { /1 L6
set verdi ct (pass); /1 L7
X =7+ 5 /1 L9
alt { /1 ALT

[T Pl.receive(M} { /1 L1
alt { /1 ALT

[1 Pl.receive(M) { /Il L2
setverdi ct (pass); /1 L3
}
[T Ti.tineout { } Il L4
ool ol

[1 Conpl.done { /1 L8
X =7+ 5; /1 L9
alt { /1 ALT

[1 Pl.receive(M} { /1 L1
alt { /1 ALT

[T Pl.receive(M) { /1 L2
set verdi ct (pass); /1 L3
}
[T Ti.tineout { } /1 L4
1YY)

[T Pl.receive(M) { /1 L2
setverdi ct (pass); /1 L3
alt { /1 ALT

[1 P2.receive(M) { /1 L6
setverdict (pass); /1 L7
X =7 + 5 /1 L9

}
[1 Conpl.done { /] L8

ETSI

25 ETSI ES 201 873-4 V4.5.1 (2016-07)

;) }
[T Ti.tineout { /]l L4

alt { /1 ALT
[T P2.receive(M) { /1 L6
setverdi ct (pass); /1 L7
X =7 + 5 /1 L9

}
[T Conpl.done { // L8
X =7 + 5 /1 L9
P }
el se {

P3. cal | (MyProcTenpl, 20E-3) { /1 BC (= BLOCKI NG CALL)
[1 P3.getreply(ReplyTenpl) { /1 L10
alt {

[T P2.receive(M) { /1 L11
alt { /1 ALT
[T Pl.receive(M} { /1 L1
alt { /1 ALT
[T Pl.receive(M) { /1 L2
set verdi ct (pass); /1 L3
}

[T Ti.tineout { } /Il L4
Pl P

[T P2.receive(M) { /1 L12
alt { /1 ALT

[T Pl.receive(M} { /1 L1
alt { /1 ALT

[T Pl.receive(M) { /1 L2

set verdi ct (pass); /1 L3

}

[T Ti.tineout { } /1 L4
P} P}

[T Pl.receive(M} { /1 L1
alt { /1 ALT

[1 Pl.receive(M) { /Il L2

set verdi ct (pass); /1 L3
alt { /1 ALT

[P2.receive(M) { } /1 L11
[P2.receive(M) { } /1 L12

] P2.receive(M) { } /1 L11
] P2.receive(Ms) { } /1 L12

[T P2.receive(M) { /1 L11
alt { /1 ALT

[T Pl.receive(M) { /Il L2

set verdi ct (pass); /1 L3

[] }I'l.timaout {} /1 L4

}
[1 P2.receive(M) ({ /1 L12
alt { /1 ALT
[1 Pl.receive(M) { /Il L2
setverdi ct (pass); /1 L3
}

[T Ti.tineout { } Il L4
b) b

[T P3.catch(tineout) { /1 L13
setverdict(fail); /1 L14
alt { /1 ALT

[1 Pl.receive(M} { /1 L1
alt { /1 ALT

[T Pl.receive(M) { /1 L2

set verdi ct (pass); /1 L3

}

[T Ti.timeout { } /1l L4

S S SR S SN S

Figure 9: Semantically equivalent TTCN-3 code for the interleave statement in figure 6

ETSI

26 ETSI ES 201 873-4 V4.5.1 (2016-07)

7.6 Replacement of trigger operations

Thet ri gger operation filters messages with a certain matching criterion from a stream of messages on a given port.
The semantics of thet ri gger operation can be described by its replacement with two r ecei ve operationsand a
got o statement. The operational semantics assumes that this replacement is done on the syntactical level.

EXAMPLE 1:
/1 The follow ng trigger operation ...

alt {
} [l ™CL.trigger (MType:?) { }

/1 shall be replaced by ...

al t
] MCL.receive (MType:?) { }
] MCL.receive {
r epeat
}

{
[
[

}

If thet ri gger statement isused in amore complex al t statement, the replacement is done in the same manner.

EXAMPLE 2:

/1 The following alt statement includes a trigger statenent ...

alt {
[T PCR.receive {
st op;

}
M/CL.trigger (M/Type:?) { }
PC33. catch {
setverdict(fail);
st op;

,_,,_,
[E—

}
/1 which will be replaced by

alt {
[T PCR.receive {
st op;
}

M/CL.receive (MType:?) { }
M/CL. recei ve {
repeat ;

—_——
—_——

}
[] PC®.catch {
setverdict(fail);
st op;

7.7 Replacement of select-case statements

Thesel ect - case statement isan aternative to using aset of nested i f - el se statements when comparing avalue
(defined by a select-expression following the sel ect keyword) to one or severa other values (defined by template
instances in the case branches). Therefore, the semantics of asel ect - case statement can be described by its
replacement with aset of nested i f - el se statements. To avoid a multiple eval uation of the select-expression, the set
of nestedi f - el se statements has to be placed into a statement block and value of the expression has to be stored in a
variable at the beginning of the statement block. The operational semantics assumes that this replacement is done on the
syntactical level.

ETSI

27 ETSI ES 201 873-4 V4.5.1 (2016-07)

Schematically thesel ect - case statement looks as follows:

sel ect (<expression>) {

case (<tenplatelnst, > ., <tenplatelnst, >)
<st at ement bl ock,>
case (<tenplatelnst, > ., <tenplatelnst, >)

<st at ement bl ock,>

case (<tenplatelnst > ., <tenplatelnst >)
<st at ement bl ock >

case el se
<stat ement bl ock,,>

}

The syntactical replacement of the schematic sel ect - case statement by nested i f - el se statementslooks as
follows:

{
var <expression>Type nyTenpVar : = <expression>; /1 tenporary variable for storing the
/1 value of the expression
if (match(nyTenpVar, <tenplatelnst, >) or ..or match(nmyTenpVar, <tenplatelnst, >))
<st at ement bl ock,>
el se {
if (match(nyTenpVar, <tenplatelnst, >) or ..or match(nmyTenpVar, <tenplatelnst, >))
<st at ement bl ock,>
el se {
|f (mat ch(nyTenpVar, <tenplatelnst, >) or ..or match(nmyTenpVar, <tenplatelnst, >))
<st at ement bl ock >
el se
<stat ement bl ock,,>
}
}
}
EXAMPLE:

/1 The follow ng sel ect-case statenent:

sel ect (MyModul ePar) { // where MyMddul ePar is of charstring type
case ("firstValue") {
log ("The first branch is selected");

}
case (MCharstingVar, MyCharstringConst) {
log ("The second branch is sel ected");

case else {
log ("The else branch is selected");

}
}
/Il is semantically equivalent to:
{ .
var charstring nyTenpVar := MyModul ePar;
if (match(nyTenmpVar, "firstValue")) {
log ("The first branch is selected");
}
el se {
if (match(nyTenpVar, MyCharstingVar) or match(nmyTenpVar, MCharstingConst)) {
log ("The second branch is selected");
el se {
log ("The else branch is selected");
}
}
}

ETSI

28 ETSI ES 201 873-4 V4.5.1 (2016-07)

7.8 Replacement of simple break statements

"Simple" break statements are break statements used for leaving loops, interleave statements and alt statements. Such
simple break statements are considered to be a short-hand form for using a pair of got o- | abel statements. For each
br eak statement al abel statementisadded after theloop, al t statement or expanded i nt er | eave statement. The
| abel statement shall have an unused label. The br eak statement is replaced by agot o statement to this specific
label.

Note, that i nt er | eave statements are explained already. Therefore the limitation that got o statements cannot be
used withini nt er | eave statements does not hold.

NOTE: The semanticsfor the br eak statement used to leave an atstep is defined in clause 9.5a.

EXAMPLE:
/1 The following loop with a break statenent:
while (condl) { // condl is a Bool ean condition guarding the | oop
i”f.(condZ) {
br eak;
H

}
/1 is semantically equivalent to:
while (condl) { // condl is a Boolean condition guarding the | oop

i f(cond2) {
got o break_12345; /1 break_12345 is a unique | abel
b

}
| abel break_12345;

7.9 Replacement of continue statements

Thecont i nue statement is a short-hand form for using apair of got o- | abel statements. For each cont i nue
statement al abel statement isadded at the end of the loop body. Thel abel statement shall have an unused label.
Thecont i nue statement isreplaced by a got o statement to this specific label.

EXAMPLE:
/1 The following loop with a continue statenent:
while (condl) { // condl is a Bool ean condition guarding the | oop

if(cond2) {
conti nue;
}

/1 is semantically equivalent to:
while (condl) { // condl is a Bool ean condition guarding the | oop
i f(cond2) {

goto continue_12345; /1 continue_12345 is a unique | abel
b

| abelm conti nue_12345;
}

ETSI

29 ETSI ES 201 873-4 V4.5.1 (2016-07)

7.10 Adding default parameters to disconnect and unmap
operations without parameters

Theusage of adi sconnect or unnap operation without any parameters is a shorthand form for using the operation
with the parameter sel f: al | port . It disconnects or unmaps all ports of the component that calls the operation. For
the operational semanticsthe parameter sel f: al | port shall be added to al occurrences of di sconnect and
unmap operations without parameters.

EXAMPLE:

/'l each occurrence of
di sconnect;

/1 shall be expanded in the follow ng nanner:
di sconnect (self:all port);

/1 and

/1 each occurrence of
unnap;

/1 shall be expanded in the follow ng nanner:
unmap(sel f:all port);

7.11 Adding default values of parameters

Formal parameters may have default values. If no actual parameter is provided in a specific invocation, then the default
value is added to the actual parameter list. If list notation has been used for the actual parameter list, then the default
value isinserted according to the order in the formal parameter list. If assignment notation has been used for the actual
parameter list, then the default values are appended to the actual parameters, the order among the default values
corresponds to their order in the formal parameter list.

EXAMPLE:

function f_conp (in integer p_intl, ininteger p_int2 := 3) return integer {
var integer v := p_intl + p_int2;
'return v;

}

/1 Each occurrence of
f_conp(1)

/1 shall be expanded to
f_conp(1, 3);

/1 Each occurrence of
f_comp(p_intl := 1)

/1 shall be expanded to
f_comp(p_intl :=1, p_int2 := 3);

8 Flow graph semantics of TTCN-3

8.0 General

The operational semantics of TTCN-3 is based on the interpretation of flow graphs. In this clause flow graphs are
introduced (see clause 8.1), the construction of flow graphs representing TTCN-3 module control, test cases, atsteps,
functions and component type definitionsis explained (see clause 8.2), module and component states for the description
of the execution states of a TTCN-3 module are defined (see clause 8.3), the handling of messages, remote procedure
calls, replies to remote procedure calls and exceptionsis described (see clause 8.4) and the evaluation procedure of
module control and test cases is explained (see clause 8.6).

ETSI

30 ETSI ES 201 873-4 V4.5.1 (2016-07)

8.1 Flow graphs

8.1.0 General

A flow graph is adirected graph that consists of |abelled nodes and labelled edges. Traversing aflow graph describes
the possible flow of control during the execution of a represented behaviour description.

8.1.1 Flow graph frame

A flow graph shall be put into aframe defining the border of the flow graph. The name of flow graph follows the
keywords flow graph (these are not TTCN-3 core language keywords) and shall be put into the upper left corner of the
flow graph. As convention it is assumed that the flow graph name refers to the TTCN behaviour description represented
by the flow graph. A simple flow graph is shown in figure 10.

fl ow graph
MySi npl eFl owGr aph

Figure 10: A simple flow graph

8.1.2 Flow graph nodes

8.1.2.0 General

Flow graphs consist of start nodes, end nodes, basic nodes and reference nodes.

8121 Start nodes

Start nodes describe the starting point of aflow graph. A flow graph shall only have one start node. A start nodeis
shown in figure 11(a).

h 4 P N

(a) Flow graph start node (b) Flow graph end node

Figure 11: Start and end nodes

8.1.2.2 End nodes

End nodes describe end points of a flow graph. A flow graph may have several end nodes or in case of loops no end
node. Basic nodes (see clause 8.1.2.3) and reference nodes (see clause 8.1.2.4) that have no successor nodes shall be
connected to an end node to indicate that they describe the last action of a path through a flow graph. An end node is
shown in figure 11(b).

8.1.2.3 Basic nodes

A basic node describes an execution unit, i.e. it is executed in one step. A basic node has atype and, depending on the
type, may have an associated list of attributes. Two basic nodes are shown in figure 12.

ETSI

31 ETSI ES 201 873-4 V4.5.1 (2016-07)

In the inscription of abasic node the attributes of a node follow the node type and are put into round parentheses. Type
and attributes are used to determine the action to be performed during execution of the represented language construct.
The attributes describe information to be retrieved from the corresponding TTCN-3 construct.

Attributes have values and the operational semantics will retrieve these values by referring to the attribute name. If
required, it is allowed to assign explicit values in basic nodes by using assignment ":=". An example is shown in
figure 12(b).

node-type
(attr,:=7, ...,
attr,:= 8.0

node-type
(attrq, attra, ...,
attry)

(@) (b)

Figure 12: Basic nodes with attributes

8.1.24 Reference nodes

8.1.2.4.0 General

Reference nodes refer to flow graph segments (see clause 8.1.4) that are sub-flow graphs. The meaning of areference
node is defined by its replacement by the referenced flow graph segment in the flow graph. The node inscription of the
reference node provides the reference to a flow graph segment. A reference node is shown in figure 13(a).

segnent -ref erence;
OR

segnent - r ef erence segrrent-(r]gfer ence;

segnent - r ef erences

(a) Single reference node (b) OR combination of three reference nodes

Figure 13: Reference node

8.1.24.1 OR combination of reference nodes

In some cases severa flow graph segments may replace a reference node. For these cases an OR operator may be used
to refer to several flow graph segments (see figure 13(b)). In the actual flow graph representing the module control, a
test case or afunction, one aternative is determined by the represented construct.

8.1.2.4.2 Multiple occurrences of reference nodes

In some cases the same kind of reference node may occur zero, one or more timesin aflow graph. In regular
expressions the possible repetition of parts of aregular expression is described by using the operator symbols"+" (one
or more repetitions) and "*" (zero or more repetitions). As shown in figure 14, these operators have been adopted to
flow graphs by introducing double-framed reference nodes with associated operator symbols. A single flow

(see clause 8.1.3) line shall replace areference node, in case of zero occurrences (using a double-framed reference node
with "*"-operator).

B -+

segnent -ref erence segnent -ref erence

Figure 14: Repetition of reference nodes

ETSI

32 ETSI ES 201 873-4 V4.5.1 (2016-07)

An upper bound of possible repetitions of a reference node can be given in form of an integer number in round
parenthesis following the "*" or "+" symbol in the double framed reference node. The segment reference shown in
figure 15 may occur from zero up to 5 times.

Q

segnent - ref erence

Figure 15: Restricted repetition of a reference node

8.1.3 Flow lines

Flow lines are represented by means of arrows. A flow line has an inscription of true or false which indicates a
condition under which the flow line is chosen during the flow graph interpretation. As a short hand notation it is
allowed to omit the true inscription. Examples of flow lines are shown in figure 15a.

false

>

true

> which isidentical to >

Figure 15a: Explicit and implicit inscriptions of flow lines

To support the joining of several flow linesinto one flow line on agraphical level, a special join node isintroduced.
The join node and an example for its usage are shown in figure 15b.

join node; ()

™

usage of join node: >Q® >

/'

Figure 15b: Joining of flow lines

Drawing long flow linesin big diagrams asit is, for example, necessary to model the TTCN-3 constructs got o and
| abel , isawkward. For this purpose, labels for outgoing and incoming flow lines can be used. Examples are shown in
figure 15c.

Incoming flow line with |abel: in-label ——
Outgoing flow line with |abel: ——p out-label

Figure 15c: Incoming and outgoing flow lines with labels
An outgoing flow line with alabel is connected with an incoming flow line with alabel, if the labels are identical. The

flow line labels for the incoming flow lines shall be unique. If there are several outgoing flow lines with the same label,
thisis considered to be ajoin of lines to the incoming flow line with an identical 1abel.

ETSI

33 ETSI ES 201 873-4 V4.5.1 (2016-07)

8.1.4 Flow graph segments

Flow graph segments are sub-flow graphs. They are referenced in reference nodes and define the meaning of that
reference node. Flow graph segments may include further reference nodes.

Asshown in figure 16, flow graph segments have precise interfaces that consist of incoming and outgoing flow lines.
Thereis only one unlabeled incoming and one or none unlabeled outgoing flow lines. In addition there might exist
severa labelled incoming and outgoing flow lines. For example, the labelled incoming and outgoing flow lines are
needed to describe the meaning of TTCN-3 statementsgot o andal t .

Flow graph segments are put into aframe and the name of the flow graph segment shall follow the keyword segnent
followed by the segment name in the upper left corner of the frame. The flow lines describing the flow graph segment
interface shall cross the flow graph segment frame.

segment Segnment Narrei

LI, >

LO LG ... LOy

Figure 16: Structure of a flow graph segment description

8.1.5 Comments

To improve readability and coherence a special comment symbol can be used to associate comments to flow graph
nodes and flow lines. The comment symbol and its usage are shown in figure 17.

!
'
! Comment related to
flow line

Thisisacomment in

........................ acomment symbol \ 4
iNSCription Ve gao;;"r‘ggere'ated o
i
(@) Comment symbol (b) Usage of comment symbols

Figure 17: Flow graph representation of comments

ETSI

34 ETSI ES 201 873-4 V4.5.1 (2016-07)

8.1.6 Handling of flow graph descriptions

The evauation procedure of the operational semantics traverses flow graphs that only consist of basic nodes, i.e. all
reference nodes have to be expanded by the corresponding flow graph segment definitions. The NEXT functionis
required to support this traversal. NEXT is defined in the following manner:

actualNodeRef NEXT(bool) := successor NodeRef where:
. actualNodeRef isthe reference of abasic flow graph node;
. successorNodeRef isthe reference of a successor node of the node referenced by actual NodeRef;

. bool is a Boolean specifying whether the true or the fal se successor is returned
(see clause 8.1.3).

8.2 Flow graph representation of TTCN-3 behaviour

8.2.0 General

The operational semantics assumes that TTCN-3 behaviour descriptions are provided in form of a set of flow graphs,
i.e. for each TTCN-3 behaviour description a separate flow graph has to be constructed.

The operational semantics interprets the following kinds of TTCN-3 definitions as behaviour descriptions:
a module control;
b) test case definitions;
¢) function definitions;
d) atstep definitions;
€) component type definitions.

The module control specifies the test campaign, i.e. the execution order (possibly repetitious) of the actual test cases.
Test case definitions define the behaviour of the MTC. Functions structure behaviour. They are executed by the module
control or by the test components. Altsteps are used for the definition of default behaviour or in afunction-like manner
to structure behaviour. Component type definitions are assumed to be behaviour descriptions because they specify the
creation, declaration and initialization of ports, constants, variables and timers during the creation of an instance of a
component type.

8.2.1 Flow graph construction procedure

The flow graphs presented in the figures 18 to 22 and the flow graph segments presented in clause 8 are only templates.
They include placeholders for information that has to be provided in order to produce a concrete flow graph or flow
graph segment. The placeholders are marked with "<" and ">" parenthesis.

The construction of aflow graph representation of a TTCN-3 moduleis done in three steps:

1) For each TTCN-3 statement in module control, test cases, altsteps, functions and component type definitions a
concrete flow graph segment is constructed.

2) For the module control and for each test case, altstep, function and component type definition a concrete flow
graph (with reference nodes) is constructed.

3) Inastepwise procedure al reference nodes in the concrete flow graphs are replaced by corresponding flow
graph segment definitions until all flow graphs only include one start node, end nodes and basic flow graph
nodes.

NOTE 1: Basic flow graph nodes describe basic indivisible execution units. The operational semanticsfor TTCN-3
behaviour is based on the interpretation of basic flow graph nodes. Clause 8.6 presents execution methods
for basic flow graph nodes only.

ETSI

35 ETSI ES 201 873-4 V4.5.1 (2016-07)

The replacement of a reference node by the corresponding flow graph segment definition may lead to unconnected parts
in aflow graph, i.e. parts which cannot be reached from the start node by traversing through the flow graph aong the
flow lines. The operational semantics will ignore unconnected parts of a flow graph.

NOTE 2: An unconnected part of aflow graph isaresult of the mechanical replacement procedure. For the
construction of an optimal flow graph representation the different combinations of TTCN-3 statements
also hasto be taken into consideration. However, the goal of the present document isto provide a correct
and complete semantics, not an optimal flow graph representation.

8.2.2 Flow graph representation of module control

Schematically, the syntactical structure of a TTCN-3 moduleis:

nmodul e <identifier> <nodul e-definitions-part> control <statemnent-block>

For the flow graph behaviour representation the following information is relevant only:

nodul e <identifier> <statenent-bl ock>

Thisis comparable to afunction definition and therefore the flow graph representation of module control is similar to

the flow graph representation of afunction (see clause 8.2.4). The semantics will access the flow graph representing the
module control by using the module name.

NOTE: The meaning of the module definitions part is outside the scope of this operational semantics. Module
parameters are defined as global constants at run-time. References to module parameters have to be
replaced by their concrete values on a syntactical level (see clause 8.3).

The scheme of the flow graph representation of the module control is shown in figure 18. The flow graph name
cont r ol identifiesthe flow graph representing the module control. The nodes of the flow graph have associated
comments describing the meaning of the different nodes. The reference node <st op- ent i t y- op> coversthe case

where no explicit st op operation is specified, i.e. the operational semantics assumesthat ast op operation is
implicitly added.

fl ow graph control

/1 The nodul e control behaves like a
<i ni t-conmponent - scope> /'l conponent and therefore, its scope
/1 has to be initialised.

y

/1 The body of the nodule control
<st at ement - bl ock> /'l specifies the statenents to be
/1 execut ed.

* (1) /Il For the case that an explicit stop
/] operation is mssing at the end of
/1 nodul e control

<stop-entity-op>

A

Figure 18: Flow graph representation of module control

ETSI

36 ETSI ES 201 873-4 V4.5.1 (2016-07)

8.2.3 Flow graph representation of test cases

Schematically, the syntactical structure of a TTCN-3 test case definitioniis:

testcase <identifier> (<paraneter>) <testcase-interface> <statenent-bl ock>

The<t est case-i nt er f ace> above refersto the (mandatory) r uns on and the (optional) syst emclausesin the
test case definition. The flow graph description of atest case describes the behaviour of the MTC. Variables, timers and
constants defined and declared in the component type definition are made visible to the MTC behaviour by ther uns
on clauseinthe<t est case-i nt er f ace>. Thesyst emclauseis not relevant for the MTC and is therefore not
represented in the flow graph representation of atest case.

The scheme of the flow graph representation of atest case is shown in figure 19. The flow graph name

<i denti fi er> refersto the name of the represented test case. The nodes of the flow graph have associated
comments describing the meaning of the different nodes. The reference node <st op- ent i t y- op> coversthe case
where no explicit st op operation for the MTC is specified, i.e. the operational semantics assumesthat ast op
operation isimplicitly added.

fl ow graph <identifier>

// Considers scope information provided
<init-scope-wth-runs-on> /1 by the runs-on clause in the
/1 interface of the test case.

v /1 - Actual parameter values are
11 assunmed to be in the val ue stack
. /1
<par anet er - handl i ng> /1 - Formal paraneters are handl ed
/1 i ke local variables and | ocal

/1 timers

\4

/1 The body of the test case specifies
<st at enent - bl ock> /1l the statenents to be executed
/1 by the MIC

* (1) /1 For the case that an explicit stop
// operation is missing at the end of
/] the test case

<st op-ntc>

A

Figure 19: Flow graph representation of test cases

8.2.4 Flow graph representation of functions

Schematically, the syntactical structure of a TTCN-3 functionis:

function <identifier> (<paraneter>) [<function-interface>] <statenent-bl ock>

The optional <f uncti on-i nt er f ace> aboverefersto the (optional) r uns on and the (optiona) r et ur n clauses
in the function definition.

ETSI

37 ETSI ES 201 873-4 V4.5.1 (2016-07)

The scheme of the flow graph representation of a function is shown in figure 20. The flow graph name

<i denti fi er> refersto the name of the represented function. Variables, timers, constants and ports defined and
declared in the component type definition are made visible to within the function by the r uns on clause in the
<function-interface>. Amissingruns on clause means that definitions within the component type definition
are not known within the scope of the function. The operational semantics distinguishes these two cases by the
reference nodes<i ni t - scope-w t h-runs-on>and<i ni t-scope-wi t hout - runs- on>. The reference
node <r et ur n-wi t hout - val ue> coversthe case where no explicit r et ur n statement is specified, i.e. the
operational semantics assumesthat ar et ur n statement isimplicitly added.

fl ow graph <identifier>

)

. i th /1 Considers the cases where either
<l n|t-scope-(\3v|?t -runs-on= /! a runs-on clause is present or
/'l absent.

<init-scope-w thout-runs-on>

/1 - Actual paraneter values are

A 4 /1 assumed to be in the value stack
11
<par anet er - handl i ng> // - Formal paraneters are handl ed
/1 i ke local variables and I ocal
/1 timers

\ 4

/1 The body of the function specifies
<st at enent - bl ock> /'l the statenents to be executed
/1 by the conponent.

* (1) ||
/1 For the case that an explicit
/1

return statement is missing at the
<return-w thout-val ue> /1 end of the function.

A

Figure 20: Flow graph representation of functions

8.2.5 Flow graph representation of altsteps

Schematically, the syntactical structure of a TTCN-3 atstep is:

altstep <identifier> (<parameter>) [<altstep-interface>]
<constant-vari abl e-ti mer-decl arati ons>
{ <receiving-branch> | <else-branch> }*

NOTE: Only the alternatives up to the first else branch and the first else branch are taken into consideration.
Branches following the first el se branch are unreachable.

The optional <al t st ep-i nt er f ace> above refersto ther uns on clause in the altstep definition.

ETSI

38 ETSI ES 201 873-4 V4.5.1 (2016-07)

The scheme of the flow graph representation of an altstep is shown in figure 21. The flow graph name

<i denti fi er> refersto the name of the represented altstep. Variables, timers, constants and ports defined and
declared in the component type definition are made visible to within the function by the r uns on clause in the
<function-interface>. Amissingruns on clause means that definitions made within the component type
definition are not known within the scope of the function. The operational semantics distinguishes these two cases by
the reference nodes<i ni t - scope-w t h-runs-on>and<i ni t - scope-wi t hout - r uns- on>. Thereference
node <r et ur n- wi t hout - val ue> coversthe case where no else-branch is specified and none of the aternatives
can be selected.

fl ow graph <identifier>

)

<init ith S /1 Considers the cases where either
Init-scope-wth-runs-on /1 a runs-on clause is present or
oR
o) /1 absent.
<init-scope-wthout-runs-
A 4 /1 - Actual paraneter values are
/1 assunmed to be in the val ue stack
<par anet er - handl i ng> 1
/1 - Formal paraneters are handl ed
/1 like local variables and | ocal
11 tiners

*
|| <constant-definition>

R
<vari abl e- decl arati on>
R
<tiner-decl arati on>

v

+ /1 Alternative

< ecei vi ng-branch> R [/1 branches

<al t step-cal | - branch>
OR <el se-branch>

Constants, variables and tiners
may be declared and initialised

~—
~

* (1) /'l For the case where no el se branch
................................. /1 is specified and none of the
/1 alternatives can be sel ected.

<return-wi thout -val ue>

i

Figure 21: Flow graph representation of altsteps

8.2.6 Flow graph representation of component type definitions

Schematically, the syntactical structure of a TTCN-3 component type definition is:

type conponent <identifier> <port-constant-variabl e-tiner-declarations>
The semantics will access flow graphs representing types by using the component type names.

The scheme of the flow graph representation of a component type definition is shown in figure 22. The flow graph
name<i denti fi er > refersto the name of the represented component type.

ETSI

39 ETSI ES 201 873-4 V4.5.1 (2016-07)
fl ow graph <identifier>
/1 The conponent scope is initialised
<i ni t - conponent - scope>
*
<port-decl arati on>
oRrR
<const ant - def i ni ti on> /1 Ports are created
oR
<vari abl e-decl arat i on> /1 Constants, variables and tiners
R /1 are declared and initialised
<timer-decl aration>
/1 The 'father' conponent waits for the
/1 conpletion of the conponent creation,
v /Il i.e., is in a 'blocking state.
<fi nal i se- conponent - i ni t > /1 The created conponent gives the
/1 control back to the 'father' conponent.
/1 The new conponent goes into a
/1 'blocking' state and waits to be
/Il started.

Figure 22: Flow graph representation of component type definitions

8.2.7 Retrieval of start nodes of flow graphs

For the retrieval of the start node reference of aflow graph the following function is required:

The GET- FLOM GRAPH functi on:

GET- FLOM GRAPH (f 1 ow graph-identifier)

The function returns a reference to the start node of aflow graph with the name flow-graph-identifier. The
flow-graph-identifier refers to the module name for the control, to test case names, to function names, to altstep names

and to component type names.

8.3 State definitions for TTCN-3 modules

8.3.0 General

During the interpretation of flow graphs representing TTCN-3 behaviour, modul e states are manipulated. A module
state is a structured state that consists of several sub-states describing the states of module control and the different test
configurations. A test configuration state describes the states of test components and ports. Module states, configuration
states, component states and port states are introduced in this clause. In addition, functions to retrieve information from

and to manipulate states are defined.

ETSI

40 ETSI ES 201 873-4 V4.5.1 (2016-07)

8.3.1 Module state

8.3.1.0 General

As shown in figure 23 amodule state is structured into a module CONTROL state and a TEST-CONFIGURATION state.
The module CONTROL state describes the state of the module control. Module control is handled like a test component,
i.e. CONTROL isan entitiy state as defined in clause 8.3.2. The TEST-CONFIGURATION state represents the test
configurations that isinstantiated when atest case is executed by module control.

CONTROL TEST-CONFIGURATION

Figure 23: Structure of a module state

8.3.1.1 Accessing the module state

The CONTROL state and the TEST-CONFIGURATION state of the module state can be addressed by using their names,
i.e. CONTROL and TEST-CONFIGURATION.

8.3.1a Configuration state

8.3.1a.0 Genral

As shown in figure 23a the configuration state is structured into ALL-ENTITY-STATES, ALL-PORT-STATES,
TC-VERDICT, DONE and KILLED. ALL-ENTITY-STATES represents the states of all instantiated test components
during the execution of atest case. Thefirst element of ALL-ENTITY-STATESis the reference to the MTC of the
configuration. ALL-PORT-STATES describes the states of the different ports. TC-VERDICT stores the actual global test
verdict of atest case. DONE and KILLED are lists of component-verdict-states (CVS). A component verdict state
denotes a stopped or killed component together with itslocal verdict at the point in time when the component was
stopped or killed.

NOTE 1: The number of updates of TC-VERDICT isidentical to the number of test components that have
terminated.

NOTE 2: An dive-type test component is put into the DONE list each time when it is stopped and removed from
the DONE list each time when it is started. It is put into the KILL and the DONE list when it iskilled.

NOTE 3: Port states may be considered to be part of the entity states. By connect and map ports are made visible
for other components and therefore, this operational semantics handles ports on the top level of the
configuration state.

ALL-ENTITY-STATES ALL-PORT-STATES | TC-VERDICT DONE KILLED
| MTC | ESy [|ES¢[| [Pi| [P] | CVSy || CVSy [[©vsy || cvsy |

Figure 23a: Structure of a configuration state

8.3.1a.1 Accessing the configuration state

The TC-VERDICT and the lists ALL-ENTITY-STATES, ALL-PORT-STATES, DONE and KILLED can be accessed like
variables by their name.

For the handling of lists, e.g. ALL-ENTITY-STATES, ALL-PORT-STATES, DONE and KILLED in module states, the list
operations add, append, delete, member, first, last, length, next, random and change can be used. They have the
following meaning:

. myList.add(item) adds item as first element into the list myList and myList.add(sublist) adds the list sublist to
list myList, i.e. add can be used to add single elements or liststo lists;

. myL.ist.append(item) appends item as last element into the list myList and myList.append(sublist) appends the
list sublist to list myList, i.e. append can be used to append single elements or liststo lists;

ETSI

41 ETSI ES 201 873-4 V4.5.1 (2016-07)

. myList.delete(item) deletes item from the list myList;

e myList.member(item) returnst r ue if itemis an element of thelist myList, otherwisef al se;

e myListfirst() returnsthe first element of myList;

. myList.last() returns the last element of myList;

. myList.length() returns the length of myList;

e myList.next(item) returns the element that follows itemin myList, or NULL if itemisthe last element in myList;

e myList.random(<condition>) returns randomly an element of myList, which fulfils the Boolean condition
<condition> or NULL, if no element of myList fulfils <condition>;

e myList.change(<operation>) allowsto apply <operation> on all elements of myL.ist.

NOTE 1. The operations random and change are not common list operations. They are introduced to explain the
meaning of the keywordsal | and any in TTCN-3 operations.

NOTE 2: Arguments of the operations delete, member and next may include "-" symbols denoting afield not
relevant for the unigue identification of an item. For example, for alist aList of 2-tuples containing the
tuple (A, B), aList.member (A, -) returnst r ue if the field A uniquely identifies (A, B), otherwisef al se.

Additionally, ageneral copy operation is available. The copy operation copies and returns an item instead of returning a
reference to an item:

. copy(item) returns a copy of item.

8.3.2 Entity states

8.3.2.0 General

Entity states are used to describe the actual states of module control and test components. In the module state,
CONTROL isan entity state and in the configuration state, the test component states are handled in the list
ALL-ENTITY-STATES The structure of an entity state is shown in figure 24.

STATUS
CONTROL-STACK
DEFAULT-LIST
DEFAULT-POINTER
VALUE-STACK
E-VERDICT
TIMER-GUARD
DATA-STATE
TIMER-STATE
PORT-REF
SNAP-ALIVE
SNAP-DONE
SNAP-KILLED
KEEP-ALIVE

Figure 24: Structure of an entity state

The STATUS describes whether the module control or atest component is ACTI VE, BREAK, SNAPSHOT, REPEAT or
BLOCKED. Module control is blocked during the execution of atest case. Test components are blocked during the
creation of other test components, i.e. when they call acr eat e operation, and when they wait for being started. The
status SNAPSHOT indicates that the component is active, but in the evaluation phase of a snapshot. The status REPEAT
denotes that the component isactiveand inan al t statement that should be re-evaluated dueto ar epeat statement.
The BREAK statusis set when abr eak statement is executed for leaving altstep. In this case, theal t statement in
which the altstep was directly or indirectly (i.e. by means of the default mechanism) called isimmediately |eft.

ETSI

42 ETSI ES 201 873-4 V4.5.1 (2016-07)

The CONTROL-STACK isastack of flow graph node references. The top element in CONTROL-STACK isthe flow
graph node that has to be interpreted next. The stack is required to model function callsin an adequate manner.

The DEFAULT-LIST isalist of activated defaults, i.e. it isalist of pointersthat refer to the start nodes of activated
defaults. Thelist isin the reverse order of activation, i.e. the default that has been activated first is the last element in
thelist.

During the execution of the default mechanism, the DEFAULT-POINTER refers to the next default that has to be
evaluated if the actual default terminates unsuccessfully.

