
Fault-Based Testing

Alexander Pretschner, TU München
UCAAT, Munich, 17/9/2014



Agenda

► Good tests

► Why coverage shouldn‘t be used a-priori

► Fault models

► Testing based on fault models

► Discussion

Fault-Based Testing, 17/09/2014, Alexander Pretschner 2



Agenda

► Good tests

► Why coverage shouldn‘t be used a-priori

► Fault models

► Testing based on fault models

► Discussion

Fault-Based Testing, 17/09/2014, Alexander Pretschner 3



Fault-Based Testing, 17/09/2014, Alexander Pretschner 4

What’s a good test case?

► “Ability to detect failures”
►No good test cases for a perfect program!

► “Ability to detect potential failures”
► “Potential”? Effort?

► “Ability to detect potential (or: likely) failures with good 
cost-effectiveness”

►Writing/executing/evaluating/maintaining the test
►Remaining failures in the field—severity 
►Going from failure to fault

► Perfect! And useless!



Coverage-Based Testing

► Challenge: operational, measurable quality of tests
► „Adequacy“: selection, stopping, assessment criteria

► Adequacy criteria induce partition of input domain
►Requirements
►Coverage criteria
► [Faults]

► Coverage a good response?

Fault-Based Testing, 17/09/2014, Alexander Pretschner 5



Fault-Based Testing, 17/09/2014, Alexander Pretschner 6

Input space partition: category-partition method

► Consider input space “under various aspects”

► For each “aspect”, form disjoint and complete set of classes

► (Iterate: build recursive classification)

► Instantiate classes so that the input domain is “covered”

[Grochtmann, Wegener, Grimm ’95]



Fault-Based Testing, 17/09/2014, Alexander Pretschner 7

Input space partition: category-partition method

[Grochtmann, Wegener, Grimm ’95]



Input Space Partitioning: Coverage Criteria

Fault-Based Testing, 17/09/2014, Alexander Pretschner 8

X>17

Y=2X Y=3X

Y=4Y

if(X>17)
Y=2*X;

else
Y=3*X;

Y=4*Y;

input block 1: {X: X<=17} input block 2: {X: X>17}



Bottom line

► Coverage-based testing instance of partition-based testing

► [Coverage: statement/branch/condition/MCDC … 
coverage; also def-use pairs]

Fault-Based Testing, 17/09/2014, Alexander Pretschner 9



Agenda

► Good tests?

► Why coverage shouldn‘t be used a-priori

► Fault models

► Testing based on fault models

► Discussion

Fault-Based Testing, 17/09/2014, Alexander Pretschner 10



Simple decision

Pick two test cases for

if x==1

f(g(h(i(j(k(l(m(x))))))))

else

m(l(k(j(i(h(g(f(x)))))))))

endif

[nondeterministic f..m]

Fault-Based Testing, 17/09/2014, Alexander Pretschner 11



Simple decision

Now, pick two test cases for

if x==1

f(g(h(i(j(k(l(m(x))))))))

else

f(g(h(x)))

endif

Fault-Based Testing, 17/09/2014, Alexander Pretschner 12



Simpler decision

And now, pick two test cases for

if x==1

f(g(h(i(j(k(l(m(x))))))))

else

print „Gott mit Dir, Du Land der Bayern“

endif

Fault-Based Testing, 17/09/2014, Alexander Pretschner 13



So what?

► Structural criterion a good idea?

► Fault model matters!

Fault-Based Testing, 17/09/2014, Alexander Pretschner 14



Disclaimer

► Truth somewhat more complicated:
coverage criteria usually applied to all function definitions, 
not just the main function

► General idea applicable nonetheless

► Plenty of empirical evidence that coverage is not helpful
when used a-priori, mixed findings for a-posteriori usage
most recent [Inozemtseva&Reid‘14]

Fault-Based Testing, 17/09/2014, Alexander Pretschner 15



16

Random and Partition Testing

► Partition testing can be better, worse, or the same as 
random testing
►8 in 100 inputs failure-causing, select n=2 tests
►Pr=1-(1-θ)n = 1-(1-.08)2=.15

► k=2 subdomains

►Pp=1-Π1≤i≤k(1- θi)ni =1-(1-4/50)2  = Pr

4/50 4/50

Fault-Based Testing, 17/09/2014, Alexander Pretschner



17

Random and Partition Testing

► Partition testing can be better, worse, or the same as 
random testing
►d=100, 8 inputs failure-causing, n=2 tests to be selected
►Pr=1-(1-.08)2=.15

