ETSIES 201 873-9 va.5.1 (2013-09)

ETSI Standard

Methods for Testing and Specification (MTS);
The Testing and Test Control Notation version 3;
Part 9: Using XML schema with TTCN-3

2 ETSI ES 201 873-9 V4.5.1 (2013-04)

Reference
RES/MTS-201873-9 T3ed451XML

Keywords
language, testing, TTCN-3, XML

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).
In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2013.
All rights reserved.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members.
3GPP™and LTE™ are Trade Marks of ETSI registered for the benefit of its Members and
of the 3GPP Organizational Partners.
GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.

ETSI

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
http://portal.etsi.org/chaircor/ETSI_support.asp

3 ETSI ES 201 873-9 V4.5.1 (2013-04)

Contents

INtelleCtual Property RIGNTSottt bt nbe s 7
0T (=111 0] (o R 7
1 RS0t 0] 0 PSPPSR 8
2 el] (= Q[0 8
2.1 INOINATIVE TEFEIENCESvveiieieeie ettt ettt ettt e e et e e e et e e s ea e e e e eateeeesabaeeesebbeeesestaeessabeseesabeeesssbesessnbenesssraneeas 8
2.2 INTOIMNALIVE TETEIEINCES. ..ottt ettt ettt ettt e e e ettt e e e ettt s e st e e e s st be e e s beeeessabaeeesssbenessasaseesssbesesssbenessnns 9
3 DefiNitioNS AN ADDIEVIALIONS.cciiiiiie ettt s s e e e s s b e e e s s bt e e e s s sbb e s e s s sabaeessssbaeesssreas 9
3.1 (1S T 0] R 9
3.2 PN 0] o] (V=10 R 10
4 a1 0T 8o (o] 3 S 10
4.1 Conformance and COMPALIDITITYcviiiiiii bbb 11
5 MapPPING XML SCREMAS ..ot 11
5.1 Namespaces and dOCUMENT FEFEIENCESvcviiie ettt te e e sreeste e teesteesaeeeeaneas 12
51.1 LT o oL P PP UPPRTPRPN 12
5.1.2 o] 10T L= 13
5.1.3 100100 PP PP P RRPPRTRN 14
5.1.4 Attributes of the XSD SChema BIEMENT.........cueii et ebae e e 14
515 ThHE CONIIOI NAMESPACE ...vveveeeeeie ettt e et e ete e te et et e st e s e e te e te e eeaseesaeesse e teesteesseassesseestaesseesteenseansennsenseenranns 15
5.2 [N TR (L0 0 LY/=T £ (o] o TP 15
5.2.1 (1= 11T - DT TR 15
5.2.2 INAIME CONVEISION TUIES.......eeieiitii ittt ettt et e e ettt e s ettt e e e eab e e e e sabe e e e s ebbeeesesbeesssabesessabaeessnaeeessarens 16
5.2.3 (O o L= o) I T 44T o] o 1T oo PSSR 20
5.3 Mapping of XSD SChEMA COMPONENTSeeuieiiieiie ittt e see ettt e e eneeseesaeareeneeneeseenee e 21
5.4 00 o Lo (=0 T USRS 21
6 BUITE-IN GALA TYPES ...veviiiiiit ettt sttt st e st e be s te et e s beesbesbeete e besreesbesteensesresteetens 22
6.1 Y T o] oo o =T =] SRS 22
6.1.1 T30 | USSR 23
6.1.2 IVHINLENGEN ..ttt bbb bbb bt bbbt b et b e 23
6.1.3 IMIAXLLENGEN ...ttt bbb bbb bbbt bbb 23
6.1.4 (=] £ 24
6.1.5 LU a0 1= =1 o] o TR TTOTR 25
6.1.6 WV NIEESPACE ...ttt bbbt b bbb bbb bbb e bt bbbt e bt b et bbbt e 27
6.1.7 Y T Y Lo LU AT 27
6.1.8 1YL 1o LU AT 29
6.1.9 IVHINEXCIUSIVE ...ttt ettt e e ettt e e st e s e e bt e e e e eat e e e s sab b e e s eabbeeessabesessbbeeesenteesesares 30
6.1.10 1Y ol LU A= 31
6.1.11 LI] 7= LI Lo SRS 32
6.1.12 Not specifically MAPPEU TACELSciii et re e te e teeaeennas 33
6.2 ST TIIG EY DS . ettt b bbb bbb bR R R R R bRt b bbbt b e 33
6.2.1 11110 TSSO TSP PO PP PTUR P PP PRPTPTPRRTN 34
6.2.2 NOFMEAIIZEA SEFING ...ttt bbbttt b ettt bbbt b 34
6.2.3 IO 212 TP 34
6.2.4 VST L 34
6.2.5 AT IO =) T 34
6.2.6 L0813 TR 35
6.2.7 1 TR 35
6.2.8 D] TR 35
6.2.9 N L U 35
6.2.10 HEXAABCIMAI DINAIYoiieieiece et et e e s e sae e s ne e eneesteesteesteeseneaeaneas 35
6.2.11 BASE B4 DINAIY ...ttt bbb bbbt 35
6.2.12 ANY URI e s 36
6.2.13 LANQUAGE ...t 36
6.2.14 L 17N L) PR 36

