
Fault-Based Testing

Alexander Pretschner, TU München
UCAAT, Munich, 17/9/2014



Agenda

► Good tests

► Why coverage shouldn‘t be used a-priori

► Fault models

► Testing based on fault models

► Discussion

Fault-Based Testing, 17/09/2014, Alexander Pretschner 2



Agenda

► Good tests

► Why coverage shouldn‘t be used a-priori

► Fault models

► Testing based on fault models

► Discussion

Fault-Based Testing, 17/09/2014, Alexander Pretschner 3



Fault-Based Testing, 17/09/2014, Alexander Pretschner 4

What’s a good test case?

► “Ability to detect failures”
►No good test cases for a perfect program!

► “Ability to detect potential failures”
► “Potential”? Effort?

► “Ability to detect potential (or: likely) failures with good 
cost-effectiveness”

►Writing/executing/evaluating/maintaining the test
►Remaining failures in the field—severity 
►Going from failure to fault

► Perfect! And useless!



Coverage-Based Testing

► Challenge: operational, measurable quality of tests
► „Adequacy“: selection, stopping, assessment criteria

► Adequacy criteria induce partition of input domain
►Requirements
►Coverage criteria
► [Faults]

► Coverage a good response?
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Input space partition: category-partition method

► Consider input space “under various aspects”

► For each “aspect”, form disjoint and complete set of classes

► (Iterate: build recursive classification)

► Instantiate classes so that the input domain is “covered”

[Grochtmann, Wegener, Grimm ’95]
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Input space partition: category-partition method

[Grochtmann, Wegener, Grimm ’95]



Input Space Partitioning: Coverage Criteria
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X>17

Y=2X Y=3X

Y=4Y

if(X>17)
Y=2*X;

else
Y=3*X;

Y=4*Y;

input block 1: {X: X<=17} input block 2: {X: X>17}



Bottom line

► Coverage-based testing instance of partition-based testing

► [Coverage: statement/branch/condition/MCDC … 
coverage; also def-use pairs]
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Simple decision

Pick two test cases for

if x==1

f(g(h(i(j(k(l(m(x))))))))

else

m(l(k(j(i(h(g(f(x)))))))))

endif

[nondeterministic f..m]
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Simple decision

Now, pick two test cases for

if x==1

f(g(h(i(j(k(l(m(x))))))))

else

f(g(h(x)))

endif
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Simpler decision

And now, pick two test cases for

if x==1

f(g(h(i(j(k(l(m(x))))))))

else

print „Gott mit Dir, Du Land der Bayern“

endif
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So what?

► Structural criterion a good idea?

► Fault model matters!
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Disclaimer

► Truth somewhat more complicated:
coverage criteria usually applied to all function definitions, 
not just the main function

► General idea applicable nonetheless

► Plenty of empirical evidence that coverage is not helpful
when used a-priori, mixed findings for a-posteriori usage
most recent [Inozemtseva&Reid‘14]
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Random and Partition Testing

► Partition testing can be better, worse, or the same as 
random testing
►8 in 100 inputs failure-causing, select n=2 tests
►Pr=1-(1-θ)n = 1-(1-.08)2=.15

► k=2 subdomains

►Pp=1-Π1≤i≤k(1- θi)ni =1-(1-4/50)2  = Pr

4/50 4/50
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Random and Partition Testing

► Partition testing can be better, worse, or the same as 
random testing
►d=100, 8 inputs failure-causing, n=2 tests to be selected
►Pr=1-(1-.08)2=.15

► k=2 subdomains

►Pp=1-Π1≤i≤k(1- θi)ni =1-(1-4/50)2  = Pr

►Pp=1 > Pr

4/50 4/50

0/92 8/8
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Random and Partition Testing

► Partition testing can be better, worse, or the same as 
random testing
►d=100, 8 inputs failure-causing, n=2 tests to be selected
►Pr=1-(1-.08)2=.15

► k=2 subdomains

►Pp=1-Π1≤i≤k(1- θi)ni =1-(1-4/50)2  = Pr

►Pp=1 > Pr

►Pp=1-(1-0/1)*(1-8/99)=.08 < Pr

4/50 4/50

0/92 8/8

8/99 0/1
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Results (Weyuker&Jeng 1991)

► In general, partition based can be as good as, better than, 
or worse than random testing
►Fault-prone blocks not known in advance

► [yes several reasonable objections to this model]

► [Generalizations]
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Discussion

► If a-priori failure likelihoods are not known (or their
characteristics or characteristics of their expectation), then
partition-based testing can be good or bad!