► k=2 subdomains

►Pp=1-Π1≤i≤k(1- θi)ni =1-(1-4/50)2  = Pr

►Pp=1 > Pr

4/50 4/50

0/92 8/8

Fault-Based Testing, 17/09/2014, Alexander Pretschner



18

Random and Partition Testing

► Partition testing can be better, worse, or the same as 
random testing
►d=100, 8 inputs failure-causing, n=2 tests to be selected
►Pr=1-(1-.08)2=.15

► k=2 subdomains

►Pp=1-Π1≤i≤k(1- θi)ni =1-(1-4/50)2  = Pr

►Pp=1 > Pr

►Pp=1-(1-0/1)*(1-8/99)=.08 < Pr

4/50 4/50

0/92 8/8

8/99 0/1

Fault-Based Testing, 17/09/2014, Alexander Pretschner



Results (Weyuker&Jeng 1991)

► In general, partition based can be as good as, better than, 
or worse than random testing
►Fault-prone blocks not known in advance

► [yes several reasonable objections to this model]

► [Generalizations]

Fault-Based Testing, 17/09/2014, Alexander Pretschner 19



Discussion

► If a-priori failure likelihoods are not known (or their
characteristics or characteristics of their expectation), then
partition-based testing can be good or bad!

► Yes, coverage is good from a management perspective. 
Yes, MC/DC coverage is required by DO 178-B. 
Yes, we can automate the derivation of tests.

► But, we do it because we can and because one number
is better than no number, not because it would, from a 
failure detection perspective, make sense!

Fault-Based Testing, 17/09/2014, Alexander Pretschner 20



Disclaimer II

► Random testing really such a good idea?

Fault-Based Testing, 17/09/2014, Alexander Pretschner 21



Agenda

► Good tests?

► Why coverage shouldn‘t be used a-priori

► Fault models

► Testing based on fault models

► Discussion

Fault-Based Testing, 17/09/2014, Alexander Pretschner 22



Limit testing?

Fault-Based Testing, 17/09/2014, Alexander Pretschner 23

Empirically speaking, trouble!



Limit testing?

Fault-Based Testing, 17/09/2014, Alexander Pretschner 24

block 1 block 3block 2

Blocks 1 and 3 with higher expected failure rates
Plus, comparably small w.r.t. block 2
Hence: can expect E(Pp)>E(Pr)



What‘s this?

► … a fault model!

Fault-Based Testing, 17/09/2014, Alexander Pretschner 25



Fault models

► Limit testing

► Deadlocks, order violations, atomicity violations

► Incorrect transition, sneak paths, trap doors, corrupt states …

► Invariant violations in subclass

► Syntactic problems as used in mutation testing

► Combinatorial testing

► Domain-specific faults

Fault-Based Testing, 17/09/2014, Alexander Pretschner 26



Fault models [Morell 1991, Pretschner et al. 2013]

► Faults are delta with correct programs

► Fault models are descriptions of mappings from correct to 
incorrect programs and/or characterizations of
hypothesized failure domains
►Combinatorial testing special case
►Limit testing easier to grasp by failure domain

► „Effective“ fault models simple to define

Fault-Based Testing, 17/09/2014, Alexander Pretschner



Fault models

► Limit testing

► Deadlocks, order violations, atomicity violations

► Incorrect transition, sneak paths, trap doors, corrupt states …

► Invariant violations in subclass

► Syntactic problems as used in mutation testing

► Combinatorial testing

► Domain-specific faults

Fault-Based Testing, 17/09/2014, Alexander Pretschner 28



Agenda

► Good tests

► Partition-based testing: On „equivalence classes“

► Why coverage shouldn‘t be used a-priori

► Fault categories and models

► Testing based on fault models

► Methodology and Formalization

► Discussion

Fault-Based Testing, Marktoberdorf, summer 2014, Alexander Pretschner 29



Example I: Legacy Business IT

Fault-Based Testing, Marktoberdorf, summer 2014, Alexander Pretschner 30

Project P1

RPG:
► System state management
► Variables not re-initialized between 

workflows
► State kept in temp DB tables

► Hard-coded values
► Incorrect data types
► Too loose or too restrictive checks
► Arithmetic bugs
► …

Project P2

Cobol:
► System state management
► Global variable reuse

► Hard-coded values
► Arithmetic bugs
► Too loose or too restrictive checks
► Incorrect data types

PowerBuilder:
► Variables not re-initialized between 

workflows

PL/SQL:
► Too loose or too restrictive checks

► Recurring faults



Aggregated View: Examples

Fault

Too loose or too restrictive checks / conditions

System state management (has sub categories)

Variables not re-initialized between workflows

Global variable reuse

State kept in temporary DB table

Hard-coded values

Incorrect data types

Arithmetic bugs

31

• And so on …



Example: Unintended Workflows

• Problem: navigating between forms in different ways leads to different results (failures)

• Idea: 

• Compare operations performed between forms (states) in different workflows

• Use only “Next” button in GUI to determine intended or correct workflow

• Test un-intended workflows dynamically to find high severity failures 

32



Example II: Continuous Systems

► Implementation of controllers in Matlab/Simulink

► Example 1 
over/underflows; division by zero (or close-to-zero)
… using smells
A fault model.