The VALUE-STACK isastack of values of al possible types that allows an intermediate storage of final or intermediate
results of operations, functions and statements. For example, the result of the evaluation of an expression or the result of
the nt ¢ operation will be pushed onto the VALUE-STACK. In addition to the values of all datatypesknownina
module, the special value M ARK has been defined. M ARK is element of the stack alphabet. When leaving a scope
unit, the MARK is used to clean VALUE-STACK.

The E-VERDICT stores the actual local verdict of atest component. The E-VERDICT isignored if an entity state
represents the module control.

The TIMER-GUARD represents the special timer, which is necessary to guard the execution time of test cases and the
duration of call operations. The TIMER-GUARD is modelled as atimer binding (see clause 8.3.2.4 and figure 28).

The DATA-STATE is considered to be alist of lists of variable bindings. The list of lists structure reflects nested scope
units due to nested function and altstep calls. Each list in the list of lists of variable bindings describes the variables
declared in a certain scope unit and their values. Entering or leaving a scope unit corresponds to adding or deleting alist
of variable bindings from the DATA-STATE. A description of the DATA-STATE part of an entity state can be found in
clause 8.3.2.2.

The TIMER-STATE is considered to be alist of lists of timer bindings. The list of lists structure reflects nested scope
units due to nested function and atstep calls. Each list in the list of lists of timer bindings describes the known timers
and their status in a certain scope unit. Entering or leaving a scope unit corresponds to adding or deleting alist of timer
bindings from the TIMER-STATE. A description of the TIMER-STATE part of an entity state can be found in

clause 8.3.2.4.

The PORT-REF is considered to be alist of lists of port bindings. The list of lists structure reflects nested scope units
due to nested function and altstep calls. Nested scope units for ports are the result of port parametersin functions and
atsteps. Each list inthelist of lists of port bindings identifies the known ports in a certain scope unit. Entering or
leaving a scope unit corresponds to adding or deleting alist of port bindings from the PORT-REF. A description of the
PORT-REF part of an entity state can be found in clause 8.3.2.6.

NOTE: The TTCN-3 semantics administrates ports globally in the module state. Due to port parameterization, a
test component may access a port by using different names in different scopes. The PORT-REF part of an
entity state is used to identify port states uniquely in the module state.

The SNAP-ALIVE supports the snapshot semantics of test components. When a snapshot is taken, a copy of the
ALL-ENTITY-STATES list of the module state will be assigned to SNAP-ALIVE, i.e. SNAP-ALIVE includes all entities
(test components and test control) which are alive in the test system.

The SNAP-DONE supports the snapshot semantics of test components. When a snapshot is taken, a copy of the DONE
list of the module state will be assigned to SNAP-DONE, i.e. SNAP-DONE is alist of component identifiers of stopped
components.

The SNAP-KILLED supports the snapshot semantics of test components. When a snapshot is taken, a copy of the
KILLED list of the module state will be assigned to SNAP-KILL, i.e. SNAP-DONE isalist of component identifiers of
terminated components.

The KEEP-ALIVE field indicates whether the entity can be restarted after its termination or not. It is set to true if the
entity can be restarted. Otherwiseit is set to false.

ETSI

43 ETSI ES 201 873-4 V4.5.1 (2016-07)

8.3.2.1 Accessing entity states

The STATUS, DEFAULT-POINTER, E-VERDICT and TIMER-GUARD parts of an entity state are handled like
variablesthat are globally visible, i.e. the values of STATUS DEFAULT-POINTER and E-VERDICT can be retrieved or
changed by using the "dot" notation, e.g. myEntity. STATUS, myEntity. DEFAULT-POINTER and myEntity.E-VERDICT,
where myEntity refers to an entity state.

NOTE: Inthefollowing, it isassumed that the "dot" notation (with references and unique identifiers) is
applicable. For example, in myEntity. STATUS, myEntityState may be pointer to an entity state or be the
value of the <identifier> field.

The CONTROL-STACK, DEFAULT-LIST and VALUE-STACK of an entity state myEntity can be addressed by using the
"dot" notation myEntity. CONTROL-STACK, myEntity. DEFAULT-LIST and myEntity. VALUE-STACK.

CONTROL-STACK and VALUE-STACK can be accessed and manipulated by using the stack operations push, pop, top,
clear and clear-until. The stack operations have the following meaning:

. myStack.push(item) pushes item onto myStack;

. myStack.pop() pops the top item from myStack;

. myStack.top() returns the top element of myStack or NULL if myStack is empty;

. myStack.clear() clears myStack, i.e. pops al items from myStack;

e myStack.clear-until(item) pops items from myStack until item is found or myStack is empty.

DEFAULT-LIST can be accessed and manipulated by using the list operations add, append, delete, member, first,
length, next, random and change. The meaning of these list operationsis defined in clause 8.3.1a.1.

For the creation of a new entity state the function NEW-ENTITY is assumed to be available:
o NEW-ENTITY (flow-graph-node-reference, keep-alive);

creates a new entity state and returns its reference. The components of the new entity state have the following values:
U STATUS s set to ACTI VE;

. flow-graph-node-reference is the only (top) element in CONTROL-STACK;

e DEFAULT-LIST isan empty list;

. DEFAULT-POINTER has the value NULL;

. VALUE-STACK isan empty stack;
. E-VERDICT is set to none;

. TIMER-GUARD is anew timer binding (see clause 8.3.2.4) with name GUARD, status | DL E and no default
duration;

. DATA-STATE is an empty list;
. TIMER-STATE isan empty list;
. PORT-REF isan empty list;

. SNAP-ALIVE isan empty list;

. SNAP-DONE is an empty list;

e SNAP-KILLED isan empty list;

. KEEP-ALIVE is set to the value of the keep-alive parameter.

ETSI

44 ETSI ES 201 873-4 V4.5.1 (2016-07)

During the traversal of aflow graph the CONTROL-STACK changes its value often in the same manner: the top element
is popped from and the successor node of the popped node is pushed onto CONTROL-STACK. This series of stack
operations is encapsulated in the NEXT-CONTROL function:

myEntity. NEXT- CONTROL(nyBool) {
successor Node : = nyEntity. CONTROL- STACK. NEXT(nmyBool). top();
nyEnti ty. CONTROL- STACK. pop();
myEnt i ty. CONTROL- STACK. push(successor Node) ;

8.3.2.2 Data state and variable binding

Asshown in figure 25, the data state DATA-STATE of an entity stateisalist of lists of variable bindings. Each list of
variable bindings defines the variable bindings in a certain scope unit. Adding anew list of variable bindings
corresponds to entering a new scope unit, e.g. afunction is called. Deleting alist of variable bindings corresponds to
leaving a scope unit, e.g. afunction executesar et ur n statement.

root ‘ P? P cecscscces

VariableBinding, VariableBinding,

v v
v v

VariableBinding, VariableBinding,

Figure 25: Structure of the DATA-STATE part of an entity state

The structure of avariable binding is shown in figure 26. A variable has a name, a<location> and a VALUE.
VAR NAME identifies a variable in a scope unit. The <location> isaunique identifier of the storage location of the
value of the variable. The VALUE part of avariable binding describes the actual value of avariable.

NOTE: Unique location identifiers should be provided automatically when avariable is declared.

[VARNAME | <location> | VALUE |

Figure 26: Structure of a variable binding

The distinction between variable name and |ocation has been made to model function calls and the execution of test
cases with value and reference parameterization in an appropriate manner:

a) A parameter passed in by value is handled like the declaration of a new variable, i.e. anew variable binding is
appended to the list of variable bindings of the scope of the called function or executed test case. The new
variable binding uses the formal parameter name as VAR-NAME, receives a new |ocation and gets the value
that is passed into the function or test case.

b) A parameter passed in by reference also leads to a new variable binding in the scope of the called function or
executed test case. The new variable binding also uses the formal parameter name as VAR-NAME, but receives
no new location and no new value. The new variable binding gets a copy of <location> and VALUE of the
variable that is passed in by reference.

When updating a variable value, e.g. in case of an assignment to a variable, the variable nameis used to identify a
location and al variable bindings with the same location are updated at the same time. Thus, when leaving the scope
unit, the list of variables belonging to this scope unit can be deleted without further update. Due to the update
procedure, variables passed in by reference automatically have the correct value.

ETSI

45 ETSI ES 201 873-4 V4.5.1 (2016-07)

8.3.2.3 Accessing data states

The value of avariable can be retrieved by using the "dot" notation myEntity.myVar . VALUE, where myEntity refersto
an entity state and myVar isthe name of avariable.

For the handling of variables and variable scope the following functions are considered to be defined:
a The VAR-&ET function: myEntity. VAR-SET (myVar, myValue)

sets the VALUE part of variable myVar in the actual scope of an entity myEntity to myVal. In addition, the
VALUE part of all variables with the same location as variable myVar will aso be set to myVal.

b) ThelNIT-VAR function: myEntity.INIT-VAR (myVar, myVal)

creates a new variable binding for avariable myVar with the initial value myVal in the actual scope unit of an
entity myEntity. Using the keyword NONE as myVal means that a variable with undefined initial valueis
created. A new and unique <location> value is automatically created.

¢) The GET-VAR-LOC function: myEntity. GET-VAR-LOC (myVar)
retrieves the location of variable myVar owned by myEntity.
d) TheINIT-VAR-LOC function: myEntity.INIT-VAR-LOC (myVar,myLoc)

creates a new variable binding for avariable myVar with the location myLoc in the actual scope unit of
myEntity. The variable will be initialized with the value of another variable with the location myLoc.

NOTE: Variableswith the same location are aresult of parameterization by reference. Due to the handling of
reference parameters as described in clause 8.3.2.2 all variables with the same location will have identical
values during their lifetime.

€) ThelNIT-VAR-SCOPE function: myEntity.INIT-VAR-SCOPE ()

initializes a new variable scope in the data state of entity myEntity, i.e. an empty list isadded asfirst list in the
list of lists of variable bindings.

f) The DEL-VAR-SCOPE function: myEntity. DEL-VAR-SCOPE ()
deletes a variable scope of the data state of myEntity, i.e. the first list in the list of lists of variable bindingsis
deleted.
8.3.24 Timer state and timer binding

As shown in figures 27 and 25 the timer state TIMER-STATE and the data state DATA-STATE of an entity state are
comparable. Both are alist of lists of bindings and each list of bindings defines the valid bindings in a certain scope.
Adding anew list corresponds to entering a new scope unit and deleting alist of bindings corresponds to leaving a

scope unit.

TimerBinding, TimerBinding,

v v
v v

TimerBinding, TimerBinding,

Figure 27: Structure of the TIMER-STATE part of an entity state

ETSI

46 ETSI ES 201 873-4 V4.5.1 (2016-07)

The structure of atimer binding is shown in figure 28. The meaning of TIMER-NAME and <location> is similar to the
meaning of VAR-NAME and <location> for a variable binding (figure 26).

[TIMER-NAME] <location>] STATUS | DEF-DURATION | ACT-DURATION [TIME-LEFT | SNAP-VALUE | SNAP-STATUS |

Figure 28: Structure of a timer binding

STATUS denotes whether atimer is active, inactive or has timed out. The corresponding STATUSvaluesare | DLE,
RUNNI NGand TI MEQUT. DEF-DURATION describes the default duration of atimer. ACT-DURATION stores the
actual duration with which arunning timer has been started. TIME-LEFT describes the actual duration that a running
timer has to run before it times out.

NOTE: DEF-DURATION isundefined if atimer is declared without default duration. ACT-DURATION and
TIME-LEFT are set to 0.0 if atimer is stopped or times out. If atimer is started without duration, the
value of DEF-DURATION is copied into ACT-DURATION. A dynamic error occursif atimer is started
without a defined duration.

NAP-VALUE and SNAP-STATUS are needed to support the snapshot semantics of TTCN-3. When taking a snapshot,
NAP-VALUE gets the actual value of ACT-DURATION — TIME-LEFT. And SNAP-STATUS gets the same value as
STATUS The evaluation of a snapshot will only be based on the values in SNAP-VALUE and SNAP-STATUS.

Timer can be only passed by reference into functions, i.e. the mechanism is similar to the mechanism for variables
described in clause 8.3.2.2. This means a new timer binding (with the formal parameter name) is created which gets
copies of <location>, STATUS, DEF-DURATION, ACT-DURATION, TIME-LEFT, SNAP-VALUE and SNAP-STATUS
from the timer that is passed in by reference. When updating atimer all timer bindings with the same <location> value
are updated at the same time.

8.3.25 Accessing timer states

The values of STATUS, DEF-DURATION, ACT-DURATION, TIME-LEFT, SNAP-VALUE and SNAP-STATUS of a
timer myTimer can be retrieved by using the dot notation:

. myEntity.myTimer.STATUS;

. myEntity.myTimer. DEF-DURATION;

e myEntity.myTimer, ACT-DURATION;

. myEntity.myTimer TIME-LEFT;
. myEntity.myTimer. SNAP-VALUE;
. myEntity.myTimer.SNAP-STATUS.

The myEntity in the dot notation refers to an entity state representing the state of atest component or module control
that owns the timer myTimer.

For changing the values of STATUS DEF-DURATION, ACT-DURATION, TIME-LEFT, SNAP-VALUE and
SNAP-STATUS of atimer timer-name, the generic TIMER-SET operation has to be used, for example:

. myEntity. TIMER-SET(myTimer, STATUS, myVal)

sets the STATUS value of timer myTimer in the actual scope of myEntity to the value myVal. In addition, the STATUS of
all timers with the same location as timer myTimer will also be set to myVal. The TIMER-SET function can aso be used
to change the values of DEF-DURATION, ACT-DURATION, TIME-LEFT, SNAP-VALUE and SNAP-STATUS.

For the handling of timers, timer scope and snapshot the following functions have to be defined:
a ThelNIT-TIMER function: myEntity INIT-TIMER (myTimer, myDuration)

creates a new timer binding for atimer myTimer with the default duration myDuration in the actual scope of an
entity myEntity. Using the keyword NONE as myDuration means that atimer without default duration is
created.

ETSI

a7 ETSI ES 201 873-4 V4.5.1 (2016-07)

b) The GET-TIMER-LOC function: myEntity. GET-TIMER-LOC (myTimer)

retrieves the location of timer myTimer owned by myEntity.
¢) ThelNIT-TIMER-LOC function: myEntity INIT-TIMER-LOC (myTimer, myLocation)

creates a new timer binding for atimer myTimer with the location myLocation in the actual scope unit of
myEntity. The timer will beinitialized with the values of STATUS DEF-DURATION, ACT-DURATION and
TIME-LEFT of another timer with the location <location>.

NOTE: Timerswith the samelocation are aresult of parameterization by reference. Due to the handling of timer
reference parameters as described in clause 8.3.2.3 all timers with the same location will have identical
valuesfor STATUS DEF-DURATION, ACT-DURATION and TIME-LEFT during their lifetime.

d) TheINIT-TIMER-SCOPE function: myEntity.INIT-TIMER-SCOPE ()

initializes a new timer scope in the timer state of entity myEntity, i.e. an empty list isadded asfirst list in the
list of lists of timer bindings.

€) The DEL-TIMER-SCOPE function: myEntity. DEL-TIMER-SCOPE ()

deletes atimer scope of the timer state of entity myEntity, i.e. thefirst list in the list of lists of timer bindingsis
deleted.

f) The SNAP-TIMER function: myEntity. SNAP-TIMER ()

makes an update of SNAP-VALUE and SNAP-STATUS , in all timers owned by myEntity , i.e.:

nyEntity. SNAP- TI MERS () {
for all nyTinmer in TI MER STATE {
nmyEntity. myTi mer. SNAP- VALUE : = nyEntity. myTi mer. ACT- DURATI ON —
nyEntity. myTi mer. Tl ME- LEFT;
nmyEntity. myTi mer. SNAP- STATUS : = nyEntity. myTi mer. STATUS,;

8.3.2.6 Port references and port binding

Asshown in figures 28a, 27 and 25 the port references PORT-REF, the timer state TIMER-STATE and the data state
DATA-STATE of an entity state are comparable. All three are alist of lists of bindings and each list of bindings defines
the valid bindings in a certain scope. Adding a new list corresponds to entering a new scope unit and deleting alist of
bindings corresponds to leaving a scope unit.

root . :? > P occcscsccce

PortBinding1 PortBinding:

{ {
| |

PortBindingn PortBindingx

Figure 28a: Structure of the PORT-REF part of an entity state

The structure of a port binding is shown in figure 28b. A port has two names. PORT-NAME identifies aport in a scope
unit. COMP-PORT-NAME is the port name given in the component type to a port.

[PORT-NAME| COMP-PORT-NAME |

Figure 28b: Structure of a port binding

ETSI

48 ETSI ES 201 873-4 V4.5.1 (2016-07)

NOTE: PORT-NAME and COMP-PORT-NAME are equal directly after the creation of a component.

Ports can be only passed by reference into functions and altsteps, i.e. the mechanismis similar to the mechanism for
variables described in clause 8.3.2.2. This means a new port binding (with the formal parameter name) is created which
gets a copy of COMP-PORT-NAME from the port that is passed in by reference. When accessing a port which is passed
in by reference, the corresponding port binding is used to retrieve the port name declared in the component type
definition.

8.3.2.7 Accessing port references

The value of COMP-PORT-NAME can be retrieved by using the dot notation:

. myEntity.myport. COMP-PORT-NAME

The myEntity in the dot notation refers to an entity state representing the state of a test component that owns the port
myPort.

For the handling of port parameters and port scopes the following functions have to be defined:
a TheINIT-PORT function: myEntity.INIT-PORT (myPort, myCompPortName)

creates a new port binding for a port myPort with myCompPortName as value for COMP-PORT-NAME in the
actual scope of an entity myEntity.

b) ThelNIT-PORT-SCOPE function: myEntity.INIT-PORT-SCOPE ()

initializes a new port scope in the port references of entity myEntity, i.e. an empty list isadded asfirst list in
thelist of lists of port bindings.

¢) TheDEL-PORT-SCOPE function: myEntity.DEL-PORT-SCOPE ()

deletes a port scope of the port references of entity myEntity, i.e. the first list in the list of lists of port bindings
is deleted.

8.3.3 Port states

8.3.3.0 General

Port states are used to describe the actual states of ports. Within a module state, the port states are handled in the
ALL-PORT-STATES ist (see figure 23). The structure of a port state is shown in figure 29. The COMP-PORT-NAME
refers to the port name that is used to declare the port in the component type definition of the test component OWNER
that owns the port. STATUS provides the actual status of the port. A port may either be STARTED, HALTED or
STOPPED.

NOTE: A portinatest systemisuniquely identified by the owning test component and by the port name used in
the component type definition to declare the port.

The CONNECTIONS LIST of aport state keeps track of the connections between the different portsin the test system.
The mechanismis explained in clause 8.3.3.1.

The VALUE-QUEUE in a port state stores the messages, calls, replies and exceptions that are received at this port but
have not yet been consumed.

The SNAP-VALUE supports the TTCN-3 snapshot mechanism. When a snapshot is taken, the first element in
VALUE-QUEUE is copied into SNAP-VALUE. SNAP-VALUE will get the value NULL if VALUE-QUEUE is empty or
STATUSis STOPPED.

| COMP-PORT-NAME | OWNER | STATUS | CONNECTIONS-LIST | VALUE-QUEUE | SNAP-VALUE |

Figure 29: Structure of a port state

ETSI

49 ETSI ES 201 873-4 V4.5.1 (2016-07)

8.3.3.1 Handling of connections among ports

A connection between two test components is made by connecting two of their ports by means of aconnect
operation. Thus, a component can afterwards use itslocal port name to address the remote queue. As shown in

figure 30, connection is represented in the states of both connected queues by a pair of REMOTE-ENTITY and
REMOTE-PORT-NAME. The REMOTE-ENTITY is the unique identifier of the test component that owns the remote
port. The REMOTE-PORT-NAME refers to the port name that is used to declare the port in the component type
definition of the test component REMOTE-ENTITY. TTCN-3 supports one-to-many connections of ports and therefore
al connections of a port are organized in alist.

NOTE 1: Connections made by nap operations are also handled in the list of connections. The map operation:
map(PTC1l:MyPort, syst emPCOL) leads to a new connection (syst em PCO1) in the port state of
MyPort owned by PTC1. The remote side to which PCOL1 is connected to, resides inside the SUT. Its
behaviour is outside the scope of this semantics.

NOTE 2: The operational semantics handles the keyword sy st emas a symbolic address. A connection
(syst em myPort) inthelist of connections of a port it indicates that the port is mapped onto the port
myPort in the test system interface.

[REMOTE-ENTITY | REMOTE-PORT-NAME |

Figure 30: Structure of a connection

8.3.3.2 Handling of port states

The queue of valuesin a port state can be accessed and manipulated by using the known queue operations enqueue,
dequeue, first and_clear. Using a GET-PORT or a GET-REMOTE-PORT function references the queue that shall be
accessed.

NOTE 1: The queue operations enqueue, degqueue, first and clear have the following meaning:
L] myQueue.engqueue(item) putsitem as last item into myQueue;
" myQueue.dequeue() deletes the first item from myQueue;
L] myQueue.first() returns the first item in myQueue or NULL if myQueue is empty;
" myQueue.clear() removes all elements from myQueue.
The handling of port statesis supported by the following functions:
a The NEW-PORT function: NEW-PORT (myEntity, myPort)

creates a new port and returns its reference. The OWNER entry of the new port is set to myEntity and
COMP-PORT-NAME has the value myPort. The status of the new port is STARTED. The CONNECTIONS-LIST
and the VALUE-QUEUE are empty. The SNAP-VALUE has the value NULL (i.e. the input queue of the new port
is empty).

b) The GET-PORT function: GET-PORT (myEntity, myPort)

returns a reference to the port identified by OWNER myEntity and COMP-PORT-NAME myPort.

¢) The GET-REMOTE-PORT function: GET-REMOTE-PORT (myEntity, myPort, myRemoteEntity)

returns the reference to the port that is owned by test component myRemoteEntity and connected to a port
identified by OWNER myEntity and COMP-PORT-NAME myPort. The symbolic address SYSTEMis returned,
if the remote port is mapped onto a port in the test system interface.

NOTE 2: GET-REMOTE-PORT returns NULL if there is no remote port or if the remote port cannot be identified
uniquely. The special value NONE can be used as value for the myRemoteEntity parameter if the remote
entity is not known or not required, i.e. there exists only a one-to-one connection for this port.

ETSI

50 ETSI ES 201 873-4 V4.5.1 (2016-07)

d) TheSTATUSof aport ishandled like avariable. It can be addressed by qualifying STATUS with a GET-PORT
call:

GET-PORT(myEntity, myPort).STATUS
€) The ADD-CON function: ADD-CON (myEntity, myPort, myRemoteEntity, myRemotePort)

adds a connection (myRemoteEntity, myRemotePort) to the list of connections of the port identified by
OWNER myEntity and COMP-PORT-NAME myPort.

f) The DEL-CON function: DEL-CON (myEntity, myPort, myRemoteEntity, myRemotePort)

removes a connection (myRemoteEntity, myRemotePort) from the list of connections of the port identified by
OWNER myEntity and COMP-PORT-NAME myPort.

g) The SNAP-PORTS function: SNAP-PORTS (myEntity)

updates SNAP-VALUE for all ports owned by myEntity, i.e.

SNAP- PORTS (nyEntity) {
for all ports p /* in the nodule state */ {
if (p. ONER == nyEntity) {
i f (p. STATUS == STOPPED) {
p. SNAP- VALUE : = NULL;

el se {
if (p.STATUS == HALTED && p.first() == HALT- MARKER) {
/1 Port is halted and halt narker is reached
p. SNAP- VALUE : = NULL;
p. dequeue(); /'l Rermoval of halt narker
p. STATUS : = STOPPED,

el se {
p. SNAP-VALUE : = p.first()
}

}

NOTE 3: The SNAP-PORTS function handles the HAL T- MARKER that may be put by ahal t port operation into
the port queue. If such a marker isfound, the marker is removed, the SNAP-VALUE of the port is set to
NULL and the status of the port is changed to STOPPED.

8.3.3a Component verdict states

Component verdict states are the elements of the DONE and KILLED listsin a configuration state. As shown in

figure 30a, a component verdict state consists of a component identifier (COMP-ID) and averdict (FIN-VERDICT). In
DONE and KILLED, a component verdict state denotes a stopped or killed component together with itslocal verdict
when it was stopped or killed.

| COMP-ID | FIN-VERDICT |

Figure 30a: Component Verdict State

8.3.4 General functions for the handling of module states
The operational semantics assumes the existence of the following functions for the handling of module states.

NOTE 1: During the interpretation of a TTCN-3 module, there only exists one module state. It is assumed that the
components of the module state are stored in global variables and not in a complex data object. Thus, the
following functions are assumed to work on global variables and do not address a specific modul e state
object.

ad) TheDEL-ENTITY function: DEL-ENTITY(myEntity)

deletes an entity with the unique identifier myEntity. The deletion comprises:

ETSI

51 ETSI ES 201 873-4 V4.5.1 (2016-07)

- the deletion of the entity state of myEntity;
- deletion of al ports owned by myEntity;
- deletion of all connections in which myEntity isinvolved.

b) The UPDATE-REMOTE-REFERENCES function:

UPDATE-REMOTE-REFERENCES (source, target)

the UPDATE-REMOTE-REFERENCES updates variables and timers with the same location in both entities.
The values that will be used for the update are the values of variables and timers owned by source.

NOTE 2: The UPDATE-REMOTE-REFERENCES s used during the termination of test cases. It allows updating of
variables of module control, which are passed as reference parameters to test cases.

8.4 Messages, procedure calls, replies and exceptions

8.4.0 General

The exchange of information among test components and between test components and the SUT isrelated to messages,
procedure calls, replies to procedure calls and exceptions. For communication purposes these items have to be
constructed, encoded and decoded. The concrete encoding, i.e. mapping of TTCN-3 data types to bits and bytes, and
decoding, i.e. mapping of bits and bytesto TTCN-3 data types, is outside the scope of the operational semantics. In the
present document messages, procedure calls, replies to procedure calls and exceptions are handled on a conceptual
level.

8.4.1 Messages

Messages are related to message-based communication. Values of al (pre- and user-defined) data types can be
exchanged among the entities that communicate. As shown in figure 31, the operational semantics handles a message as
structured object that consist of a sender atype and avalue part. The sender part identifies the sender entity of a
message, the type part specifies the type of a message and the value part defines the message value.

| sender | type | value |

Figure 31: Structure of a message

NOTE: The operational semantics only presents a model for the concepts of TTCN-3. Whether and how the
sender information is or hasto be sent and/or received depends on the implementation of the test system,
e.g. in some cases the sender information may be part of the value part of a message and therefore isno
separate part of the message structure.

8.4.2 Procedure calls and replies

Procedure calls and replies to procedures are related to procedure-based communication. They are defined like values of
arecord with components representing the parameters. The operational semantics also handles procedure calls and
repliesto procedure calls like valuesin structured types. The structure of a procedure call and the structure of areply
are presented in figures 32 and 33.

The sender and the procedure-reference parts have the same meaning in both figures. The sender part refersto the
sender entity of acall or the reply to a procedure call. The procedure-reference refers to the procedure to which call and
reply belong. The parameter-part of the procedure call in figure 32 refersto thei n parametersand i nout parameters
and the parameter- part of the reply in figure 33 refersto thei nout parametersand out parameters of the procedure
to which call and reply belong. In addition, the reply has a value part for the return values in the reply to a procedure.

NOTE 1. Asstated in the previous note, the operational semantics only presents a model for the concepts of
TTCN-3. Whether and how the information described in figures 32 and 33 is or has to be sent and/or
received depends on the implementation of the test system.

ETSI

52 ETSI ES 201 873-4 V4.5.1 (2016-07)
NOTE 2: For aprocedure call, out parameters are of no relevance and are omitted in figure 32. For areply to a
procedure call, i n parameters are of no relevance and are omitted in figure 33.

NOTE 3: The types of parameters and the type of the return value can always be derived unanimously from the
related signature definition.

sender procedure-reference parameter-part
| in-or-inout-parameter, | | in-or-inout-parameter, |

Figure 32: Structure of a procedure call

sender | procedure-reference parameter-part value
| inout-or-out-parameter; | ... | inout-or-out-parameter,

Figure 33: Structure of a reply to a procedure call

8.4.3 Exceptions

Exceptions are also related to procedure-based communication. The structure of an exception is shown in figure 34. It
consists of four parts. The sender part identifies the sender of the exception; the procedure-reference part refersto the
procedure to which the exception belongs, the type part identifies the type of the exception and the value part provides
the value of the exception. The procedure signature referred to in the procedure reference part defines the list of allowed
types of exceptions. A received exception shall comply with one of the listed types. In general it can be of any pre- or
user-defined TTCN-3 data type.

| sender | procedure-reference | type | value |

Figure 34: Structure of an exception

8.4.4 Construction of messages, procedure calls, replies and exceptions

The operations for sending a message, a procedure call, areply to a procedure call or an exception aresend, cal | ,
reply andr ai se. All these sending operations are built up in the same manner:

<port-name>. <sendi ng- oper ati on>(<send- speci fi cation>) [to <receiver>]

The <port-name> and <sending-operation> define port and operation used for sending an item. In case of one-to-many
connections a <receiver> entity needs to be specified. The item to be sent is constructed by using the
<send-specification>. The send specification may use concrete values, template references, variable values, constants,
expressions, functions, etc. to construct and encode the item to be sent.

The operational semantics assumes that there exists a generic CONSTRUCT-ITEM function:

CONSTRUCT-ITEM (myEntity, <sending-operation>, <send-specification>)

returns a message, a procedure call, areply to a procedure call or an exception depending on the

<sendi ng- oper at i on> and the<send- speci fi cati on> (both, <sendi ng- oper at i on> and the
<send- speci fi cati on> refer to the corresponding partsin the TTCN-3 sending operation). The entity
reference myEntity is the sender of the item to be sent. This sender information is also assumed to be part of
the item to be sent (figures 31 to 34).

8.4.5 Matching of messages, procedure calls, replies and exceptions

The operations for receiving a message, a procedure call, areply to aprocedure call or an exception arer ecei ve,
getcal | ,get repl y and cat ch. All these receiving operations are built up in the same manner:

<port-name>. <recei vi ng- oper ati on>(<mat chi ng-part>) [from <sender>] [<assi gnment-part>]

ETSI

53 ETSI ES 201 873-4 V4.5.1 (2016-07)

The<port - name> and <r ecei vi ng- oper at i on> define port and operation used for the reception of anitem. In
case of one-to-many connections af r omclause can be used to select a specific sender entity <sender >. Theitem to
be received has to fulfil the conditions specified in the <mat chi ng- part >, i.e. it hasto match. The <nmat chi ng-
par t > may use concrete values, template references, variable values, constants, expressions, functions, etc. to specify
the matching conditions.

The operational semantics assumes that there exists a generic MATCH-ITEM function:
MATCH-ITEM (myltem, <mat chi ng- part >, <sender >)
returnst r ue if myltem fulfils the conditions of <mat chi ng- part > and if myltem has been sent by
<sender >, otherwiseit returnsf al se.
8.4.6 Retrieval of information from received items

Information from received messages, procedure calls, replies to procedure calls and exceptions can be retrieved in the
<assi gnnent - par t > (see clause 8.4.5) of thereceiving functionsr ecei ve, get cal | ,getrepl y and cat ch.
The<assi gnnent - par t > describes how the parameters of procedure calls and replies, return values encoded in
replies, messages, exceptions and the identifier of the <sender > entity are assigned to variables.

The operational semantics assumes that there exists a generic RETRIEVE-INFO function:

RETRIEVE-INFO (myltem, <assi gnnent - part >)

al values to be retrieved according to the <assi gnment - par t > areretrieved and assigned to the variables
listed in the assignment part. Assignments are done by means of the VAR-SET operation, i.e. variables with the
same location are updated at the same time.

8.5 Call records for functions, altsteps and test cases

85.0 General

Functions, altsteps and test cases are called (or executed) by their name and alist of actual parameters. The actual
parameters provide references for reference parameter and concrete values for the value parameter as defined by the
formal parameters in the corresponding function, altstep or test case definition. The operational semantics handles calls
of functions, altsteps and test cases by using call records as shown in figure 35. The value of BEHAVIOUR-ID isthe
name of afunction or test case, value parameters provide concrete values <parld,> ... <parld> for the formal

parameters <parld,> ... <parld,>. Variable and timer reference parameters provide references to locations of existing

variables and timers. Port reference parameters provide the port names declared in the component type definition of the
test component that calls the function or altstep. Before a function or test case can be executed an appropriate call
record has to be constructed.

NOTE: Port reference parameters can only appear in functions and altsteps which are executed on atest

component.
behaviour-id value-parameters variable and timer port
reference-parameters reference-parameters
parld, |...|parld , parld, |...| parld, parldg |...| parld,
value, |...|value, loc, loc, name, |...| name,

Figure 35: Structure of a call record
8.5.1 Handling of call records

The function, altstep or test case name and the actual parameter values can be retrieved by using the dot notation,
e.g. myCallRecord.parld,, or myCallRecord.behaviour-id where myCallRecord is a pointer to acall record.

ETSI

54 ETSI ES 201 873-4 V4.5.1 (2016-07)

For the construction of acall the function NEW-CALL-RECORD is assumed to be available:

NEW-CALL-RECORD(myBehaviour)

creates anew call record for function, altstep or test case myBehaviour and returns a pointer to the new record.
The parameter fields of the new call record have undefined values.

myEntity.INIT-CAL L -RECORD (myCallRecord)

creates variables, timers and port references for the handling of value and reference parametersin the actual
scope of the test component or module control myEntity. The variables for the handling of value parameters
areinitialized with the corresponding values provided in the call record. The variables and timers for the
handling of reference parameters get the provided location. In addition, they get a value of an existing variable
or timer in another scope unit of the component in which the call record was created. Port references get the
provided name as value for the COMP-PORT-NAME field.

8.6 The evaluation procedure for a TTCN-3 module

8.6.1 Evaluation phases

8.6.1.0 General
The evauation procedure for a TTCN-3 module is structured into:
1) initialization phase;
2) update phase;
3) selection phase; and
4) execution phase.

The phases (2), (3) and (4) are repeated until module control terminates. The evaluation procedure is described by
means of a mixture of informal text, pseudo-code and the functions introduced in the previous clauses.

8.6.1.1 Phase I: Initialization
The initialization phase includes the following actions:
a) Declaration and initialization of variables:

- INIT-FLOW-GRAPHY); // Initialization of flow graph handling. INIT-FLOW-GRAPHS s
/I explained in clause 8.6.2.

- Entity := NULL; /I Entity will be used to refer to an entity state. An entity state either
/I represents modul e control or atest component.

- MTC := NULL; /I MTC will be used to refer to the entity state of the main test component of
/I atest case during test case execution.

NOTE 1. The global variable CONTROL form the control state of a module state during the interpretation of a
TTCN-3 module (see clause 8.3.1).

- CONTROL :=NULL; /I CONTROL will be used to refer to the control state of a module state.

NOTE 2: Thefollowing global variables ALL-ENTITY-STATES ALL-PORT-STATES TC-VERDICT, DONE and
KILLED form the test configuration state of a module state during the interpretation of a TTCN-3 module
(see clause 8.3.1).

