IMS voice conformance test over LTE

ETSI STF160 2012 TTCN-3 用户大会文档

议题总纲

- The Project
- Support of Voice in LTE
 - Voice options in LTE
 - SRVCC Architecture
 - SRVCC call Message flow
 - Test Model Enhancements for IMS
- Output Description Control Control
- Conclusions

议题

Output Description 1 Contract Contra

--3GPP UE conformance test

- Mobile terminal conformance is one of the key issues in the mobile industry, impacting interoperability.
- 3GPP RAN5 and GERAN3 are responsible for UE conformance test specifications
- A task force STF160 under TSG RAN/RAN5 develops, maintains, delivers the 3GPP UE test suites in TTCN
- Only these TTCN test cases produced at ETSI are valid for the UE certifications
 - Applied by certification bodies like GCF, PTCRB
- ETSI CTI provides to 3GPP the STF leadership and management of all 3GPP TTCN-related matters
- Solution The STF has 18 experts from ETSI, CCSA and ATIS
 - The largest testing project supported by ETSI
- Funding 90 mm / year
 - 3GPP funding 58 mm (754k Euro)
 - Voluntary contributions 32 mm as man power, free-of-charge from TDIA and other 3GPP companies
- **WE conformance test covers seven technologies: LTE, W-CDMA,**

TD-SCDMA, GSM/GPRS, IMS, CDMA2000 and inter-technology mobility and roaming

- For all mobile devices and modules
- For all 3GPP/3GPP2 frequency Bands
- For 7 3GPP Releases (Rel-9 backwards to R99)
- Solution Content of the second sec
- Oevelops 200 new test cases / year

- Provides 12 deliveries / year
- Baseline upgrade once per year
- MCC TF160: Signalling Conformance Tests for 3GPP (RAN5: Testing)
 - Task: Develop Conformance Test Suites for UE world-wide certification
 - 2000..now Conformance Tests for UMTS Signalling FDD/TDD (TTCN-2++) (Rel-99 ... Rel9)
 - 2006..now Conformance Tests for IMS (TTCN-3, bearer agnostic)
 - 2007..2008 Pre-evaluation of TTCN-3 for LTE Signalling
 - 2008..now 3GPP LTE/SAE UE Conformance Test[Rel8 & Rel9]
 - 2011..now IMS Emergency Call/ SRVCC calls in LTE/SAE->
 UTRAN/GERAN/CDMA 1XRTT

O The Project

--LTE/SAE Project

- Test cases: 393 Verified
 - + 75 LTE/SAE + 39 Positioning fully implemented
 - 613 test cases planned [Rel 8 & Rel 9]
 - 120+ planned for IMS
- Code size:
 - 263 Modules
 - App. 240 K Lines of code (TTCN-3)
- Output Definitions
 - TTCN-3: > 31 modules, App. 30K lines of code
 - ASN.1: > 8 modules , App. 50K lines of code
 - XML: < Not yet used
- Output States Tools:
 - 6 different compilers (all available at ETSI)
 - Quality checks (naming conventions, template restrictions etc.)
 - Code generation (top-level test case definitions, parameters, etc.)
 - Code analysis (structure, approved objects)
- TTCN-3 code is freely available for 3GPP members and widely used <u>http://www.3gpp.org/ftp/tsg_ran/WG5_Test_ex-T1/TTCN/Deliveries/LTE_S_AE/</u>

The Project

--Component Structure

- MTC
 - Start of PTCs, monitoring of "done" and "killed"
 - RAT independent interfaces (e.g. AT-/MMI-commands to control the UE)
 - In general no pass/fail verdicts
- PTCs for each RAT (radio access technology)