ETSI

6.3
6.3.1
6.3.2
6.3.3
6.3.4
6.3.5
6.3.6
6.3.7
6.3.8
6.3.9
6.3.10
6.3.11
6.3.12
6.3.13
6.4
6.4.1
6.4.2
6.4.3
6.5
6.5.1
6.5.2
6.5.3
6.5.4
6.5.5
6.5.6
6.5.7
6.5.8
6.5.9
6.6
6.6.1
6.6.2
6.6.3
6.6.4
6.7
6.8

7.1
7.1.1
7.1.2
7.13
7.1.4
7.15
7.1.6
7.1.7
7.1.8
7.1.9
7.1.10
7.1.11
7.1.12
7.1.13
7.1.14
7.1.15
7.2
7.3
7.4
7.4.1
7.4.2
7.5
7.5.1
7.5.2
7.5.3

4 ETSI ES 201 873-9 V4.5.1 (2013-04)

1= o [T Y61 T PO PRSPPI 36
101 (=0 T SRR PP PR RPPRTRN 36
oL LAY 1] =T =] SR 36
INON-POSITIVE INMEEYEE ... vviviiite ettt et e bt e e e st e s te e s te e teesteesaesseesteesseesneesseesseesseeseaeeeeseeanees 36
=0 LA TN] =T -] USSR 37
TR g et oA] (< =] USSR 37
0] o o OO U PR PP PROT 37
UNSTGNEA TONQ ..ttt b bbbt b bbbt b et et 37
10 ST PO P U PP PR PPPOPPRPPRTOTR 37
UNSTGNEA TNttt bbbt bbb bbb bbbt bbb bbbt n e 37
1S o] o PSSO 38
LYo [T IS o] o USSR 38
2T TP O PP TSP 38
LTSy To [T I o) (USRS 38

L 0T L 1Y 1= ST 38
DECIMAL ...ttt bbbt b b e b e bbbt bbb e e bbbt bRt bt r e nn e 38
FHOAL ...t bbbttt h bR bR £ R R b bR R e bbbt R R bttt r b 38
D0 ¥ o] ST 39

I LT N 0L OO SO OTOOT TSR SOUPTTSO TP TSR UR P PRPRPO 39
DI04 o ISR 39
D 1 Lo Lo N] LTSS 40
L0 SRRSO 40
D | (T T T T PP TP P R PPPTRPRRN 40
Gregorian Year and MONTNooiiii et e e e e nreere s 40
LT = To o AT Va1 T: T OSSR 40
Gregorian MONEN AN TAY ...oivveiieeieeie et et e et e e s e s s e ste e te e teesaessaesreesreenreenreenes 40
(€] g=To (o] TV o - Y SR 41
(€] =TT TV N 0] 1 € o ISR 41

S TeTo 0= LT oL L T USSP UPPTPRIP 41
NIMTOKENS ...ttt et et ettt Ee e st e s e e st e eeseeebeeEeebeebeamees e e nbenbeaneeneeneeneeneesaenee e 41
T o SRS 41
VI I 1 TSP 41
L0\ F: 11 4 OSSR 41

BIO0IBAN LY ...ttt b E e b b e b b e bbbt bt bt b e bt b bbb 42

ANYTYPe and anySiMPIETYPE TYPES. . .uviiieiee ettt ettt e e e e e steeste s e e aseesaeesbeesteestaesteesteeeeaneas 42

MapPINg XSD COMPONENTSc.viitieieiieeie it se ettt et e st e et estesre e besbe e s e s bestaesbesteeseesteaseestessaesresteenrens 43

Attributes of XSD cOmMPONent deCIArationS.c.ccveiieiiiieiie ettt e steesreeee s 43
Lo OO ST TSP TP PR PTORO TP 44
L= TSR 44
=L 0 LT T T OO TSP PP P R UPPTRURRN 44
MiINOCCUIS AN MAXOCCUIS. ...e.veeveeuieseereestesee et eteeteeseeseesteseestesteaseeseeseeeessestesteaseaseaneeseessesesseaseeneeneeseesseseens 44
) = LU LA a0 I =T SRS 49
0] 01 | PO PO O T PP U PP R UPPTRPRPN 49
LY L= PP OPPTRUPRTR 50
IVEEXEA .ttt b bbbt h ettt H e E e b b oA e oAbt E e E e R SR b e e bbbt bbbttt nn e 50
AADSTFACT ...t h b b h R e R E R bR bbbt b bt bt n et b e 51
BIoCK and DIOCKDETAUILooviiiiiieiee bbbt 51
INTHTBIIE .o b bbbttt bt bbbt et e b e 51
L0 LT OO R PR PSPPI 52
SUBSEITULION GIOUP ...ttt bbbtk b etk b etk b ettt eb e nb ekt eb e et ebe et e ene e 53
T LSS 53
PrOCESS CONIBNTS.......eeeeee ittt ettt ettt h e s hb e e b bt e s hb e e s b bt e s an e e et e et e e et e e e be e e nbeeennne e e 53

SCNEIMA COMPONENT. ...ttt etttk b bbb bbb bbbt b bbbt b ettt et r e 53

E1EMENT COMPONENT......uiitiiietiit ettt bbbt b bbbt bbbt bt b et s bbb nnenes 54

Attribute and attribute group definitions ... 55
Attribute element AEFINITIONSooiiiiieie e bbb e 55
ALLrIDULE group DefiNITIONS........oiiici et te e e e e sreesteesbeenaeenbenraenreens 55