- ALL-ENTITY-STATES:= NULL;

- ALL-PORT-STATES:= NULL;

ETSI

55 ETSI ES 201 873-4 V4.5.1 (2016-07)

- TC-VERDICT := none;
- DONE := NULL;
- KILLED := NULL;
b) Creation and initialization of module control:

- CONTROL := NEW-ENTITY (GET-FLOW-GRAPH (<moduleld>), false);
/I A new entity state is created and initialized with the start node of
/I the flow graph representing the behaviour of the control of the
/I module with the name <modulel d>. The Boolean parameter
/I indicates that. module control cannot be restarted after it is
/I stopped.

- CONTROL.INIT-VAR-SCOPE(); /I New variable scope

- CONTROL.INIT-TIMER-SCOPE(): // New timer scope

- CONTROL.VALUE-STACK.push(M ARK); /I A mark is pushed onto the value stack

8.6.1.2 Phase II: Update

The update phase is related to all actions that are outside the scope of the operational semantics but influence the
interpretation of a TTCN-3 module. The update phase comprises the following actions:

a) Timeprogress: All running timers are updated, i.e. the TIME-LEFT values of running timers are (possibly)
decreased, and if due to the update a timer expires, the corresponding timer bindings are updated,
i.e. TIME-LEFT is set to 0.0 and STATUS s set to TI MEQUT.

NOTE 1. The update of timersincludes the update of al running TIMER-GUARD timers in module states.
TIMER-GUARD timers are used to guard the execution of test cases and call operations.

b) Behaviour of the SUT: Messages, remote procedure cals, replies to remote procedure calls and exceptions
(possibly) received from the SUT are put into the port queues at which the corresponding receptions shall take
place.

NOTE 2: This operational semantics makes no assumptions about time progress and the behaviour of the SUT.

8.6.1.3 Phase IlI: Selection
The selection phase consists of the following two actions:

a) Selection: Select anon-blocked entity, i.e. an entity that has not the STATUS value BLOCKED. The entity may
be CONTROL, i.e. module control, or atest component, i.e. an element of ALL-ENTITY-STATES.

b) Storage: Storetheidentifier of the selected entity in the global variable Entity.

8.6.1.4 Phase 1V: Execution
The execution phase consists of the following two actions:

a) Execution step of the selected entity: Execute the top flow graph node in the CONTROL-STACK of Entity.

b) Check termination criterion: Stop execution if module control has terminated, i.e. CONTROL isNULL.
Otherwise continue with Phase |1.

NOTE: The execution step of the selected entity can be seen as a procedure call. The check of the termination
criterion is done when the execution step terminates, i.e. returns the control.

ETSI

56 ETSI ES 201 873-4 V4.5.1 (2016-07)

8.6.2 Global functions

The evauation procedure uses the global function INIT-FLOW-GRAPHS

a) INIT-FLOW-GRAPHS s assumed to be the function that initializes the flow graph handling. The handling may
include the creation of the flow graphs and the handling of the pointers to the flow graphs and flow graph
nodes.

The pseudo-code used the following clauses to describe execution of flow graph nodes use the functions
CONTINUE-COMPONENT, RETURN, * ** DYNAM C- ERROR* * * :

b) CONTINUE-COMPONENT the actual test component continues its execution with the node lying on top of
the control stack, i.e. the control is not given back to the module evaluation procedure described in this clause.

¢) RETURN returns the control back to the module evaluation procedure described in this clause. The RETURN is
the last action of the "execution step of the selected entity" of the execution phase.

d ***DYNAM C- ERROR*** refersto the occurrence of adynamic error. The error handling procedure itself is
outside the scope of the operational semantics. If adynamic error occurs all following behaviour of the test
case is meant to be undefined. In this case resources allocated to the test case shall be cleared and the error
verdict is assigned to the test case. Control is given to the statement in the control part following the execute
statement in which the error occurred. Thisis modelled by the flow graph segment <dynamic-error>
(clause 9.18.5).

NOTE: The occurrence of adynamic error isrelated to test behaviour. A dynamic error as specified by the
operational semantics denotes a problem in the usage of TTCN-3, e.g. wrong usage or race condition.

€) APPLY- OPERATOR used as generic function for describing the evaluation of operators (e.g. +, *,/or -) in
expressions (see clause 9.18.4).

9 Flow graph segments for TTCN-3 constructs

9.0 General

The operational semantics represents TTCN-3 behaviour in form of flow graphs. The construction algorithm for the
flow graphs representing behaviour is described in clause 8.2. It is based on templates for flow graphs and flow graph
segments that have to be used for the construction of concrete flow graphs for module control, test cases, atsteps,
functions and component type definitions defined in a TTCN-3 module. The definitions of the templates for the flow
graph segments can be found in this clause. They are presented in an a phabetical order and not in alogical order.

The flow graph segment definitions are provided in the form of figures. The flow graph nodes are presented on the left
side of the figures and comments associated to nodes and flow lines are shown on the right side. Descriptive comments
are presented for reference nodes and comments in form of pseudo-code are associated to basic nodes. The pseudo-code
describes how abasic node is interpreted, i.e. changes the module state. It makes use of the functions defined in clause 8
and the global variables declared and initialized in the eval uation procedure for TTCN-3 modules (see clause 8.6). An
overall view of all functions and keywords used by the pseudo-code can be found in clause 8.

9.1 Action statement

The syntactical structure of anact i on statement is:

action (<informal description>)

The flow graph segment <action-stmt> in figure 36 defines the execution of theact i on statement.

ETSI

57 ETSI ES 201 873-4 V4.5.1 (2016-07)

segnment <action-stmt>

/1 inscription ‘nop’ neans ‘no operation’
Entity. NEXT- CONTROL(true);
nop Ve RETURN;

v

NOTE: The <informal description> parameter of the act i on statement has no meaning for the operational
semantics and is therefore not represented in the flow graph segment.

Figure 36: Flow graph segment <action-stmt>

9.2 Activate statement

The syntactical structure of theact i vat e statement is:

activate(<al tstep-name>([<act-par-desc,> .., <act-par-desc >]))

The <altstep-name> denotes to the name of an altstep that is activated as default behaviour, and
<act - par -descr >, ..., <act - par - descr > describe the actual parameter values of the altstep at the time of

its activation.

It is assumed that for each <act - par - desc > the corresponding formal parameter identifier <f - par - 1d;>is
known, i.e. the syntactical structure above can be extended to:

activate(<al tstep-name>((<f-par-1d,> <act-par-desc,>), .., (<f-par-ld > <act-par-desc >)))

The flow graph segment <act i vat e- st nt > in figure 37 defines the execution of the activate statement. The
execution is structured into three steps. In the first step, acall record for the altstep <f unct i on- nane> iscreated. In
the second step the values of the actual parameter are calculated and assigned to the corresponding field in the call
record. In the third step, the call record is put as first element in the DEFAULT-LIST of the entity that activates the
default.

NOTE: For atstepsthat are activated as default behaviour, only value parameters are allowed. In figure 37, the

handling of the value parametersis described by the flow graph segment <value-par-calculation>, which
isdefined in clause 9.24.1.

ETSI

58 ETSI ES 201 873-4 V4.5.1 (2016-07)

segnment
<activate-stnt>

Entity. VALUE- STACK. push(NEW CALL- RECORD(f uncti on- nane));
Entity. NEXT- CONTROL(true);

construct-call-record

(altstep-name)) RETURN;
* // For each pair (<f-par-ldi> <act-paraneter-desc;>) the
/'l val ue of <act-paraneter-desc; is cal cul ated and
»»»»» // assigned to the corresponding field <f-par-Idi>
<val ue- par - cal cul ati on> // in the call record. The call record is assuned to be
/] the top elenent in the val ue stack.

Entity. DEFAULT- LI ST. add(Entity. VALUE- STACK. top());

/'l We assune that only a reference to the call record has
/1 been pushed onto the value stack. This reference has
/1 not been renoved fromthe value stack. It is the result
/1 of the activate statenent.

Entity. NEXT- CONTROL(true);

RETURN

activate-default

Figure 37: Flow graph segment <activate-stmt>

9.2a Alive component operation

9.2a.0 General

The syntactical structure of theal i ve component operationis:
<conponent - expr essi on>. al i ve

Theal i ve component operation checks whether a component has been created and is ready to execute or is aready
executing a behaviour function. The component to be checked isidentified by a component reference, which may be
provided in form of avariable or value returning function, i.e. is an expression. For simplicity, the keywords "al |
component " and "any conponent " are considered to be special expressions.

Theal i ve component operation distinguishes between its usage in a Boolean guard of an al t statement or blocking
cal | operation and all other cases. If used in aBoolean guard, the result of al i ve component operation is based on
the actual snapshot. In all other casestheal i ve component operation evaluates directly the module state information.

Theresult of theal i ve component operation is pushed onto the value stack of the entity, which called the operation.

The flow graph segment <alive-component-op> in figure 37a defines the execution of the r unni ng component
operation.

ETSI

59 ETSI ES 201 873-4 V4.5.1 (2016-07)

segnent

<al i ve- conponent - op> A4 .
/1 The expression shall evaluate
. Jrrmmemsessmnssee /1l to a conmponent reference. The
<expressi on> /1 result is pushed onto VALUE- STACK

if (Entity.STATUS == ACTIVE) {
Entity. NEXT- CONTROL(true);

else { // Entity is in a snapshot
Entity. NEXT- CONTROL(f al se);

deci sion

RETURN,

<al i ve- conp- act > <al i ve- conp- snap>

!

Figure 37a: Flow graph segment <alive-component-op>

ETSI

60 ETSI ES 201 873-4 V4.5.1 (2016-07)

9.2a.1 Flow graph segment <alive-comp-act>

The flow graph segment <al i ve- conp- act > infigure 37b describes the execution of the al i ve component
operation outside a snapshot, i.e. the entity isin the status ACTI VE.

segment
<al i ve-conp- act>

al i ve- conp- act

if (Entity. VALUE- STACK.top() == "all conponent') {
if (Entity I'= MIC) {
*** DYNAM C- ERROR*** // 'all conponent' is not all owed
}

el se {

if (KILLED.length() = 0) { // no entity has termnated
Enti ty. VALUE STAXK. push(true);

else { // at |east one conponent has term nated
Enti ty. VALUE STAXK. push(false);
}

}
}
el se {
if (Entity.VALUE STACK top() = 'any conponent') {
if (Entity = MiC) {
DYNAM C- ERROR [/ 'any conponent' is not all owed

else {
i f (ALL-ENTITY- STATES.| ength() > 1) {
/Il at least one PTCis aive
Entity. VALUE- STACK. push(true);

el se {

Entity. VALUE- STACK. push(f al se);
}

}

el se {

i f (ALL- ENTITY- STATES menber (Entity.VALWE- STACK. top())) {
/'l Specified conponent is alive
Enti ty. VALUE STAXK. push(true);

else {
Enti ty. VALUE STAKXK. push(false);
}

}

}
Entity. NEXT- CONTROL(t r ue) ;
RETUR\;

Figure 37b: Flow graph segment <alive-comp-act>

ETSI

61

9.2a.2 Flow graph segment <alive-comp-snap>

ETSI ES 201 873-4 V4.5.1 (2016-07)

The flow graph segment <al i ve- conp- snap> in figure 37c describes the execution of the al i ve component
operation during the eval uation of a snapshat, i.e. the entity isin the status SNAPSHOT.

segment
<a|gi ve- conp- snap> if (BEntity. VALUE- STACK. top() == "a | conponent') {
if (Entity = Mg {
*** DYNAM C- ERROR*** [/ 'all conponent' is not all owed
}
el se {
if (Entity. SNAP-KILLED.length() == 0) {
Enti ty. VALUE STAXK. push(true);
. else {
al ive- comp- snap . Enti ty. VALUE STAXK. push(false);
}
}
}
el se {
if (Entity.VALUE STACK.top() = 'any conponent') {
if (Entity = MiC) {
DYNAM C- ERROR [/ 'any conponent' is not allowed
else {
if (Entity. SNAP-ALI VE.l ength() > 1) {
/1 at |east one PTC was alive when the
/'l snapshot has been taken
Entity. VALUE- STACK. push(true);
}
el se {
Entity. VALUE- STACK. push(f al se);
}
}
}
el se {
if (Entity.SNAP-ALI VE menber (Entity.VALWE- STACK. top())) {
/1 Component was al ive when the snapshot was taken
Enti ty. VALUE STAXK. push(true);
else {
/| Conponent was not alive when the snapshot was taken
Enti ty. VALUE STAXK. push(true);
}
} }
Entity. NEXT- CONTROL(t r ue) ;
RETURN,
v

Figure 37c: Flow graph segment <alive-comp-snap>

9.3 Alt statement

9.3.0 General

Theal t statement isthe most complicated and important statement of TTCN-3. It implements the snapshot semantics
and specifies the branching due to the reception of messages, replies, calls and exceptions, due to the occurrence of
timeouts and due to the termination of components. In addition, the evocation of the TTCN-3 default mechanismis also

related totheal t statement.

The flow graph representation of theal t statement in figure 38. The different alternatives due to the reception of
messages, replies, calls and exceptions, due to the occurrence of timeouts and due to the termination of components are

hidden in the flow graph segment <r ecei vi ng- br anch>.

ETSI

62 ETSI ES 201 873-4 V4.5.1 (2016-07)

segment <alt-

stnt >

<t ake- snapshot > /'l A snapshot is taken

<recei vi ng-branch> OR
<al tstep-call -branch>

OR <else

/1 The different alternatives
""""" /| are evaluated

- branch>

<defaul t - evocati on>

/1 The default nmechani sm may
/1 be evoked.

<<<<<<<<<<<

if (Entity.STATUS == ACTIVE) {

Enti ty. NEXT- CONTROL(tr ue) ;
}

else {
if (Entity.STATUS == BREAK) ({

A

false

N

/1l altstep is left via a break statenent.
Enti ty. STATUS(ACTI VE) ;

exit Entity. NEXT- CONTROL(t r ue) ;
}
el se {
true /1 A new snapshot needs to be taken, the
/1l status of the entity is SNAPSHOT (none
/1 of the alternatives could be selected
/1 and executed) or REPEAT (due to a
/'l repeat statenment)
Enti t y. NEXT- CONTROL(f al se) ;
}
}
RETURN,

Figure 38: Flow graph segment <alt-stmt>

ETSI

63 ETSI ES 201 873-4 V4.5.1 (2016-07)

9.3.1 Flow graph segment <take-snapshot>

The flow graph segment <t ake- snapshot > in figure 39 describes the procedure of taking a snapshot. The snapshot
records values of ports, timers and stopped components.

segnent <t ake-snapshot >

/'l Take Snapshot
SNAP- PORTS(Entity); /'l Ports
Entity. SNAP-TI MER(); /1 Timer

Entity. SNAP- ALI VE : = copy(ALL- ENTI TY- STATES); // ALIVE
Entity. SNAP- DONE : = copy(DONE); /1 DONE
Entity. SNAP-KILLED : = copy(KILLED); // KILLED

A 4

t ake- snapshot).
Entity. STATUS : = SNAPSHOT; // new conponent status
Entity. DEFAULT- PO NTER : = Entity. DEFAULT-LIST.first();

Entity. NEXT- CONTROL(true);
RETURN,

v

Figure 39: Flow graph segment <take-snapshot>

ETSI

64 ETSI ES 201 873-4 V4.5.1 (2016-07)

9.3.2 Flow graph segment <receiving-branch>

The execution of the flow graph segment <r ecei vi ng- br anch> isshown in figure 40.

segment <recei vi ng- branch>

/1 The receiving branch is only eval uat ed,

/1 if the entity is in status SNAPSHOT

if (Entity.STATUS == SNAPSHOT) {
Entity. NEXT- CONTROL(true);

el se {
Entity. NEXT- CONTROL(f al se);
}
RETURN;
/1 Bool ean expression that
<expr essi on> /1 guards a branch
Entity. NEXT- CONTROL(Entity. VALUE- STACK. top());
........... Enti ty. VALUE- STACK. pop() ;
RETURN;
fal se
true
/1 The operations nmay change the status of
<receive-op> OR /1 Entity, if the operation is successful.
<getcal | -op> OR
<getreply-op> OR
<cat ch-op> OR
<ti meout-op> OR
<check-op> OR I p| <statenment-block>
<done- conponent - op> true
fal se
—>

v

Figure 40: Flow graph segment <receiving-branch>

ETSI

65 ETSI ES 201 873-4 V4.5.1 (2016-07)

9.3.3 Flow graph segment <altstep-call-branch>

Theinvocation of an altstep withinan al t statement is described by the flow graph segment
<al t st ep-cal | - branch>infigure 41.

segment

<al t st ep-cal | -branch> /1 The branch is only evaluated,
// if the entity is in status SNAPSHOT
if (Entity.STATUS == SNAPSHOT) {

Entity. NEXT- CONTRCL(true);

decision Y | else {

Entity. NEXT- CONTRCL(f al se);

}
RETURN,

/'l Bool ean expression that
<expression> e /'l guards a branch

Entity. NEXT- CONTROL(Enti ty. VALUE- STACK top());
........... | Entity. VALUE- STACK. pop();
RETURN;

false

true

)'

/1 The altstep is called, the status of the
/1 entity may be changed inside the altstep
<altstep-call> fown /1 by the different alternatives in the

/1 altstep.

/1 STATUS of Entity is ACTIVE if
... // one of the alternatives in the
/l altstep has been executed

if (BEntity. STATUS == ACTI VE) {
true Entity. NEXT- CONTRCL(t rue);

fal se }el se {

Entity. NEXT- CONTRCL(f al se);

}
RETURN,

4

/1 Execution of optional statenment
/1 block

<statement - bl ock>

Figure 41: Flow graph segment <altstep-call-branch>

ETSI

9.3.4

66

Flow graph segment <else-branch>

ETSI ES 201 873-4 V4.5.1 (2016-07)

The execution of an el se branchwithinan al t statement is described by the flow graph segment <el se- br anch>

infigure 42.

segnment <el se- branch>

/1 The branch is only eval uated,

if (Entity.STATUS == SNAPSHOT) {
Entity. NEXT- CONTROL(true);

........... el se {
Entity. NEXT- CONTROL(f al se);

}
RETURN,;

/1 if the entity is in status SNAPSHOT

/'l An el se-branch is always sel ected,

i.e.

else-part Yo /1 status of Entity will be set of ACTIVE

Entity. STATUS : = ACTI VE;

<st at enent - bl ock>

/1 is always execut ed.

/1l The statenent block in an el se branch

v

Figure 42: Flow graph segment <else-branch>

ETSI

67 ETSI ES 201 873-4 V4.5.1 (2016-07)

9.35 Flow graph segment <default-evocation>

The evocation of defaults behaviour at the end of al t statementsis described by the flow graph segment
<def aul t - evocat i on> infigure 43.

segnment <defaul t - evocati on>

default-in

/1 A default is only evoked, if the
/1 entity is in status SNAPSHOT

if (Entity.STATUS == SNAPSHOT) {

A 4 Entity. NEXT- CONTROL(true);

decision N el se {

Entity. NEXT- CONTROL(f al se);
fal se } -
true RETURN,

A 4

cal I -record-handl i NG Y

fal se
true

/1 A call record in DEFAULT-LI ST, identified by

/1 DEFAULT- PO NTER i s pushed onto the VALUE- STACK of
/1 Entity. Afterwards DEFAULT-PO NTER is updated, i.e.
/1 will point to the next record in DEFAULT-LIST. If
/] DEFAULT-PO NTER is NULL, the Entity status will not
/1 change and, thus, a new SNAPSHOT will be initiated in
/1l <alt-stnt>

1

if (Entity.DEFAULT- PO NTER == NULL) {
Entity. NEXT- CONTRO(f al se);

el se {
Entity. VALUE- STACK. push(Entity. DEFAULT- PO NTER);
Entity. DEFAULT- PO NTER : =
Entity. DEFAULT- LI ST. next (Entity. DEFAULT- PO NTER);
Entity. NEXT- CONTROL(true);

}

RETURN,

A 4

The actual default altstep is invoked
or called Iike a user defined function.

~—
—~—

<user-def-func-call >

/1 Junmp back to the beginning of the segment
/1l to check if the next default behaviour has
// to be invoked.

v
default-in

;

Figure 43: Flow graph segment <default-evocation>

ETSI

68 ETSI ES 201 873-4 V4.5.1 (2016-07)

9.4 Altstep call

Asshown in figure 44, the call of an altstep is handled like a function call.

segment <al tstep-call>

/1 Reference to the flow graph segnent
// describing the function cal

<function-call >

\4

Figure 44: Flow graph segment <altstep-call>

9.5 Assignment statement

The syntactical structure of anassi gnment statement is:

<var | d> : = <expressi on>

The value of the expression <expr essi on> isassigned to variable <var | d>. The execution of an assignment
statement is defined by the flow graph segment <assi gnment - st nt > in figure 45.

segment <assi gnment - st nt >

/1 The expression is evaluated and the
/1 result is pushed onto the val ue stack

<expressi on>

Entity. VAR-SET(varld, Entity.VALUE- STACK top());
Entity. VALUE- STACK. pop() ;

assi gnment - st nt
(varld))} Entity. NEXT- CONTROL(true)

RETURN

\4

Figure 45: Flow graph segment <assignment-stmt>

9.5a Break statements in altsteps

The syntactical structure of the br eak statement in an altstepis:

br eak

NOTE: Thesemanticsof abr eak statement used for leaving aloop, ani nt er| eave oranal t statementis
defined in clause 7.8 as a shorthand form for using a pair of got o- | abel statements.

ETSI

69 ETSI ES 201 873-4 V4.5.1 (2016-07)

Basically, the br eak statement used for leaving an altstep isar et ur n statement without return value, which also
changes the entity status to BREAK. The status BREAK prevents the re-evaluation of theal t statement in which the
atstep has been called statement has been called and a so prevents the execution of the optional statement block
following the altstep call inthe al t statement. The break statement also works for atsteps called indirectly by the
default mechanism. In this case, the alt statement that invokes the default mechanism isleft. The flow graph segment
<br eak- al t st ep- st nt > shown in figure 45a defines the execution of the br eak statement for leaving an atstep.

segment <break-altstep-stnt>

Enti ty. STATUS(BREAK) ;
break-al t st ep-stnt S— RETURN;

A

<return-wi t hout -val ue>

v

Figure 45a: Flow graph segment <break-altstep-stmt>

9.6 Call operation

9.6.0 General

The syntactical structure of the call operationis:

<portld>.call (<call Spec> [<blocking-info>]) [to <receiver-spec>] [<call-reception-part>]

The optional <bl ocki ng-i nf 0> consists of either the keyword nowai t or aduration for atimeout exception. The
optional <r ecei ver - spec> inthet o clauserefersto the receivers of the call. In case of a one-to one
communication, the <r ecei ver - spec> addresses asingle entity (including the SUT or an entity within the SUT). In
case of multicast or broadcast communication, the <r ecei ver - spec> specifiesaset or al test components
connected via the specified port with the calling component. The optional <call-reception-part> denotes the alternative
receptions in case of ablocking cal | operation.

The operational semantics distinguishes between blocking and non-blocking cal | operations. A cal | isnon-blocking
if the keyword nowai t isusedinthecal | operation, or if the called procedure is non-blocking, i.e. defined by using
the keyword nobl ock. A blockingcal | hasa<cal | -recepti on-part >.

The flow graph segment <cal | - op> in figure 46 defines the execution of acal | operation. It reflects the distinction
between blocking and non-blocking calls.

segnment <cal |l - op> l

<bl ocki ng- cal | - op>
oR /1 A call operation nay be bl ocking
<non- bl ocki ng-call -op> [77 /1 or non-bl ocki ng

\ 4

Figure 46: Flow graph segment <call-op>

ETSI

70 ETSI ES 201 873-4 V4.5.1 (2016-07)

For blocking and non-blocking call operations areceiver entity may be specified in form of an expression. The
possibilities are shown in figures 47 and 48.

segment <bl ocki ng-cal | - op> l
/1 A blocking call may or nay not
<b-cal | -wi thout-duration> [/1 be supervised by TI MER- GUARD
OR
<b-cal | -w t h-duration>

\4

Figure 47: Flow graph segment <blocking-call-op>

segment <non- bl ocki ng-cal | - op>
A 4
<nb-cal | -wi th-one-recei ver> (R /1 A non-blocking call may address one,
<nb-cal | -wi th-nul tiple-receivers> CR I/ multiple (multicast and broadcast) or
<nb-cal | - wi t hout - r ecei ver > /1 no receiver entities.
v

Figure 48: Flow graph segment <non-blocking-call-op>

ETSI

71 ETSI ES 201 873-4 V4.5.1 (2016-07)

9.6.1 Flow graph segment <nb-call-with-one-receiver>

The flow graph segment <nb- cal | - wi t h- one-r ecei ver > in figure 49 defines the execution of a non-blocking
cal | operation where one receiver is specified in form of an expression.

segnent <nb-cal | -with-one-receiver>

/'l The expression shall evaluate
/1 to a conponent reference or
/] address val ue

<expressi on>

nb-cal | -wi t h- one-recei ver
(portld, call Spec)

let {
var receiver := Entity.VALUE- STACK top();
var renotePort :=
GET- REMOTE- PORT(Entity, Entity.portld. COVP- PORT- NAME, receiver);

if (remtePort == NULL) {
DYNAM C- ERROR; // Renote port cannot be found

}

if (remtePort == SYSTEM {
/1 Port is mapped onto a port of the test system
/1 reception of the reply by the SUT is outside
/1 the scope of the operational senmantics

else { // sending of call
renot ePort . enqueue(CONSTRUCT- | TEM Entity, call, call Spec));

} /1 end of scope of receiver and renotePort
Entity. VALUE- STACK. pop(); /1 clean val ue stack

Entity. NEXT- CONTROL(tr ue);
RETURN,

Figure 49: Flow graph segment <nb-call-with-one-receiver>

9.6.1a Flow graph segment <nb-call-with-multiple-receivers>

The flow graph segment <nb- cal | - wi t h-nul ti pl e-r ecei ver s> in figure 49a defines the execution of a
non-blocking cal | operation where multiple receivers are addressed. In case of broadcast communication the keyword
al | component isused asreceiver specification. In case of multicast communication alist of expressionsis
provided which shall evaluate to component references or address values.

The component references or address values of the addressed entities (or the keyword al | conponent) are pushed
onto the value stack of the calling entity. The number of references or address values stored in the value stack is
considered to be known, i.e. it isthe parameter nunrber of the basic flow graph node

nb-cal |l -wi th-nul ti pl e-recei vers infigure49a The nunber parameter is1in case of broadcast
communication, i.e. thekeywordal | conponent istop element in the value stack.

ETSI

72 ETSI ES 201 873-4 V4.5.1 (2016-07)

segment <nb-call-w th-multiple-receivers>

/1 Each expression shall
/1 to a conponent
// address val ue

eval uat e
ref erence or

nb-cal I -with-multipl e-receivers
(portld, call Spec, nunber)

let { /1
var i; I/
var connecti on;

connection
r enot ePor t

/1 Port
else {

connection

el se {

for (i ==1; i

r enot ePor t

/1 Port

else {

}
}

}
} // end of |ocal

RETURN,

| oop counter variable
/1 variable for connections in port states

var receiver; /1 variable for receiver conponent references or
/'l receiver address val ues

var local Port, renotePort; // variables for port references

local Port := Entity.portld. COW-PORT-NAME; // local port

if (Entity. VALUE- STACK. top()
;= | ocal Port. CONNECTI ONS- LI ST. next (connection);
while (connection !'= NULL) {

;= connecti on. REMOTE- PORT- NAVE;

if (renotePort

/1 reception of the reply by the SUT is outside
/1 the scope of the operational

/1 sending of call
renot ePort . enqueue(CONSTRUCT- | TEM Enti ty,

;= |l ocal Port. CONNECTI ONS- LI ST. next (connecti on);

<= nunber; i :=
receiver :=
Entity. VALUE- STACK. pop();
.= GET- REMOTE- PORT(Entity,
if (renotePort

*** DYNAM C- ERROR* ** ;

if (renotePort

/1 reception of the reply by the SUT is outside
/'l the scope of the operational

/'l sending of call
renot ePort. enqueue(CONSTRUCT- | TEM Enti ty,

scope

Entity. NEXT- CONTROL(true);

al | conponent) {

== SYSTEM {
is mapped onto a port of the test system

semanti cs

call, call Spec));

i+1)

Entity. VALUE- STACK top();

I/ cl ean val ue stack

| ocal Port, receiver);
== NULL) {

/1 Rempte port cannot be found

SYSTEM {
is mapped onto a port of the test system

semantics

call, call Spec));

v

Figure 49a: Flow graph segment <nb-call-with-multiple-receivers>

ETSI

73

ETSI ES 201 873-4 V4.5.1 (2016-07)

9.6.2 Flow graph segment <nb-call-without-receiver>

The flow graph segment <nb- cal | - wi t hout - r ecei ver > infigure 50 defines the execution of a non-blocking

cal | operation without at o-clause.

segnment <nb-cal | -w t hout - r ecei ver - op>

nb-cal | -w t hout -recei ver-op
(portld, call Spec)

let {
var renotePort =

if (renptePort == NULL) {

}
if (renotePort == SYSTEM {

else { // sending of call

} /1 end of scope of renotePort

Entity. NEXT- CONTRCL(true);
RETURN,

GET- REMOTE- PORT(Entity, Entity.portld. COVWP- PORT- NAME, NONE);

DYNAM C- ERROR; // Renote port cannot be found

/1 Port is mapped onto a port of the test system
/1 reception of the reply by the SUT is outside

/'l the scope of the operational semantics

renot ePort . enqueue(CONSTRUCT- | TEM Entity, call, call Spec));

Figure 50: Flow graph segment <nb-call-without-receiver>

9.6.3 Flow graph segment <b-call-without-duration>

Blocking calls are modelled by a non-blocking call followed by the body of the call, which handles the replies and
exceptions. The flow graph segment <b- cal | - wi t hout - dur at i on> shown in figure 51 describes the execution

of ablocking call without a given duration as time guard.

segnent <b-call -without-duration>

\ 4

<nb-cal |l -wi th-one-recei ver> OR
<nb-call-with-multiple-receivers> OR
<nb-cal | -wi t hout -recei ver >

Il

Call of renmote procedure

A 4

<cal | -recepti on-part >

/1
/1
/1

Handl i ng of replies and
exceptions of the called
procedure.

v

Figure 51: Flow graph segment <b-call-without-duration>

ETSI

74 ETSI ES 201 873-4 V4.5.1 (2016-07)

9.6.4 Flow graph segment <b-call-with-duration>

The flow graph segment <b- cal | - wi t h- dur at i on> (seefigure 52) describes the execution of a blocking call with
aduration as time guard.

segnent <b-call-with-duration>

/'l The expression shall evaluate

v /1 to a float value which defines
<expr essi on> H Eihﬁe?fjrat ion of the guarding
Entity. TI MER- GUARD. STATUS : = | DLE;
Entity. TI MER- GUARD. ACT- DURATI ON : =
v Entity. VALUE- STACK. top();

set-timer-guard Entity. VALUE- STACK. pop();

Entity. NEXT- CONTROL(true);

RETURN;
\ 4
<nb-cal | -wi t h-one-recei ver> OR
<nb-call-with-multiple-receivers> OR |.. /] Call of renote procedure

<nb-cal | -w t hout -recei ver >

Entity. TI MER- GUARD. STATUS : = RUNNI NG
A 4 Enti ty. VALUE- STACK. pop() ;

start-timer-guard

........... Entity. NEXT- CONTROL(true);
RETURN;

A 4

/1 Handling of replies and
/1 exceptions of the called
/] procedure.

<cal | -reception-part>

v

Figure 52: Flow graph segment <b-call-with-duration>

ETSI

75 ETSI ES 201 873-4 V4.5.1 (2016-07)

9.6.5 Flow graph segment <call-reception-part>

The flow graph segment <cal | - r ecept i on- part > (see figure 53) describes the handling of replies, exceptions
and the timeout exception of ablocking cal | operation.

segment <cal |l -reception-part>
<t ake- snapshot > /1 A snapshot is taken
+ /1 Branches with getcall and catch
/1 operations related to the call and
| 1/ a timeout exception (if the call is
<recei vi ng- branch> OR /1 guarded by a duration) are handl ed
<cat ch-ti meout - excepti on> /1 by this node
if (
Entity. STATUS == ACTI VE) {
Entity. NEXT- CONTROL(true);
/1 To assure a defined state of Entity
Entity. TI MER- GUARD. STATUS : = | DLE;
v else { // A new snapshot needs to be taken, the
/_ /1 status of the entity is SNAPSHOT (none
b-call-exit Y. /] of the alternatives could be sel ected
fal se \ /1 and execut ed)
Entity. NEXT- CONTROL(f al se);
true
RETURN,

v

Figure 53: Flow graph segment <call-reception-part>

ETSI

76

ETSI ES 201 873-4 V4.5.1 (2016-07)

9.6.6 Flow graph segment <catch-timeout-exception>

The flow graph segment <cat ch- t i neout - except i on> (seefigure 54) isfor the handling of atimeout exception

of ablocking call operation that is guarded by a duration.

segnment <cat ch-ti meout - excepti on>

fal se

}

RETURN;

v if (Entity.TI MER- GUARD. STATUS == TI MEQUT) {

Entity. NEXT- CONTROL(true);
check-guard) [/l To assure a defined state of Entity
Entity. STATUS : = ACTI VE;

true else { // continue evaluation
Entity. NEXT- CONTROL(f al se);

A 4

/'l To be executed, if the
<st at ement - bl ock> // timeout exception occured

!

Figure 54: Flow graph segment <catch-timeout-exception>

9.7 Catch operation

The syntactical structure of the catch operationiis:

<portld>. catch (<matchingSpec>) [from <conponent_expression>] -> [<assignmentPart>]

Apart from the cat ch keyword this syntactical structure isidentical to the syntactical structure of ther ecei ve
operation. Therefore, the operational semantics handles the cat ch operation in the same manner asther ecei ve
operation. Thisis aso shown in the flow graph segment <cat ch- op> (figure 55), which defines the execution of a
cat ch operation. The figure refers to flow graph segmentsrelated to ther ecei ve operation (see clause 9.37).

|
segnent <catch-op> l

<recei ve-w t h-sender >
R
<recei ve-w t hout - sender >

/1 Distinction due to the optional
/1 fromclause

\4

Figure 55: Flow graph segment <catch-op>

ETSI

77 ETSI ES 201 873-4 V4.5.1 (2016-07)

9.8 Check operation

9.8.0 General

The syntactical structure of the check operationiis:

<portld>.check(receive|getcall]|catch|getreply (<nmatchi ngSpec>)
[from <conponent - expressi on>]) [-> <assignnent Part >]

The optional <conponent - expr essi on> inthef r omclause refers to the sender entity. It may be provided in
form of avariable value or the return value of afunction, i.e. it is assumed to be an expression. The optional

<assi gnnent Par t > denotes the assignment of received information if the received information matchesto the
matching specification <mat chi ngSpec> and to the (optional) f r omclause.

The operational semantics handles the operationsr ecei ve, get cal | , cat ch and get r epl y in the same manner,
i.e. they are described by referencing the same flow graph segments<r ecei ve- wi t h- sender > and

<recei ve-w t hout - sender >. The check operation also handles the different operations in the same manner.
Thus the flow graph segment <check- op> in figure 56, which defines the execution of the check operation, also
references only two flow graph segments. The only difference to the flow graph segments

<recei ve-wi t h- sender > and <r ecei ve- w t hout - sender > isthat the received items are not deleted after
the match.