- LTE, UMTS, GSM/GPRS, CDMA2000
- May be connected to any other RAT PTC
- Only RAT specific interfaces
- Assignment of pass/fail verdicts
- Ø Ports and interfaces
 - Connections: only one-to-one
 - $(\Rightarrow$ no "send to", "receive from"; no use of address data type)
 - No duplicated interfaces: e.g. only one interface for AT-/MMI-commands hosted by the MTC
 - Message based communication only
- OPTCs for other protocols
- IP PTC
 - IP data (e.g. DHCP, ICMPv6) handling
 - To keep system interface simple and deal with "parallel behaviour"
 - In general no test characteristic (⇒ no pass/fail verdicts)
 - Possibility to provide non standard test specific behaviour by routing the IP messages to EUTRA PTC. Test characterisitic (⇒ pass/fail verdict allocations)
 - More than one instances possible. One instance per PDN
- IMS PTC
 - By default provides generic IMS SIP Registration and deregistration
 - Provides UDP/TCP transport of IMS SIP signalling messages
 - In general no test characteristic (\Rightarrow no pass/fail verdicts)
 - Possibility to provide non default, test specific behaviour
 - More than one instances possible: one instance per PDN
- NAS Emulator
 - "protocol layer" underneath LTE PTC
 - Performs NAS security (Ciphering/Integrity) with the help of external functions

SUPPORT OF VOICE IN LTE --Voice options in LTE

- LTE is an all packet technology supporting Packet switched domain only
- Support for Voice is still a necessity
 - Regulatory requirements present for support of voice call [emergency calls]
 - In the age of smart phones, voice still accounts for 15% of mobile traffic.
- SFB is 3GPP endorsed initial voice support, commercially launched in 2011.
 - LTE networks are deployed alongside legacy voice networks [UTRAN/GERAN/CDMA 1xRTT]
 - UE will be handed over or redirected to the legacy voice RAT when Voice service is needed
 - Increases call establishment time by 5 to 8 seconds.
- SRVCC is next logical step after CSFB in LTE road map
 - UE while camping in LTE uses IMS [VoLTE] for voice
 - Core network on both sides will be connected and synchronised.
 - Allows single Radio in UE to be handed over from VoLTE to legacy CS domain UTRAN/GERAN/1XRTT; Handover in opposite direction is still not standardised.
 - Provides a seamless voice experience to customers using LTE multi mode handsets
- Some operators going for non 3GPP endorsed technologies, for example SVLTE
 - UE will be simultaneously camping on LTE network for data and some voice technology [e.g. 1xRTT] for voice.
 - No need for core networks to be connected and synchronised
 - 2 UE' s put in one plastic case

--SRVCC call Complexity

SUPPORT OF VOICE IN LTE

- Requires MTC and at-least 5 PTCS [EUTRA, NAS Emu, IP, IMS and one of target RAT PTC's]
 - Co-ordination between 6 components. [Does not considers multiple instances of IP and IMS components for multi PDN network simulations]
 - Signalling handled by these components will be partially independent with start and stop points, synchronised with signalling in other components.
 - Simple and robust inter component co-ordination message protocol desired. Hand shake signals are mostly sufficient; configurable RAT specific information also needs to be shared occasionally.
 - Requires test case specific behaviour for IMS_PTC, Verdict assignment in IMS_PTC.

SUPPORT OF VOICE IN LTE --Future IMS extensions

- Itests for Video calls over LTE
 - requires additional bearer for video.
 - requires additional IMS profiles.
- Tests for IMS Voice call over HSPA (PS domain) and its handover to CS domain in UTRAN or GERAN
 - Similar complexity as SRVCC LTE
 - IMS over HSPA[UTRAN bearer] required
- State of the support of IMS VoLTE call handover to VoHSPA and vice versa.
 - More IMS SIP signalling over HSPA after handover for call release/de-registration
 - IMS bearers for voice to be supported both in LTE and HSPA
- IMS Emergency call over LTE and HSPA
 - Needs multiple PDN connections, hence multiple instances of IMS PTC.
- Test model needs to be ready for these test requirements

SUPPORT OF VOICE IN LTE

- * Functionality in dark green added new; Other functionality also enhanced
- SigComp is not required for VoLTE, but may be used for IMS over UTRAN
- It may be required in future to add SigComp

- Test case specific IMS PTC
 - Provides test case specific IMS behavior.
 - Handles default IMS registration &
 - Customized SIP signaling for IMS voice call.
 - Assigns verdicts
 - SIP codec achieved by TTCN 3 built in functions encvalue/decvalue
 - Sigcomp not handled yet.
- Enhancements to IP PTC
 - Added functionality for DHCP/DNS and other IETF protocols during IMS registration
 - Enhance IP control for configuring Ipsec in SS IP stack emulation
 - Routing/receiving of SIP PDU's to/from IMS PTC by Mux/Filter
 - Enhanced routing.
- Enhancements in SS adaptor
 - Ipsec handling, configuration of security policy database (SPD) and security association database (SAD) security parameters
 - Possibility to map IMS bearers on UTRAN bearers (VoHSPA)
- Additional inter component co-ordination ports and messages