SIMPIETYPE COMPONENTSveeieeie ettt e ete et e e e e e te e te e eesreesaeeate e bt enseassesteesseeteestessseeseenseenseansensaenrenns 55
Derivation DY FESIIHCHION ..ottt e st et e et e enaeste e teesta e teeaesnnes 56
= gL Lo N o)V L OSSPSR 56
DEriVation DY UNTONoiiii e et te et e e ae e sae e baeneesnteste e teesteeneeenaennees 57

ETSI

5 ETSI ES 201 873-9 V4.5.1 (2013-04)

7.6 COMPIEXTYPE COMPONENTS ... eevieteeereeeresteesteeteeteeseesteesreesteesteasaeaseeaseeaseasseenseassesseessaesseestenssaeseenseenseensensaensenns 60
7.6.1 ComplexType containing SIMPIE CONTENTveiiiiiiii ettt sreesreenre s 60
7.6.1.1 EXtending SIMPIE CONENT........c.oiiieiee e e e ste e s teeteebeeneeaneenreesreens 60
7.6.1.2 ReStriCting SIMPIE CONENT........c.oiiieiieeee e e e e s re e s te et e e ae e e e eneesreenreens 61
7.6.2 ComplexType containing COMPIEX CONEENTccvveiiiiiiesie et sre e sreenre s 61
7.6.2.1 Complex content derived DY EXIENSIONc.ecviiiiiie e sre e 61
7.6.2.2 Complex content derived DY FeStIICLIONcoeiiiiiiceice e 66
7.6.3 Referencing group COMPONENTSeuiiiriiiitiie ettt bbb bbbttt b bbb 67
7.6.4 N L o0} 1 | USRS 70
7.6.5 (01 To ToT= I oo 1 (1| USRS 71
7.6.5.1 Choice With NESTEA BIEMENTS ...ttt et reene e e e neeseesne s 72
7.6.5.2 ChOiCe WIth NESLEA GrOUDeveeieeiiee ettt ettt e e et e s et teesteete e e e neeansesteentaesteeteeseeeneennees 72
7.6.5.3 Choice With NESTEA ChOICE........ouiiiciieee e bbb sne s 73
7.6.5.4 ChOiCe With NESEA SEOUENCE. ... eeieeeeite ettt ettt ettt e e e s ste e steeste e e e e seeaneesteesteesteesteesteeneeannas 73
7.6.5.5 (O T ot 1 g 1Y T I T USSP 74
7.6.6 =0 0 T=T ot oo o (=] | S PSP PP PTROPRPTRN 74
7.6.6.1 Sequence With nested eleMeNt CONTENT.........c.ccviiiiiice et 75
7.6.6.2 Sequence With nested group CONTENTooiiiiiiiiiereee e 75
7.6.6.3 Sequence With nested ChOICE CONTENTcoiiiiiiiiieie e 75
7.6.6.4 Sequence With nested SEQUENCE CONTENT...........eiiiiiiiirieiete ettt 76
7.6.6.5 Sequence With NeSted @NY CONENT.........coiiiiiiiii et sre e 77
7.6.6.6 Effect of the minOccurs and maxOccurs attributes on the Mmappingccocooevervineneieneneeeeee 77
7.6.7 Attribute definitions, attribute and attributeGroup referenCes ... 78
7.6.8 IMIEXEA CONEENT ...ttt b bbbt b e bbbt bbb e e e b et e eb e bt sb e eb e e s e e e e en e b 80
7.7 F N V=TT B 017N] o =SSR 83
7.7.1 I TC T L) VA =] =T 0T o OSSPSR 83
7.7.2 The anYALIDULE BIEMENTot e st e sreesteesteeaeenaeenbenreenreens 85
7.8 AANINOTATION ...ttt bbbt h et b bt b e h b e b e e e b e bt e bt e b £ bt e bt e bt et e bRt bt bt bt e e et e nn e 88
7.9 (100 N o JNel0] 401 010] 411 o] £ TSRV PUPPTRR 88
7.10 Identity-constraint definition SChema COMPONENTS ..ot 89
8 Y0 015] 010 ST 89
8.1 EIEMENT SUDSTITULION ...ttt sttt s e et e e st e s be et eneene et e neeseenre e 89
8.1.1 Head elements Of SUDSTITULION GrOUPSeoiveeiieeiecie ettt teeee e aeannas 89
8.1.2 SUDSLITULION GrOUP MEMDEISviceie ettt sae e b et e e eert e e saesneesneenneenreenes 94
8.2 IR/ LI o1 0 o] SRS 94
Annex A (nor mative): TTCN-3MOTUIE XSD ..o 96
Annex B (normative): ENCOdiNg INSIFUCLIONS......c.coiiieieieeeese e s 100
2 300 O €T 0T | ST 100
B.2 The XML eNCOUE ttIIDULEc.viiiiiiitiieiie ettt 100
B.3 ENCOUING INSTIUCTIONS ..ottt bttt ettt bttt ereans 101
B.3.1 XSD data type IdentifICALIONoiviiiiieei e 101
B.3.2 AANY CIBIMBNT ...t b et b bbbt bRt bt b et e bt e b e bt e b e b e bt e b b e bt b et e bt b b st et r e 101
B.3.3 AANY BEFTDULES ...t bbb bbbt e bbbt b b e st b bt bbb 102
B.3.4 AITTOULE .ottt bbbt b e b st E e bbb e Rt Rt R R Rt Rt e Rt bbb bbb e 103
B.3.5 AribUteFOrMQUANITIE. ..o e e e re e s e e saeebeesbeenbeeraenneeas 103
B.3.6 Control namespace IdentifiCatIONcciiiiii et aeas 103
B.3.7 (=] T [(] =T 0] 0SSR 104
B.3.8 =700 o | ST TSP P PP RO PP PP PRTPPP 104
B.3.9 ElementFormQUANITIEAcoieiie ettt et e et e s re e nreenreeneas 104
2 e 0 T = oo N7 1[N SRS 105
L 0 o ¢ U OU USRS 105
B.3.12] SO PR PRRORRRUROPROR 105
L T S |- T 1 TSP PSRRI 106
B.3.14 NamespaCe IdENTITICALIONc.oiviiiiiieieiiee bbb e et b bbb nne s 106
B.3.15 NIlIADIE BIBIMENTS ...t et bbb bbb bbbt et e e et nn b 107
B.3.18 USE UNMIOM. ..ttt ittt ettt st bkt bbb e e o4t bbb h e e R et E e Rt SRt SR £ SR e R e R bRt Rt b e e Rt n et nn e ne e 107
270 20 1= SRRSO 107

