
Model Based Testing
of a Game Engine

Marek Turski, Unity Technologies

using a Mono/.NET port of GraphWalker

UCAAT 2014
16-18 September, Munich

About Unity

Integrated development environment for creating games and
other interactive virtual content (Windows/Mac OS X)

○ Over 20 supported runtime platforms
○ 100 core product developers, 15 test developers
○ User base: 3.3 million registered developers
○ End user reach: 600 million people

Ori and the Blind Forest - an upcoming adventure game created in Unity

Game engine complexity

Game engine software testing is complex!
● Thousands of game objects in a virtual environment ...
● Reacting to input from a system of interacting sub-engines ...
● Through interfaces called Components ...

○ Embedded Mono scripting framework interface
● Executed in fame-based fashion in real-time

Animation

Physics

MonoGame
objects

Unity QA Challenges

Automation
● Teams: Test Developers and Test Framework Developers
● Large scope of automation frameworks

○ Unit, Integration, Runtime, Scene-based, Model-based,
Performance, Graphics, Import, …

Manual testing
● Teams: Student Workers and Test Engineers
● Integrated bug reporting system, dedicated user test groups
● Continuous functional, usability and regression testing
● Regular exploratory and release testing

Challenges
● Large test domain and fast development pace
● Low reuse of test artifacts from manual testing in automation
● Automation focused testing on unit-level functionality

← over 3000
automated tests!

Model Based Testing at Unity

Tools are expected to be robust - robustness requires
high-level functional and integration testing!

Model Based Testing (MBT)
● Flexible test scope and execution parameters

○ Better product exploration, tests retaining value over time
● Model as a test artifact

○ Easier maintenance, additional source of documentation

Spec Explorer
● Dedicated modeling language and exploration workflow
● Conformance testing of system state in a slice of the model

GraphWalker
● Lightweight workflow focused on visual model design
● Run-time binding with an implementation class

We’re good at creating models!

← animation graph

← procedural texture
generation graph

character AI behaviour graph →

Animation State Machine Model
● Scenario: creating a simple state machine for animation
● Model created by non-programmers
● All logic covered by Action annotations
● Implementation required only 30 lines of code

yEd Model
6 states
14 transitions

Animation Recording Model (negative test)
● Scenario: testing how animation playback system handles

interaction with an empty animation recording
● Model design process uncovers unnecessary system states

which translate to unwanted workflow complexity

undesired
system
state

Unity GraphWalker
Basic feature set
● Online and offline model traversals, coverage tracking
● Real-time and frame-by-frame preview and feedback
● Direct (double-click) access from model UI to code

Implementation
● Java GraphWalker compatibility
● Mono runtime / CaaS
● Coroutine-based execution

Navigation Mesh Pathfinding Model
● Scenario: Path traversal towards a defined destination point
● The model scales rather quickly towards coverage equivalent to

that of ~30 typical unit-level test scenarios
● Modular nature of the implementation makes it well suitable for

integration testing against other sub-engines

Navigation Mesh Pathfinding

● Findings
○ Model Based Testing techniques are very well suited for

structured workflow and scenario testing
○ Visual model design is a promising platform for sharing and

maintaining test design ideas
○ Using a lightweight test design workflow often naturally

encourages additional system exploration and leads to more
interesting test scenarios

● Demo
○ http://files.unity3d.com/marek/mbt_demo.zip

● Q & A

Conclusions

http://files.unity3d.com/marek/mbt_demo.zip
http://files.unity3d.com/marek/mbt_demo.zip