THE EXPERIENCE --MCC160 Experience

- ETSI MCC TF160 is one among few teams simultaneously using TTCN2 and TTCN3 for ATS development.
 - The only ETSI team still using TTCN2 for historical reasons
- Language evolution & Tool support
 - TTCN2++ frozen in May 1999, with negligible tool enhancements, seems to have exceeded its 'use by' period.
 - TTCN 3 enjoys enviable language/tool enhancements and maintenance

Grey areas in spec

- Grey areas (too late to clarify the standards) with different understanding across tool vendors, preventing such features usage.
 - IS_PRESENT, behavior with omitted contents, pointing to a list of elements etc.
- No such issues with TTCN 3 due to active language and tool support;
 - MCC 160 actively provides such feed back, resulting in clarification in standards and enhancements of tools.
- Fixed Mobile convergence:
 - Industry is buzz with fixed mobile convergence, requiring many IP based IETF protocols [DHCP/DNS/ICMP/SigComp/IPSec…] support in wireless networks
 - Structure TTCN 2 IP based code getting unreadable with too many octet

strings and local trees.

- Similar code is very simple in TTCN 3.
- Absence of built-in functions like encvalue/decvalue in TTCN 2, proving costly; requires many TSO' s to be defined
- Increased code Sizes
 - Tests from 7 releases [Rel99, Rel4, Rel5,…Rel9], proving too much for decade old TTCN 2 compilers to handle.
 - Import tables overhead becoming more than the actual code size.
 - Higher the release, severe the problem due to modular structure for development.
 - Resulting in huge, un manageable modules
 - Compilation and code generation is very time consuming
 - TTCN 3 tools seem to enjoy immunity against such code expansion
 - Integration of IMS with LTE was smooth.
 - Import of a module in TTCN3 is one line with 'import all' option.
 - **60k[2009]** -> 240k [2012] TTCN 3 lines of code.
 - 90[2009]-> 263[2012] modules
 - 3 [2009]->6+[2012] active components in a test case
 - No known compiler complains
- Proposal to move UTRAN Rel10 and later test development from TTCN 2 to TTCN 3; possibly to also port existing TTCN2 Rel7 and later tests to TTCN 3.
 - Discussion & decision to be made in RAN5 #55 meeting in May 2012

CONCLUSIONS

- Regulatory requirements for support of voice & commercial need for interoperability with legacy CS voice service, contributed in most challenging enhancements in test model and coding MCC TF160 worked on till date.
- Integration of IMS in LTE, brought along with its challenges of handling many flavors of IMS implementations.
- TTCN 3 Rocks
 - Once again TTCN 3 proved to be a good choice by providing competent language frame work, to overcome all challenges in integrating IMS with LTE.
 - Even though there is still no formal verification of IMS in LTE, we do have informal claims of good progress being made; Initial IMS registration performed successfully.
 - Successfully demonstrated co-habitation of seven technologies: LTE[FDD/TDD], W-CDMA, TD-SCDMA, GSM/GPRS, IMS, CDMA HRPD/1XRTT
 - Solution Active TTCN3 language and tool support is enviable.
 - Quality check tools, marking approved objects from rest are 'icing on the cake'
- The successful integration of IMS with LTE, further motivates to harmonize the IMS code and test model existing in 2 MCC 160 projects:

- Ithe IMS conformance testing (34.229-3) and
- Ithe IMS required for VoLTE (36.523-3).
- Schallenge for second half of 2012.
- Maximize code reuse in terms of shared modules, hence code synergy.
- Speeds new test case development due to code synergy.
- **Boon for maintenance and enhanced quality.**
- It argets harmonization of Test Model
- Requires new proxy TTCN 3 modules for primitive mapping
- Requires further enhancements for Sigcomp, XCAP.

Content System

⇒ e.g. requirements regarding real-time behaviour for System Simulator and TTCN-3 code

SRVCC Reference Architecture

*Architecture for EUTRA to UTRAN/GERAN considered. Similar for EUTRAN to CDMA 1XRTT. *MSC server is enhanced for SRVCC