Model Based Testing

of a Game Engine
using a Mono/.NET port of GraphWalker

UCAAT 2014
16-18 September, Munich

Marek Turski, Unity Technologies

Qunity

About Unity

Ori and the Blind Forest - an upcoming adventure game created in Unity

Integrated development environment for creating games and
other interactive virtual content (Windows/Mac OS X)

(@)

O
O
(@)

Over 20 supported runtime platforms
100 core product developers, 15 test developers
User base: 3.3 million registered developers

End user reach: 600 million people .
unity

Game engine complexity

O
Game . Mono
objects f

—p=
Y .7
O Animation

Game engine software testing is complex!

e Thousands of game objects in a virtual environment ...
e Reacting to input from a system of interacting sub-engines ...
e Through interfaces called Components ...

o Embedded Mono scripting framework interface g
e Executed in fame-based fashion in real-time Qunlty

Physics

Unity QA Challenges

Automation
e Teams: Test Developers and Test Framework Developers
e Large scope of automation frameworks
o Unit, Integration, Runtime, Scene-based, Model-based,
Performance, Graphics, Import, ... — over 3000
) automated tests!
Manual testing
Teams: Student Workers and Test Engineers
Integrated bug reporting system, dedicated user test groups
Continuous functional, usability and regression testing
Regular exploratory and release testing

Challenges
e Large test domain and fast development pace
e Low reuse of test artifacts from manual testing in automation
e Automation focused testing on unit-level functionality

Qunity

Model Based Testing at Unity

Tools are expected to be robust - robustness requires
high-level functional and integration testing!

Model Based Testing (MBT)
e Flexible test scope and execution parameters

o Better product exploration, tests retaining value over time
e Model as a test artifact

o Easier maintenance, additional source of documentation

Spec Explorer
e Dedicated modeling language and exploration workflow
e Conformance testing of system state in a slice of the model

GraphWalker
e Lightweight workflow focused on visual model design
e Run-time binding with an implementation class

Qunity

We're good at creating models!

character Al behaviour graph —

" SteppingLayer
—re—
[

RightFingers -

LeftFingers - [

f A\ A
PivotRightFootForwardBT

ForwardStancesLeftFootForward

S ”
IR W\

\"’, ShuffleForward 3TN AdvanceRighifootforvard
‘ ™.

Layers + Freenay)

i

— N\

BackwardStances
AN . S 4

ShuffleBackward

I ShuffleForwardLeft g_— —.: ShuffleForwardRight
ShuffleLeft *=) Y ga Righun - — ShuffleRight
0% T 1 1
E \\V,,;,,/f,,_;\—“\f%;i\\\“, <— animation graph
o - 1A= S8 N\
: =N/ 2
_ ShuffleBackwardLeft g_— BackwardLeftStar ——— > T —— ShuffleBackwardRight

BackwardStancesLeftFootRear

AnimatorControllers/CombatkawController.controller

«— procedural texture d
generation graph Qumty

256x256
031ms

YEd Model
6 States / statel = false; stateZe_=Edfi;:l’,:re“:r?ra:ri1cs)?ticg:frgnglse: transition2 = false;
14 transitions

e_AddState?2 [!state2]

v_AnimatorWindowOpened [state?| = true;

e_AddStatel [!statel]
e_AddStatel [!statel] / statel = true;

/ statel = true;

v_State 1Created R‘/; v_State2Created

e_AddState?2 [!statel]

e_AddTransitionl [[state]l && state2] {stares = titie; e_AddTransition2 ([state] && state2]

/ transitiopl = true; / transition2 = true;

e_AddTransition1 && state?] e_AddTransiti state2 && statel]
ffionl = true; ;

e_AddTransition2 [state]l && state2 && !transition2
/ transition2 = true;

e ——

e_AddTransitionl [statel && state2 && !transition2]
/ transitionl = true;

v_TransitionlCreated v_Transition2Created

e_finishEdit [transitionl && transition2]

e_finishEdit [transitipn] && transition2]
v_ControllerReady

e_Restart

Animation State Machine Model

Scenario: creating a simple state machine for animation
Model created by non-programmers