ETSI

6 ETSI ES 201 873-9 V4.5.1 (2013-04)

B.3.18 USE NUMDET <.ttt bbbkt h s bbbt Rt h e h e bbbt bbbt nenn e re e 108
R T U LT 3o (o [S TSR P TP PR UPR PPN 108
R T B VL T (=TS o Ut oo 1 (o OSSR 109
T T R O 01 oo <o I =] 1= 0 o1 OSSR 109
B.3.22 ADSITACT ...ttt bbbt b b h R R R e e bR R £ R e R e R bbbt b e e e neenr b 110
B.3.23 BIOCK .ttt bbb R R e E bR R £ Rt R b h bRt b et en e e nr e b e 110
B.3.24 USE Y ittt R R R R R R r R bRt e 111
B.3.25 Process the content of any elements and attribULESccuiiiiiiiiiiii s 111
B.3.26 THANSPAIENT......eiitiitiitiitieit ettt ettt bt e e E e R R R e R R h R Rt n e r e 112
B3 27 N TP ittt R e R R R r R bRt r e re e 112
Annex C (informative): =101 0] 1SS 113
C.1 EXAMPIE Lot b bk bR bR h bR b b r et re s 113
O b V1 1o [OOSR 114
(O T =1 1o (= TSSO 116
C.4 EXAMPIE 4.t E bRt b R b e r e n et re s 117
Annex D (informative): Deprecated fEALUIES........oceeieiiece et 119
D.1 Using the anyElement encoding instruction to record of fieldscccoeieiiiiiiiin, 119
D.2 Using the XML language identifier SIrNG.........cccoiiiiriiiiiiieisee s 119
Annex E (informative): Bibliography ..o s 121
[1T (0] SR 122

ETSI

7 ETSI ES 201 873-9 V4.5.1 (2013-04)

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI membersand non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards', which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web

server (http://ipr.etsi.org).
Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee

can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword

This ETSI Standard (ES) has been produced by ETSI Technical Committee Methods for Testing and Specification
(MTS).

The present document is part 9 of a multi-part deliverable. Full details of the entire series can be found in part 1 [1].

ETSI

http://webapp.etsi.org/IPR/home.asp

8 ETSI ES 201 873-9 V4.5.1 (2013-04)

1 Scope

The present document defines the mapping rules for W3C Schema (as defined in [7] to [9]) to TTCN-3 as defined in
ES 201 873-1 [1] to enable testing of XML-based systems, interfaces and protocols.

2 References

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
http://docbox.etsi.org/Reference.

NOTE: While any hyperlinks included in this clause were valid at the time of publication ETSI cannot guarantee
their long term validity.

2.1 Normative references
The following referenced documents are necessary for the application of the present document.

[1] ETSI ES 201 873-1: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 1: TTCN-3 Core Language".

[2] ETSI ES 201 873-7: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 7: Using ASN.1 with TTCN-3".

[3] Recommendation ITU-T X.680: "Information technology - Abstract Syntax Notation One
(ASN.1): Specification of basic notation".

[4] Recommendation ITU-T X.694: "Information technology - ASN.1 encoding rules: Mapping W3C
XML schema definitions into ASN.1".

[5] World Wide Web Consortium W3C Recommendation: "Extensible Markup
Language (XML) 1.1".

NOTE: Available at http://www.w3.0rg/TR/xml11.

[6] World Wide Web Consortium W3C Recommendation (2006): "Namespaces in XML 1.0".

NOTE: Available at http://www.w3.0rg/TR/REC-xml-names/.

[7] World Wide Web Consortium W3C Recommendation (2004): "XML Schema Part 0: Primer".

NOTE: Available at http://www.w3.0org/TR/xmlschema-0.

[8] World Wide Web Consortium W3C Recommendation (2004): "XML Schema Part 1: Structures”.

NOTE: Available at http://www.w3.0rg/TR/xmlschema-1.

[9] World Wide Web Consortium W3C Recommendation (2004): "XML Schema Part 2: Datatypes".