I
segment <check- op> l

<check-wi t h- sender >
OoR /1 Distinction due to the optional
<check-wi t hout - sender> [™" /1 fromclause

v

Figure 56: Flow graph segment <check-op>

ETSI

78 ETSI ES 201 873-4 V4.5.1 (2016-07)

9.8.1 Flow graph segment <check-with-sender>

The flow graph segment <check- wi t h- sender > in figure 57 defines the execution of acheck operation where
the sender entity is specified in form of an expression.

nt
igﬁggk_w t h- sender > v /| The Expression shall evaluate
< Con> // to a conmponent reference or
expression /1 address value. The result is
/1 pushed onto the VALUE- STACK.

let { // local scope for portRef and sender

var portRef := NULL;

var sender := Entity. VALUE- STACK top(); /1 Sender

Entity. VALUE- STACK. pop(); /1 O ean val ue stack
if (portlD == “any port”) {

port Ref := ALL- PORT- STATES. r andon{ MATCH | TEM SNAP- VALUE, mat chi ngSpec, sender)
&% OMER == Entity);

if (portRef == NULL) { // no 'matching' port found
Entity. NEXT- CONTROL(f al se);
RETURN;
}
el se {
portRef := GET-PORT(Entity, Entity.portld. COVP- PORT- NAMVE) /1 Specified port
}
/1 MATCHI NG
if (PortRef.first() == NULL) { // Port queue is enpty, no match
Entity. NEXT- CONTROL(f al se);
RETURN;
}
el se {

if (MATCH | TEM port Ref . SNAP- VALUE, nat chi ngSpec, sender)) {
/1l The nessage in the queue matches
Entity. VALUE- STACK. push(port Ref); /1 Saving port reference
Entity. STATUS : = ACTI VE; /] successful match, Entity status is changed
/1 from SNAPSHOT to ACTI VE

Entity. NEXT- CONTROL(true);

el se { /1 The top itemin the queue does not natch
Entity. NEXT- CONTROL(f al se);

}

RETURN;

}
\ } /1 End of scope of portRef and sender

check-w t h- sender

(portld, natchingSpec)
/g true
/1 optional value

*(1) /] assignent
<recel ve- assi gnment >

' Entity. VALUE- STACK. pop();

A
Entity. NEXT- CONTROL(true);
cl ean-val ue-stack ... RETURN;

fal se true
v v

Figure 57: Flow graph segment <check-with-sender>

ETSI

79

9.8.2

ETSI ES 201 873-4 V4.5.1 (2016-07)

Flow graph segment <check-without-sender>

The flow graph segment <check- wi t hout - sender > in figure 58 defines the execution of acheck operation

without af r omclause.

segnent <check-wit hout - sender >

let { // local scope
var portRef := NULL;
if (portID == “any port”) {
port Ref := ALL- PORT- STATES. r andon{ MATCH | TEM SNAP- VALUE, mat chi ngSpec, NONE)
&% OMER == Entity);
if (portRef == NULL) { // no 'nmatching' port found
Entity. NEXT- CONTROL(f al se);
RETURN;
}
el se {
portRef := GET-PORT(Entity, Entity.portld. COVP- PORT- NAMVE) /1 Specified port
}
/1 MATCHI NG
if (PortRef.first() == NULL) { // Port queue is enpty, no match
Entity. NEXT- CONTROL(f al se);
RETURN;
}
el se {
if (MATCH | TEM port Ref . SNAP- VALUE, nat chi ngSpec, NONE)) {

/'l The nessage in the queue natches
Entity. VALUE- STACK. push(port Ref);

/1 Saving port reference
Entity. STATUS : = ACTI VE;

/'l successful match, Entity status is changed
/1 from SNAPSHOT to ACTI VE

Entity. NEXT- CONTROL(true);

el se { /1 The first
Entity. NEXT- CONTROL(f al se);

itemin the queue does not match

}
RETURN,;

}
/1 End of scope

\)

check-w t hout - sender

(portld, natchingSpec)
true

]

/1 optional value

/1 assignent

*(1)

<recel ve- assi gnment >

Entity. VALUE- STACK. pop();

Entity. NEXT- CONTROL(true);

A 4
- RETURN,

cl ean-val ue- st ack

fal se true

v

Figure 58: Flow graph segment <check-without-sender>

ETSI

80 ETSI ES 201 873-4 V4.5.1 (2016-07)

9.8a Checkstate port operation

9.8a.0 General

The syntactical structure of thecheckst at e port operationiis:

<port | d>. checkst at e(<char string-expressi on>)

Thecheckst at e port operation allows to examine the state of a port. If aport isin the state specified by the
char st ri ng parameter, thecheckst at e operation returns the Boolean valuet r ue. If the port is not in the
specified state, the checkst at e operation returns the Boolean value f al se. Caling the checkst at e operation
with an invalid argument leads to an error. For simplicity, the keywords"al | port" and"any port" are
considered to be special values of <portld>.

Theresult of thecheckst at e port operation is pushed onto the value stack of the entity, which called the operation.

The flow graph segment <checkstate-port-op> in figure 58a defines the execution of the r unni ng component
operation.

segment
<checkst at e- port - op>

Il The expression shall eval uate
T /Il to a charstring val ue. The
<expressi on> /1 result is pushed onto VALUE- STACK

let { //local scope
var portState := Entity.VALUE STAXK. top();
Entity. Value- STACK. push(portid);

ki n(dp-:rft-lsdt)at e if (portSate == “Sarted”

or portState == “Halted”
or portState == “Stopped”) {
Entity.NEXT-CONTROL(true);
el seif (portState == “Connected”
or portState == “Mapped”
or portState == “Linked”) {

Entity.NEXT-CONTROL(fal se);
el se {
DYNAM C-ERROR [/ invalid state

} /1 end local scope
RETURN;

<check- port - stat us> <check- port - connecti on>

'

Figure 58a: Flow graph segment <checkstate-port-op>

ETSI

81

9.8a.1

ETSI ES 201 873-4 V4.5.1 (2016-07)

Flow graph segment <check-port-status>

The flow graph segment <check- port - st at us> in figure 58b describes the execution of the checkst at e
component operation by checking for the STATUS field in port states (cf. clause 8.3.3).

\ checkstat e-par :=

Entity.VALUE- STACK. pop() ;

if (checkstate-par ==
if (checkstate-par =
if (checkstate-par ==

result := false;

else if (portld

port
result := true;
whil e (port

segnment

<check- port - stat us> let { /7 local scope
var portld; I/
var checkst at e-par; //
var checkSt at e; /] port
var result; 1/
var port;

A
/—F portid := Entity. VALUE- STACK. top():
check- port - st at us Entity.VALUE- STACK. pop();

Entity.VALUE STAXK. top();

“Sarted”) checkState : = STARTED;
“Halted’) checkSate := HALTED
“S opped”) checkState : = STOPPED;

if (Entity.PORT- REF =
vall
©= ALL- PORT-STATES. fi rst ();

= NWLL and result
if (port.OANNER == Entity) {

for storing the portld

checkstate paraneter to be checked for
state to be checked for

Bool ean for internedi ate results

NULL) { // Entity has no ports

port') {

true) {

}

if (port.STATUS ! = checkState) result := fal se;
}
port := ALL- PORT- STATES next () ;
}
}
else if (portld == 'any port') {
port := ALL- PORT-STATES. first();
result := false;
while (port !'= NWL and result == fal se) {
if (port.OMNER == Entity) {
if (port.STATUS == checkState) result := true;
}
port := ALL- PORT- STATES next ();
}
el se {
port := Entity. portl|d.COMP- PORT- NAMVE
if (port == NJLL) {
*** DYNAM C- ERROR* ** /'l port cannot be retrieved
el se{
if (port.STATUS == checkState) result := true;
if (port.STATUS != checkState) result := fal se
}

Enti ty. VALUE STAXK. push(resul t);

}
Entity. NEXT- CONTROL(true);
RETURN;

Figure 58b: Flow graph segment <check-port-status>

9.8a.2 Flow graph segment <check-port-connection>

The flow graph segment <check- port - connect i on> infigure 58c describes the execution of thecheckst at e
component operation by investigating the CONNECTIONS-LIST in port states (cf. clause 8.3.3).

ETSI

82 ETSI ES 201 873-4 V4.5.1 (2016-07)

segment

<check- port - connecti on>

check- port-connecti on

let { // local scope

var portld; /1 for storing the portld

var checkstate-par; // checkstate paraneter to be checked for
var result; /'l Boolean for internedi ate results

var isNotLinked := false; // Boolean for internmediate results
var isMapped : = fal se; // Boolean for internediate results
var isConnected : = false; // Boolean for intermediate results
var singl eport :=false; // Boolean for internediate results
var port;

portld := Entity.VALUE STACK. top();
Entity. VALUE STACK. pop() ;

checkstate-par : = Entity. VALUE-STACK top();
Enti ty. VALUE STAK. pop();

if (portld =="'any port' or portld = "all port"') {
singl eport : = fal se;
port := ALL- PORT- STATES first();

}

el se {

si ngl eport : = true
port := Entity. portld. GOVP- PORT- NAMVE;

\}Nhile (port != NULL) {
if (port.OMNER == Entity) ({
if (port.GONNECTI ONS- LI ST == NULL) ({
isNot Li nked : = true; /1 unlinked port

}
if (port.GONNECTIONS-LIST.length() == 1) {
if (GET- EMOTE PORT(Entity, port, NONE) == SYSTEN ({
i sMapped : = true; /1 mepped port

el se {
i sConnected : = true; I/l connected port
}
else { // nore than one connection
i sConnected : = true; I/l connected port
}
}
if (singleport == false) port := ALL-PORT-STATES. next ();
if (singleport == true) port := NULL;
}
if (portld == "any port') {
if (checkstate-par == "Connected') result := isconnected,
if (checkstate-par == "Mapped") result :=ismapped;
if (checkstate-par == "Linked") result := (isnapped or isconnected);

}
else { // portld is a single port or "all port'

if (checkstate-par == "Connected') {

result := (isconnected and not (i smapped or isNotLinked));
el se if (checkstate-par == "Mapped") {

result := (isnmapped and not (i sconnected or isNotLinked));
el se { // checkstate-par == "Linked"

result := (isnmapped or isconnected) and not (i sNotLi nked);
}

}
Entity. VALUE- STACK push(result);

}
Entity. NEXT-CONTROL(t rue);
RETURN;

Figure 58c: Flow graph segment <check-port-connection>

ETSI

9.9 Clear port operation

83

The syntactical structure of thecl ear port operationis:

<portld>.cl ear

ETSI ES 201 873-4 V4.5.1 (2016-07)

The flow graph segment <clear-port-op> in figure 59 defines the execution of the cl ear port operation.

segment <cl ear - port-op>
4

cl ear-port-op
(portld)

let { // Begin of |ocal scope
var portRef := NULL
var portState := NULL,;
if (portld == “all port”) {

portState

while (portState !'= NULL) {
if (portState. OANER
port St at e. VALUE- QUEUE. cl ear () ;

portState :

}

el se {
port Ref :

GET-PORT(Entity, portRef).clear();

} /1 End of socpe

Entity. NEXT- CONTROL(true);

RETURN,

:= ALL- PORT- STATES. first();

Entity) {

ALL- PORT- STATES. next (port State);

Entity. portl|d. COVP- PORT- NAME;

v

Figure 59: Flow graph segment <clear-port-op>

9.10 Connect operation

The syntactical structure of theconnect operationis:

connect (<component - expr essi on,>: <portldl>, <conponent-expression,>: <port|d2>)

Theidentifiers<port | d1> and <port | d2> are considered to be port identifiers of the corresponding test
components. The components to which the ports belong are referenced by means of the component references
<component - expr essi on,> and <conmponent - expr essi on,>. The references may be stored in variables or

isreturned by afunction, i.e. they are expressions, which evaluate to component references. The value stack is used for

storing the component references.

The execution of theconnect operation is defined by the flow graph segment <connect - op> shown in figure 60.
In the flow graph description the first expression to be evaluated refersto <conponent - expr essi on,> and the

second expressionto <conponent - expr essi on,>, i.e. the<conponent - expr essi on,> ison top of the
value stack when the connect - op node is executed.

ETSI

84

ETSI ES 201 873-4 V4.5.1 (2016-07)

segnment <connect-op>

<expressi on>

(portldl, portld2)

RETURN,

let { /1 begin of a l|ocal scope

v var portOne, portTwo; // voriables for ports
<expr essi on> var conmp2 := Entity. VALUE- STACK. top();
Enti ty. VALUE- STACK. pop();
var conpl := Entity. VALUE- STACK. top();
Entity. VALUE- STACK. pop();
v if (compl == Entity) {

portOne : = conpl. port|dl. COVP- PORT- NANE;

el se {
portOne : = portldi;
}
A 4 if (comp2 == Entity) {
connect - op portTwo : = conp2. portld2. COVP- PORT- NAVE;

el se {
port Two : = portld2;

}

ADD- CON(conpl, portOne, conp2, portTwo);

ADD- CON(conp2, portTwo, conpl, portOne);
} /1 end of |ocal scope

Entity. NEXT- CONTROL(true);

Figure 60: Flow graph segment <connect-op>

9.11 Constant definition

The syntactical structure of a constant definitioniis:

const <const Type> <const|d> : = <const Type- expressi on>

The value of a constant is considered to be an expression that evaluates to a value of the type of the constant.

NOTE: Globa constants are replaced by their valuesin a pre-processing step before this semanticsis applied
(seeclause 9.2). Local constants are treated like variable declarations with initialization. The correct
usage of constants, i.e. constants should never occur on the left side of an assignment, should be checked
during the static semantics analysis of a TTCN-3 module.

The flow graph segment <constant-definition> in figure 61 defines the execution of a constant declaration where the

value of the constant is provided in form of an expression.

ETSI

85 ETSI ES 201 873-4 V4.5.1 (2016-07)

segment <constant-definition>

v

/'l The expression shall evaluate
/1 to a value of the type of the
/'l constant that is defined.

<expressi on>

/1 NOTE: A constant definition is treated like a
/1 variable with inititialisation value

Entity.| NI T-VAR(constld, Entity.VALUE-STACK. top());
var-decl aration-init Entity. VALUE- STACK. pop();
(const|d)

Entity. NEXT- CONTROL(true);
RETURN;

Figure 61: Flow graph segment <constant-definition>

9.12 Create operation

The syntactical structure of thecr eat e operationis:

<conponent Typel d>. create [alive]

A present al i ve clause indicates that the created component can be restarted after it has been stopped. Presence and
absence of the alive clause is handled as a Boolean flag in the operational semantics (see al i ve parameter of the basic
flow graph node cr eat e- op in figure 62).

The flow graph segment <cr eat e- op> in figure 62 defines the execution of the cr eat e operation.

ETSI

86 ETSI ES 201 873-4 V4.5.1 (2016-07)

segnent <cr eat e- op>

create-op
(conponent Typel d, alive)

let { /'l Local scope
var newkntity := NEWENTITY(conmponent Typel D, ali ve);
/'l Qeation of the entity state for the
/'l new entity.

I/l The reference to the new entity is pushed onto the val ue stack of the
/] ‘father' entity.

Entity. VALUE- STACK. push(newEntity);

/I The identifier of the 'father' entity is pushed onto the value stack of the
I/l newentity. The identifier is needed to restore the status of the 'father'
/] entity after conpletion of the entity creation. The 'father' entity is

I/ bl ocked until all ports, variables, timers specified in the conponent type
/] definition are instantiated. This instantiation is done by executing the

Il flow graph that represents 'conmponentTypelD by the newentity.

newEnti ty. VALUE- STAXK. push(Entity);

// The newentity is put into the nodul e state

ALL- ENTI TY-STATES. append(newEntity);

} // End local scope

/'l The actual status of the 'father' entity is saved and the 'father' entity goes
/1 into a blocking state. Note the restoration of the status of the father entity
/'l is described in fl owgraph segnent <finalize-conponent-init>.

Entity. VALUE- STACK. push(Entity. STATUS); // Saving the actual status
Entity. STATUS := BLQOCKED

Entity. NEXT- CONTROL(true); // Return of control
RETURN,

Figure 62: Flow graph segment <create-op>

9.13 Deactivate statement

9.13.0 General

The syntactical structure of adeact i vat e statement is:

deactivate [(<default-expression>)]

Thedeact i vat e statement specifies the deactivation of one or all active defaults of the entity that executes the
deact i vat e statement. If one default shall be deactivated, the optional <def aul t - expr essi on> shall evaluate
to adefault reference which identifies the default to be deactivated. The call of adeact i vat e statement without
<def aul t - expr essi on> deactivates all active defaults.

The execution of adeact i vat e statement is defined by the flow graph segment <deact i vat e- st nt > in
figure 63a.

ETSI

87 ETSI ES 201 873-4 V4.5.1 (2016-07)

segnment <deactivate-stmt>

A

<deacti vat e- one-def aul t >

oRrR
<deactivate-al |l -defaul t s>

/'l A deactivate statement deactivates
/'l one or all active defaults

\

Figure 63a: Flow graph segment <deactivate-stmt>

9.13.1 Flow graph segment <deactivate-one-default>

The flow graph segment <deact i vat e- one- def aul t > in figure 63b specifies the deactivation of one active
default. The value of the expression <def aul t - expr essi on> shall evaluate to a default reference. The expression
may be provided in form of avariable value or value returning function. Thedeact i vat e statement removes the
specified default from the DEFAULT-LIST of the entity that executesthe deact i vat e statement.

segnent
<deact i vat e- one-defaul t >

<expr essi on>

/1 The expression shall evaluate to a
/1 default reference, which is pushed
/1 pushed onto the val ue stack.

deacti vat e- one- def aul t

Entity. DEFAULT-LI ST. del ete(Entity. VALUE- STACK. top());
Entity. VALUE- STACK. pop(); // clean val ue stack

Entity. NEXT- CONTROL(true);
RETURN,

v

Figure 63b: Flow graph segment <deactivate-one-default>

9.13.2 Flow graph segment <deactivate-all-defaults>

The flow graph segment <deactivate-all-defaults> in figure 63c specifies the deactivation of all active defaults. The
deactivate statement clears the DEFAULT-LIST of the entity that executesthedeact i vat e statement.

segnment
<deactivate-all-defaul ts>

deactivate-all-defaults) Entity. DEFAULT- LI ST : = NULL;

RETURN,

v

Figure 63c: Flow graph segment <deactivate-all-defaults>

ETSI

88 ETSI ES 201 873-4 V4.5.1 (2016-07)

9.14 Disconnect operation

9.14.0 General

The syntactical structure of thedi sconnect operationis:

di sconnect (<component - expr essi on,>: <portldl> [, <component -expression,>: <portld2>])
<conponent - expr essi on,>: <port | d2>)

Theidentifiers<port | d1> and <port | d2> are considered to be port identifiers of the corresponding test
components. The components to which the ports belong are referenced by means of the component references
<conponent - expr essi on;> and <conponent - expr essi on,>. The references may be stored in variables or
arereturned by functions, i.e. they are expressions, which evaluate to component references. The value stack is used for
storing the component references.

Thedi sconnect operation can be used with one parameter pair and with two parameters pairs. The usage of the

di sconnect operation with one parameter pair may disconnect connections for one component or, if executed by the
MTC for al components. The usage of thedi sconnect operation with two parameter pairs allows to disconnect
specific connections.

Both usages are distinguished in the flow graph segment <di sconnect - op> shown in figure 64, which definesthe
execution of thedi sconnect operation.

segnment <di sconnect - op>

A 4

<di sconnect - one- par - pai r > // Distinction due to the usage of

OoR /1 disconnect with one paraneter pair
/1 and its usage with two paraneter
/'l pairs.

<di sconnect -t wo- par pairs>

v

Figure 64: Flow graph segment <disconnect-op>

9.14.1 Flow graph segment <disconnect-one-par-pair>

The flow graph segment <disconnect-one-par-pair> shown in figure 64a defines the execution of the di sconnect
operation with one parameter pair. In the flow graph segment three cases are distinguished:

1) thent c disconnects all connections of all components;
2) dl connections of one component are disconnected; and

3) all connections of one port of one component are disconnected. In the flow graph segment the expression to be
evaluated refersto <conponent - expr essi on;> (see syntactical structure of thedi sconnect

operation in clause 9.14).

ETSI

89

ETSI ES 201 873-4 V4.5.1 (2016-07)

segnent
<di sconnect - one- par - pai r >

<expr essi on>

di sconnect - one
(portld)

true
fal se
<disconnect-al | >
A
deci si on
true
fal se
<di sconnect - conp>
A

/'l The Expression shall eval uate
/1 to a conmponent reference. The
/1l result is pushed onto VALUE- STACK
if (Entity.VALUE-STACK.top() == “all conponent”) {
if ((Entity '= MIC) OR
(Entity == MIC && portld != “all port”)) {
*** DYNAM C- ERROR** *
}
el se {
Entity. VALUE- STACK. pop();
Entity. NEXT- CONTROL(true);
}
el se {
Entity. VALUE- STACK. push(portld);
Entity. NEXT- CONTROL(fal se) ;
}
RETURN;
if (Entity. VALUE-STAXK.top() == “all port”) {
Entity. VALUE- STACK. pop()
Entity. NEXT- CONTROL(true);
}
else {
Entity. NEXT- CONTROL(fal se);
}
RETURN;

<di sconnect -port>

v

v

Figure 64a: Flow graph segment <disconnect-one-par-pair>

ETSI

90 ETSI ES 201 873-4 V4.5.1 (2016-07)

9.14.2 Flow graph segment <disconnect-all>

The flow segment <di sconnect - al | > defines the disconnection of al components at all connected ports.

segnment <di sconnect-all >

di sconnect-al |

let { // local scope

var port := ALL- PORT- STATES.first();
var connecti on;

while (port !'= NULL) {
connection := port. CONNECTI ONS. first();
whil e (connection !'= NULL) {
i f (connection. REMOTE- ENTI TY == systen) {
connection := NULL; /1 mapped port

el se {
port. CONNECTI ONS. del et e(connecti on);
connection : = port. CONNECTI ONS. first();

}
port := ALL- PORT- STATES. next (port);

} /1 End of |ocal scope

Entity. NEXT- CONTROL(true);
RETURN,;

Figure 64b: Flow graph segment <disconnect-all>

ETSI

91

9.14.3 Flow graph segment <disconnect-comp>

ETSI ES 201 873-4 V4.5.1 (2016-07)

The flow segment <di sconnect - conp> defines the disconnection of all ports of a specified component.

segnent <di sconnect - conp>

di sconnect - conp

let { // local scope
var conp := Entity. VALUE- STACK top();
var connection;
var port := ALL- PORT- STATES.first();

while (port !'= NULL) {
connection := port. CONNECTIONS. first();
whil e (connection !'= NULL) {

i f (connection. REMOTE- ENTI TY == systen) {
connection : = port. CONNECTI ONS. next (connecti on);

}
el se if (connection. REMOTE-ENTITY == conp
or (port. OMER == conp) {
port. CONNECTI ONS. del et e(connecti on);
connection := port. CONNECTI ONS. first();

el se {

connection : = port. CONNECTI ONS. next (connecti on);

}
}
port := ALL- PORT- STATES. next (port);

} /1 End of |ocal scope

Entity. NEXT- CONTROL(true);
RETURN;

}
Entity. VALUE- STACK. pop(); /'l clear value stack

Figure 64c: Flow graph segment <disconnect-comp>

ETSI

92

9.14.4 Flow graph segment <disconnect-port>

ETSI ES 201 873-4 V4.5.1 (2016-07)

The flow segment <di sconnect - por t > defines the disconnection of a specified port.

segnment <di sconnect - port >

di sconnect - port

let { // local scope
var portld, rPortld,
var conp, r Conp;
var port;
portld := Entity.VALUE- STACK.top();

Entity. VALUE- STAKK. pop() ;

conp : = Entity. VALUE-STACK. top();
Entity. VALUE- STAKK. pop();

port := GET- PORT(conp, portld);

var connection := port. CONNECTI ONS. first();
while (connection !'= NULL) {
if (connection. REMOTE- ENTI TY == SYSTEM {
*** DYNAM C- ERROR* * *

el se {
rConp : = connection. REMOTE- ENTI TY;
rPortld := connecti on. REMOTE- PORT- NAVE;
DEL- QON(conp, portld, rConmp, rPortld);
DEL- QON(rConp, rPortld, conp, portld);
connection := port. CONNECTI ONS. first();

}

} /1 End of local scope

Entity. NEXT- CONTROL(true);
RETURN,

/1l port is not a connected port

Figure 64d: Flow graph segment <disconnect-port>

9.14.5 Flow graph segment <disconnect-two-par-pairs>

The flow graph segment <disconnect-two-par-pairs> shown in figure 64e defines the execution of the di sconnect
operation with two parameter pairs which disconnects specific connections. In the flow graph segment the first
expression to be evaluated refersto <conponent - expr essi on;> (see syntactical structure of the

di sconnect operation in clause 9.14) and the second expressionto <component - expr essi on,>, i.e. the
<component - expr essi on,> ison top of the value stack when the di sconnect -t wo node is executed.

ETSI

93

ETSI ES 201 873-4 V4.5.1 (2016-07)

segnent
<di sconnect - two- par - pai r s>

A

<expr essi on>

A

<expressi on>

di sconnect-two
(portldi,

port1d2)

let {
var
var

var

*** DYNAM C- ERROR * * /1 mapped port
el se {

port One : = conpl. portldl. GOMP- PORT- NAME;
}
if (comp2 = SYSTEM {

*** DYNAM C- ERROR * * /1 mapped port
el se {

CEL- CON(conpl, portOnhe, conp2, portTwo);
CEL- CON(conp2, port Two, conpl, portOne);
} /! end of

Entity. NEXT- CONTROL(t rue);

RETURN;

/'l begin of a local scope

port One, portTwo; // voriables for ports
conp2
Entity. VALUE- STACK. pop();
compl
Entity. VALUE- STACK. pop();
if (compl = SYSTEM {

port Two : = conp2. portl d2. GOVP- PORT- NAME;

:= Entity.VALUE STAXK. top();

= Entity.VALUE STACK. top();

local scope

A\

Figure 64e: Flow graph segment <disconnect-two-par-pairs>

9.15 Do-while statement

The syntactical structure of the do-whi | e statement is:

do <statenent- bl ock>

whi | e (<bool ean- expr essi on>)

The execution of ado-whi | e statement is defined by the flow graph segment <do- whi | e- st nt > shownin

figure 65.

segnent <do-whil e-stmt>

) 4

<st at enent - bl ock>

A 4

<expr essi on>

true

/'l The expression shall evaluate to
/1 a Bool ean val ue.

}

if (Entity.VALUE- STACK. top()) {
el se {

}
Entity. VALUE- STACK. pop();
RETURN;

Entity. NEXT- CONTROL(true);

Entity. NEXT- CONTROL(f al se);

v

Figure 65: Flow graph segment <do-while-stmt>

ETSI

94 ETSI ES 201 873-4 V4.5.1 (2016-07)

9.16 Done component operation

9.16.0 General

The syntactical structure of the done component operation is:

<conponent - expr essi on>. done [-> <assi gnment Part >]

The done component operation checks whether a component is running or has stopped. Depending on whether a
checked component is running or has stopped the done operation decides how the flow of control continues. Using a
component reference identifies the component to be checked. The reference may be stored in a variable or be returned
by afunction, i.e. it is an expression. For simplicity, the keywords"al | conponent " and"any conponent™ are
considered to be special expressions.

The optional <assi gnent Part > alowsthe retrieval of the local verdict of the addressed component at the time of
its stopping. The assignment part identifies a variable of type verdicttype to which the retrieved verdict is assigned.

The flow graph segment <done- op> in figure 66 defines the execution of the done component operation.

ETSI

95 ETSI ES 201 873-4 V4.5.1 (2016-07)

segnent <done-op>

'

/| The Expression shall eval uate
/1l to a conponent reference. The
/1 result is pushed ont o VALUE- STACK

<expression>

done- comrponent - op

fal se

true

<done- assi gnnent >

cl ean- val ue-stack

let { // local scope

var aliveN : = Entity.SNAP-ALI VE |ength();

var doneN := Entity. SNAP-DONE. T engt ;

var killedNr := Entity. SNAP- Kl LLED. I'engt h() ;

var nonWaitingN : = aliveNN — doneNr — kill edN;
/'l nunmber of alive entities which are executi ng a behaviour
/1 or neither have stopped and nor have ter m nat ed.

var doneEntity : = Entity. VALUE- STACK t op();

var doneVerdi ct := none; -

if (doneEntity == "all conponent') {
if (Entity !'= MQ {
*** DYNAM G ERROR*** [/ "all conponent' is not allowed

}

elseif (nonWaitingN == 1) { /1 MICis only active Entity
Entity. NEXT- CONTROL(t rue);
Entity. STATUS : = ACTI VE; // DONE is successful
Entity. VALUE- STACK. push(error);

}
else {
Entity. NEXT- CONTROL(f al se);
) }
elseif (doneEntity == "any conponent') {

if (Entity I'= MQ {
*** DYNAM G ERROR*** [/ 'any conponent' not al | owed

}

elseif (doneN >0) {
Entity. NEXT- CONTROL(t rue);
Entity.STATUS := ACTI VE; // DONE is successful
Entity. VALUE- STACK. push(error) ;

}
else {

Entity. NEXT- CONTROL(f al se);
}

}
else i f(Entity. SNAP-DONE menber ((doneEntity,-))) {
Entity. NEXT- CONTROL(t rue) ;
Entity.STATUS : = ACII VE; // DONE is successful
doneVerdict : =
Ent i ty. SNAP- DONE. r andom((doneEnti ty, -)). FI N- VERDI CT;
Entity. VALUE STACK. push(doneVerdi ct);

}

else {
Entity. NEXT- CONTROL(f al se);

} 1/ end of |ocal scope
RETURN;

/1 optional verdict

/'l assignnent

Entity. VALUE- STAKK. pop(); // renoval of doneVerdict
Entity. VALUE- STAXK. pop(); // rermoval of expression
Entity. NEXT- CONTROL(T rue) ;

RETURN;

Figure 66: Flow graph segment <done-op>

ETSI

96 ETSI ES 201 873-4 V4.5.1 (2016-07)

9.16.1 Flow graph segment <done-assignment>

The flow graph segment <r ecei ve- assi gnnment > in figure 66a defines the retrieval of information from received
messages and their assignment to variables.

segnent <done-assi gnment >

if (Entity. VALUE-STACK top() ==error) {
*** DYNAM G ERROR*** [/ usage with any or al|l component

else {
r Entity. VAR SET(assignnment Part, Entity. VALUE- STACK top())

/1 assum ng that assignnentPart denotes a variable

}
Entity. NEXT- CONTROL(t rue) ;
RETURN;

done-assi gnnent
(assignnment Part)

Figure 66a: Flow graph segment <receive-assighment>

9.17 Execute statement

9.17.0 General

The syntactical structure of the execut e statement is:

execut e(<t est Casel d>([<act-par,> .., <act-par >)]) [, <float-expression>])

The execut e statement describes the execution of atest case <t est Casel d> with the (optional) actual parameters
<act-par >, ..., <act-par ,>. Optionally the execute statement may be guarded by a duration provided in form

of an expression that evaluatesto af | oat . If within the specified duration the test case does not return averdict, a
timeout exception occurs, the test caseis stopped and an er r or verdict is returned.

NOTE: The operational semantics models the stopping of the test case by a stop of the MTC. In redlity, other
mechanisms may be more appropriate.

If no timeout exception occurs, the MTC is created, the control instance (representing the control part of the TTCN-3
module) is blocked until the test case terminates, and for the further test case execution the flow of control is given to
the MTC. The flow of control is given back to the control instance when the MTC terminates.

The flow graph segment <execut e- st nt > in figure 67 defines the execution of an execut e statement.

segnent <execute-stnt> l

<execut e-wi t hout - ti meout >
OoR /1 An execute statenent may or nay
<execute-timeout> [T /1 not be guarded by a tineout

\ 4

Figure 67: Flow graph segment <execute-stmt>

ETSI

97

ETSI ES 201 873-4 V4.5.1 (2016-07)

9.17.1 Flow graph segment <execute-without-timeout>

The execution of atest case starts with the creation of the nt ¢. Then the mtc is started with the behaviour defined in the
test case definition. Afterwards, the module control waits until the test case terminates. The creation and the start of the

MTC can be described by using cr eat e and st art statements:

var nmtcType MYMIC : = ntcType. create;
M/MIC. st art (Test CaseNane(P1..Pn));

The flow graph segment <execut e- wi t hout - t i meout > in figure 68 defines the execution of an execut e
statement without the occurrence of atimeout exception by using the flow graph segments of the operationscr eat e

andthestart.

segnent <execute-w thout-tineout > i

<creat e- op>

init-test-case-state

<start - conponent - op>

/!l Creation of the MIC

MIC : = Entity. VALUE- STACK. top();
TC VERDI CT : = none;
DONE : = NULL;

Entity. NEXT- CONTROL(true);
RETURN,

wai t-for-termnation

/1l Start of MIC

Entity. STATUS : = BLOCKED;

/1 MIC will set status to ACTIVE
/1 before it termnates
Entity. NEXT- CONTROL(true);
RETURN;

\4

Figure 68: Flow graph segment <execute-without-timeout>

ETSI

98 ETSI ES 201 873-4 V4.5.1 (2016-07)

9.17.2 Flow graph segment <execute-timeout>

The flow graph segment <execut e- t i neout > in figure 69 defines the execution of an execut e statement that is
guarded by atimeout value. The flow graph segment also models the creation and start of the MTC by acr eat e and a
st art operation. In addition, TIMER-GUARD guards the termination.

segment <execute -timeout> \

«

/1 The Expression shall evaluate to a
< Con> /1 a float value. This value defines
expression /1 the duration of TI MER GUARD

Entity. TI MER- GUARD. STATUS : = | DLE;
set-ti mer-guard Entity. TI MER- GUARD. ACT- DURATI ON : =
----------- Entity. VALUE- STACK. t op();
Entity. VALUE- STACK. pop();

Entity. NEXT- CONTROL(true);
A RETURN;

<creat e-op>

/1l Creation of the MIC

y
MIC : = Entity. VALUE- STACK top();
init-test-case-state Yuu. TC- VERDI CT : = none;
DONE : = NULL;

Entity. NEXT- CONTROL(true);
A RETURN;

<start - conponent - op>

/] Start of MIC

\ 4

Entity. STATUS : = SNAPSHOT;
prepare-wait e [/ MIC will set status to ACTIVE

/1 before it termnates

Entity. TI MER- GUARD. STATUS : = RUNNI NG,
Entity. NEXT- CONTROL(true);

RETURN,

if(Entity. STATUS == SNAPSHOT and
Entity. TI MER- GUARD. STATUS ! = TI MEQUT) {
/1 Control waits
----------- Entity. NEXT- CONTROL(tr ue);

active-waiting

else { // Test case term nated or
fal se /1 timer guard tined out
\ Entity. NEXT- CONTROL(tr ue);

4 }
RETURN;
st op-or-ti meout
"] if (Entity.STATUS |'= SNAPSHOT) {

true fal se /1 normal termnation
Entity. TI MER- GUARD. STATUS : = | DLE;
\ Entity. NEXT- CONTROL(tr ue);
<dynam c-error> else { // guarding timer tined out
/* Stop test case */ Entity. NEXT- CONTROL(f al se);
}
RETURN,

;

Figure 69: Flow graph segment <execute-timeout>

ETSI

99 ETSI ES 201 873-4 V4.5.1 (2016-07)

9.17.3 Flow graph segment <dynamic-error>

In case of adynamic error the flow graph segment <dynani c- er r or > isinvoked by the test system. In addition, the
flow graph segment <dynami c- er r or > isaso used for describing the behaviour of the test case stop operation
(clause 9.53a). All resources allocated to the test case are cleared and the error verdict is assigned to the test case.
Contral is given to the statement in the control part following the execute statement in which the error occurred.