All logic covered by Action annotations

Implementation required only 30 lines of code .
i : v Sunity

‘ Start \

e_PrepareTestEnvironment
Y

[v_NoRecordedData]‘

e_SetPlaybackPosition
un d esire d e_StartPlaybackMode [v_PlaybackTimeRequestOutsidePlaybackModeErrorDisplayed

system v

Sta te t{ v_PlaybackMode

e_SetPlaybackPosition

e_SetPlaybackPositio
e_StopPlayback
Y

A

v_EmptyRecordingPlaybackTimeRequestErrorDisplayed j v_PlaybackModeFinished

Animation Recording Model (negative test)

e Scenario: testing how animation playback system handles
interaction with an empty animation recording
Model design process uncovers unnecessary system states

which translate to unwanted workflow complexity Qunity

Unity GraphWalker

Basic feature set

e Online and offline model traversals, coverage tracking
e Real-time and frame-by-frame preview and feedback
e Direct (double-click) access from model Ul to code

Initialize Valid Animator [
Start » Animator Ready For Recording

| Recording Completed ‘ Recording Completed With Offse!

Start Recordin \ \
: ;
ancele
ir ter Frames 0

Recording Partially Completed |

‘ Recording Mode ‘

Implementation

e Java GraphWalker compatibility
e Mono runtime / CaaS

e Coroutine-based execution

Navigation Mesh Pathfinding

§ ' ’ ’ ’
1 » ¥ v N
- “ ' * .ﬁ - 'i ﬁ »
" v g L g . « p P

Navigation Mesh Pathfinding Model

Scenario: Path traversal towards a defined destination point
The model scales rather quickly towards coverage equivalent to
that of ~30 typical unit-level test scenarios

Modular nature of the implementation makes it well suitable for

integration testing against other sub-engines
Sunity

ﬁ Initialize Navigation Mesh
Start >

Start Mgving Forward By 5
Return To Path Start

Proceed Until Destination

Proceed Until Remainind\Distance Is 2

Proceed Until Destination

[—W Initialize Navigation Mesh
Start >

Start Mgting Forward By 6
Return To Path Start

Proceed Until Destination

Proceed Until Remainind\Distance Is 4

Proceed Until Destination

A

Do Something Proceed Until Remaining Distance Is 3

Revert Something

fﬁ Initialize Navigation Mesh
Start >

Start Mging Forward By 8
Return To Path Start

Proceed Until Destination

Proceed Until Remainin\Distance Is 7

Proceed Until Destination

Set Zero Speed
Stop

Set Default Speed Proceed NAtil Remaining Distance Is 5

Reset Stopping Distance

Set Stopping Distance To Remaining Distance

[—W Initialize Navigation Mesh
Start >

ards Destination 8
Return To Path Start

Proceed Until Destination

Proceed Until Rem' tance Is 6

Proceed Until Destination

Warp To Path Start
Change Position To Path Start

Set Zero Speed

Set Default Speed Proceed §Atil Remaining Distance Is 5

Resume
Reset Stopping Distance

Set Stopping Distance To Remaining Distance

'r—} Initialize Navigation Mesh
Start

Revert
ards Destination §

Return To Path Start

Warp To Path Start
Change Position To Pat

Modify Area Cost
Modify Area Mask
Proceed Until Destination

Set Zero Speed

Set Default Speed Proceed Nntil Remaining Distance Is 5

Resume
Reset Stopping Distance

Set Stopping Distance To Remaining Distance

Conclusions

e Findings

o Model Based Testing techniques are very well suited for
structured workflow and scenario testing

o Visual model design is a promising platform for sharing and
maintaining test design ideas

o Using a lightweight test design workflow often naturally
encourages additional system exploration and leads to more
interesting test scenarios

e Demo
o http://files.unity3d.com/marek/mbt _demo.zip

e Q&A

http://files.unity3d.com/marek/mbt_demo.zip
http://files.unity3d.com/marek/mbt_demo.zip