NOTE: Available at http://www.w3.0rg/TR/xmlschema-2.

ETSI

http://docbox.etsi.org/Reference
http://www.w3.org/TR/xml11
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/xmlschema-0
http://www.w3.org/TR/xmlschema-1
http://www.w3.org/TR/xmlschema-2

2.2

9 ETSI ES 201 873-9 V4.5.1 (2013-04)

Informative references

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1] World Wide Web Consortium W3C Recommendation: "SOAP version 1.2, Part 1: Messaging
Framework".

NOTE: Awvailable at http://www.w3.0rg/TR/soap12.

[i.2] ISO 8601 (2004): "Data elements and interchange formats - Information interchange -
Representation of dates and times".

[i.3] ETSI ES 202 781: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; TTCN-3 Language Extensions: Configuration and Deployment Support".

[i.4] ETSI ES 202 782: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; TTCN-3 Language Extensions: TTCN-3 Performance and Real Time Testing".

[i.5] ETSI ES 202 784: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; TTCN-3 Language Extensions: Advanced Parameterization™.

[i.6] ETSI ES 202 785: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; TTCN-3 Language Extensions: Behaviour Types".

[i.7] ETSI ES 202 786: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; TTCN-3 Language Extensions: Support of interfaces with continuous signals”.

[i.8] ETSI ES 202 789: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; TTCN-3 Language Extensions: Extended TRI".

[i.9] ISO/IEC 10646: "Information technology -- Universal Coded Character Set (UCS)".

3 Definitions and abbreviations
3.1 Definitions

For the purposes of the present document, the terms and definitions given in ES 201 873-1 [1], Recommendation
ITU-T X.694 [4] and the following apply:

alphabetical order: way of sorting the XSD names based on the code positions of their characters according to
ISO/IEC 10646 [i.9]

NOTE:

During this sorting the group, plane, row and cell octets is considered, in this order. Names, starting with
a character with a smaller code position take precedence Among the names with identical first character,
names containing no more characters take precedence over all other names. Otherwise, names with the
second character of smaller code position take precedence etc. This algorithm is to be continued
recursively until all names are sorted into a sequential order.

schema component: generic XSD term for the building blocks that comprise the abstract data model of the schema

NOTE:

The primary components, which may (type definitions) or obliged to (element and attribute declarations)
have names are as follows: simple type definitions, complex type definitions, attribute declarations and
element declarations. The secondary components, which are obliged to have names, are as follows:
attribute group definitions, identity-constraint definitions, model group definitions and notation
declarations. Finally, the "helper" components provide small parts of other components; they are not
independent of their context: annotations, model groups, particles, wildcards and attribute uses.

ETSI

http://www.w3.org/TR/soap12

10 ETSI ES 201 873-9 V4.5.1 (2013-04)

schema document: contains a collection of schema components, assembled in a schema element information item

NOTE: The target namespace of the schema document may be defined (specified by the targetNamespace
attribute of the schema element) or may be absent (identified by a missing targetNamespace attribute of
the schema element). The latter case is handled in the present document as a particular case of the target
namespace being defined.

target TTCN-3 module: TTCN-3 module, generated during the conversion, to which the TTCN-3 definition produced
by the translation of a given XSD declaration or definition is added

XML Schema: represented by a set of schema documents forming a complete specification (i.e. all definitions and
references are completely defined)

NOTE: The set may be composed of one or more schema documents, and in the latter case identifying one or
more target namespaces (including absence of the target namespace) and more than one schema
documents of the set may have the same target namespace (including absence of the target namespace).

xsi: attributes: stipulating the content of schema-instances (schema-valid XML documents), XSD defines several
attributes for direct use in any XML documents

NOTE: These attributes are in the namespace ht t p: / / www. W3. or g/ 2001/ XM_Schemna- i nst ance. By
convention these XML attributes are referred to by using the prefix "xsi: ", though in practice, any
prefix can be used.

3.2 Abbreviations

For the purposes of the present document, the following abbreviations apply:

ASN.1 Abstract Syntax Notation One
DTD Document Type Description
SOAP Simple Object Access Protocol
SUT System Under Test
TTCN-3 Testing and Test Control Notation version 3
URI Uniform Resource Identifier
UTF-8 Unicode Transformation Format-8
W3C World Wide Web Consortium
XER XML Encoding Rules
XML eXtensible Markup Language
XSD XML Schema Definition

4 Introduction

An increasing number of distributed applications use the XML format to exchange data for various purposes like data
bases queries or updates or event telecommunications operations such as provisioning. All of these data exchanges
follow very precise rules for data format description in the form of Document Type Description (DTD) [5] and [6] or
more recently the proposed XML Schemas [7], [5] and [9]. There are even some XML based communication protocols
like SOAP [i.1] that are based on XML Schemas. Like any other communication-based systems, components and
protocols, XML based systems, components and protocols are candidates for testing using TTCN-3 [1]. Consequently,
there is a need for establishing a mapping between XML data description techniques like DTD or Schemas to TTCN-3
standard data types.

The core language of TTCN-3 is defined in ES 201 873-1 [1] and provides a full text-based syntax, static semantics and
operational semantics as well as a definition for the use of the language with ASN.1 in ES 201 873-7 [2]. The XML
mapping provides a definition for the use of the core language with XML Schema structures and types, enabling
integration of XML data with the language as shown in figure 1.