The flow graph segment <dynani c- er r or > isinvoked by the module control in case that atest case does not
terminate within the specified time limit (clause 9.17.2).

segnent <dynamic-error>

dynam c-error }-

/'l Reset of configuration state

ALL- ENTI TY- STATES : = NJLL;
ALL- PORT- STATES := NULL,

MIC : = NULL;
TC-VERD CT := error;
DONE : = NULL;

KI'LLED : = NUWL;
/1l Update of the entity state of nodul e control

Cont rol . TI MER GUARD. STATUS := | OLE;
Control . STATWS : = ACTI \E;

/'l Push error verdict (result of test case execution) onto
/'l the stack of nodul e control

Control . VALUE STAXK. push(error);

Enti t y. NEXT-CONTROL(t rue) ;
RETURN,

Figure 69a: Flow graph segment <dynamic-error>

9.18 Expression

9.18.0 General

For the handling of expressions, the following four cases have to be distinguished:
a) theexpressionisaliteral value (or aconstant);
b) theexpressionisavariable;
c) theexpressionisan operator applied to one or more operands,
d) theexpressionisafunction or operation call.

NOTE: Thecasesb), ¢) and d) may require lazy or fuzzy evaluation. This operational semantics does not model
lazy and fuzzy evalution. It assumes that the correct evaluation is done implicitly.

The syntactical structure of an expression is:

<lit-val> | <var-val > | <func-op-call> | <operand-appl>

ETSI

100 ETSI ES 201 873-4 V4.5.1 (2016-07)

where:

<lit-val > denotes a literal value;

<var-val > denotes avariable valug;

<func-op-call > denotes a function or operation call;

<oper at or - appl > denotes the application of arithmetic operatorslike +, -, not , etc.

The execution of an expression is defined by the flow graph segment <expr essi on> shown in figure 70.

segment <expressi on> ¢
<lit-val ue>
OR /1 The four alternatives
<var-val ue> /1 describe the four
R /] possibilities for
<func-op-cal | > /] expressions as
R /] described in this
<oper at or - appl > /1 section.
v

Figure 70: Flow graph segment <expression>

9.18.1 Flow graph segment <lit-value>

The flow graph segment <l i t - val ue> infigure 71 pushes aliteral value onto the value stack of an entity.

segment <lit-value> Enti ty. VALUE- STACK. push(val ue);

Entity. NEXT- CONTROL(true);
RETURN,

\4

Figure 71: Flow graph segment <lit-value>

9.18.2 Flow graph segment <var-value>

The flow graph segment <var - val ue> infigure 72 pushes the value of a variable onto the value stack of an entity.

segnent <var-val ue> Entity. VALUE- STACK. push(Entity. var- nane. VALUE) ;

var - val ue

(var - nane) Entity. NEXT- CONTROL(true);

RETURN;

v

Figure 72: Flow graph segment <var-value>

ETSI

101

ETSI ES 201 873-4 V4.5.1 (2016-07)

9.18.3 Flow graph segment <func-op-call>

The flow graph segment <f unc- op- cal | > infigure 73 refersto calls of functions and operations, which return a
value that is pushed onto the value stack of an entity. All these calls are considered to be expressions.

segment <func-op-call>

v

<activate-stnt> OR <create-op> OR
<function-call> OR <ntc-op> OR
<read-timer-op> OR <running-tiner-op> OR
<runni ng- conponent - op> COR
<sel f-op> OR <system op> OR
<verdi ct. get-op> OR <execute-stnt>

\ 4

Figure 73: Flow graph segment <func-op-call>

9.18.4 Flow graph segment <operator-appl>

The flow graph representation in figure 74 directly refers to the assumption that reverse polish notation is used to
evaluate operator expressions. The operands of the operator are calculated and pushed onto the eval uation stack. For the
application of the operator, the operands are popped from the evaluation stack and the operator is applied. The result of
the operator application is finally pushed onto the evaluation stack. Both, the popping of operands and the pushing the
result are considered to be part of the operator application (Ent i t y. APPLY- OPERATOR(oper at or) statementin
figure 74), i.e. are not modelled by the operational semantics.

segment <oper at or - appl >

v

+

<expressi on>

oper at or - appl
(operator)

/1 For an n-nary operator,

/1 n operands in form of

/'l eval uat ed expressions have
/1 to be pushed onto the

/1 val ue stack

Entity. APPLY- OPERATOR(oper at or) ;

Entity. NEXT- CONTROL(true);
RETURN;

\ 4

Figure 74: Flow graph segment <operator-appl>

ETSI

102 ETSI ES 201 873-4 V4.5.1 (2016-07)

9.19 Flow graph segment <finalize-component-init>

The flow graph segment <f i nal i ze- conponent - i ni t > ispart of the flow graph representing the behaviour of a
component type definition. Its execution is defined in figure 75.

segnent
<final i se-component -i ni t > h 4

finalise-conmponent-init

/1 The status of the father entity is restored. The identifier of the 'father’
// entity is deleted fromthe VALUE- STACK

Entity. VALUE- STACK. top(). STATUS : = Entity. VALUE- STACK. t op() . VALUE- STACK. t op();
Entity. VALUE- STACK. t op(). VALUE- STACK. pop();
Entity. VALUE- STACK. pop();

/1 A mark is pushed on the value stack, the entity goes into a blocking state,
/1 i.e.,waits for being started) and control is given back to the nodul e
/1 eval uation procedure

Entity. VALUE- STACK. push(MARK) ;
Entity. STATUS : = BLOCKED;
Entity. NEXT- CONTROL(true);
RETURN;

Figure 75: Flow graph segment <finalize-component-init>

9.20 Flow graph segment <init-component-scope>

The flow graph segment <i ni t - component - scope> is part of the flow graph representing the behaviour of a
component type definition. Its execution is defined in figure 76.