► Yes, coverage is good from a management perspective. 
Yes, MC/DC coverage is required by DO 178-B. 
Yes, we can automate the derivation of tests.

► But, we do it because we can and because one number
is better than no number, not because it would, from a 
failure detection perspective, make sense!
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Disclaimer II

► Random testing really such a good idea?

Fault-Based Testing, 17/09/2014, Alexander Pretschner 21



Agenda

► Good tests?

► Why coverage shouldn‘t be used a-priori

► Fault models

► Testing based on fault models

► Discussion

Fault-Based Testing, 17/09/2014, Alexander Pretschner 22



Limit testing?
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Empirically speaking, trouble!



Limit testing?
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block 1 block 3block 2

Blocks 1 and 3 with higher expected failure rates
Plus, comparably small w.r.t. block 2
Hence: can expect E(Pp)>E(Pr)



What‘s this?

► … a fault model!
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Fault models

► Limit testing

► Deadlocks, order violations, atomicity violations

► Incorrect transition, sneak paths, trap doors, corrupt states …

► Invariant violations in subclass

► Syntactic problems as used in mutation testing

► Combinatorial testing

► Domain-specific faults
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Fault models [Morell 1991, Pretschner et al. 2013]

► Faults are delta with correct programs

► Fault models are descriptions of mappings from correct to 
incorrect programs and/or characterizations of
hypothesized failure domains
►Combinatorial testing special case
►Limit testing easier to grasp by failure domain

► „Effective“ fault models simple to define
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Fault models

► Limit testing

► Deadlocks, order violations, atomicity violations

► Incorrect transition, sneak paths, trap doors, corrupt states …

► Invariant violations in subclass

► Syntactic problems as used in mutation testing

► Combinatorial testing

► Domain-specific faults
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Example I: Legacy Business IT
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Project P1

RPG:
► System state management
► Variables not re-initialized between 

workflows
► State kept in temp DB tables

► Hard-coded values
► Incorrect data types
► Too loose or too restrictive checks
► Arithmetic bugs
► …

Project P2

Cobol:
► System state management
► Global variable reuse

► Hard-coded values
► Arithmetic bugs
► Too loose or too restrictive checks
► Incorrect data types

PowerBuilder:
► Variables not re-initialized between 

workflows

PL/SQL:
► Too loose or too restrictive checks

► Recurring faults



Aggregated View: Examples

Fault

Too loose or too restrictive checks / conditions

System state management (has sub categories)

Variables not re-initialized between workflows

Global variable reuse

State kept in temporary DB table

Hard-coded values

Incorrect data types

Arithmetic bugs
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• And so on …



Example: Unintended Workflows

• Problem: navigating between forms in different ways leads to different results (failures)

• Idea: 

• Compare operations performed between forms (states) in different workflows

• Use only “Next” button in GUI to determine intended or correct workflow

• Test un-intended workflows dynamically to find high severity failures 
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Example II: Continuous Systems

► Implementation of controllers in Matlab/Simulink

► Example 1 
over/underflows; division by zero (or close-to-zero)
… using smells
A fault model.

► Example 2
problems if intended value smaller than current value –
usually, tests only for larger values
Rather a failure model.
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Continuous controllers and plants
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Overflowing Abs – A Typical Fault Model

-128 = 10000000
(two complement)

Multiply with (-1) :
• Invert all bits -> 

01111111
• Add 00000001

Result:
10000000 = -128

Once again!
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Example: 8-bit signed integer 



• 8-bit unsigned fixed point value with 4 bits before and 4 after the 

comma.

• Example: 
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0 0 0 0 0 0 0 0Max value before
comma: 15

Max value after 
comma: .9375 

128 is far greater than the 
highest number (15.9375) that 
we could store in a 4/4-bit fixed 

point value

Total value range:

8 (decimal) as fixed point binary: 1000.0000, 1/16 as fix.p.bin: 0000.0001

Division by Small Value



37

• Analyze models for potential faults

(smells)

• Derive and execute test as

evidence for actual fault:

Use potential faults to provoke

failures

• Dynamic addition of further fault 

models

=> Early fault detection and direct

localization in the model

8Cage [Holling et. al 2014]



• Demo video offline if you wish



Can‘t we use static tools instead?