► Example 2
problems if intended value smaller than current value –
usually, tests only for larger values
Rather a failure model.

Fault-Based Testing, Marktoberdorf, summer 2014, Alexander Pretschner 33



Continuous controllers and plants

34



Overflowing Abs – A Typical Fault Model

-128 = 10000000
(two complement)

Multiply with (-1) :
• Invert all bits -> 

01111111
• Add 00000001

Result:
10000000 = -128

Once again!

35

Example: 8-bit signed integer 



• 8-bit unsigned fixed point value with 4 bits before and 4 after the 

comma.

• Example: 

36

0 0 0 0 0 0 0 0Max value before
comma: 15

Max value after 
comma: .9375 

128 is far greater than the 
highest number (15.9375) that 
we could store in a 4/4-bit fixed 

point value

Total value range:

8 (decimal) as fixed point binary: 1000.0000, 1/16 as fix.p.bin: 0000.0001

Division by Small Value



37

• Analyze models for potential faults

(smells)

• Derive and execute test as

evidence for actual fault:

Use potential faults to provoke

failures

• Dynamic addition of further fault 

models

=> Early fault detection and direct

localization in the model

8Cage [Holling et. al 2014]



• Demo video offline if you wish



Can‘t we use static tools instead?

Yes we can.

But they are costly, both in terms of licenses and man power, and „trivial“ 

faults are annoying to the analyst – and expensive.

Similar reasoning for check lists.

39



Example Controller

40



Fault Model for Continuous Systems (Failures)

• Complete test even more
impossible than usual …

• Experts write representative
tests

• Frequent assumption: controller
is in initial state (that is, 0)

• Hence only „positive“ 
computations starting at 0

⇒ Sufficient to test requirements
such as stability, 
responsiveness etc.?

⇒ Results by Matinnejad et al. 
2013, 2014



Controller requirement – Smoothness

Intuition: No large over/undershoots once close to desired value
Measurement: max(|Actual(t) – Desired(t)|)

�����	��� ≤ �	 ≤ 	 �
�� and ���time when |Actual(t) – Desired(t)| < v1 for the first time
Goal: maximum error ≤ v2 after ���

time

D
es

ire
d 

an
d 

ac
tu

al
 v

al
ue

s



Controller requirement – Responsiveness

Computation: First time until error less or equal to v3
Measurement: time (= t3) from tstep until |Actual(t) – Desired(t)|<= v3

for the first time
Goal: Check if t3 is within required bounds

time

D
es

ire
d 

an
d 

ac
tu

al
 v

al
ue

s
	�
�
�



Credits

► Text book properties

► Ideas borrowed from Matinnejad et al.

► Our definitions slightly different

► Close relationship with standard controller quality criteria:
L1, L2, ITAE, max norms

► Many more: removal of opposing force, oscillation, 
discretization, …

Fault-Based Testing, Marktoberdorf, summer 2014, Alexander Pretschner 44



Approach

► Simulation with two intended values (fault model)
• First half: get system to initial intended value
• Second half: get system to final intended value

Step 1 [Matinnejad et al. 2013]:
• Partition input space into blocks
• Randomly select N points per block
• Assess requirement satisfaction per point
• Create heatmap (brighter block = better satisfaction)

Step 2 [Matinnejad et al. 2013]:
• Use more fine-grained AI search methods for selected blocks
• Find global maximum of deviation for blocks

Further fault models, e.g. oscillation of plant after reaching intended value.
[Identifying these fault models is the crucial part!]