segnment <init-conponent-scope>

/1 New scopes for variables, timers
/1 and ports are created

Entity. | N T- VAR SCOPE();

~~~~~~~~~~~~~~~~~ Entity. | N T-TI MER- SCOPE();
Entity. | N T- PORT- SCOPE() ;

i nit-conponent-scope

Entity. NEXT- CONTROL(true);
RETURN;

v

Figure 76: Flow graph segment <init-component-scope>

ETSI



103 ETSI ES 201 873-4 V4.5.1 (2016-07)

9.20a Flow graph segment <init-scope-with-runs-on>

The flow graph segment <i ni t - scope-wi t h- r uns- on> ispart of the flow graph representing the behaviour of
function and altstep definitions. It creates new scopes for variables, timers and ports, which include the names and
values declared in the component type definition referred to inthe r uns on-clause. The execution of the flow graph
segment is defined in figure 76a.

segment <init-scope-wth-runs-on>

let { /1 local scope
var act Var Scope := copy(Entity. DATA- STATE.first());
var act Ti nmer Scope : = copy(Entity. TI MER- STATE. first());
var act PORTScope : = copy(Entity. PORT-REF.first());

--------- Entity. | N T- VAR SCOPE() ;

Entity. DATA- STATE. first (). add(act Var Scope) ;

Entity. NI T- TI MER- SCOPE() ;

Entity. DATA-TIMER first().add(act Ti mer Scope);

Entity. NI T- PORT- SCOPE() ;

Entity. PORT-REF. first().add(act PortScope)

Entity. VALUE- STACK. push( MARK) ;

}

Entity. NEXT- CONTROL(true);
RETURN,

Figure 76a: Flow graph segment <init-scope-with-runs-on>

9.20b Flow graph segment <init-scope-without-runs-on>

The flow graph segment <i ni t - scope-wi t hout - r uns- on> is part of the flow graph representing the behaviour
of function and altstep definitions. It creates new empty scopes for variables, timers and ports. Functions and altsteps
without r uns on-clause do not know the names and values declared in the component type definition of the invoking
component. The execution of the flow graph segment is defined in figure 76b.

segment <init-scope-w thout-runs-on>

Entity. | NI T- VAR SOOPE() ;
Entity. | NI T-TI MER- SCOPE() ;
Entity. | N T- PORT- SCOPE() ;

........... Entity. VALUE- STACK. push( MARK) ;

Entity. NEXT- CONTROL(true);
RETURN;

v

Figure 76b: Flow graph segment <init-scope-without-runs-on>

ETSI



104 ETSI ES 201 873-4 V4.5.1 (2016-07)

9.21 Flow graph segment <parameter-handling>

The flow graph-segment <par anet er - handl i ng> isused in the beginning of flow graphs representing test cases,
atsteps and functions. It initializes a new scope and creates variables and timers for the handling of parameters. The
flow graph-segment <par anet er - handl i ng> assumes that the call record of the called test case, altstep or function
isthe top of the value stack.

NOTE: Parameters may be declared to be lazy or fuzzy. This operational semantics does not model 1azy and
fuzzy evalution. It assumes that the correct evaluation of such parametersis done internally.

The execution of flow graph-segment <par anet er - handl i ng> isshown in figure 77.

segnment
<par anet er - handl i ng> Entity. | N T- CALL- RECORD( VALUE- STACK. top());

// paraneters are initialized
Entity. VALUE- STACK. pop(); // renoval of call record
v Entity. VALUE- STACK. push(MARK) ; // for scope

Entity. NEXT- CONTROL(true);

paraneter-handling ).
RETURN,

v

Figure 77: Flow graph segment <parameter-handling>

9.22  Flow graph segment <statement-block>

The syntactical structure of a statement block is:

{ <statement > ...; <statement >}

A statement block is a scope unit. When entering a scope unit, new scopes for variables, timers and the value stack have
to beinitialized. When leaving a scope unit, all variables, timers and stack values of this scope have to be destroyed.

NOTE 1: A Statement block can be embedded in another statement blocks or can occur as body of functions,
atsteps, test cases and module control, and within compound statements, e.g.al t ,i f- el se or
do-whi | e.

NOTE 2: Receiving operations and altstep calls cannot appear in statement blocks, they are embedded in al t
statementsor cal | operations.

NOTE 3: The operational semantics also handles operations and declarations like statements, i.e. they are allowed
in statement blocks.

NOTE 4: Some TTCN-3 functions, like e.g. syst emor sel f , are considered to be expressions, which are not
useful as stand-alone statements in statement blocks. Their flow graph representations are not listed in
figure 78.

The flow graph segment <st at enmrent - bl ock> in figure 78 defines the execution of a statement block.

ETSI



105 ETSI ES 201 873-4 V4.5.1 (2016-07)

segnment <st at ement - bl ock>

let { /1 local scope
var actVar Scope : = copy(Entity. DATA- STATE.first());
var act Ti mer Scope : = copy(Entity. TI MER-STATE.first());
Entity. | N T- VAR- SCOPE() ;
Entity. DATA- STATE. first (). add(act Var Scope) ;
Entity. NI T- TI MER- SCOPE() ;
Entity. DATA-TIMER first().add(act Ti mer Scope) ;
Entity. VALUE- STACK. push( MARK) ;

A 4

enter-scope-unit }
Entity. NEXT- CONTROL(true);
RETURN;

|| * ||
<constant-definition> OR /1 List of flow graph segnents
<timer-declaration> OR 11

representing defintions
<vari abl e-decl arati on> /'l and decl arati ons.

L]

<action-stnm> OR <activate-stnt> OR <alt-stnt>
OR <assi gnment-stm > OR <cal | -op> OR
<cl ear-port-op> OR <connect-op> OR <create-op>

OR <deactivate-stnmt> OR <di sconnect-op> OR /] List of flow graph segnents
<do-whi |l e-stmt > OR <execute-stmt> OR <for-stm> /'l representing all possible
OR <function-call > OR <getverdict-op> OR /'l statenments and operations
<goto-stnt> OR <if-else-stnt> OR
<ki |l - conponent -op> OR <kill-exec-stm> OR

<l abel -stm > OR <l og-stnt> OR <map-op> OR
<rai se-op> OR <repeat-stnmt> OR <reply-op> OR
<return-stnt> OR <send-op> OR <setverdict-op>
OR <start-conponent-op> OR <start-port-op> OR
<start-timer-op> OR <stop-conmponent-op> OR
<st op- exec-stnmt > OR <stop-port-op> OR

<stop-tiner-op> OR <unmap-op> OR <whi |l e-stnt > Entity. DEL- VAR- SCOPE() ;
OR <st at enent - bl ock> Entity. DEL- TI MER- SCOPE() ;
Entity. VALUE- STACK. cl ear-unti | (MARK);
v Entity. NEXT- CONTROL(t rue);
RETURN,

exit-scope-unit )

v

Figure 78: Flow graph segment <statement-block>

9.23 For statement

The syntactical structure of the f or -st at emrent is:

for (<assignment>|<vari abl e-decl arati on>, <bool ean_expressi on>, <assignment>) <statenent-bl ock>

Theinitialization of the index variable and the corresponding manipulation of the index variable are considered to be
assignmentsto the index variable. It is also allowed to declare and initialize the index variable directly in thef or
statement. The <bool ean- expr essi on> describes the termination criterion of the loop specified by the

f or -st at enent andthe<st at enent - bl ock> describes the loop body.

ETSI



106 ETSI ES 201 873-4 V4.5.1 (2016-07)

The execution of thef or statement is defined by the flow graph segment <f or - st nt > shown in figure 79. The initia
<assi gnnent > or aternative variable declaration with assignment <var - decl arati on-i nit>

(see clause 9.57.1) describes the initialization of the index variable. The <assi gnment > inthet r ue branch of the
deci si on node describes the manipulation of the index variable. The f or statement is a scope unit for a newly
declared index variable, thisis modelled by means of the nodesent er - var - scope andexi t - var - scope.

segnment <for-stnt>
A 4 Entity. | N T- VAR- SCOPE() ;
Entity. VALUE- STACK. push( MARK) ;

enter-var-scope Ve
Entity. NEXT- CONTROL(true);

RETURN;
4 /1 The index variable is only
<assi gnment > /1 initialised (<assignnent>)
R /1 or declared and initialised
<var-decl arati on-init> /'l (<var-declaration-init>)

v

?

<expr essi on>

if (Entity.VALUE- STACK top()== true) {
Entity. NEXT- CONTROL(true);
}

el se {
Entity. NEXT- CONTROL(f al se);

decision N }
true Entity. VALUE- STACK. pop();
RETURN;

X fal se

<st at enent - bl ock>

A Entity. DEL- VAR- SCOPE() ;
Entity. VALUE- STACK. cl ear -unti | ( MARK);

<assi gnment >

h 4 Entity. NEXT- CONTROL(true);
RETURN;

exit-var-scope Ve

v

Figure 79: Flow graph segment <for-stmt>

9.24 Function call

9.24.0 General

The syntactical structure of afunction call is:

<function-name>([ <act - par-desc,> ..., <act-par-desc >])

The <function-name> denotes to the name of afunction and <act - par - descr >, ..., <act - par-descr >
describe the description of the actual parameter val ues of the function call.

ETSI



107 ETSI ES 201 873-4 V4.5.1 (2016-07)

NOTE 1: A function call and an atstep call are handled in the same manner. Therefore, the altstep call
(see clause 9.4) refersto this clause.

It is assumed that for each <act - par - desc > the corresponding formal parameter identifier <f - par -1 d;>is
known, i.e. the syntactical structure above can be extended to:

<functi on-name>((<f-par-1d,> <act-par-desc,>), .., (<f-par-1d >, <act-par-desc >))

The flow graph segment <function-call> in figure 80 defines the execution of afunction call. The executionis
structured into three steps. In the first step a call record for the function <f unct i on- nanme> iscreated. In the second
step the values of the actual parameter are calculated and assigned to the corresponding field in the call record. In the
third step, two situations have to be distinguished: the called function is a user-defined function

(<user - def - func- cal | >), i.e. there exists a flow graph representation for the function, or the called functionisa
pre-defined or external function (<pr edef - ext - f unc- cal | >). In case of a user-defined function call, the control is
given to the called function. In case of a pre-defined or external function, it is assumed that the call record can be used
to execute the function in one step. The correct handling of reference parameters and return val ue (has to be pushed

onto the value stack) isin the responsibility of the called function, i.e. is outside the scope of this operational semantics.

NOTE 2: If the function call models an atstep call, only the<user - def - f unc- cal | > branch will be chosen,
because there exists a flow graph representation of the called atstep.

NOTE 3: The<functi on cal | > segment isalso used to describe the start of the MTC inan execut e
statement. In this case, a call record for the test case is constructed and only the
<user - def - f unc- cal | > branch will be chosen.

segnent
<function call >

Entity. VALUE- STACK. push( NEW CALL- RECORD(f uncti on- nane));
Entity. NEXT- CONTROL(tr ue);

construct-call-record

(function-nane) RETURN,
* /'l For each pair (<f-par-ldi> <act-paraneter-desc;>) the
/1 val ue of <act-paraneter-desc; is calcul ated and
..| /] assigned to the corresponding field <f-par-Id;>
<val ue- par -cal cul ati on> /1 in the call record. The call record is assuned to be

// the top elenent in the val ue stack.

v

* | /'l Retrieves the locations for variables and tiners
--| /] used as reference paraneters and decl ared nanes of
<ref-var-par-cal c> OR /1 port parameters
<ref-tinmer-par-calc> OR

<ref-port-par-cal c>

A 4

<pr edef - ext-func-cal | >
R e
<user - def -func-cal | >

~

The called function nay either be an external or
predefined function, or a user-defined function.

~
~

Figure 80: Flow graph segment <function-call>

ETSI



108 ETSI ES 201 873-4 V4.5.1 (2016-07)

9.24.1 Flow graph segment <value-par-calculation>

The flow graph-segment <val ue- par - cal cul at i on> isused to calculate actual parameter values and to assign
them to the corresponding fieldsin call records for functions, altsteps and test cases.

It is assumed that a call record is the top element of the value stack and that a pair of:

(<f-par-1d;> <act-paraneter-desc,;>)

has to be handled. <act - par anet er - desc; > that hasto be evaluated and <f - par - | d; > isthe identifier of a
formal parameter that has a corresponding field in the call record in the value stack.

The execution of flow graph-segment <val ue- par - cal cul ati on>isshownin figure 81.

segnent
<val ue- par-cal cul ati on>

/] The expression represents <act-paraneter-desc;>
/1 The result of the evaluation of the expression
/1 is pushed onto the val ue stack.

<expressi on>

let { // scope unit for parVal
var parVal = Entity. VALUE- STACK. top();
/1 parVal is a local variable that
Il stores the value of the expression

par anmet er - assi gnnment
(f-par-1d)

Entity. VALUE- STACK. pop();
/1 Renoval of expression val ue.
I/l Afterwards the call record is
// again top of the value stack

Entity. VALUE- STACK. top().f-par-1d := parVal;
/'l Val ue assignnent to call record
} /1 end of scope for parVal

Entity. NEXT- CONTROL(true);
RETURN,

\4

Figure 81: Flow graph segment <value-par-calculation>

9.24.2 Flow graph segment <ref-par-var-calc>

The flow graph-segment <r ef - par - var - cal ¢> isused to retrieve the locations of variables used as actual
reference parameters and to assign them to the corresponding fieldsin call records for functions, altsteps and test cases.

It isassumed that a call record is the top element of the value stack and that a pair of:
(<f-par-1d;> <act-par;>)

hasto be handled. <act - par;> is the actual paraneter forwhichthelocation hasto beretrieved and
<f - par - 1 d; > istheidentifier of aformal parameter that has a corresponding field in the call record in the value
stack.

The execution of flow graph-segment <r ef - par - var - cal ¢> isshown in figure 82.

ETSI



109 ETSI ES 201 873-4 V4.5.1 (2016-07)

segment
<ref - par-var-cal c>

// Value assignnent to call record
Entity. VALUE- STACK. top().f-par-1d : =
Entity. GET- VAR- LOCATI ON(act - par) ;

par anet er - assi gnment
(f-par-1d, act-par)

Entity. NEXT- CONTROL(true);
RETURN,

Figure 82: Flow graph segment <ref-par-var-calc>

9.24.3 Flow graph segment <ref-par-timer-calc>

The flow graph-segment <r ef - par - t i ner - cal ¢> isused to retrieve the locations of timers used as actual
reference parameters and to assign them to the corresponding fieldsin call records for functions, altsteps and test cases.

It isassumed that a call record is the top element of the value stack and that a pair of:

(<f-par-1d;> <act-par;>)

hasto be handled. <act - par;> is the actual parameter forwhich thelocation hasto be retrieved and
<f - par - I d; > istheidentifier of aformal parameter that has a corresponding field in the call record in the value
stack.

The execution of flow graph-segment <r ef - par-ti mer - cal ¢> isshown in figure 83.

segment
<ref-par-tinmer-calc>

// Val ue assignnent to call record
\ 4 Entity. VALUE- STACK. top().f-par-Id : =
Entity. GET- TI MER- LOCATI ON( act - par) ;

par anmet er - assi gnment
(f-par-1d, act-par)

Entity. NEXT- CONTROL(tr ue);
RETURN,

v

Figure 83: Flow graph segment <ref-par-timer-calc>

9.24.3a Flow graph segment <ref-par-port-calc>

The flow graph-segment <r ef - par - por t - cal ¢> isused to retrieve the names of ports used as in the component
type definitions for the declaration of the port and to assign them to the corresponding fields in call records for
functions and altsteps.

ETSI



110 ETSI ES 201 873-4 V4.5.1 (2016-07)

It isassumed that a call record is the top element of the value stack and that a pair of:

(<f-par-1d;> <act-par;>)

hasto be handled. <act - par; > isthe actual parameter for which the location hasto be retrieved and
<f - par - 1 d; > istheidentifier of aformal parameter that has a corresponding field in the call record in the value
stack.

The execution of flow graph-segment <r ef - par - t i mer - cal ¢> isshownin figure 83a.

segment
<ref - par-port-cal c>

/1 Val ue assignnent to call record
v Entity. VALUE- STACK. top().f-par-1d : =
Entity. act - par. COVP- PORT- NAME;

par amet er - assi gnment
(f-par-1d, act-par)

Entity. NEXT- CONTROL(true);
RETURN;

v

Figure 83a: Flow graph segment <ref-par-port-calc>

9.24.4 Flow graph segment <user-def-func-call>

The flow graph-segment <user - def - f unc- cal | > (figure 84) describes the transfer of control to a called
user-defined function.

segnment <user-def-func-call>

/] Storage of return address

Entity. NEXT- CONTROL(true);

/1 Control is transferred to called function

Entity. CONTROL- STACK. push( GET- FLOW GRAPH( f unct i on- nane) ) ;

user - def - func-cal |
(function-nane)

RETURN,

Figure 84: Flow graph segment <user-def-func-call>
9.24.5 Flow graph segment <predef-ext-func-call>

The flow graph-segment <pr edef - ext - f unc- cal | > (figure 85) describes the call of a pre-defined or external
function.

ETSI



111 ETSI ES 201 873-4 V4.5.1 (2016-07)

segnment <predef-ext-func-call>

let { // scope for argunent variable
var argunent := Entity.VALUE- STACK. top();
Entity. VALUE- STACK. pop(); // renoval of call record
/1 Application of function-nane
»»»»» function-nane(argunent);
} /1 end of scope for argunent
Entity. NEXT- CONTROL(true);
RETURN;

<pr edef - ext -func-cal | >
(function-name)

Figure 85: Flow graph segment <predef-ext-func-call>

9.25  Getcall operation

The syntactical structure of the getcall operation is:

<portld>. getcall (<matchingSpec>) [from <conponent_expression>] -> [<assignnentPart>]

Apart fromthe get cal | keyword this syntactical structureisidentical to the syntactical structure of ther ecei ve
operation. Therefore, the operational semantics handlesthe get cal | operation in the same manner asther ecei ve
operation. Thisis aso shown in the flow graph segment <get cal | - op> (see figure 86), which defines the execution
of aget cal | operation. The figure refersto flow graph segments related to the r ecei ve operation (see clause 9.37).

I
segment <getcal | - op> l

<recei ve-wi t h- sender >

OoR /1 Distinction due to the optional
<recei ve-wi t hout-sender> [ /1 fromclause

v

Figure 86: Flow graph segment <getcall-op>

9.26  Getreply operation

The syntactical structure of theget r epl y operationis:

<portld>. getreply (<matchingSpec>) [from <conponent-expression>] [-> <assignmentPart>]

Apart fromtheget r epl y keyword this syntactical structureisidentical to the syntactical structure of ther ecei ve
operation. Therefore, the operational semantics handlesthe get r epl y operation in the same manner asther ecei ve
operation. Thisis aso shown in the flow graph segment <get r epl y- op> (see figure 87), which defines the
execution of aget r epl y operation. The figure refers to flow graph segments related to ther ecei ve operation

(see clause 9.37).

ETSI



112 ETSI ES 201 873-4 V4.5.1 (2016-07)

|
segnent <getreply-op> l
<recei ve-wi t h- sender >
OoR /1 Distinction due to the optional
<recei ve-wi thout-sender> [ /1 fromclause
v

Figure 87: Flow graph segment <getreply-op>

9.27  Getverdict operation

The syntactical structure of theget ver di ct operationis:

get verdi ct

The flow graph segment <get ver di ct - op> in figure 88 defines the execution of the get ver di ct operation.

segnent <getverdict-op>

/1 E-VERDICT is pushed onto VALUE- STACK
Entity. VALUE- STACK. push(Entity. E- VERDI CT);
................... Entity. NEXT- CONTROL(true);

RETURN,

getverdict-op

\4

Figure 88: Flow graph segment <getverdict-op>

9.28 Goto statement

The syntactical structure of the got o statement is:

goto <l abel | d>

The flow graph segment <got o- st it > in figure 89 defines the execution of the got o statement.

segnent <got o- st nt >

/1 ‘nop’ neans ‘no operation’
Entity. NEXT- CONTROL(true);
[310] < T W RETURN;
<l abel | d>

Figure 89: Flow graph segment <goto-stmt>

NOTE: The <labelld> parameter of the got o statement indicates the transfer of control to the place at which a
label <l abel | d> isdefined (see also clause 9.30).

ETSI



9.28a Halt port operation

113

The syntactical structure of thehal t port operation is:

<portld>. halt

The flow graph segment <hal t - por t - op> in figure 89a defines the execution of the hal t port operation.

segnment <hal t-port-op>
let { // Begin of |ocal scope
var portRef := NULL
\ var portState := NULL;
if (portld == “all port”) {
halt-port-op  Jen portState := ALL- PORT- STATES. first();
(portld) while (portState '= NULL) {
if (portState. OMER == Entity) {
portState. STATUS : = HALTED,;
portState. enqueue( HALT- MARKER) ;
}
port St ate : =
ALL- PORT- STATES. next (port State);
}
el se {
port Ref := Entity. portl d. COWP- PCRT- NAME;
GET- PORT(Entity, portRef). STATUS : = HALTED;
GET- PORT(Entity, portRef).enqueue(HALT- MARKER) ;
}
} /1 End of socpe
Entity. NEXT- CONTROL(t r ue) ;
RETURN,;
v

Figure 89a: Flow graph segment <halt-port-op>

NOTE:

The HALT- MARKER that isput by ahal t operation into the port queue is removed by the SNAP-PORTS
function (see clause 8.3.3.2) when the marker is reached, i.e. all messages preceding the marker have

been processed. The SNAP-PORTS function is called when taking a snapshot.

9.29 If-else statement

The syntactical structure of thei f -el se statement is.

i f (<bool ean-expression>) <statenent-bl ock,>

[el se <statement-bl ock,>]

The else part of thei f -el se statement isoptional.

The flow graph segment <i f - el se- st nt > infigure 90 defines the execution of thei f - el se statement.

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)




114 ETSI ES 201 873-4 V4.5.1 (2016-07)

segnment <if-wth-el se-branch>

A

<expr essi on>
if (Entity.VALUE- STACK top()) {
Entity. NEXT- CONTROL(true);

el se {

A Entity. NEXT- CONTROL(fal se);
. }
0 decision N . Enti ty. VALUE- STACK. pop() ;
RETURN;

true fal se
Y

<st at enent - bl ock>

* (1) ||
/1 Optional else part

<stat ement - bl ock>  H........

;

Figure 90: Flow graph segment <if-else-stmt>

9.29a Kill component operation

9.29a.0 General

The syntactical structure of theki | | component statement is:

<conponent - expressi on>. ki | |

Theki || component operation stops the specified component and removes it from the test system. All test
components will be stopped and removed from the test system, i.e. the test case terminates, if the MTC iskilled
(eg.mtc.kill)orkillsitself (e.g.sel f. kill). TheMTC may kill al parallel test components by using the al |
keyword, i.e.al | conponent kil l.

A component to be killed isidentified by a component reference provided as expression, e.g. aval ue or value returning
function. For simplicity, the keyword "al | conponent " isconsidered to be special values of
<conponent - expr essi on>. The operationsnt ¢ and sel f are evaluated according to clauses 9.33 and 9.43.

ETSI



115 ETSI ES 201 873-4 V4.5.1 (2016-07)

The flow graph segment <ki | | - conmponent - op> in figure 90a defines the execution of the ki | | component
operation.
segnent <Kill-conponent-op>

\ 4

/1 The Expression shall evaluate

<expressi on>

/1 to a conponent reference. The
----- // result is pushed onto VALUE- STACK

true

<kill-nmtc>

prepare-kill
fal se

true

deci sion

if (Entity.VALUE-STACK. top() == "all conponent') ({
Entity. VALUE- STACK pop(); // clean val ue stack
if (Entity '= MIQ {

v ***DYNAM C-ERROR*** // "all' not allowed
decision e el se {
Entity. NEXT- CONTROL(true);

true {
fal se }

el se {

Entity. NEXT- CONTROL(f al se);

<kill-all-conp> }

RETURN,

= MO {

if (Entity.VALUE- STACK.t op( MIC
(); /1 clean value stack
)i

VALUE- STACK. t op()
Entity. VALUE- STACK. pop()
............ Entity. NEXT- CONTROL(true
el se {

Entity. NEXT- CONTRCL(f al se);

}
RETURN;

<ki Il - conponent >

i f (ALL- ENTI TY- STATES. menber (Entity. VALUE- STACK. top())) {
Entity. NEXT- CONTROL(tr ue);

}
el se {
i f (KILLED. menber (Entity. VALUE- STACK. top())){
/1 NULL operation, conponent already terninated
Entity. VALUE- STACK. pop(); // clean val ue stack
Entity. NEXT- CONTRCL(f al se);
}
el se {
/1 conponent id has not been allocated
*** DYNAM C- ERROR* * *
{
}
RETURN,

Figure 90a: Flow graph segment <kill-component-op>

ETSI




116 ETSI ES 201 873-4 V4.5.1 (2016-07)

9.29a.1 Flow graph segment <kill-mtc>

The<ki | | - mt ¢> flow graph segment in figure 90b describes the killing of the MTC. The effect is that the test case
terminates, i.e. the fina verdict is calculated and pushed onto the value stack of module control, all resources are
released, the KILLED and DONE lists of the module state are emptied and all test componentsincluding the MTC are
removed from the test system.

segment <kill-nc>

kill-mtc  }

let { // local scope for variables

var myEntity := ALL- ENTI TY- STATES. first();

/1 Update test case verdict and del etion of conponents
while (nyEntity != NULL) {
if (nyEntitiy.E-VERDICT == fail or TC-VERDICT == fail) {
TC- VERDI CT : = fail;

}
el se {
if (nyEntity.E-VERDICT = inconc or TC-VERDICT = i nconc) {
TC- VERDI CT : = i ncong;
}
el se {
if (nyEntity. E-VERDICT == pass or TC-VERDI CT == pass) {
TG VERD CT := pass;
}

}
nyEntity := ALL- ENTI TY- STATES. next (nyEntity);
}

/1 TC-VERDICT is the result of the execute operation
CONTROL. VALUE STAXK. push( TC-VERD CT) ;

/'l Update of test case reference paraneters
UPDATE- REMOTE- LOCATI ONS( MTC, CONTRCL);

/1 Deletion of test conponents, rel ease of resources, clearing lists
ALL- ENTITY- STATES : = NWL; // Deletion of Entity states
ALL- PORT- STATES : = NULL;

DONE : = NULL;

KILLED := NULL;

TC-VERDICT := none;

MIC : = NJLL; /1 Deletion of the last reference to the MIC

CONTROL. STATUS : = ACTI \VE; // Control continues
} // End of local scope
RETURN,;

Figure 90b: Flow graph segment <kill-mtc-op>

ETSI



117 ETSI ES 201 873-4 V4.5.1 (2016-07)

9.29a.2 Flow graph segment <kill-component>

The<ki | | - conponent > flow graph segment in figure 90c describes the stopping of a parallel test component

(i.e. not the MTC or module control) and its removal from the test system. The effect isthat the test case verdict
TC-VERDICT and the lists of stopped and killed test components (DONE, and KILLED) are updated and that the
component is deleted from the module state. The <ki | | - conponent > flow graph assumes that the identifier of the
component to be stopped is on top of the value stack of the component that executes the segment.

segnent <ki |l -conmponent >

kil | -conponent

let { // local scope for variable nyEntity
var nyEntity := Entity. VALUE- STACK top();

/] for test continuation, if kill is executed by another component
if (Entity !'= nyEntity()) {
Entity. VALUE- STACK. pop(); /'l clean value stack
Entity. NEXT- CONTROL(T rue);
}

/1 Updat e test case verdi ct
if (nyEntitiy.E-VERD CT == fail or TGVERD CT == fail) {
TG VERDICT : = fail;

}
else {
if (nyEntity. EEVERD CT == inconc or TC-VERDICT == inconc) {
TG VERD CT = inconc; -
}
else {
if (nyEntity. EEVERD CT == pass or TG VERD CT == pass) {
TG VERD CT : = pass;
}
}
/1 Del etion of test conponent
DONE. append((nyEntity, E-VERD CI)); /1 Updat e of DONE
KICLED. append((nyEnti ty, EEVERDCT)); // Wdate of KILLED
DEL-ENTI TY( nyEntity); // Deletion of entity
} // End of | ocal scope
RETURN;

Figure 90c: Flow graph segment <kill-component>

ETSI



118

9.29a.3 Flow graph segment <kill-all-comp>

ETSI ES 201 873-4 V4.5.1 (2016-07)

The<ki | | -al | - conp> flow graph segment in figure 90d describes the termination of all parallel test components of

atest case.

segnent <kill -al I - conp>

kill-all-conp

let { // local scope for variable nyEntity
var nyEntity := ALL-ENTITY- STATES. next (MIQ) ;

/1 Updat e test case verdi ct
while (myEntity !'= NULL) {

TG VERDICT = fail;

else {
if (nyEntity. E-VERD CT == inconc or TC-
TG VERD CT : = I nconc;
else {

TG VERD CT : = pass;
}

}

/] Deletion of test conponents

nyEntity := ALL- ENTI TY- STATES. next ( MIC) ;

while (myEntity T= NULL) { -
DONE. append((nyEntity, TC-VERDICT)); /11
KILLED. append(nyEntity. TG VERD CT)); /1
DEL- ENTI TY(nyEntity); /1
myEntity := ALL- ENTI TY- STATES. next (MIC); //

} // End of | ocal scope

Entity. NEXT- CONTROL(t rue) ;
RETURN;

if (nyEntitiy.E-VERD CT == fail or TG VERD
VERDI CT == inconc) {
if (nyEntity. EEVERD CT == pass or TG VERD CT == pass) {

}
nmyEnti ty := ALL- ENTI TY- STATES. next (nyEntity);

CT==fail) {

Update of DONE

Wodate of Kl LLED
Deletion of entity

Next conponent to del ete

Figure 90d: Flow graph segment <stop-all-comp>

9.29bh Kill execution statement

9.29b.0 General

The syntactical structure of theki | | execution statement is:

kill

The effect of theki | | execution statement depends on the entity that executesthe ki | | execution statement:

a) Ifkill isperformed by the module control, the test campaign ends, i.e. all test components and the module

control disappear from the module state.

b) Iftheki || isexecuted by the MTC, al parallel test components and the

MTC stop execution. The global test

case verdict is updated and pushed onto the value stack of the module control. Finally, control is given back to

the module control and the MTC terminates.

ETSI



119

ETSI ES 201 873-4 V4.5.1 (2016-07)

c) Ifthekil | isexecuted by atest component, the global test case verdict TC-VERDICT and the global DONE
and KILLED lists are updated. Then the component disappears from the module.

The flow graph segment <kill-exec-stmt> in figure 90e describes the execution of the kill statement.

segnent <kill-exec-stnt>

true

<kill-control>

true

<kill-nmc>

A

decision V...

deci si on

}
el se {

fal se

}
RETURN

if (Entity == CONTROL {
Entity.NEXT-CONTROL(true);

Entity. NEXT-CONTROL(fal se);

el se {

}
——————————— RETURN

if (Entity == MIC) {
Entity.NEXT-CONTROL(true);

Entity.VALUE STAK. push(Entity);
Entity.NEXT-CONTROL(fal se);

<ki Il - conponent >

Figure 90e: Flow graph segment <kill-exec-stmt>

9.29b.1 Flow graph segment <kill-control>

The<ki I'| - cont r ol > flow graph segment in figure 90f describes the stopping of module control. The effect is that
CONTROL isset to NULL, i.e. the termination condition of the module evaluation procedure (see clause 8.6) is fulfilled.

segnent <kill-control >

\

kill-contro  }.....

CONTROL : = NULL;
RETURN,;

v

ETSI

Figure 90f: Flow graph segment <kill-control>



120 ETSI ES 201 873-4 V4.5.1 (2016-07)

9.29c¢ Killed component operation

The syntactical structure of theki | | ed component operation is:

<conponent - expressi on>. kil |l ed [-> <assi gnrment Part >]

Theki | | ed component operation checks whether a component is alive or has been removed from the test system.
Depending on whether a checked component is alive or has been removed from the test system, the ki | | ed operation
decides how the flow of control continues. Using a component reference identifies the component to be checked. The
reference may be stored in avariable or be returned by a function, i.e. it is an expression. For smplicity, the keywords
"al | conponent" and"any conponent " are considered to be special expressions.

The optional <assi gnnent Part > alowstheretrieval of thelocal verdict of the addressed component at the time
when the component was killed. The assignment part identifies a variable of type verdicttype to which the retrieved
verdict is assigned.

The flow graph segment <ki | | ed- op> in figure 90g defines the execution of the ki | | ed component operation.

ETSI



121 ETSI ES 201 873-4 V4.5.1 (2016-07)

segnent <ki || ed- op>

'

/| The Expression shall eval uate
/1l to a conponent reference. The

/1 result is pushed ont o VALUE- STACK

<expression>

kil |l ed-conponent -op

fal

se

true

<done- assi gnnent >

cl ean- val ue-stack

let { // local scope
var killedEntity :=Entity. VALUE- STAXK.top();
var kill edVerdict := none; _

if (killedEntity =="all conponent') {
if (Entity I'= MIQ {
*** DYNAM G ERROR*** // "all conponent' is not allowed

}else if (Entity. SNAP-ALIVE lenght() == 1) { // MICis alive
Entity. NEXT- CONTROL(t r ue)
Entity.STATUS := ACTI VE; // K LLED is successful
Entity. VALUE- STACK. push(error);

}
else {
Entity. NEXT- CONTROL(f al se);
) }
elseif (killedEntity == "any component') {

if (Entity !'= MO {
*** DYNAM G ERROR*** // 'any conponent' not al | owed

izlse if (Entity. SNAP-KI LLED length() > 0) {
Entity. NEXT-CONTROL(t rue);
Entity. STATUS := ACTI VE; // K LLED is successful
Entity. VALUE- STACK. push(error);

}
else {

Entity. NEXT- CONTROL(f al se);
}

}

else i f(Entity. SNAP-KILLED menber ((kil | edEntity,-))) {
Entity. NEXT- CONTROL(t rue);
Entity.STATUS := ACTI VE; // K LLED is successful

kil ledVerdict :=
Entity. SNAP-kill ed.random((kil |l edEntity, -)).FIN VERD CT;
Entity. VALUE- STACK. pus ill edVerdict);

else {
Entity. NEXT- CONTROL(f al se);

} 1/ end of |ocal scope
RETURN;

/1 optional verdict

/'l assignnent

Entity. VALUE- STAKK. pop(); // renoval of killedVerdict
Entity. VALUE- STAXK. pop(); // rermoval of expression
Entity. NEXT- CONTROL(T rue) ;

RETURN;

Figure 90g: Flow graph segment <killed-op>

ETSI




122 ETSI ES 201 873-4 V4.5.1 (2016-07)

9.30 Label statement

The syntactical structure of thel abel statementis:

| abel <l abel | d>
The flow graph segment <I abel - st nt > in figure 91 defines the execution of thel abel statement.

NOTE: The<l abel | d> parameter of the label statement indicates the possibility that alabel can be the target
for ajump by means of agot o statement (see aso clause 9.28).

segment <l abel -stnt>

<l abel | d> »‘

/1 *nop’ nmeans ‘no operation’
Entity. NEXT- CONTROL(true);
nop Y. RETURN;

\4

Figure 91: Flow graph segment <label-stmt>

9.31 Log statement

The syntactical structure of thel og statement is:
I og (<informal-description>)
The flow graph segment <l og- st nt > in figure 92 defines the execution of thel og statement.

NOTE: The<informal descri ption> parameter of thel og statement has no meaning for the operational
semantics and is therefore not represented in the flow graph segment.

segment <l og-stnt>

/1 inscription ‘nop’ neans ‘no operation’
Entity. NEXT- CONTROL(true);
NOP Ve, RETURN;

v

Figure 92: Flow graph segment <log-stmt>

ETSI



123 ETSI ES 201 873-4 V4.5.1 (2016-07)

9.32  Map operation

The syntactical structure of the map operationiis:

map( <conponent - expressi on>: <port|dl>, system <portl|d2>)

Theidentifiers<port | d1> and <port | d2> are considered to be port identifiers of the corresponding test component
and test system interface. The component to which the <portld1> belongsis referenced by means of the component
reference <conponent - expr essi on>. The reference may be stored in variables or is returned by afunction, i.e. it
is an expression, which evaluates to a component reference. The value stack is used for storing the component

reference.

NOTE: Thenap operation does not care whether the sy st em<portld> statement appears asfirst or as second
parameter. For simplicity, it is assumed that it is aways the second parameter.

The execution of the map operation is defined by the flow graph segment <nap- op> shown in figure 93.

segnent <map- op>

let { /1 begin of a local scope
A 4 var port Ref;
var conpl := Entity. VALUE- STACK. top();
Entity. VALUE- STACK. pop();
if (conpl == Entity) {
portRef := Entity.portldl. COW- PORT- NAME;

<expr essi on>

v el se {

map- op port Ref := portldl;
(portldl, portld2) b

}
ADD- CO\( conpl, portRef, system portld2);
} /1 end of l|ocal scope

Entity. NEXT- CONTROL(true);
RETURN;

Figure 93: Flow graph segment <map-op>

9.33  Mtc operation

The syntactical structure of thent ¢ operationiis:

nc

The flow graph segment <nt c¢- op> in figure 94 defines the execution of the it ¢ operation.

segnent <ntc-op>

Entity. VALUE- STACK. push(MIC);
MC-0p Vo, Entity. NEXT- CONTROL(true);
RETURN,

Figure 94: Flow graph segment <mtc-op>

ETSI



124 ETSI ES 201 873-4 V4.5.1 (2016-07)

9.34 Port declaration

The syntactical structure of a port declaration is:

<port Type> <port Nanme>

Port declarations can be found in component type definitions. The effect of a port declaration is the creation of a new
port when a new component of the corresponding typeis created. Furthermore, a port reference is created in the actual
scope of the test component. In the newly created port reference, the values PORT-NAME and COMP-PORT-NAME are
equal. The flow graph segment <port - decl ar at i on> in figure 95 defines the execution of a port declaration.

segnent <port-decl aration>

/1 A new port state and a port reference
/|l are created

port-declaration
(portNane) ALL- PORT- STATES. append( NEW PORT(Entity, portNane);

Entity. | N T- PORT(port Nane, port Nane);

Entity. NEXT- CONTROL(true);
RETURN;

v

Figure 95: Flow graph segment <port-declaration>

9.35 Raise operation

9.35.0 General

The syntactical structure of ther ai se operationis:

<portld>.rai se (<exceptSpec>) [to < receiver-spec>]

The optional <r ecei ver - spec> inthet o clause refersto the receivers of the exception. In case of aone-to one
communication, the <r ecei ver - spec> addresses asingle entity (including the SUT or an entity within the SUT). In
case of multicast or broadcast communication, the <r ecei ver - spec> specifiesaset or al test components
connected via the specified port with the calling component.

The flow graph segment <r ai se- op> in figure 96 defines the execution of ar ai se operation.

segnment <rai se-op>

A 4

<rai se-w th-one-recei ver-op> OR /1 A raise operation nay adress one,
<raise-w th-nul tiple-receivers-op> CR /1 multiple (nulticast and broadcast)
<rai se-w t hout -recei ver - op> /1 or no receiver entities.

v

Figure 96: Flow graph segment <raise-op>

ETSI



125

ETSI ES 201 873-4 V4.5.1 (2016-07)

9.35.1 Flow graph segment <raise-with-one-receiver-op>

The flow graph segment <r ai se-wi t h- one-r ecei ver - op> infigure 97 defines the execution of ar ai se

operation where the receiver is specified in form of an expression.

segnment <rai se-w th-one-receiver-op>

/1 to a conponent reference or
/1 address val ue.

<expressi on>

/'l The expression shall evaluate

rai se-wth-one-receiver-op
(portld, exceptSpec)

let {

if (remptePort == NULL) {

}
if (renmptePort == SYSTEM {

else { // sending of exception

} // end of scope of receiver and renotePort

Entity. NEXT- CONTROL(true);
RETURN;

var receiver := Entity.VALUE- STACK. top();
var portRef := Entity. portld. COVP- PORT- NANE;
var renotePort := CGET- REMOTE- PORT(Entity, portref, receiver);

***DYNAM C- ERROR***; // Renote port cannot be found

/1 Port is mapped onto a port of the test system
Il reception of the reply by the SUT is outside
/1 the scope of the operational senmantics

renot ePort. enqueue( CONSTRUCT- | TEM Entity, raise, exceptSpec));

Entity. VALUE- STACK. pop(); /'l clean val ue stack

Figure 97: Flow graph segment <raise-with-one-receiver-op>

9.35.1a Flow graph segment <raise-with-multiple-receivers-op>

The flow graph segment <r ai se-wi t h-mul ti pl e-r ecei ver s- op> infigure 97a defines the execution of a
r ai se operation where multiple receivers are addressed. In case of broadcast communication the keyword al |
conponent isused as receiver specification. In case of multicast communication alist of expressionsis provided

which shall evaluate to component references or address values.

The component references or address values of the addressed entities (or the keywordal | conponent ) are pushed
onto the value stack of the calling entity. The number of references stored in the value stack is considered to be known,
i.e. it isthe parameter nurber of the basic flow graph noder ai se-wi t h-mul ti pl e-recei vers-opin

figure 97a. The nunber parameter is 1 in case of broadcast communication, i.e. the keywordal | conponent istop

element in the value stack.

ETSI



126 ETSI ES 201 873-4 V4.5.1 (2016-07)

segnent <raise-w th-nultiple-receivers-op>

/1 Each expression shall
/1 to a conponent
// an address val ue.

eval uat e
reference or

rai se-with-multiple-receivers-op
(portld, exceptSpec, nunber)

let { /1
var i; [/
var connection;
var receiver;
var | ocal Port,
| ocal Port

connection

renotePort :=
if (renotePort
I/l Port is

Il

Entity. NEXT- CONTROL(true);
RETURN,;

| oop counter variable
/1 variable for connections in port states
/'l variable for
renot ePort;
Entity. port! d. COVWP- PORT- NAVE;

if (Entity.VALUE- STACK. top()
;= | ocal Port. CONNECTI ONS- LI ST. next (connection);

while (connection !'= NULL) {
connect i on. REMOTE- PORT- NAME;

reception of the reply by the SUT is outside
/1 the scope of the operational

/1 sending of call

:= |l ocal Port. CONNECTI ONS- LI ST. next (connecti on);

<= nunber; i

Entity. VALUE- STACK. top();
Entity. VALUE- STACK. pop();
= GET- REMOTE- PORT(Entity,

*** DYNAM C- ERROR* * *;

reception of the reply by the SUT is outside
/'l the scope of the operational

/1 sendi ng of call

el se {
renot ePort.
}
connection
}
el se {
for (i ==1; i
receiver :=
r enot ePor t
if (renotePort
if (renotePort
/Il Port is
11
el se {
renot ePort.
}
}
}
} /1 end of local scope

recei ver conponent references
/1l variables for port references
/'l 1ocal port

all component) {

== SYSTEM {
mapped onto a port of the test system

semantics

enqueue( CONSTRUCT- | TEM Entity, raise, exceptSpec));

Tz i+1) |

/'l clean val ue stack
| ocal Port, receiver);

NULL) {
/! Rermote port cannot be found

SYSTEM {
mapped onto a port of the test system

semantics

enqueue( CONSTRUCT- | TEM Entity, raise, exceptSpec));

Figure 97a: Flow graph segment <raise-with-multiple-receivers-op>

ETSI



127 ETSI ES 201 873-4 V4.5.1 (2016-07)

9.35.2 Flow graph segment <raise-without-receiver-op>

The flow graph segment <r ai se-wi t hout - r ecei ver - op> in figure 98 defines the execution of araise operation
without t o-clause.

segment <raise-w thout-receiver-op>

rai se-w thout-receiver-op
(portld, exceptSpec)

let {
var portRef := Entity. portld. COVP- PORT- NANE;
var renotePort := GET- REMOTE- PORT(Entity, portRef, NONE);