ETSI

http://www.w3.org/2001/XMLSchema-instance

11 ETSI ES 201 873-9 V4.5.1 (2013-04)

TTCN-3 < >

Core
ASN.1 Types R Tabular
& Values g| LETELETE format < >

N Graphical
XSD Types " format (T T e
TTCN-3 User

Other Types _ Presentation The shaded boxes are not
& Values,, > format, —> defined in this document

Figure 1. User's view of the core language and the various presentation formats

For compatibility reasons, it is the purpose of the present document that the TTCN-3 code obtained from the XML
Schema using the explicit mapping will be the same as the TTCN-3 code obtained from first converting the XML
Schema using Recommendation ITU-T X.694 [4] into ASN.1 [3] and then converting the resulting ASN.1 code into
TTCN-3 according to ES 201 873-7 [2]. Moreover, the XML document produced from the TTCN-3 code containing the
encoding instructions obtained from the XML Schema based on the present document, shall be the same as the XML
document produced by the ASN.1 E-XER encoding, when the same XML Schema is converted using
Recommendation ITU-T X.694 [4] and the resulted ASN.1 specification is encoded using the E-XER encoding.
However, due to the specifics of testing, in a few cases the present document will produce a superset of what
Recommendation ITU-T X.694 [4] would produce. For example, according to Recommendation ITU-T X.694 [4],
abstract elements are omitted when converting the head element of a substitution group, while the present document
includes also the abstract elements into the resulted uni on type, thus allowing provoking the SUT with incorrect data.

4.1 Conformance and compatibility

For an implementation claiming to support the use of XSD with TTCN-3, all features specified in the present document
shall be implemented consistently with the requirements given in the present document and in ES 201 873-1 [1].

The language mapping presented in the present document is compatible to:
. ES 201 873-1 [1], version V4.2.1.

If later versions of those parts are available and should be used instead, the compatibility of the language mapping
presented in the present document has to be checked individually.

5 Mapping XML Schemas

There are two approaches to the integration of XML Schema and TTCN-3, which will be referred to as implicit and
explicit mapping. The implicit mapping makes use of the import mechanism of TTCN-3, denoted by the keywords
language and import. It facilitates the immediate use of data specified in other languages. Therefore, the definition of a
specific data interface for each of these languages is required. The explicit mapping translates XML Schema definitions
directly into appropriate TTCN-3 language artefacts.

In case of an implicit mapping an internal representation shall be produced from the XML Schema, which
representation shall retain all the structural and encoding information. This internal representation is not accessible by
the user.

For explicit mapping, the information present in the XML Schema shall be mapped into accessible TTCN-3 code

and - the XML structural information which does not have its correspondent in TTCN-3 code - into accessible encoding
instructions. Built-in data types, described in detail in clause 6, in case of an implicit conversion are internal to the tool
and can be referenced directly by the user, while in case of an explicit conversion, the user shall have to import the
XSD.ttcn module (see annex A) in addition to the TTCN-3 modules resulted from the conversion. When importing from
an XSD Schema, the following language identifier string shall be used:

. "XSD"

The mapping shall start on a set of valid XSD schema-s and shall result in a set of valid TTCN-3 modules.

ETSI

12 ETSI ES 201 873-9 V4.5.1 (2013-04)

All XSD definitions are publ i ¢ by default (see clause 8.2.3 of ES 201 873-1 [1]).

The examples of the present document are written in the assumption of explicit mapping, although the difference is
mainly in accessibility and visibility of generated TTCN-3 code and encoding instruction set.

The present document is structured in three distinct parts:

. Clause 6 "Built-in data types™ defines the TTCN-3 mapping for all basic XSD data types like strings
(see clause 6.2), integers (see clause 6.3), floats (see clause 6.4), etc. and facets (see clause 6.1) that allow for a
simple modification of types by restriction of their properties (e.g. restricting the length of a string or the range
of an integer).

. Clause 7 "Mapping XSD components” covers the translation of more complex structures that are formed using
the components shown in table 1 and a set of XSD attributes (see clause 7.1) which allow for modification of
constraints of the resulting types.

. Clause 8 "Substitution™ covers the translation of more XSD elements and types that may be substituted for
other XSD elements or types respectively in instance documents.

Table 1: Overview of XSD constructs

Element Defines tags that can appear in a conforming XML document.

attribute Defines attributes for element tags in a conforming XML document.
Defines the simplest types. They may be a built-in type, a list or choice of built-in
types and they are not allowed to have attributes.

Defines types that are allowed to be composed, e.g. have attributes and an
internal structure.

named model group Defines a named group of elements.

Defines a group of attributes that can be used as a whole in definitions of
complexTypes.

Defines that a component has to exhibit certain properties in regard to
uniqueness and referencing.

simpleType

complexType

attribute group

identity constraint

5.1 Namespaces and document references

5.1.1 Namespaces

A single XML Schema may be composed of a single or several schema element information items, and shall be
translated to one or more TTCN-3 modules, corresponding to schema components that have the same target namespace,
including no target namespace. For XSD schemas with the same target namespace (including absence of the target
namespace) exactly one TTCN-3 module shall be generated.

The names of the TTCN-3 modules generated based on this clause shall be the result of applying the name
transformation rules in clause 5.2.2 to the related target namespace, if it exists, or to the predefined name
"NoTargetNamespace".