Initial intended value

F
in

al
 in

te
nd

ed
va

lu
e

Stability heat map



• Demo video offline if you wish



Discussion

► Controller designers know what they are doing

► Various industry partners report they don‘t have these
problems

► More interesting situation for cascading controllers

► TUM open source implementation
Source: https://github.com/AlvinStanescu/ControllerTester
Installer: http://sourceforge.net/projects/controllertester/

Fault-Based Testing, Marktoberdorf, summer 2014, Alexander Pretschner 47



How to Describe Fault Models

► Ad-hoc implementations

► Currently working on generic description

Fault-Based Testing, 17/09/2014, Alexander Pretschner 48



49

Domain

Generic fault model for quality assurance

DescriptionElicitation
Operational-

ization

Test Level

AssessmentClassification Maintenance

Application

Steps

Variation 

Points

Foundation

Process: Big Picture



Agenda

► Good tests?

► Partition-based testing

► Why coverage shouldn‘t be used a-priori

► Fault models

► Testing based on fault models

► Discussion

Fault-Based Testing, 17/09/2014, Alexander Pretschner 50



Discussion

► Various tools do similar things – but for general faults
►Test case derivation helps rule out false positives

► Fault injection not a new idea

► Fault models available –
code reading the more efficient approach?

► How much process, how much technology?

► How to build and maintain a good fault data base? Agility?

► Fault-based testing needs to be complemented

Fault-Based Testing, 17/09/2014, Alexander Pretschner 51



(Deliberate) Limitations

. . .

hashOut.data = hashes + SSL_MD5_DIGEST_LEN;

hashOut.length = SSL_SHA1_DIGEST_LEN;

if ((err = SSLFreeBuffer(&hashCtx)) != 0)

goto fail;

if ((err = ReadyHash(&SSLHashSHA1, &hashCtx)) != 0)

goto fail;

if ((err = SSLHashSHA1.update(&hashCtx, &clientRandom)) != 0)

goto fail;

if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)

goto fail;

if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)

goto fail;

goto fail;  

if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)

goto fail;

err = sslRawVerify(...);

. . .

52



Wrap-Up and What‘s in it for you?

► „Good“ test cases require fault models

► Coverage not based on fault model

► „Fault models“ non-trivial
► But everybody uses them all the time!

► Fault model needs to be applicable …

► … but not finding a problem doesn‘t make tests bad!!

► Operationalization: tests and check lists

► Continue to build a culture of faults!

Fault-Based Testing, 17/09/2014, Alexander Pretschner 53



References

[Andrews et al. 2005] James H. Andrews, Lionel C. Briand, Yvan Labiche: Is mutation an appropriate tool for testing 
experiments? ICSE 2005: 402-41

[Binder 1999] Binder, Testing OO Systems, Addison Wesley, 1999

[Büchler et al. 2012] Büchler, Oudinet, Pretschner: Semi-Automatic Security Testing of Web Applications from a Secure 
Model. Proc. 6th IEEE Intl. Conf. on Software Security and Reliability, pp. 253-262, June 2012

[Gutjahr99] ] Gutjahr: Partition Testing vs. Random Testing: The Influence of Uncertainty. IEEE TSE 25(5):661-674, 1999

[Inozemtseva&Reid‘14] Inozemtseva, Holmes: Coverage is not strongly correlated with test suite effectiveness. To appear in 
Proc. ICSE, 2014

[Lu et al.08] Shan Lu, Soyeon Park, Eunsoo Seo and Yuanyuan Zhou : Learning from Mistakes – A Comprehensive Study 
on Real World Concurrency Bug Characteristics. Proceedings of the 13th international conference on Architectural support 
for programming languages and operating systems, pp. 329-339, 2008

[Ma et al. 2002] Yu-Seung Ma, Yong Rae Kwon, Jeff Offutt: Inter-Class Mutation Operators for Java. ISSRE 2002: 352-366

[Matinnejad et al. 2013] Reza Matinnejad, Shiva Nejati, Lionel C. Briand, Thomas Bruckmann, Claude Poull: Automated
Model-in-the-Loop Testing of Continuous Controllers Using Search. SSBSE 2013: 141-157

[Morell 90] Morell: A Theory of Fault-Based Testing. IEEE TSE 16(8):844-857, 1990

[Offutt 1992] A. Jefferson Offutt: Investigations of the Software Testing Coupling Effect. ACM Trans. Softw. Eng. Methodol. 
1(1): 5-20 (1992)

[Pretschner et al. 2013] Pretschner, Holling, Eschbach, Gemmar: A Generic Fault Model for Quality Assurance. Proc. 
MODELS, pp. 87-103, 2013. Contains a few references to empirical studies on coverage.

[Weyuker&Jeng91] Weyuker, Jeng:Analyzing Partition Testing Strategies. IEEE TSE 17(7):703-711, 1991

Fault-Based Testing, 17/09/2014, Alexander Pretschner 54