if (remptePort == NULL) {
*** DYNAM C- ERROR***; // Renote port cannot be found

}

if (remptePort == SYSTEM {
[/l Port is nmapped onto a port of the test system
/1 reception of the reply by the SUT is outside
/1 the scope of the operational semantics

else { // sending of exception
renot ePort. enqueue( CONSTRUCT- | TEM Entity, raise, exceptSpec));

} // end of scope of renotePort

Entity. NEXT- CONTROL(true);
RETURN;

Figure 98: Flow graph segment <raise-without-receiver-op>

9.36 Read timer operation

The syntactical structure of ther ead timer operation is:

<timerld>. read
The flow graph segment <r ead- t i mer - op> in figure 99 defines the execution of the r ead timer operation.

Ther ead timer operation distinguishes between its usage in a Boolean guard of anal t statement or blocking cal |
operation and al other cases. If used in a Boolean guard, the result of the r ead timer operation is based on the actual
snapshot, i.e. the INAP-STATUS and SNAP-VALUE entries of the timer binding, in all other cases, the STATUS
ACT-DURATION and TIME-LEFT entries of the timer binding determine the result of the operation.

ETSI



128 ETSI ES 201 873-4 V4.5.1 (2016-07)

segnent <read-ti mer-op>

read-ti ner-op
(tinmerld)

let { // local scope for variable nyVal ue
var float nyVal ue;
if (Entity.STATUS == SNAPSHOT) {

if (Entity.timerld. SNAP-STATUS == RUNNI NG {
nyValue := Entity.tinerld. SNAP- VALUE;

el se {
myVal ue := 0.0;
}

el se {
if (Entity.timerld. STATUS == RUNNING) {
nyValue := Entity.tinmerld. ACT-DURATION — Entity.timerld. Tl ME-LEFT;

el se {
nyVal ue : = 0.0;
}

}
Entity. VALUE- STACK. push(myVal ue);

} // end |ocal scope

Entity. NEXT- CONTROL(true);
RETURN;

Figure 99: Flow graph segment <read-timer-op>

Receive operation

9.37.0 General

The syntactical structure of ther ecei ve operationis:

<portld>.receive (<matchingSpec>) [from <conponent-expression>] [-> <assignmentPart>]

The optional <conponent - expr essi on> inthef r omclause refersto the sender entity. It may be provided in
form of a variable value or the return value of afunction, i.e. it is assumed to be an expression. The optional

<assi gnnent Part > denotes the assignment of received information if the received message matches to the
matching specification <mat chi ngSpec> and to the (optional) f r omclause.

The flow graph segment <r ecei ve- op> in figure 100 defines the execution of ar ecei ve operation.

ETSI



129

ETSI ES 201 873-4 V4.5.1 (2016-07)

segment <recei ve- op> l

<recei ve- wi t h- sender >
R
<recei ve-w t hout - sender >

/1 Distinction due to the optional
/1 from cl ause

\4

Figure 100: Flow graph segment <receive-op>

9.37.1 Flow graph segment <receive-with-sender>

The flow graph segment <r ecei ve- wi t h- sender > in figure 101 defines the execution of ar ecei ve operation

where the sender is specified in form of an expression.

ETSI



130 ETSI ES 201 873-4 V4.5.1 (2016-07)

segnent
<recei ve-w t h- sender >

A 4 //

The Expression shall evaluate
<expressi on> /1 to a conponent reference or

p /] address value. The result is
/'l pushed onto the VALUE- STACK.

let { // local scope for portRef and sender

var portRef := NULL;

var sender := Entity.VALUE- STACK top(); /'l Sender

Entity. VALUE- STACK. pop(); /1 Cean val ue stack
if (portlD == “any port”)

&& OMNNER == Entity);

if (portRef == NULL) { // no 'matching' port found
Entity. NEXT- CONTROL(f al se);
RETURN,
}
el se {
portRef := GET-PORT(Entity, Entity.portld. COMP- PORT-NAME); // Specified port
}
/1 MATCHI NG
if (PortRef.first() == NULL) { // Port queue is enpty, no natch
Entity. NEXT- CONTROL(f al se);
RETURN;
}
el se {

if ( MATCH I TEM port Ref . SNAP- VALUE, mat chi ngSpec, sender)) ({
/1 The nessage in the queue natches
Entity. VALUE- STACK. push(port Ref); /1 Saving port reference

/1 from SNAPSHOT to ACTI VE
Entity. NEXT- CONTROL(true);

el se { // The top itemin the queue does not match
Entity. NEXT- CONTROL(f al se);

}
RETURN,

port Ref := ALL- PORT- STATES. r andon{ MATCH- | TEM SNAP- VALUE, nat chi ngSpec, sender)

Entity. STATUS : = ACTI VE; /'l successful match, Entity status is changed

}
\ } /'l End of scope of portRef and sender

recei ve-wit h-sender

(portld, matchingSpec)
true
/'l optional value

|
*(1) /] assignent
<recel ve- assi gnnment >

/1 Rermoval of received itemfrom port

v Entity. VALUE- STACK. t op() . dequeue();
remove-from port Entity. VALUE- STACK. pop() ;
........... Entity. NEXT- CONTROL(true);
RETURN;

fal se true
v v

Figure 101: Flow graph segment <receive-with-sender>

ETSI




131 ETSI ES 201 873-4 V4.

9.37.2 Flow graph segment <receive-without-sender>

5.1 (2016-07)

The flow graph segment <r ecei ve- wi t hout - sender > infigure 102 defines the execution of ar ecei ve

operation without af r omclause.

segnent <receive-w thout-sender>

let { // local scope
var portRef := NULL;
if (portID == “any port”) {
port Ref := ALL- PORT- STATES. r andon( MATCH | TEM SNAP- VALUE, nat chi ngSpec,
&% OMNNER == Entity);

if ( MATCH | TEM port Ref . SNAP- VALUE, mat chi ngSpec, NONE)) ({
/1l The nessage in the queue matches
Entity. VALUE- STACK. push( port Ref); /'l Saving port reference

/1 from SNAPSHOT to ACTI VE
Entity. NEXT- CONTROL(tr ue);

el se { /1l The first itemin the queue does not natch
Entity. NEXT- CONTROL(f al se);

}
RETURN,

NONE)

if (portRef == NULL) { // no 'nmtching' port found
Entity. NEXT- CONTROL( f al se);
RETURN,
}
el se {
portRef := GET-PORT(Entity, Entity.portld. COVWP-PORT-NAME); // Specified port
}
/1 MATCHI NG
if (PortRef.first() == NULL) { // Port queue is enpty, no match
Entity. NEXT- CONTROL( f al se);
RETURN,;
}
el se {

Entity. STATUS : = ACTI VE; /'l successful match, Entity status is changed

}
\ } /1l End of scope

recei ve-wi t hout - sender

(port!| D, matchingSpec)
true

' /1 optional value
*(1) /| assignent

<recel ve- assi gnment >

v /'l Reropval of received itemfrom port

Entity. VALUE- STACK. t op() . dequeue();
renmove-fromport Entity. VALUE- STACK. pop();
........... Entity. NEXT- CONTROL(true);
RETURN;

fal se true
v v

Figure 102: Flow graph segment <receive-without-sender>

ETSI




132 ETSI ES 201 873-4 V4.5.1 (2016-07)

9.37.3 Flow graph segment <receive-assignment>

The flow graph segment <r ecei ve- assi gnnent > in figure 103 defines the retrieval of information from received
messages and their assignment to variables.

segment <receive-assi gnnent >

RETRI EVE- | NFQ(Enti ty. VALUE- STACK. top().first(), assignnentPart, Entity);

Entity. NEXT- CONTROL(true);
RETURN;

recei ve- assi gnnment
(assi gnment Part)

Figure 103: Flow graph segment <receive-assighment>

9.38 Repeat statement

The syntactical structure of ther epeat statement is:
repeat

Basically, ther epeat statementisar et ur n statement without return value, which also changes the entity status to
REPEAT. The status REPEAT will force the re-evaluation of theal t statement in which the repeat statement has been
executed. The flow graph segment <r epeat - st nt > shown in figure 104 defines the execution of the r epeat
statement.

segnent <repeat-stnt>

Entity. STATUS( REPEAT) ;
repeat-stnmt = Ve RETURN;

<return-w thout-val ue>

v

Figure 104: Flow graph segment <repeat-stmt>

ETSI



133 ETSI ES 201 873-4 V4.5.1 (2016-07)

9.39 Reply operation

9.39.0 General

The syntactical structure of ther epl y operationis:

<portld>reply (<replySpec>) [to <receiver-spec>]

Theoptional <r ecei ver - spec> inthet o clause refersto the receivers of the reply. In case of a one-to one
communication, the <r ecei ver - spec> addresses asingle entity (including the SUT or an entity within the SUT). In
case of multicast or broadcast communication, the <r ecei ver - spec> specifiesaset or all test components or
entitiesin the SUT connected viathe specified port with the calling component.

The flow graph segment <r epl y- op> in figure 105 defines the execution of ar epl y operation.

segnent <reply-op>

\ 4

<repl y-w t h-one-recei ver-op> OR /1 Areply operation may adress one,
<reply-wth-nultiple-receivers-op> OR /1 multiple (nmulticast and broadcast)
<repl y-w t hout - r ecei ver - op> /1 or no receiver entities.

v

Figure 105: Flow graph segment <reply-op>

ETSI



134 ETSI ES 201 873-4 V4.5.1 (2016-07)

9.39.1 Flow graph segment <reply-with-one-receiver-op>

The flow graph segment <r epl y-wi t h- one-r ecei ver - op> infigure 106 defines the execution of ar epl y
operation where the receiver is specified in form of an expression.

segnment <repl y-w t h-one-recei ver-op>

/1 The expression shall eval uate
/1 to a conponent reference or an

<expression> - /1 address val ue.

repl y- wi t h-one-recei ver - op
(portld, replySpec) A=

let {
var receiver := Entity.VALUE- STACK. top();
var portRef := Entity.portld. COWP- PORT- NAME;
var renotePort := GET- REMOTE- PORT(Entity, portRef, receiver);

if (remotePort == NULL) {
***DYNAM C- ERROR***; // Renote port cannot be found

}

if (remotePort == SYSTEM ({
/1 Port is mapped onto a port of the test system
Il reception of the reply by the SUT is outside
/1 the scope of the operational semantics

else { // sending of reply
renmot ePort . enqueue( CONSTRUCT- | TEM Entity, reply, replySpec));

} // end of scope of receiver and renotePort
Entity. VALUE- STACK. pop(); /'l clean value stack

Entity. NEXT- CONTROL(true);
RETURN,

\ 4

Figure 106: Flow graph segment <reply-with-one-receiver-op>

9.39.1a Flow graph segment <reply-with-multiple-receivers-op>

The flow graph segment <r epl y-wi t h-mul ti pl e-r ecei ver s- op> in figure 106a defines the execution of a
r epl y operation where multiple receivers are addressed. In case of broadcast communication the keyword al |
component isused asreceiver specification. In case of multicast communication alist of expressionsis provided
which shall evaluate to component references or address values.

The component references or address values of the addressed entities (or the keywordal | conponent ) are pushed
onto the value stack of the calling entity. The number of component references or address values stored in the value
stack is considered to be known, i.e. it is the parameter nunber of the basic flow graph node
reply-with-multiple-receivers-op infigure106a The nunber parameter is1in case of broadcast
communication, i.e. the keyword al | conponent istop element in the value stack.

ETSI



135 ETSI ES 201 873-4 V4.5.1 (2016-07)

segment <reply-w th-nultiple-receivers-op>

/] Each expression shall
/1 to a conponent reference or an
// address val ue.

eval uat e

reply-w th-nultiple-receivers-op
(portld, replySpec, nunber)

let { 11
var i; [/
var connection;

var receiver;
var | ocal Port,
| ocal Port :=

connecti on
r enot ePor t

/1 Port

el se {

RETURN,

| oop counter variable
/1 variable for connections in port states
/1 variable for receiver conponent
/] address val ues

renot ePort ;

Entity. portld. COW- PORT- NAME; //

if (Entity.VALUE- STACK top()
:= | ocal Port. CONNECTI ONS- LI ST. next (connecti on);
while (connection !'= NULL) {

;= connecti on. REMOTE- PORT- NAME;

if (renotePort

Il reception of the reply by the SUT is outside
/1 the scope of the operational

/1 sending of call
renot ePort. enqueue( CONSTRUCT- | TEM Enti ty,

connection := | ocal Port. CONNECTI ONS- LI ST. next (connecti on);
}
}
el se {
for (i == 1; i <= nunber; i :=i+l)
receiver := Entity.VALUE- STACK top();
Entity. VALUE- STACK. pop(); /1 cl ean val ue stack
renotePort := GET- REMOTE-PORT(Entity, local Port, receiver);
if (renmotePort == NULL) {
*** DYNAM G- ERROR***: [/ Renote port cannot be found
if (renotePort == SYSTEM {
/1 Port is mapped onto a port of the test system
Il reception of the reply by the SUT is outside
/'l the scope of the operational semantics
else { // sending of call
renot ePort. enqueue( CONSTRUCT- | TEM Entity, reply, replySpec));
}
}
}
} /1 end of |ocal scope

Entity. NEXT- CONTROL(true);

ref erences or

/1 variables for port references
| ocal port

al |

conponent) {

== SYSTEM {
is mapped onto a port of the test system

semantics

reply, replySpec));

v

Figure 106a: Flow graph segment <reply-with-multiple-receivers-op>

ETSI



136 ETSI ES 201 873-4 V4.5.1 (2016-07)

9.39.2 Flow graph segment <reply-without-receiver-op>

The flow graph segment <r epl y-wi t hout - r ecei ver - op> in figure 107 defines the execution of areply
operation without t o-clause.

segment <reply-
-receiver-op>

reply-w thout-receiver-op
(portld, replySpec)

let {
var portRef := Entity. portld. COVP- PORT- NANE;
var renotePort := GET- REMOTE- PORT(Entity, portRef, NONE);

if (remptePort == NULL) {
*** DYNAM C- ERROR***; // Renote port cannot be found

}

if (remptePort == SYSTEM {
/1 Port is mapped onto a port of the test system
/1 reception of the reply by the SUT is outside
/1 the scope of the operational semantics

else { // sending of reply
renot ePort. enqueue( CONSTRUCT- | TEM Entity, reply, replySpec));

} // end of scope of renotePort

Entity. NEXT- CONTROL(true);
RETURN;

Figure 107: Flow graph segment <reply-without-receiver-op>

9.40 Return statement

9.40.0 General

The syntactical structure of the return statement is:

return [ <expression>]

The optional <expr essi on> describes a possible return value of afunction. The execution of areturn statement
means that the control leaves the actual scope unit, i.e. variables and timers only known in this scope have to be del eted
and the value stack hasto be updated. A r et ur n statement has the effect of ast op component operation, if it isthe
last statement in a behaviour description.

NOTE: Test cases and module control will always end with ast op component operation. Thisis due to their

flow graph representation (see clause 8.2). Only other test components may terminate with ar et ur n
statement.

ETSI



137 ETSI ES 201 873-4 V4.5.1 (2016-07)

The flow graph segment <r et ur n- st m > in figure 108 defines the execution of ar et ur n statement.

segnment <retun-stnt> l
<return-wth-val ue>
R /1 A return statement may or may
<return-w thout -val ue> /1l not return a val ue
v

Figure 108: Flow graph segment <return-stmt>

ETSI



9.40.1

138 ETSI ES 201 873-4 V4.5.1 (2016-07)

Flow graph segment <return-with-value>

The flow graph segment <r et ur n- wi t h- val ue> in figure 109 defines the execution of ar et ur n that returnsa

value specified in form of an expression.

segnent <return-w th-val ue>

<expressi on>

/'l The expression shall
/1l to the return val ue

eval uat es

return-wth-val ue

true

let {
var return-value := Entity. VALUE- STACK. top();
Entity. DEL- VAR- SCOPE() ;
Entity. DEL- TI MER- SCOPE() ;
Entity. DEL- PORT- SCOPE() ;
Entity. VALUE- STACK. cl ear-until ( MARK) ;
Entity. VALUE- STACK. push(return-val ue);

} /1 end of scope of return-val ue

Entity. CONTROL- STACK. pop() ;
I

/] return address

is lying on the control stack

if (Entity. CONTROL- STACK.top() == NULL) {
Il return is stop or

Entity. VALUE- STACK. push(Entity);

Entity. NEXT- CONTROL(f al se);

kil'l

}
RETURN,

if (Entity.VALUE- STACK. t op(). KEEP- ALI VE

true)) {
Entity. NEXT- CONTROL(true);

el se {
decision Ve Entity. NEXT- CONTROL(fal se);
i?ETURN;
trje\ fal se
\ 4
<stop-al i ve- conponent > <ki |l - conponent >

A

s

Figure 109: Flow graph segment <return-with-value>

ETSI



139 ETSI ES 201 873-4 V4.5.1 (2016-07)

9.40.2 Flow graph segment <return-without-value>

The flow graph segment <r et ur n- wi t hout - val ue> infigure 110 defines the execution of ar et ur n statement

that returns no value.

segnent <return-w thout-val ue>

<expressi on>

/'l The expression shall eval uates
/1 to the return val ue

true

return-wthout-val ue

let {
var return-value := Entity. VALUE- STACK. top();

Entity. DEL- VAR- SCOPE();

Entity. DEL- TI MER- SCOPE() ;

Entity. DEL- PORT- SCOPE() ;

Entity. VALUE- STACK. cl ear-until ( MARK) ;
} /1 end of scope of return-val ue

Entity. CONTROL- STACK. pop(); /1 return address
/1 is lying on the control stack

if (Entity. CONTROL- STACK top() == NULL) {
/1 return is stop or kill
Entity. VALUE- STACK. push(Entity);
Entity. NEXT- CONTROL(f al se);

}
RETURN,

deci si on

if (Entity.VALUE- STACK top().KEEP-ALIVE == true)) {
Entity. NEXT- CONTROL(true);

el se {
Entity. NEXT- CONTROL(f al se);
}

RETURN,

true

fal se

A 4

<stop-al i ve- conponent > <ki |l - conponent >

Figure 110: Flow graph segment <return-without-value>

ETSI




140 ETSI ES 201 873-4 V4.5.1 (2016-07)

9.41 Running component operation

9.41.0 General

The syntactical structure of ther unni ng component operationis:

<conponent - expr essi on>. runni ng

Ther unni ng component operation checks whether a component is running or has either stopped or terminated and
been removed from the test system. The component to be checked isidentified by a component reference, which may be
provided in form of avariable or value returning function, i.e. is an expression. For simplicity, the keywords "al |
component " and "any conponent " are considered to be special expressions.

Ther unni ng component operation distinguishes between its usage in a Boolean guard of anal t statement or
blocking cal | operation and al other cases. If used in a Boolean guard, the result of r unni ng component operation
is based on the actual snapshot. In al other cases evaluates directly the state information.

Theresult of ther unni ng component operation is pushed onto the value stack of the entity, which called the
operation.

The flow graph segment <running-component-op> in figure 111 defines the execution of the r unni ng component
operation.

segnment ¢

<runni ng- conponent - op>

/1 The expression shall evaluate
. // to a conmponent reference. The
<expression> /! result is pushed onto VALUE- STACK

if (Entity.STATUS == ACTIVE) {
Entity. NEXT- CONTROL(true);

else { // Entity is in a snapshot
Entity. NEXT- CONTROL( f al se);
}

RETURN,

<runni ng- conp- act > <runni ng- conp- snap>

v

Figure 111: Flow graph segment <running-component-op>

ETSI



141

9.41.1 Flow graph segment <running-comp-act>

ETSI ES 201 873-4 V4.5.1 (2016-07)

The flow graph segment <r unni ng- conp- act > infigure 112 describes the execution of ther unni ng component

operation outside a snapshoat, i.e. the component isin the status ACTI VE.

segnent
<r unni ng- conp- act >

A 4

mconp- act

let { // local scope
var conp; /1 for storing a conponent reference
var deci sion; /1 Bool ean
if (Entity.VALUE- STACK. top() == "all component') ({
if (Entity !'= MIC) {
*** DYNAM C- ERROR*** [/ '"all conponent' is not allowed
}
el se {
""" if (DONE. length() == 0) { // all conponents are running
Entity. VALUE- STACK. push(true);
else { // at |east one conmponent has been stopped
Entity. VALUE- STACK. push(fal se);
}
}
}
el se {
if (Entity.VALUE- STACK. top() == 'any component') {
if (Entity !'= MIQ) {
*** DYNAM C- ERROR*** [/ 'any conponent' not all owed
el se {
conmp : = ALL-ENTI TY- STATES. next (MICQ) ;
while (conp !'= NULL and decision == false) {
if (conp. STATUS == ACTI VE) {
decision : = true;
}
conp : = ALL-ENTI TY- STATES. next (conp);
}
Entity. VALUE- STACK. push(deci si on);
}
}
el se {
i f (ALL- ENTI TY- STATES. menber (Entity. VALUE- STACK. top())) {
/'l Specified conponent is alive
Entity. VALUE- STACK. push(true);
el se {
Entity. VALUE- STACK. push(fal se);
}
}
1.
Entity. NEXT- CONTROL(true);
RETURN,

Figure 112: Flow graph segment <running-comp-act>

ETSI




142

9.41.2 Flow graph segment <running-comp-snap>

ETSI ES 201 873-4 V4.5.1 (2016-07)

The flow graph segment <r unni ng- conp- snap> in figure 113 describes the execution of the r unni ng component
operation during the evaluation of a snapshot, i.e. the component isin the status SNAPSHOT.

segnment

let { // local
var conp;
var deci sion;

<runni ng- conp- snap> scope

/1 Bool ean

if (Entity.VALUE-STACK top() == 'all
if (Entity = MIO) 1|
*** DYNAM C- ERROR*** [/
}

el se {

if (Entity. SNAP-DONE. | engt h()
Entity. VALUE- STACK. push(true);

A 4

(ning-'conp- snap

“all

else { // at

}

}
}
el se {
if (Entity.VALUE-STACK top() =
if (Entity = MO {
*** DYNAM C- ERROR*** [/

el se {

conp :

if (conp. STATUS == ACTI
decision := true;
}

conp

/1 for storing a conponent

conmponent ') {

conponent’

| east one conponent
Entity. VALUE- STACK. push(fal se);

"any conponent') {

'any conponent'’

Entity. SNAP- ALI VE. next (MIC) ;
while (conp !'= NULL and deci sion

:= ALL- ENTI TY- STATES. next (conp) ;

reference

is not allowed

0) {

has been st opped

not al |l owed

fal se) {
VE) {

}
}
el se {
if (Entity.SNAP-ALIVE. nenber (En

/'l Specified conponent is alive
Entity. VALUE- STACK. push(true);

el se {
Entity. VALUE- STACK. push(fal se);
}

}

}
Entity. NEXT- CONTROL(true);
RETURN,;

}
Entity. VALUE- STACK. push(deci si on);

tity. VALUE- STACK top())) {

Figure 113: Flow graph segment <running-comp-

ETSI

snap>



143 ETSI ES 201 873-4 V4.5.1 (2016-07)

9.42  Running timer operation

The syntactical structure of ther unni ng timer operation is:

<timer!|d>.running

The flow graph segment <r unni ng- t i nmer - op> infigure 114 defines the execution of ther unni ng timer
operation.

Ther unni ng timer operation distinguishes between its usage in a Boolean guard of an al t statement or blocking
cal | operation and all other cases. If used in a Boolean guard, the result of r unni ng timer operation is based on the
actual snapshot, i.e. the SNAP-STATUS entry of the timer binding, in al other cases, the STATUS entry of the timer
binding determines the result of the operation.

Theany keyword is handled as a specia valueof ti mer | d.

segnent <running-ti mer-op>

runni ng-ti ner-op
(tinerld)

let { // local scope for variables nyStatus and nyTi merLi st

var myStatus; /1 for storing status values of tinmners
var myTi merLi st; [/l for storing a list of tiner Bindings
if (tinmerld == “any timer”) {

nyTinmerList := Entity. TI MER-STATE. first();
timerld := NULL;
if (Entity.STATUS) == SNAPSHOT) {
while (nmyTinerList !'= NULL && timerld == NULL) {
timerld := nyTinerList.randon{ SNAP- STATUS == RUNNI NG) ;

nyTi merList := Entity. TI MER- STATE. next (nmyTi mer Li st);
{
}
el se {
while (nmyTinerList !'= NULL && timerld == NULL) {
timerld := nyTimerList.random STATUS == RUNNI NG) ;
nyTi merList := Entity. TI MER- STATE. next (nmyTi mer Li st);
{
}

}

if (timerld !'= NULL) {
nyStatus := Entity.timerld. STATUS;
if (Entity.STATUS == SNAPSHOT) {
nyStatus := Entity.timerld. SNAP- STATUS;
}

if (nmyStatus == RUNNI NG ({
Entity. VALUE- STACK. push(true);

el se {
Entity. VALUE- STACK. push(fal se);
}
}

el se {
Entity. VALUE- STACK. push(fal se);

} // end local scope

Entity. NEXT- CONTROL(true);
RETURN,

Figure 114: Flow graph segment <running-timer-op>

ETSI



144 ETSI ES 201 873-4 V4.5.1 (2016-07)

9.43  Self operation

The syntactical structure of thesel f operationis:

sel f

The flow graph segment <sel f - op> in figure 115 defines the execution of the sel f operation.

segment <sel f-op>

Entity. VALUE- STACK. push(Entity);
self-op ......................... Entity_w(true);
RETURN;

Figure 115: Flow graph segment <self-op>

9.44  Send operation

9.44.0 General

The syntactical structure of the send operationis:

<portld>. send (<send-spec>) [to <receiver-spec>]

The optional <r ecei ver - spec> inthet o clause refersto the receivers of the message. In case of a one-to one
communication, the <r ecei ver - spec> addresses asingle entity (including the SUT or an entity within the SUT). In
case of multicast or broadcast communication, the <r ecei ver - spec> specifiesaset or al test components or
entitiesin the SUT connected via the specified port with the calling component.

The flow graph segment <send-op> in figure 116 defines the execution of asend operation.

segnent <send- op>

A 4
<send-w t h-one-recei ver-op> OR
<send-w th-mul tipl e-receivers-op> OR /1 A send operation nay address one,

<send-w t hout - r ecei ver - op> /1 multiple (rmulticast and broadcast)
/1 or no receiver entities.

Figure 116: Flow graph segment <send-op>

ETSI



145

ETSI ES 201 873-4 V4.5.1 (2016-07)

9.44.1 Flow graph segment <send-with-one-receiver-op>

The flow graph segment <send- wi t h- one-r ecei ver - op> in figure 117 defines the execution of asend

operation where the receiver is specified in form of an expression.

segnment <send-w t h- one-recei ver-op>

<expressi on>

/1 an address val ue.

/'l The expression shall evaluate
/1l to a conmponent reference or

send-w t h-one-recei ver - op
(portid, sendSpec) e .

let {

if (remptePort == NULL) {
}
if (renptePort == SYSTEM {

/'l the scope of the operational

else { // sending of message

var receiver := Entity.VALUE- STACK. top();
var portRef := Entity.portld. COVP- PORT- NANE;
var renotePort := GET- REMOTE- PORT(Entity, portRef, receiver);

*** DYNAM C- ERROR***; // Renote port cannot be found

/1 Port is mapped onto a port of the test system
/'l reception of the reply by the SUT is outside
senmantics

renot ePort. enqueue( CONSTRUCT- | TEM Entity, send, sendSpec));

Entity. NEXT- CONTROL(true);
RETURN;

} I/ end of scope of receiver and renotePort

Entity. VALUE- STACK. pop(); /'l clean val ue stack

Figure 117: Flow graph segment <send-with-one-receiver-op>

9.44.1a Flow graph segment <send-with-multiple-receivers-op>

The flow graph segment <send-wi t h- mul t i pl e-recei ver s- op> in figure 117a defines the execution of a
send operation where multiple receivers are addressed. In case of broadcast communication the keyword al |
conponent isused as receiver specification. In case of multicast communication alist of expressionsis provided

which shall evaluate to component references or address values.

The component references or address values of the addressed entities (or the keywordal | conponent ) are pushed
onto the value stack of the calling entity. The number of references stored in the value stack is considered to be known,
i.e. it isthe parameter nunber of the basic flow graph nodesend-wi t h-mul ti pl e-recei vers-op in

figure 117a. The nunmber parameter is 1 in case of broadcast communication, i.e. the keyword al | conponent is

top element in the val ue stack.

ETSI



146 ETSI ES 201 873-4 V4.5.1 (2016-07)

segnment <send-with-nultiple-receivers-op>

/| Each expression shall
/1 to a conponent reference or an
/] address val ue.

eval uat e

send-w th-nul ti pl e-recei vers-op
(portld, sendSpec, nunber)

let { I
var i; I/

| ocal Port

RETURN,

| oop counter variable
var connection; // variable for connections in port states
var receiver;

var | ocal Port,
Entity. portld. COWP- PORT-NAME; // local port

if (Entity.VALUE-STACK top() == all

connection := | ocal Port. CONNECTI ONS- LI ST. next (connecti on);
while (connection !'= NULL) {
remotePort := connection. REMOTE- PORT- NAME;

if (remotePort == SYSTEM {
/1 Port is mapped onto a port of the test system
/1
/1 the scope of the operational

else { // sending of call
renot ePort. enqueue( CONSTRUCT- | TEM Entity, send, sendSpec));
}
connection := | ocal Port. CONNECTI ONS- LI ST. next (connecti on);
}
el se {
for (i ;I <= nunber; i :=i+1) {
receiver := Entity.VALUE- STACK. top();
Entity. VALUE- STACK. pop(); /'l clean val ue stack
renmotePort := GET- REMOTE- PORT(Entity, |ocal Port, receiver);
if (remptePort == NULL) ({
*** DYNAM G- ERROR***; // Renote port cannot be found
}
if (remptePort == SYSTEM ({
/1 Port is nmapped onto a port of the test system
reception of the reply by the SUT is outside
/1 the scope of the operational senantics
else { // sending of call
renot ePort. enqueue( CONSTRUCT- | TEM Entity, send, sendSpec));
}
}

} /1 end of |ocal

Entity. NEXT- CONTROL(true);

/1 variable for receiver conponent references
/1 or receiver address val ues
remotePort; // variables for port references

conponent) {

reception of the reply by the SUT is outside
semantics

scope

v

Figure 117a: Flow graph segment <send-with-multiple-receivers-op>

ETSI



147 ETSI ES 201 873-4 V4.5.1 (2016-07)

9.44.2 Flow graph segment <send-without-receiver-op>

The flow graph segment <send- wi t hout - r ecei ver - op> infigure 118 defines the execution of asend
operation without t o-clause.

segment <send-w t hout -recei ver - op>

send-wi t hout - recei ver - op
(portld, sendSpec)

let {
var portRef := Entity. portld. COVP- PORT- NANE;
var renotePort := GET- REMOTE- PORT(Entity, portRef, NONE);

if (remptePort == NULL) {
*** DYNAM C- ERROR***; // Renote port cannot be found

}

if (remptePort == SYSTEM {
/1 Port is mapped onto a port of the test system
/1 reception of the reply by the SUT is outside
/1 the scope of the operational semantics

else { // sending of nmessage
renot ePort . enqueue( CONSTRUCT- | TEM Entity, send, sendSpec));

} // end of scope of renotePort

Entity. NEXT- CONTROL(true);
RETURN;

Figure 118: Flow graph segment <send-without-receiver-op>

9.45  Setverdict operation

The syntactical structure of theset ver di ct operationis:

setverdi ct(<verdi cttype-expression> [ , <verdict-reason>])

The<verdi ctt ype- expr essi on> parameter of theset ver di ct operation isan expression that shall evaluate
toavalueof typever di ctt ype,i.e.none, pass,i nconc orf ai | . The expression is evaluated before the
set verdi ct operationisapplied.

The second optional parameter allows specifying areason for setting a verdict. This reason does not contribute to the
test behaviour and is therefore not considered in the operational semantics.

The flow graph segment <set ver di ct - op> in figure 119 defines the execution of the set ver di ct operation.

ETSI



148 ETSI ES 201 873-4 V4.5.1 (2016-07)

segnment <setverdict-op>

A /1 The expression shall evaluate to a val ue
/1 of type verdicttype.
<expression> /Il The result of the eval uatio_n is pushed
/1 onto the VALUE- STACK of Entity

if ( Entity. E-VERDI CT == fail or
A 4 Entity. VALUE- STACK. top() == fail) {
Entity. E-VERDICT : = fail;

setverdict-op \ }
el se {
if ( Entity. VALUE- STACK. top() == inconc or
Entity. E- VERDI CT == i nconc) {
Entity. E- VERDI CT : = inconc;
}
el se {

if ( Entity. VALUE- STACK. top() == pass or
Entity. E- VERDI CT == pass) {
Entity. E-VERDI CT : = pass;

} }
Entity. VALUE- STACK. pop() // clear VALUE-STACK

Entity. NEXT- CONTROL(tr ue);
RETURN,

Figure 119: Flow graph segment <setverdict-op>

9.46  Start component operation

The syntactical structure of thest art component operation is:

<conponent - expr essi on>. start (<functi on- name>( <act - par - desc,>, .., <act-par-desc >))

Thest art component operation starts a component. Using a component reference identifies the component to be
started. The reference may be stored in a variable or be returned by afunction, i.e. it isan expression that evaluatesto a
component reference.

The <f unct i on- nanme> denotes to the name of the function that defines the behaviour of the new component and
<act - par - descr >, ..., <act - par - descr > provide the description of the actual parameter values of

<f uncti on- nane>. The descriptions of the actual parameters are provided in form of expressions that have to be
evaluated before the call can be executed. The handling of formal and actual value parametersis similar to their
handling in function calls (see clause 9.24).

The flow graph segment <start-component-op> in figure 120 defines the execution of the st ar t component operation.
The start component operation is executed in four steps. In thefirst step acall record is created. In the second step the
actual parameter values are calculated. In the third step the reference of the component to be started isretrieved, and, in
the fourth step, control and call record are given to the new component.

NOTE: The flow graph segment in figure 120 includes the handling of reference parameters
(<ref -var - par - cal c>). Reference parameters are needed to explain reference parameters of test
cases. The operational semantics assumes that these parameters are handled by the MTC.

ETSI



149 ETSI ES 201 873-4 V4.5.1 (2016-07)

segment <start-conponent - op>

Entity. VALUE- STACK. push( NEW CALL- RECORD( f uncti on- nane));
Entity. NEXT- CONTROL(true);
RETURN,

construct-call-record
(function-nane)

/! For each pair (<f-par-ldi> <act-paraneter-desci>) the
/1 value of <act-paraneter-desci is calculated and

-| /] assigned to the corresponding field <f-par-Idi>

<val ue- par - cal cul ati on> /1 in the call record. The call record is assumed to be
/1 the top element in the value stack.

* /1 This flow graph segnent is also used to explain

/'l the execute statemmt. Test cases are allowed to have
/'l reference paraneters. The operational senmantics
<ref-var-par-cal c> !/ assumes that these paranmeters are owned (and updat ed)
/1 by the MIC

A 4

The expression shall evaluate to a conponent reference.

<expression> It refers to the conponent to be started

control -trans-to-conmponent
(function-nane)

let {
var toBeStarted := Entity. VALUE- STACK. top();
/1l toBeStarted is a local variable that stores the
/1 identifier of the conmponent to be started

Entity. VALUE- STACK. pop();
/'l Renoval of conponent reference. Afterwards the
/1 call record is on top of the value stack

toBeSt art ed. VALUE- STACK. push(Entity. VALUE- STACK. t op();
/1 Call record is transferred to toBeStarted.

Entity. VALUE- STACK. pop();
/1 Renoval of the call record fromthe val ue stack
/1 of the starting conponent (= Entity).

toBeSt art ed. CONTROL- STACK. push( GET- FLOW GRAPH( f unct i on- nane) ) ;
/1 Control stack of toBeStarted is set to
/'l the start node of its behaviour.

toBeStarted. STATUS : = ACTI VE;
/1 Control is given to toBeStarted

if (DONE. menber(toBeStarted)) { // Update DONE I|i st
DONE. del et e(toBeSt arted);
}

} I/ end of scope for variable toBeStarted

Entity. NEXT- CONTROL(true);

Figure 120: Flow graph segment <start-component-op>

ETSI



150 ETSI ES 201 873-4 V4.5.1 (2016-07)

9.47  Start port operation

The syntactical structure of thest ar t port operation is:

<portld>. start

The flow graph segment <start-port-op> in figure 121 defines the execution of the st ar t port operation.

segnment <start-port-op>

\ let { // Begin of |ocal scope
4 var portRef := NULL
var portState := NULL,

start-port-op Vo
(portid) if (portlid == “all port”) {
portState := ALL- PORT- STATES.first();
while (portState !'= NULL) ({
if (portState. OMNER == Entity) ({
port St at e. VALUE- QUEUE. cl ear () ;
port State. STATUS : = STARTED

portState : =
ALL- PORT- STATES. next (portState);

}

el se {
portRef := Entity. portld. COWP- PORT- NAME;
GET- PORT(Entity, portRef).clear();
CET- PORT(Entity, portRef).STATUS : = STARTED,
} /1 End of socpe

Entity. NEXT- CONTROL(true);
RETURN,

v

Figure 121: Flow graph segment <start-port-op>

9.48  Start timer operation

9.48.0 General

The syntactical structure of thest art timer operationis:

<timerld> start [(<float-expression>)]

The optional <float-expression> parameter of thetimer st ar t operation denotes the actual duration of the timer. If it is
not provided, the default duration will be used by the st ar t operation. The expression that shall evaluate to a val ue of
typef | oat . If provided, the expression shall be evaluated beforethe st ar t operation is applied. The result of the
evaluation is pushed onto the VALUE-STACK of Entity.

The flow graph segment <st ar t - t i ner - op> in figure 122 defines the execution of the st ar t timer operation.

ETSI



151 ETSI ES 201 873-4 V4.5.1 (2016-07)

segnent <start-timer-op>

y
<start-timer-op-defaul t>

OoR /1 Atinmer can be started with
<start-tinmer-op-duration> /1 a default duration, or with
/1 a given duration.

v

Figure 122: Flow graph segment <start-timer-op>

9.48.1 Flow graph segment <start-timer-op-default>

The flow graph segment <st art - t i ner - op- def aul t > in figure 123 defines the execution of the st ar t timer
operation with the default value.

segnment <start-tinmer-op-defaul t>

start-timer-op-default e
(tinerld)

/1 The tiner reference <tinerld> is copied into the node
/] attribute'timerld

if (Entity.timerld. DEF- DURATI ON == NONE) {
*** DYNAM C- ERROR* * * // Timer has no default duration
}

el se {

Entity. TI MER-SET(ti merld, ACT-DURATION, Entity.tinerld. DEF- DURATI ON);
Entity. TI MER-SET(timerld, TIME-LEFT, Entity.tinmerld. DEF- DURATI ON);
Entity. TI MER SET(tinerld, STATUS, RUNNING;

}

Entity. NEXT- CONTROL(true);
RETURN;

Figure 123: Flow graph segment <start-timer-op-default>

ETSI



152 ETSI ES 201 873-4 V4.5.1 (2016-07)

9.48.2 Flow graph segment <start-timer-op-duration>

The flow graph segment <st art - t i ner - op- dur at i on> in figure 124 defines the execution of the st ar t timer
operation with a provided duration.

segment <start-tiner-op-duration>

/1 The expression shall evaluate
/! to a float. The result is pushed
/1 onto VALUE- STACK.

<expr essi on>

start-timer-op-duration
(timerld)

/1 The tiner reference <timerld> is copied into the node
/] attribute ‘timerld

Entity. TI MER-SET(timerld, ACT-DURATION, Entity.VALUE- STACK top());
Entity. TI MER-SET(tinerld, TIME-LEFT, Entity.VALUE- STACK top());
Entity. TI MER- SET(ti mer|d, STATUS, RUNNI NG);

Entity. VALUE- STACK. pop(); /1 clean VALUE- STACK

Entity. NEXT- CONTROL(true);
RETURN,

Figure 124: Flow graph segment <start-timer-op-duration>

9.49  Stop component operation

9.49.0 General

The syntactical structure of the st op component statement is:
<conponent - expr essi on>. st op

The st op component operation stops the specified component. All test components will be stopped, i.e. the test case
terminates, if the MTC is stopped (e.g. nt c. st op) or stopsitself (e.g. sel f. st op). The MTC may stop all parallel
test components by using theal | keyword, i.e.al | cormponent .st op.

Stopped components created with an al i ve clauseinthe cr eat e operation are not removed from the test system.
They can berestarted by using ast ar t statement. Variables, ports, constants and timers owned by such a component,
i.e. declared and defined in the corresponding component type definition, keep their status. A st op operation for a
component created without an al i ve clauseis semantically equivalent to aki | | operation. The component is
removed from the test system.

A component to be stopped isidentified by a component reference provided as expression, e.g. avaue or value
returning function. For simplicity, the keyword "al | conponent " is considered to be specia values of
<conponent - expr essi on>. Theoperationsnt c and sel f are evaluated according to clauses 9.33 and 9.43.

ETSI



153 ETSI ES 201 873-4 V4.5.1 (2016-07)

The flow graph segment <st op- conponent - op> in figure 125 defines the execution of the st op component

operation.

segment <st op- conponent - op>

A\ 4

/1 The Expression shall eval uate
/1 to a conponent reference. The

<expr essi on>

..... /1 result is pushed onto VALUE- STACK

if (Entity.VALUE- STACK top() == "all conponent') {

true

<stop-all-conp>

true

<kill-ntc>

prepar e- st op
fal se

true

deci si on

true

A 4

deci si on

Entity. VALUE- STACK. pop(); // clean val ue stack
if (Entity !'= MIQ) {

***DYNAM C- ERROR*** // "all' not all owed
}

........... el se {
Entity. NEXT- CONTROL(true);
{
}
el se {
Entity. NEXT- CONTROL( f al se);

}
RETURN,;

if (Entity.VALUE- STACK. top()
Entity. VALUE- STACK. pop()
........... Entity. NEXT- CONTROL(true

= MrQ {
; I/ clean value stack
)

el se {
Entity. NEXT- CONTROL( f al se);

}
RETURN,

i f (ALL- ENTI TY- STATES. nenber (Entity. VALUE- STACK. top())) {
Entity. NEXT- CONTROL(true);

}
el se {
i f (DONE. menber (Entity. VALUE- STACK. top())){
/1 NULL operation, conponent already stopped
Il or killed.
Entity. VALUE- STACK. pop(); // clean value stack
Entity. NEXT- CONTROL(f al se);
}
el se {
/1 conponent id has not been allocated
*** DYNAM C- ERROR* * *
{
}
RETURN,

if (Entity.VALUE- STACK top().KEEP-ALIVE == true)) {
Entity. NEXT- CONTROL(true); // Conponent is not
/1 renoved fromthe

/] test system

}
el se {
Entity. NEXT- CONTROL(fal se); // Conponent is killed

}
RETURN;

fal se

<st op-al i ve- component >

<ki || - conponent >

'

Figure 125: Flow graph segment <stop-component-op>

ETSI




9.49.1 Void

154 ETSI ES 201 873-4 V4.5.1 (2016-07)

9.49.2 Flow graph segment <stop-alive-component>

The<st op- al i ve- conponent > flow graph segment in figure 126 describes the stopping of a parallel test
component, i.e. not the MTC or module control, which has been created with an al i ve clause. The effect isthat the
test case verdict TC-VERDICT and the list of terminated test components (DONE) are updated and that the component
changesits statusto BLOCKED. The<st op- al i ve- conponent > flow graph assumes that the identifier of the

component to be stopped is on top of the value stack of the component that executes the segment.

segment

<st op- al i ve- conponent >

stop-ali ve- conponent

let { // local scope
var nyEntity := Entity. VALUE- STACK top();

var conpVar Scope : = copy(nyEntity. DATA-STATE first());
var conpTi mer Scope := copy(nyEntity. TI MER STATE first());

var conpPortScope := copy(nyEntity. PORT- REF.first());

/| for test continuation, if stop i s executed by anot her component
f (Entity !'= nyEntity()) {
Entity. VALUE- STACK. pop();
Entity. NEXT- CONTROL(T rue) ;

/
i
/'l clean value stack
}

/1 Updat e test case verdi ct

if (nyEntitiy.E-VERDICT == fail or TG VERD CT == fail) {
TG VERDICT .= fail;

}
else {
if (nyEntity. EEVERD CT == inconc or TC-VERDICT == inconc) {
TG VERD CT : = I nconc;
}
else {