NOTE 1: More than one schema element information items in an XML Schema may have the same target
namespace, including the case of no target namespace.

The information about the target namespaces and prefixes from the targetNamespace and xmins attributes of the
corresponding schema elements, if exist, shall be preserved in the encoding instruction "namespace as..." attached to
the TTCN-3 module. If the target namespace is absent, no "namespace as ..." encoding instruction shall be attached to
the TTCN-3 module. All declarations in the module shall inherit the target namespace of the module (including absence
of the target namespace).

NOTE 2: If different schema element information items using the same target namespace associates different
prefixes to that namespace, it is a tool implementation option, which prefix is preserved in the
"namespace as..." encoding instruction.

ETSI

13 ETSI ES 201 873-9 V4.5.1 (2013-04)

EXAMPLE: Schemas with the same namespace:

<?xm version="1.0" encodi ng="UTF-8"?>
<schema xm ns="http://ww. w3. or g/ 2001/ XM_Schema"
xm ns: ns1="http://ww. exanpl e. org"
t ar get Nanmespace="htt p: / / ww. exanpl e. org" >
<l-- makes no difference if this schema is including the next one -->

</ schema>

<?xm version="1.0" encodi ng="UTF-8"?>
<schema xm ns="http://ww. w3. or g/ 2001/ XM_Schema"
xm ns: ns2="http: // ww. exanpl e. org"
tar get Nanmespace="htt p: // ww. exanpl e. org" >
<I-- makes no difference if this schema is including the previous one -->

</ schema>

/IWIIl result the TTCN-3 nodul e
modul e http_www_exanpl e_org {
/1 the content of the nmodule is coming fromboth schemas
}
with {
encode "XM.";
variant "namespace as 'http://ww. exanple.org prefix 'nsl""
/1 the prefix in the encoding instruction could also be 'ns2', this is a tool's option.

}

51.2 Includes

XSD include element information items shall be ignored if the included schema element has the same target namespace
as the including one (implying the absence of the target namespace). If the included schema element has no target
namespace but the including schema has (i.e. it is not absent), all definitions of the included schema shall be mapped
twice, i.e. the resulted TTCN-3 definitions shall be inserted to the TTCN-3 module generated for the schema element(s)
with no target namespace as well as to the module generated for the schema element(s) with the target namespace of the
including schema.

EXAMPLE: A schema with a target namespace is including a schema without a target namespace:

<?xm version="1.0" encodi ng="UTF-8"?>
<schema xm ns="http://wwmv w3. or g/ 2001/ XM_Schema"
xm ns: ns="http://ww. exanpl e. org"
tar get Namespace="htt p: // ww. exanpl e. org" >
<l-- the including schema -->
<i ncl ude schemaLocati on="i ncl uded. xsd"/ >

</ schema>

<?xm version="1.0" encodi ng="UTF-8"?>
<schema xm ns="http://ww. w3. or g/ 2001/ XM_Schema" >
<I—+his is the included schema -->

</ schema>

/IWI11l result the TTCN-3 nodul es (pl ease note, the content of the nodul es nay cone
/1 fromnore than one schenas.
modul e http_www_exanpl e_org {

/1 contains definitions mapped from both schenas

}
with {
encode " XM.";
variant "namespace as 'http://ww. exanple.org' prefix 'nsl""

}

nmodul e NoTar get Nanespace {
/1 contains definitions nmapped fromthe schena without target nanespace only

}
with {

encode " XM."
}

ETSI

14 ETSI ES 201 873-9 V4.5.1 (2013-04)

5.1.3 Imports

All XSD import statements (i.e. import element information items and the related xmins attributes, where present) shall
be mapped to equivalent TTCN-3 import statements, importing all definitions from the other TTCN-3 module. All XSD
components are publ i ¢ by default (see clause 8.2.3 of ES 201 873-1 [1]). Multiple XSD import element information
items with the same namespace attribute (including no target namespace) shall be mapped to a single TTCN-3 import
statement.

NOTE 1: The above statement means that XSD components using imported XSD references are complete, i.e. in
case of implicit mapping it is not needed to additionally import the schema containing the referenced
XSD components to TTCN-3, unless the referenced XSD component wanted to be used in TTCN-3
directly.

NOTE 2: XSD permits a bare <import> information item (in schemas having a target namespace). This allows
unqualified references to foreign components with no target namespace without giving hints where to find
them. The resolution of such cases is left to tool implementations. It is allowed to import single XSD
components into TTCN-3. When the TTCN-3 import statement is importing single definitions or
definitions of the same kind from XSD (see clauses 8.2.3.2 and 8.2.3.4 of ES 201 873-1 [1]), or an import
all statement contains an exception list (see clause 8.2.3.5 of ES 201 873-1 [1]), this results in the import
of at ype definition only, but not in the import of a gr oup, t enpl at e, t est case etc.

NOTE 3: Please note that importing all types of a target namespace has the same effect as importing all definitions
of that namespace (i.e. "i mport from Tar get Nanespace { type all };"resultsinthe same
as"i nport from Target Nanespace all;").

It is not allowed to import XSD import statements to TTCN-3 (i.e. there is no transitive import of XSD import
statements as defined for TTCN-3, see clause 8.2.3.7 of ES 201 873-1 [1]).