Yes we can.

But they are costly, both in terms of licenses and man power, and „trivial“ 

faults are annoying to the analyst – and expensive.

Similar reasoning for check lists.
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Example Controller
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Fault Model for Continuous Systems (Failures)

• Complete test even more
impossible than usual …

• Experts write representative
tests

• Frequent assumption: controller
is in initial state (that is, 0)

• Hence only „positive“ 
computations starting at 0

⇒ Sufficient to test requirements
such as stability, 
responsiveness etc.?

⇒ Results by Matinnejad et al. 
2013, 2014



Controller requirement – Smoothness

Intuition: No large over/undershoots once close to desired value
Measurement: max(|Actual(t) – Desired(t)|)

�����	��� ≤ �	 ≤ 	 �
�� and ���time when |Actual(t) – Desired(t)| < v1 for the first time
Goal: maximum error ≤ v2 after ���
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Controller requirement – Responsiveness

Computation: First time until error less or equal to v3
Measurement: time (= t3) from tstep until |Actual(t) – Desired(t)|<= v3

for the first time
Goal: Check if t3 is within required bounds

time
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Credits

► Text book properties

► Ideas borrowed from Matinnejad et al.

► Our definitions slightly different

► Close relationship with standard controller quality criteria:
L1, L2, ITAE, max norms

► Many more: removal of opposing force, oscillation, 
discretization, …
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Approach

► Simulation with two intended values (fault model)
• First half: get system to initial intended value
• Second half: get system to final intended value

Step 1 [Matinnejad et al. 2013]:
• Partition input space into blocks
• Randomly select N points per block
• Assess requirement satisfaction per point
• Create heatmap (brighter block = better satisfaction)

Step 2 [Matinnejad et al. 2013]:
• Use more fine-grained AI search methods for selected blocks
• Find global maximum of deviation for blocks

Further fault models, e.g. oscillation of plant after reaching intended value.
[Identifying these fault models is the crucial part!]

Initial intended value
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Stability heat map



• Demo video offline if you wish



Discussion

► Controller designers know what they are doing

► Various industry partners report they don‘t have these
problems

► More interesting situation for cascading controllers

► TUM open source implementation
Source: https://github.com/AlvinStanescu/ControllerTester
Installer: http://sourceforge.net/projects/controllertester/
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How to Describe Fault Models

► Ad-hoc implementations

► Currently working on generic description
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Domain

Generic fault model for quality assurance

DescriptionElicitation
Operational-

ization

Test Level

AssessmentClassification Maintenance

Application

Steps

Variation 

Points

Foundation

Process: Big Picture



Agenda

► Good tests?

► Partition-based testing

► Why coverage shouldn‘t be used a-priori

► Fault models

► Testing based on fault models

► Discussion

Fault-Based Testing, 17/09/2014, Alexander Pretschner 50



Discussion

► Various tools do similar things – but for general faults
►Test case derivation helps rule out false positives

► Fault injection not a new idea

► Fault models available –
code reading the more efficient approach?

► How much process, how much technology?

► How to build and maintain a good fault data base? Agility?

► Fault-based testing needs to be complemented
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(Deliberate) Limitations

. . .

hashOut.data = hashes + SSL_MD5_DIGEST_LEN;

hashOut.length = SSL_SHA1_DIGEST_LEN;

if ((err = SSLFreeBuffer(&hashCtx)) != 0)

goto fail;

if ((err = ReadyHash(&SSLHashSHA1, &hashCtx)) != 0)

goto fail;

if ((err = SSLHashSHA1.update(&hashCtx, &clientRandom)) != 0)

goto fail;

if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)

goto fail;

if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)

goto fail;

goto fail;  

if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)

goto fail;

err = sslRawVerify(...);

. . .
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Wrap-Up and What‘s in it for you?

► „Good“ test cases require fault models

► Coverage not based on fault model

► „Fault models“ non-trivial
► But everybody uses them all the time!

► Fault model needs to be applicable …

► … but not finding a problem doesn‘t make tests bad!!

► Operationalization: tests and check lists

► Continue to build a culture of faults!
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