if (nyEntity. EEVERD CT == pass or TG VERD CT == pass) {
TG VERD CT : = pass;
}
}

/1 pdat e of DONE

DONE. append((nyEntity, E- VERD CT)); /1 Updat e of DONE
/1 Updat e of component state

nmyEnti ty. STATUS : = BLOCKED,

myEnti ty. CONTRCOL- STACK : = NULL;
nyEntity. DEFAULT-LTST : = NULL;

nyEnti ty. VALUE- STAKXK : = NULL;

nyEnti ty. VALUE- STAKK push(MARK);
nyEnti ty. TI MER GUARD. STATUS : = | DLE;
nyEnti ty. DATA- STATE : = NULL

myEnti ty. DATA- STATE. add( conpVar Scope) ;
nmyEnti ty. TT MER STATE : = NULL;

nmyEnti ty. T MER- STATE. add( conpTi mer Scope) ;
nyEnti ty. PORT- REF := NULL

myEnti ty. PORT- REF. add(conmpPort Scope);
myEntity. SNAP-ALTVE : = NULL;

myEnti ty. SNAP-DONE : = NULL;

nyEntity. SNAP-KI LLED : = NULL;

/1 for conponent scope

} /1 End of |ocal scope
RETURN;

Figure 126: Flow graph segment <stop-alive-component>

ETSI




155 ETSI ES 201 873-4 V4.5.1 (2016-07)

9.49.3 Flow graph segment <stop-all-comp>

The<st op- al | - conp> flow graph segment in figure 127 describes the stopping of al parallel test components of a
test case.

segnent
<stop-al |l - conp> let { // local scope
v var nyEntity := ALL- ENTI TY- STATES. next (MIC);
prepare-stop ) Entity. VALUE- STACK. push( MARK)
while (myEntity !'= NULL) {
Entity. VALUE- STACK. push(nyEntity);
nyEntity := ALL- ENTITY- STATES. next (nmyEntity);
} // End of |ocal scope
Entity. NEXT- CONTROL(true);
RETURN,
) 4 -
if (Entity.VALUE- STACK. top(). KEEP-ALIVE == true) {
Entity. NEXT- CONTROL(true);
el se {
v Entity. NEXT- CONTROL( f al se);
}
stop-or-Kill e RETURN:;
true
A 4
<st op-al i ve- conponent > <ki | I - corponent >
i /
if (Entity.VALUE- STACK. top() == MARK) {
stop-or-kill Entity. VALUE- STACK. pop(); /1l clean stack
fal se Entity. NEXT- CONTROL(true); // end of |oop
true el se {
Entity. NEXT- CONTROL(f al se);
}
RETURN,

Figure 127: Flow graph segment <stop-all-comp>

ETSI



156 ETSI ES 201 873-4 V4.5.1 (2016-07)

9.50  Stop execution statement

The syntactical structure of the st op execution statement is:

st op
The effect of the st op execution statement depends on the entity that executesthe st op execution statement:

a) If st op isperformed by the module control, the test campaign ends, i.e. all test components and the module
control disappear from the module state. Thisis semantically similar to the execution of aki | | statement by
the module control.

b) If thest op isexecuted by the MTC, the test case ends. All parallel test components and the MTC stop and are
removed from the test system. The global test case verdict is updated and pushed onto the value stack of the
module control. Control is given back to the module control. Thisis semantically similar to the execution of a
kill statement by the MTC.

c) Ifthest op isexecuted by atest component, the global test case verdict TC-VERDICT and the global DONE
list are updated. If the test component is created with an aive clause. The status of the component is set to
BLOCKED and it may be started again. Otherwise the component is removed from the test system.

The flow graph segment <st op- exec- st nt > in figure 128 describes the execution of the st op statement.

segnent <st op-exec-stnt>

A if (Entity == CONTROL) {
Entity. NEXT-CONTROL(true);
decision  }......._ .
el se {
true Entity.NEXT-CONTROL(fal se);
fal se }
RETURN

<kill-control>

if (Entity == MIQ) {
Entity.NEXT-CONTROL(true);

el se {
Entity.NEXT-CONTROL(fal se);

}
RETURN
deci si on

true

Entity. VALLE- STACK. push(Entity);
if (Entity.KEEP-ALIVE == true) {
Entity.NEXT-CONTROL(true);

<kill-nic>
““““““““ el se {
Entity.NEXT-CONTROL(fal se);

}
RETURN

<ki Il - conponent > <st op-al i ve- conponent>

® hd
|

Figure 128: Flow graph segment <stop-exec-stmt>

ETSI



157

9.51  Stop port operation

The syntactical structure of the st op port operation is:

<portld>.stop

ETSI ES 201 873-4 V4.5.1 (2016-07)

The flow graph segment <st op- por t - op> in figure 129 defines the execution of the st op port operation.

segnment <st op- port-op>

A 4

Stop-port-op Ve

}

RETURN,

let { // Begin of |ocal scope
var port Ref
var portState := NULL,;
(portid) if (portid == “all port”) {
portState := ALL- PORT- STATES.first();
while (portState !'= NULL) {
if (portState. OONER == Entity) ({

portState : =

el se {
por t Ref
GET- PORT(Entity, portRef).STATUS : = STOPPED;
} /1 End of socpe

Entity. NEXT- CONTROL(tr ue);

©= NULL

port St ate. STATUS : = STOPPED

ALL- PORT- STATES. next (port State);

;= Entity. portld. COVP- PORT- NAME;

v

Figure 129: Flow graph segment <stop-port-op>

ETSI



158 ETSI ES 201 873-4 V4.5.1 (2016-07)

9.52  Stop timer operation

The syntactical structure of the st op timer operationiis:

<tinerld>. stop
The flow graph segment <st op-ti mer - op> in figure 130 defines the execution of the st op timer operation.

Theal | keyword ishandled asaspecial valueof ti nerl d.

segment <stop-timer-op>

v /1 The tiner reference <timerld> is copied
) /1l into the node attribute ‘timerld
stop-timer-op ..
(tinmerld) if (timerid == ‘all timer') {

Entity. TI MER- STATE. change. change( Tl MER- SET(, STATUS, |DLE));
Entity. TI MER- STATE. change. change( Tl MER- SET(, ACT- DURATI ON, 0.0);
Entity. TI MER- STATE. change. change( Tl MER- SET(, TI ME-LEFT, 0.0);

/1l Note, the first parameter of the TIMER- SET function is

/1 ommitted, because it is applied to all tiners in the

/1 actual scope unit.

el se {
Entity. TI MER-SET(tinerld, STATUS, |DLE);
Entity. TI MER- SET(ti nerld, ACT-DURATIQN, 0.0);
Entity. TI MER-SET(tinerld, TIME-LEFT, 0.0);

}

Entity. NEXT- CONTROL(true);
RETURN,

Figure 130: Flow graph segment <stop-timer-op>

9.53  System operation

The syntactical structure of thesyst emoperationis:

system

The flow graph segment <syst em op> in figure 131 defines the execution of the sy st emoperation.

segnent <system op>

Entity. VALUE- STACK. push(systen);
systemop e Entity. NEXT- CONTROL(true);
RETURN,

\4

Figure 131: Flow graph segment <system-op>

ETSI



159 ETSI ES 201 873-4 V4.5.1 (2016-07)

9.53a Test case stop operation

The syntactical structure of the test case stop operationis:

testcase. stop (<informal -description>)

The behaviour of the test case stop operation is identical to the execution of alog statement (clause 9.31) followed by a
dynamic error (clause 9.17.3). Flow graph segment <t est - case- st op- op> in figure 131a defines the execution of
the test case stop operation.

segnent <test-case- st op- op>

\

<log-stnt >

A

<dynamic-error >

v

Figure 131a: Flow graph segment <test-case-stop-op>

9.54  Timer declaration

9.54.0 General

The syntactical structure of atimer declarationis:
timer <tinerld> [:= <float-expression>]

The effect of atimer declaration is the creation of anew timer binding. The declaration of a default duration is optional.
The default value is considered to be an expression that evaluates to a value of thetypef | oat .

The flow graph segment <t i ner - decl ar at i on> in figure 132 defines the execution of atimer declaration.

segment <timer-decl aration> ¢

<timer-decl -defaul t>
oRrR
<ti mer - decl - no- def >

i

Figure 132: Flow graph segment <timer-declaration>

A timer may be declared with

I
/1 or without a default duration

ETSI



160 ETSI ES 201 873-4 V4.5.1 (2016-07)

9.54.1 Flow graph segment <timer-decl-default>

The flow graph segment <t i ner - decl - def aul t > infigure 133 defines the execution of atimer declaration where
adefault duration in form of an expression is provided.

segnent <timer-decl-defaul t>

v

<expr essi on>

/'l The expression shall evaluate

/1 to a value of type float

timer-decl -defaul t
(timerld)

Entity. INLT-TIMER(tinmerld, Entity.VALUE-STACK top());
Entity. VALUE- STACK. pop(); /] cl ean VALUE- STACK

Entity. NEXT- CONTROL(true);
RETURN;

Figure 133: Flow graph segment <timer-decl-default>

9.54.2 Flow graph segment <timer-decl-no-def>

The flow graph segment <t i mer - decl - no- def > in figure 134 defines the execution of atimer declaration where
no default duration is provided, i.e. the default duration of the timer is undefined.

segnent <ti mer-decl - no-def >

Entity. NI T-TINMER(ti merld, NONE);

ti mer - decl - no- def Entity. NEXT- CONTROL(true);
(tinerld) RETURN,

\4

Figure 134: Flow graph segment <timer-decl-no-def>

ETSI



161

9.55

The syntactical structure of thet i meout timer operationis:

Timeout timer operation

<timerld> tinmeout

ETSI ES 201 873-4 V4.5.1 (2016-07)

The flow graph segment <t i meout - t i nmer - op> infigure 135 defines the execution of thet i neout timer

operation.

segnment <tinmeout-ti nmer-op>
\ 4
ti MEOUL - 10 MBr- 0P Vsmmsssmmmssssnmssssinns;
(tinerld) i
/1 The tinmer reference <tinerld> is copied
/1l into the node attribute ‘timerld
let { // local scope for variable nyTinerlList
var nyTi nerList; /] to store a list of tiner Bindings
if (timerld == "any tinmer’) {
nyTinerList := Entity. TI MER- STATE. first();
timerld := NULL;
while (myTimerList !'= NULL && timerld == NULL) ({
timerld := nyTinmerList.randon( SNAP- STATUS == TI MEQUT) ;
nyTi merList := Entity. Tl MER- STATE. next (nmyTi mer Li st);
{
}
if (timerld !'= NULL && Entity.tinmerld. SNAP- STATUS == TI MEQUT) {
Entity. TI MER SET(timerld, STATUS, IDLE);
Entity. TI MER-SET(ti merld, ACT-DURATION, 0.0);
Entity. TIMER SET(timerld, TIME-LEFT, 0.0);
Entity. STATUS : = ACTI VE;
Entity. NEXT- CONTROL(true);
true fal se }
el se {
Entity. NEXT- CONTROL(f al se);
}
} /1 end of local scope
RETURN;
v v

NOTE 1: Ati meout operation is embedded in an al t statement. Its evaluation is based on the actual snapshot,

i.e. the decision is based on the SNAP-STATUS entry in the timer
successful, i.e. SNAP-STATUS == TIMEOUT, the timer is set into
changes from SNAPSHOT to ACTIVE.

NOTE 2: Whenthe ti meout evaluatestotrue orf al se, either execution

binding. If the timeout operation is
an IDLE state and the component state

continues with the statement that

follows the t i meout operation (t r ue branch), or the next alternative in the al t statement has to be

checked (f al se branch).
NOTE 3: The any keyword is treated like as special value of timerld.

Figure 135: Flow graph segment <timeout-timer-op>

ETSI



162 ETSI ES 201 873-4 V4.5.1 (2016-07)

9.56 Unmap operation

9.56.0 General

The syntactical structure of theunnap operationiis.

unmap( <conponent _expressi on>: <port|dl> [, system <portl|d2>])

Theidentifiers<port | d1> and <port | d2> are considered to be port identifiers of the corresponding test component
and test system interface. The components to which the <portld1> belongsis referenced by means of the component
reference <conponent - expr essi on>. The reference may be stored in variables or isreturned by a function, i.e. it
is an expression, which evaluates to a component reference. The value stack is used for storing the component

reference.

The unmap operation can be used with one parameter pair and with two parameters pairs. The usage of the unnap
operation with one parameter pair may unmap port mappings for one component or, if executed by the MTC for all
components. The usage of the unmap operation with two parameter pairs allows to unmap one specific mapped port.

The operational semantics does not model the portsin the abstract test system interface. Therefore, only the parameter
pair that identifies the component (or components, if the all component keyword is used) and the corresponding port (or
ports, if the all port keyword is used) has to be considered here.

In the flow graph segment three cases are distinguished:
1) thent ¢ unmaps all mapped ports of all components;
2) al mapped ports of one component are unmapped; and

3) one port of one component is unmapped.

ETSI



163 ETSI ES 201 873-4 V4.5.1 (2016-07)

The execution of the unnmap operation is defined by the flow graph segment <unmap- op> shown in figure 136.

segment

<unmap- op>

A

<expr essi on>

/'l The Expression shall eval uate
/1 to a conponent reference. The
/'l result is pushed onto VALUE- STACK

true

A

unmap- deci sion
(portld)

fal se

<unmap-al | >

true

deci si on

fal se

<unmap- conp>

N

if (Entity.VALUE-STACK.top() == “al |l conponent”) {
if ( (Entity I'= MIC) OR
(Entity == MIC && portld !'= “all port”) ) {
*** DYNAM C- ERROR* * *
}
el se {
Entity. VALUE- STACK. pop();
Entity. NEXT- CONTROL(tr ue);
}
el se {

Entity. VALUE- STACK. push(portld);
Enti ty. NEXT- CONTROL( fal se) ;

}
RETURN,

if (Entity. VALUE-STAXK.top() != “all port”) {
Entity. VALUE- STAXK. pop();
Entity. NEXT- CONTROL(true);

el se {
Entity. NEXT- CONTROL(fal se);

}
RETLRN,

<unmap- port>

v

v

Figure 136: Flow graph segment <unmap-op>

ETSI



164 ETSI ES 201 873-4 V4.5.1 (2016-07)

9.56.1 Flow graph segment <unmap-all>

The flow segment <unmap- al | > defines the unmapping of all components at all mapped ports.

segnment <unmap-al | >

let { // local scope

var port := ALL- PORT- STATES.first();
var connecti on;

while (port !'= NULL) {
connection := port. CONNECTI ONS. first();
whil e (connection !'= NULL) {
i f (connection. REMOTE- ENTI TY == systen) {
port. CONNECTI ONS. del et e( connecti on);
connection : = port. CONNECTI ONS. first();

el se {
connection := NULL; /1 connected port
}

}
port := ALL- PORT- STATES. next (port)

} /1 End of |ocal scope

Entity. NEXT- CONTROL(true);
RETURN,;

Figure 136a: Flow graph segment <unmap-all>

ETSI



165

9.56.2 Flow graph segment <unmap-comp>

ETSI ES 201 873-4 V4.5.1 (2016-07)

The flow segment <unmap- conp> defines the unmapping of all mapped ports of a specified component.

segment <unnap- conp>

A 4

unnap- conp

let { // local
var conp

var port

= Entity. VALUE- STACK. top();
var connection
:= ALL- PORT- STATES.first();

scope

whil e (port

= NULL) {

if (port. OMNER == conp) {

/1 port of conp

connection

:= port. CONNECTIONS. first();

if (connection. REMOTE- ENTI TY == system) { // mapped port of conp

}

port

: = ALL- PORT- STATES. next (port);

port. CONNECTI ONS. del et e( connecti on)

}
Entity. VALUE- STACK. pop();

} // End of |oca

scope

/'l clear value stack

Entity. NEXT- CONTROL(true);
RETURN

Figure 136b: Flow graph segment <unmap-comp>

ETSI



166 ETSI ES 201 873-4 V4.5.1 (2016-07)

9.56.3 Flow graph segment <unmap-port>

The flow segment <unmap- por t > defines the unnap operation for a specific mapped port.

segnment <unmap- port>

\ 4

unnap- por t A—

let { // local scope
var portld;
var conp;
var port;
var connection;

portld := Entity.VALUE- STACK.top();
Entity. VALUE- STAXK. pop() ;

conp : = Entity. VALUE-STACK. top() ;
Entity. VALUE- STAXK. pop() ;

port := GET- PORT(conp, portld);

connection := port. CONNECTI ONS. first();
if (connection. REMOTE-ENTITY ! = SYSTEM {
*** DYNAM C- ERROR* * * [/l port is not a napped port

el se if (connection != NUL){
port. CONNECTI ONS. del et e( connecti on);

else { ) // do nothing, port is neither connected nor mapped
} /1 End of local scope

Entity. NEXT- CONTROL(true);
RETURN,

Figure 136¢: Flow graph segment <unmap-port>

9.57 Variable declaration

9.57.0 General

The syntactical structure of a variable declaration is:

var <varType> <varld> [:= <var Type-expressi on>]

The initialization of avariable by providing an initial value (in form of an expression) isoptional. Theinitia valueis
considered to be an expression that evaluates to a value of the type of the variable.

NOTE: Variables may be declared to be lazy or fuzzy. This operational semantics does not model lazy and fuzzy
evalution. It assumes that the correct evaluation of such variablesis done internally.

The flow graph segment <var i abl e- decl ar at i on> infigure 137 defines the execution of the declaration of a
variable.

ETSI



167

ETSI ES 201 873-4 V4.5.1 (2016-07)

segnment <vari abl e- decl arati on>

v

<var-declaration-init>

R

<var - decl ar ati on- undef >

/1 A variable nmay be declared with
/1 or without initial value

Figure 137: Flow graph segment <variable-declaration>

9.57.1 Flow graph segment <var-declaration-init>

The flow graph segment <var - decl ar ati on-i ni t > infigure 138 defines the execution of avariable declaration
where aninitial value in form of an expression is provided.

segnment <var-decl aration-init>

v

<expr essi on>

/1 The expression shall evaluate
I/l to a value of the type of the
/1 variable that is declared.

var-decl aration-init
(varld)

RETURN,;

Entity. | NI T-VAR(varld, Entity.VALUE-STACK top());
Enti ty. VALUE- STACK. pop() ; /1 clean VALUE- STACK;

Entity. NEXT- CONTROL(true);

Figure 138: Flow graph segment <var-declaration-init>

9.57.2 Flow graph segment <var-declaration-undef>

The flow graph segment <var-declaration-undef> in figure 139 defines the execution of a variable declaration where no

initial valueis provided, i.e. the value of the variable is undefined.

segnent <var-decl arati on-undef >

var - decl ar ati on- undef
(varld)

Entity. | N T- VAR(var|ld, NONE);

Entity. NEXT- CONTROL(true);
RETURN,

v

Figure 139: Flow graph segment <var-declaration-undef>

ETSI



168 ETSI ES 201 873-4 V4.5.1 (2016-07)

9.58 While statement

The syntactical structure of thewhi | e statement is:

whi | e (<bool ean- expr essi on>) <st at ement - bl ock>

The execution of awhi | e statement is defined by the flow graph segment <whi | e- st nt > shown in figure 140.

segment <whil e-stnt>

) /'l The expression shall evaluate to
<expressi on> /1 a Bool ean val ue.

T if (Entity.VALUE- STACK top() == true)
deci si on - —

Entity. NEXT- CONTROL(true);

true el se {

Entity. NEXT- CONTROL(true);

}
Entity. VALUE- STACK. pop();

<st at ement - bl ock> RETURN;

v

Figure 140: Flow graph segment <while-stmt>

10 Lists of operational semantic components

10.1 Functions and states

Table 1

Name Description Clause
ACT-DURATION Duration with which an active timer has been started 8.3.24
add List operation: adds an item as first element to a list 8.3.1a.1
ADD-CON Adds a connection to a port state 8.3.3.2
ALL-ENTITY-STATES |Component states in module state 8.3.1
ALL-PORT-STATES Port states in module state 8.3.1
append List operation: appends an item as last element to a list 8.3.1a.1
APPLY-OPERATOR Application of operators like +, - or / 8.6.2
change List operation: changes all elements of a list 8.3.1a.1
clear Stack operation "clear": clears a stack 8.3.2.1
clear Queue operation "clear": removes all elements from a queue 8.3.3.2
clear-until Stack operation "clear-until": pops items until a specific item is top element 8.3.2.1

in the stack

CONNECTIONS-LIST  |List of connections of a port 8.3.3
CONSTRUCT-ITEM Constructs an item to be sent 8.44
CONTINUE- The actual component continues its execution 8.6.2
COMPONENT
CONTROL-STACK Stack of flow graph nodes denoting the actual control state of an entity 8.3.2
DATA-STATE Data state in an entity state 8.3.2

ETSI




169 ETSI ES 201 873-4 V4.5.1 (2016-07)

Name Description Clause
DEF-DURATION Default Duration of a timer 8.3.24
DEFAULT-LIST List of active defaults in an entity state 8.3.2
DEFAULT-POINTER Points to the actual default during the default evaluation 8.3.2
DEL-CON Deletes a connection from a port state 8.3.3.2
DEL-ENTITY Deletes an entity from a module state 8.34
DEL-TIMER-SCOPE Deletes a timer scope 8.3.2.5
DEL-VAR-SCOPE Deletes a variable scope 8.3.2.3
delete List operation: deletes an item from a list 8.3.1a.1
dequeue Queue operation: deletes the first element from a queue 8.3.3.2
DONE Identifiers of terminated test components (part of module state) 8.3.1
E-VERDICT Local test verdict of a test component 8.3.2
enqueue Queue operation: puts an item as last element into a queue 8.3.3.2
first Queue operation "first": returns the first element of a queue 8.3.3.2
first List operation: returns the first element of a list 8.3.1a.1
GET-FLOW-GRAPH Retrieves the start node of a flow graph 8.2.7
GET-PORT Retrieves a port reference 8.3.3.2
GET-REMOTE-PORT Retrieves the reference of a remote port 8.3.3.2
GET-TIMER-LOC Retrieves location of a timer 8.3.25
GET-UNIQUE-ID Returns a new unigue identifier when it is called 8.6.2
GET-VAR-LOC Retrieves location of a variable 8.3.2.3
INIT-CALL-RECORD Initializes variables for parameters for procedure-based communication in 8.5.1

the actual scope unit of the test component
INIT-FLOW-GRAPHS Initializes the flow graph handling 8.6.2
INIT-TIMER Creates a new timer binding 8.3.25
INIT-TIMER-LOC Creates a new timer binding with an existing location 8.3.25
INIT-TIMER-SCOPE Initializes a new timer scope 8.3.2.5
INIT-VAR Creates a new variable binding 8.3.2.3
INIT-VAR-LOC Creates a new variable binding with an existing location 8.3.2.3
INIT-VAR-SCOPE Initializes a new variable scope 8.3.2.3
length List operation: returns the length of a list 8.3.1a.1
M-CONTROL Identifier of module control in module state 8.3.1
MATCH-ITEM Checks if a received message, call, reply or exception matches with a 8.4.5
receiving operation
member List operation: checks if an item is element of a list 8.3.1a.1
MTC Reference to MTC in module state 8.3.1
NEW-CALL-RECORD |Creates a call record for a function call 85.1
NEW-ENTITY Creates a new entity state 8.3.2.1
NEW-PORT Creates a new port 8.3.3.2
NEXT Retrieves the successor node of a given node in a flow graph 8.1.6
next List operation: returns next element in a list 8.3.1a.1
NEXT-CONTROL Pops the top flow graph node from the control stack and pushes the next 8.3.2.1
flow graph node onto the control stack
OWNER Owner of a port 8.3.3
pop Stack operation "pop": pops an item from a stack 8.3.2.1
PORT-NAME Name of a port 8.3.3
push Stack operation "push": pushes an item onto a stack 8.3.2.1
random List operation: returns randomly an element of a list 8.3.1a.1
REMOTE-ENTITY Remote entity in a connection in a port state 8.3.3.1
REMOTE-PORT-NAME |Name of a port in a connection in a port state 8.3.3.1
RETRIEVE-INFO Retrieves information from a received message, call, reply or exception 8.4.6
RETURN Returns the control to the module evaluation procedure 8.6.2
SNAP-DONE List of terminated test components at the time when a snapshot is taken 8.3.2
SNAP-PORTS Provides the shapshot functionality, i.e. updates the SNAP-VALUE 8.3.3.2
SNAP-STATUS Snapshot status of a timer 8.3.24
SNAP-TIMER Provides the snapshot functionality and updates SNAP-VALUE and SNAP- 8.3.25
STATUS
SNAP-VALUE Snapshot value of a timer 8.3.24
SNAP-VALUE For snapshot semantics, updated when a snapshot is taken 8.3.3
STATUS Status (ACTIVE, BREAK, SNAPSHOT, REPEAT or BLOCKED) of module 8.3.2
control or a test component
STATUS Status (IDLE, RUNNING or TIMEOUT) of a timer 8.3.2.4
STATUS Status (STARTED, HALTED or STOPPED) of a port 8.3.3
TC-VERDICT Test case verdict in module state 8.3.1
TIME-LEFT Time a running timer has left to run before it times out 8.3.24

ETSI




170 ETSI ES 201 873-4 V4.5.1 (2016-07)

Name Description Clause
TIMER-GUARD Timer that guards execut e statements and cal | operations 8.3.2
TIMER-NAME Name of a timer 8.3.24
TIMER-SET Setting values of a timer 8.3.25
TIMER-STATE Timer state in an entity state 8.3.2
top Stack operation "top": returns the top item from a stack 8.3.2.1
UPDATE-REMOTE- Updates timers and variables with the same location in different entities to 8.3.4
REFERENCES the same value
VALUE Value of a variable. 8.3.2.2
VALUE-QUEUE Port queue 8.3.3
VALUE-STACK Stack of values for the storage of results of expressions, operands, 8.3.2

operations and functions
VAR-NAME Name of a variable 8.3.2.2
VAR-SET Setting the value of a variable 8.3.2.3
**DYNAMIC-ERROR*** |Describes the occurrence of a dynamic error 8.6.2
<identifier> Unique identifier of a test component 8.3.2
<location> Supports scope units, reference and timer parameters. Represents a 8.3.2.2,8.3.24
storage location for timers and variables

10.2  Special keywords

Table 2

Keyword Description Clause
ACTIVE STATUS of an entity state 8.3.2
BLOCKED STATUS of an entity state 8.3.2
BREAK STATUS of an entity state 8.3.2
HALTED STATUS of a port 8.3.3
HALT-MARKER Used as marker in a port queue 8.3.3,9.28a
IDLE STATUS of a timer state 8.3.24
MARK Used as mark for VALUE-STACK 8.3.2
NONE Used to describe an undefined value 8.3.2.3,8.3.2.5,8.3.3.2
NULL Symbolic value for pointer and pointer-like types to indicate that nothing 8.3.1a.1, 8.3.2.1, 8.3.3,

is addressed 8.3.3.2,8.6.1.1

REPEAT STATUS of an entity state 8.3.2
RUNNING STATUS of a timer state 8.3.24
SNAPSHOT, STATUS of an entity state 8.3.2
STARTED STATUS of a port 8.3.3
STOPPED STATUS of a port 8.3.3
TIMEOUT STATUS of a timer state 8.3.24

10.3  Flow graphs of TTCN-3 behaviour descriptions

Table 3
Reference
Figure Clause
Module control 18 8.2.2
Test cases 19 8.2.3
Functions 20 8.2.4
Altsteps 21 8.2.5
Component type definitions 22 8.2.6

ETSI




171 ETSI ES 201 873-4 V4.5.1 (2016-07)
10.4  Flow graph segments
Table 4
Identifier Related TTCN-3 construct Reference

Figure Clause
<action-stmt> act i on statement 36 9.1
<activate-stmt> acti vat e statement 37 9.2
<alive-component-op> al i ve component operation 37a 9.2a
<alive-comp-act> al i ve component operation 37b 9.2a.1
<alive-comp-snap> al i ve component operation 37c 9.2a.2
<alt-stmt> al t statement 38 9.3
<altstep-call> invocation of an altstep 44 9.4
<altstep-call-branch> al t statement 41 9.3.3
<assignment-stmt> assignment 45 9.5
<b-call-with-duration> cal | operation 52 9.6.4
<b-call-without-duration> cal | operation 51 9.6.3
<blocking-call-op> cal | operation 47 9.6
<break-altstep-stmt> br eak statement (leaving an altstep) 45a 9.5a
<call-op> cal | operation 46 9.6
<call-reception-part> cal | operation 53 9.6.5
<catch-op> cat ch operation 55 9.7
<catch-timeout-exception> cal | operation 54 9.6.6
<check-op> check operation 56 9.8
<check-with-sender> check operation 57 9.8.1
<check-without-sender> check operation 58 9.8.2
<checkstate-port-op> checkstate operation 58a 9.8a
<check-port-status> checkstate operation 58b 9.8a.1
<check-port-connection> checkstate operation 58c 9.8a.2
<clear-port-op> cl ear port operation 59 9.9
<connect-op> connect operation 60 9.10
<constant-definition> constant definition 61 9.11
<create-op> cr eat e operation 62 9.12
<deactivate-all-defaults> deact i vat e statement 63c 9.13.2
<deactivate-one-default> deact i vat e statement 63b 9.13.1
<deactivate-stmt> deact i vat e statement 63a 9.13
<default-evocation> al t statement 43 9.3.5
<disconnect-op> di sconnect operation 64 9.14
<disconnect-one-par-pair> di sconnect operation 64a 9.14.1
<disconnect-all> di sconnect operation 64b 9.14.2
<disconnect-comp> di sconnect operation 64c 9.14.3
<disconnect-port> di sconnect operation 64d 9.14.4
<disconnect-two-par-pairs>  |di sconnect operation 64e 9.14.5
<do-while-stmt> do- whi | e statement 65 9.15
<done-op> done component operation 66 9.16
<dynamic-error> execut e statement 69a 9.17.3
<else-branch> al t statement 42 9.3.4
<execute-stmt> execut e statement 67 9.17
<execute-timeout> execut e statement 69 9.17.2
<execute-without-timeout> execut e statement 68 9.17.1
<expression> expression 70 9.18
<finalize-component-init> used in component type definitions 75 9.19
<for-stmt> f or statement 79 9.23
<func-op-call> expression 73 9.18.3
<function-call> call of a function 80 9.24
<getcall-op> get cal | operation 86 9.25
<getreply-op> get r epl y operation 87 9.26
<getverdict-op> get ver di ct operation 88 9.27
<goto-stmt> got o statement 89 9.28
<hal t-port-op> hal t port operation 89a 9.28a
<if-else-stmt> i f-el se statement 90 9.29

ETSI



172 ETSI ES 201 873-4 V4.5.1 (2016-07)

Identifier Related TTCN-3 construct Reference
Figure Clause
<init-component-scope> used in component type definitions 76 9.20
<init-scope-with-runs-on> used in function and altstep definitions 76a 9.20a
<init-scope-without-runs-on> |used in function and altstep definitions 76b 9.20b
<kill-all-comp> kil | component operation 90d 9.2%a.3
<kill-component> ki Il component operation 90c 9.29a.2
<kill-component-op> ki Il component operation 90a 9.29a
<kill-control> ki Il execution statement 90f 9.29b.1
<kill-exec-stmt> ki |l execution statement 90e 9.29b
<kill-mtc> ki Il component operation 90b 9.29%a.1
<killed-op> kil I ed component operation 90g 9.29¢c
<label-stmt> | abel statement 91 9.30
<lit-value> expression 71 9.18.1
<log-stmt> | og statement 92 9.31
<map-op> map operation 93 9.32
<mtc-op> nt ¢ operation 94 9.33
<nb-call-without-receiver> cal | operation 50 9.6.2
<nb-call-with-one-receiver> cal | operation 49 9.6.1
<nb-call-with-multiple- cal | operation 49a 9.6.1a
receivers>
<non-blocking-call-op> cal | operation 48 9.6
<operator-appl> expression 74 9.18.4
<parameter-handling> handling of parameters of functions, altsteps and test cases 77 9.21
<port-declaration> port declaration 95 9.34
<predef-ext-func-call> call of a function (call of a pre-defined or external function) 85 9.24.5
<raise-op> rai se operation 96 9.35
<raise-with-one-receiver-op> |r ai se operation 97 9.35.1
<raise-with-multiple-receivers- |r ai se operation 97a 9.35.1a
op>
<raise-without-receiver-op> |r ai se operation 98 9.35.2
<read-timer-op> r ead timer operation 99 9.36
<receive-assignment> recei ve operation 103 9.37.3
<receive-op> recei ve operation 100 9.37
<receive-with-sender> recei ve operation 101 9.37.1
<receive-without-sender> recei ve operation 102 9.37.2
<receiving-branch> al t statement 40 9.3.2
<ref-par-port-calc> call of a function (handling of port parameters) 83a 9.24.3.a
<ref-par-timer-calc> call of a function (handling of timer parameters) 83 9.24.3
<ref-par-var-calc> call of a function (handling of reference parameters) 82 9.24.2
<repeat-stmt> repeat statement 104 9.38
<reply-op> repl y operation 105 9.39
<reply-with-one-receiver-op> |r epl y operation 106 9.39.1
<reply-with-multiple-receivers- |r epl y operation 106a 9.39.1a
op>
<reply-without-receiver-op> |r epl y operation 107 9.39.2
<return-stmt> r et ur n statement 108 9.40
<return-with-value> r et ur n statement 109 9.40.1
<return-without-value> r et ur n statement 110 9.40.2
<running-component-op> component r unni ng operation 111 9.41
<running-comp-act> component r unni ng operation 112 9.41.1
<running-comp-snap> component r unni ng operation 113 9.41.2
<running-timer-op> timer r unni ng operation 114 9.42
<self-op> sel f operation 115 9.43
<send-op> send operation 116 9.44
<send-with-one-receiver-op> |send operation 117 9.44.1
<send-with-multiple-receivers- [send operation 117a 9.44.1a
op>
<send-without-receiver-op> |send operation 118 9.44.2
<setverdict-op> set ver di ct operation 119 9.45
<start-component-op> st art component operation 120 9.46
<start-port-op> st art port operation 121 9.47

ETSI




173 ETSI ES 201 873-4 V4.5.1 (2016-07)
Identifier Related TTCN-3 construct Reference

Figure Clause
<start-timer-op> st art timer operation 122 9.48
<start-timer-op-default> start timer operation 123 9.48.1
<start-timer-op-duration> st art timer operation 124 9.48.2
<statement-block> block of statements in compound statements 78 9.22
<stop-component-op> st op component operation 125 9.49
<stop-alive-component> st op component operation 126 9.49.2
<stop-all-comp> st op component operation (all component.stop) 127 9.49.3
<stop-exec-stmt> st op execution statement 128 9.50
<stop-port-op> st op port operation 129 9.51
<stop-timer-op> st op timer operation 130 9.52
<system-op> syst emoperation 131 9.53
<take-snapshot> al t statement 39 9.3.1
<test-case-stop-op> test case stop operation 131a 9.53a
<timer-declaration> timer declaration 132 9.54
<timer-decl-default> timer declaration 133 9.54.1
<timer-decl-no-def> timer declaration 134 9.54.2
<timeout-timer-op> ti nmeout operation 135 9.55
<unmap-op> unnmap operation 136 9.56
<unmap-all> unmap operation 136a 9.56.1
<unmap-comp> unnap operation 136b 9.56.2
<unmap-port> unmap operation 136¢ 9.56.3
<user-def-func-call> call of a function (call of a user-defined function) 84 9.244
<value-par-calculation> call of a function (handling of value parameters) 81 9.24.1
<var-declaration-init> variable declaration 138 9.57.1
<var-declaration-undef> variable declaration 139 9.57.2
<var-value> expression 72 9.18.2
<variable-declaration> variable declaration 137 9.57
<while-stmt> whi | e statement 140 9.58

ETSI




174

ETSI ES 201 873-4 V4.5.1 (2016-07)

History
Document history

V221 February 2003 Publication

V311 June 2005 Publication

v3z21l February 2007 Publication

V331 April 2008 Publication

V34l September 2008 | Publication

V4.1.1 June 2009 Publication

V421 July 2010 Publication

V4.4.1 April 2012 Publication

V451 May 2016 Membership Approval Procedure MV 20160715: 2016-05-16 to 2016-07-15
V45.1 July 2016 Publication

ETSI



	Intellectual Property Rights
	Foreword
	Modal verbs terminology
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Introduction
	5 Structure of the present document
	6 Restrictions
	7 Replacement of short forms
	7.0 General
	7.1 Order of replacement steps
	7.2 Replacement of global constants and module parameters
	7.3 Embedding single receiving operations into alt statements
	7.4 Embedding stand-alone altstep calls into alt statements
	7.5 Replacement of interleave statements
	7.6 Replacement of trigger operations
	7.7 Replacement of select-case statements
	7.8 Replacement of simple break statements
	7.9 Replacement of continue statements
	7.10 Adding default parameters to disconnect and unmap operations without parameters
	7.11 Adding default values of parameters

	8 Flow graph semantics of TTCN-3
	8.0 General
	8.1 Flow graphs
	8.1.0 General
	8.1.1 Flow graph frame
	8.1.2 Flow graph nodes
	8.1.2.0 General
	8.1.2.1 Start nodes
	8.1.2.2 End nodes
	8.1.2.3 Basic nodes
	8.1.2.4 Reference nodes
	8.1.2.4.0 General
	8.1.2.4.1 OR combination of reference nodes
	8.1.2.4.2 Multiple occurrences of reference nodes


	8.1.3 Flow lines
	8.1.4 Flow graph segments
	8.1.5 Comments
	8.1.6 Handling of flow graph descriptions

	8.2 Flow graph representation of TTCN-3 behaviour
	8.2.0 General
	8.2.1 Flow graph construction procedure
	8.2.2 Flow graph representation of module control
	8.2.3 Flow graph representation of test cases
	8.2.4 Flow graph representation of functions
	8.2.5 Flow graph representation of altsteps
	8.2.6 Flow graph representation of component type definitions
	8.2.7 Retrieval of start nodes of flow graphs

	8.3 State definitions for TTCN-3 modules
	8.3.0 General
	8.3.1 Module state
	8.3.1.0 General
	8.3.1.1 Accessing the module state

	8.3.1a Configuration state
	8.3.1a.0 Genral
	8.3.1a.1 Accessing the configuration state

	8.3.2 Entity states
	8.3.2.0 General
	8.3.2.1 Accessing entity states
	8.3.2.2 Data state and variable binding
	8.3.2.3 Accessing data states
	8.3.2.4 Timer state and timer binding
	8.3.2.5 Accessing timer states
	8.3.2.6 Port references and port binding
	8.3.2.7 Accessing port references

	8.3.3 Port states
	8.3.3.0 General
	8.3.3.1 Handling of connections among ports
	8.3.3.2 Handling of port states

	8.3.3a Component verdict states
	8.3.4 General functions for the handling of module states

	8.4 Messages, procedure calls, replies and exceptions
	8.4.0 General
	8.4.1 Messages
	8.4.2 Procedure calls and replies
	8.4.3 Exceptions
	8.4.4 Construction of messages, procedure calls, replies and exceptions
	8.4.5 Matching of messages, procedure calls, replies and exceptions
	8.4.6 Retrieval of information from received items

	8.5 Call records for functions, altsteps and test cases
	8.5.0 General
	8.5.1 Handling of call records

	8.6 The evaluation procedure for a TTCN-3 module
	8.6.1 Evaluation phases
	8.6.1.0 General
	8.6.1.1 Phase I: Initialization
	8.6.1.2 Phase II: Update
	8.6.1.3 Phase III: Selection
	8.6.1.4 Phase IV: Execution

	8.6.2 Global functions


	9 Flow graph segments for TTCN-3 constructs
	9.0 General
	9.1 Action statement
	9.2 Activate statement
	9.2a Alive component operation
	9.2a.0 General
	9.2a.1 Flow graph segment <alive-comp-act>
	9.2a.2 Flow graph segment <alive-comp-snap>

	9.3 Alt statement
	9.3.0 General
	9.3.1 Flow graph segment <take-snapshot>
	9.3.2 Flow graph segment <receiving-branch>
	9.3.3 Flow graph segment <altstep-call-branch>
	9.3.4 Flow graph segment <else-branch>
	9.3.5 Flow graph segment <default-evocation>

	9.4 Altstep call
	9.5 Assignment statement
	9.5a Break statements in altsteps
	9.6 Call operation
	9.6.0 General
	9.6.1 Flow graph segment <nb-call-with-one-receiver>
	9.6.1a Flow graph segment <nb-call-with-multiple-receivers>
	9.6.2 Flow graph segment <nb-call-without-receiver>
	9.6.3 Flow graph segment <b-call-without-duration>
	9.6.4 Flow graph segment <b-call-with-duration>
	9.6.5 Flow graph segment <call-reception-part>
	9.6.6 Flow graph segment <catch-timeout-exception>

	9.7 Catch operation
	9.8 Check operation
	9.8.0 General
	9.8.1 Flow graph segment <check-with-sender>
	9.8.2 Flow graph segment <check-without-sender>

	9.8a Checkstate port operation
	9.8a.0 General
	9.8a.1 Flow graph segment <check-port-status>
	9.8a.2 Flow graph segment <check-port-connection>

	9.9 Clear port operation
	9.10 Connect operation
	9.11 Constant definition
	9.12 Create operation
	9.13 Deactivate statement
	9.13.0 General
	9.13.1 Flow graph segment <deactivate-one-default>
	9.13.2 Flow graph segment <deactivate-all-defaults>

	9.14 Disconnect operation
	9.14.0 General
	9.14.1 Flow graph segment <disconnect-one-par-pair>
	9.14.2 Flow graph segment <disconnect-all>
	9.14.3 Flow graph segment <disconnect-comp>
	9.14.4 Flow graph segment <disconnect-port>
	9.14.5 Flow graph segment <disconnect-two-par-pairs>

	9.15 Do-while statement
	9.16 Done component operation
	9.16.0 General
	9.16.1 Flow graph segment <done-assignment>

	9.17 Execute statement
	9.17.0 General
	9.17.1 Flow graph segment <execute-without-timeout>
	9.17.2 Flow graph segment <execute-timeout>
	9.17.3 Flow graph segment <dynamic-error>

	9.18 Expression
	9.18.0 General
	9.18.1 Flow graph segment <lit-value>
	9.18.2 Flow graph segment <var-value>
	9.18.3 Flow graph segment <func-op-call>
	9.18.4 Flow graph segment <operator-appl>

	9.19 Flow graph segment <finalize-component-init>
	9.20 Flow graph segment <init-component-scope>
	9.20a Flow graph segment <init-scope-with-runs-on>
	9.20b Flow graph segment <init-scope-without-runs-on>
	9.21 Flow graph segment <parameter-handling>
	9.22 Flow graph segment <statement-block>
	9.23 For statement
	9.24 Function call
	9.24.0 General
	9.24.1 Flow graph segment <value-par-calculation>
	9.24.2 Flow graph segment <ref-par-var-calc>
	9.24.3 Flow graph segment <ref-par-timer-calc>
	9.24.3a Flow graph segment <ref-par-port-calc>
	9.24.4 Flow graph segment <user-def-func-call>
	9.24.5 Flow graph segment <predef-ext-func-call>

	9.25 Getcall operation
	9.26 Getreply operation
	9.27 Getverdict operation
	9.28 Goto statement
	9.28a Halt port operation
	9.29 If-else statement
	9.29a Kill component operation
	9.29a.0 General
	9.29a.1 Flow graph segment <kill-mtc>
	9.29a.2 Flow graph segment <kill-component>
	9.29a.3 Flow graph segment <kill-all-comp>

	9.29b Kill execution statement
	9.29b.0 General
	9.29b.1 Flow graph segment <kill-control>

	9.29c Killed component operation
	9.30 Label statement
	9.31 Log statement
	9.32 Map operation
	9.33 Mtc operation
	9.34 Port declaration
	9.35 Raise operation
	9.35.0 General
	9.35.1 Flow graph segment <raise-with-one-receiver-op>
	9.35.1a Flow graph segment <raise-with-multiple-receivers-op>
	9.35.2 Flow graph segment <raise-without-receiver-op>

	9.36 Read timer operation
	9.37 Receive operation
	9.37.0 General
	9.37.1 Flow graph segment <receive-with-sender>
	9.37.2 Flow graph segment <receive-without-sender>
	9.37.3 Flow graph segment <receive-assignment>

	9.38 Repeat statement
	9.39 Reply operation
	9.39.0 General
	9.39.1 Flow graph segment <reply-with-one-receiver-op>
	9.39.1a Flow graph segment <reply-with-multiple-receivers-op>
	9.39.2 Flow graph segment <reply-without-receiver-op>

	9.40 Return statement
	9.40.0 General
	9.40.1 Flow graph segment <return-with-value>
	9.40.2 Flow graph segment <return-without-value>

	9.41 Running component operation
	9.41.0 General
	9.41.1 Flow graph segment <running-comp-act>
	9.41.2 Flow graph segment <running-comp-snap>

	9.42 Running timer operation
	9.43 Self operation
	9.44 Send operation
	9.44.0 General
	9.44.1 Flow graph segment <send-with-one-receiver-op>
	9.44.1a Flow graph segment <send-with-multiple-receivers-op>
	9.44.2 Flow graph segment <send-without-receiver-op>

	9.45 Setverdict operation
	9.46 Start component operation
	9.47 Start port operation
	9.48 Start timer operation
	9.48.0 General
	9.48.1 Flow graph segment <start-timer-op-default>
	9.48.2 Flow graph segment <start-timer-op-duration>

	9.49 Stop component operation
	9.49.0 General
	9.49.1 Void
	9.49.2 Flow graph segment <stop-alive-component>
	9.49.3 Flow graph segment <stop-all-comp>

	9.50 Stop execution statement
	9.51 Stop port operation
	9.52 Stop timer operation
	9.53 System operation
	9.53a Test case stop operation
	9.54 Timer declaration
	9.54.0 General
	9.54.1 Flow graph segment <timer-decl-default>
	9.54.2 Flow graph segment <timer-decl-no-def>

	9.55 Timeout timer operation
	9.56 Unmap operation
	9.56.0 General
	9.56.1 Flow graph segment <unmap-all>
	9.56.2 Flow graph segment <unmap-comp>
	9.56.3 Flow graph segment <unmap-port>

	9.57 Variable declaration
	9.57.0 General
	9.57.1 Flow graph segment <var-declaration-init>
	9.57.2 Flow graph segment <var-declaration-undef>

	9.58 While statement

	10 Lists of operational semantic components
	10.1 Functions and states
	10.2 Special keywords
	10.3 Flow graphs of TTCN-3 behaviour descriptions
	10.4 Flow graph segments

	History