514 Attributes of the XSD schema element

If the TTCN-3 module corresponds to a (present) target namespace and the value of the attributeFormDefault and/or
elementFormDefault attributes of any schema element information items that contribute to the given TTCN-3 module is
gualified, the encoding instructions " at t ri but eFor nQual i fi ed” and/or " el ement For nQual i fi ed" shall
be attached accordingly to the given TTCN-3 module. All fields of TTCN-3 definitions in the given TTCN-3 module
corresponding to local attribute declarations or to attribute and attributeGroup references in schema element
information items with the value of its attributeFormDefault attribute being unqualified (explicitly or implicitly via
defaulting) shall be supplied with the " f or m as unqual i fi ed" encoding instruction, unless a form attribute of the
given declaration requires differently (see clause 7.1.6). All fields of TTCN-3 definitions in the given TTCN-3 module
corresponding to local element declarations or element and model group references in schema element information
items with the value of its elementFormDefault attribute unqualified (explicitly or implicitly via defaulting) shall be
supplied with the " f orm as unqual i fi ed" encoding instruction, unless a form attribute of the given declaration
requires differently (see clause 7.1.6).

Mapping of the blockDefault XSD attribute information item see in clauses 7.1.10, 8.1 and 8.2.
The finalDefault, id, version and xml:lang attributes of schema elements shall be ignored.

EXAMPLE: Mapping of schema attributes:

<?xm version="1.0" encodi ng="UTF-8"?>
<schema xm ns="http://wwmv. w3. or g/ 2001/ XM_Schema"
t ar get Nanespace="htt p: / / ww. exanpl e. or g"
attributeFornDefaul t="qual ified"
el enent For nDef aul t =" unqual i fi ed" >
<conpl exType nanme="CTypel">
<sequence>
<el ement name="el ent’ type="integer"
</ sequence>
<attribute name="attrib" type="integer"/>
</ conpl exType></ schema>
</ schema>

<?xm version="1.0" encodi ng="UTF-8"?>

<schema xm ns="http://ww. w3. or g/ 2001/ XM_Schema"
t ar get Nanespace="htt p: / / ww. exanpl e. or g"
attri but eFor nDef aul t ="unqual i fi ed"

ETSI

15 ETSI ES 201 873-9 V4.5.1 (2013-04)

el emrent For nDef aul t =" qual i fi ed" >
<conpl exType name="CType2">
<sequence>
<el ement name="el ent’ type="integer"
</ sequence>
<attribute name="attrib" type="integer"/>
</ conpl exType></ schema>
</ schema>

/IWIIl result in the TTCN-3 nodul es (pl ease note, that the content of the nodules nay cone
//fromnore than one schenas.
modul e http_www_exanpl e_org {
type record CTypel {
XSD. I nteger attrib optional,
XSD. I nt eger el em

}

with {
variant(attrib)"attribute";
variant (el em"formas unqualified"

}

type record CType2 {
XSD. I nteger attrib optional,
XSD. I nt eger el em

}
with {
variant(attrib)"attribute";
variant (attrib)"formas unqualified"

}

}
with {
encode "XM.";
variant "namespace as 'http://ww. exanple.org'";
variant "attributeFormualified";
variant "el ement FormQualified"

5.1.5 The control namespace

The control namespace is the namespace of the schema-instance attributes defined in clause 2.6 of XSD Part-1 [9], for
direct use in any XML documents (e.g. in the special XML attribute value "xsi:nil", see mapping of the nillable XSD
attribute in clause 7.1.11 or in case of substitutable types is the special XML attribute value "xsi:type™, see clause 8.2
etc.). It shall be specified globally, with the controlNamespace encoding instruction attached to the TTCN-3 module.

NOTE 1: These attributes are in the namespace ht t p: / / www. w3. or g/ 2001/ XM_Schena- i nst ance.

NOTE 2: See also the definition "xsi: attributes" in clause 3.1 of the present document.

EXAMPLE: Identifying the control namespace of a module:

nodul e MyModul e
{

}
with {
encode " XM.";
variant "control Namespace' http://ww. w3. or g/ 2001/ XM_Schene-i nst ance' prefix 'xsi'"

52 Name conversion

521 General

Translation of identifiers (e.g. type or field names) has a critical impact on the usability of conversion results: primarily,
it shall guarantee TTCN-3 consistency, but, in order to support migration of conversion results from code generated
with tools based on Recommendation ITU-T X.694 [4], it shall also generate identifiers compatible with that standard.
It shall also support portability of conversion results (the TTCN-3 code and the encoding instruction set) between
TTCN-3 tools of different manufacturers, which is only possible if identifier conversion is standardized.

ETSI

http://www.w3.org/2001/XMLSchema-instance

16 ETSI ES 201 873-9 V4.5.1 (2013-04)

For different reasons a valid XSD identifier may not be a valid identifier in TTCN-3. For example, it is valid to specify
both an attribute and an element of the same name in XSD. When mapped in a naive fashion, this would result in two
different types with the same name in TTCN-3.

A name conversion algorithm has to guarantee that the translated identifier name:
a) isunique within the scope it is to be used,;
b) contains only valid characters;
¢) isnota TTCN-3 keyword;
d) isnotareserved word (e.g. "base" or "content™).
The present document specifies the generation of:

a) TTCN-3 type reference names corresponding to the names of model group definitions, top-level element
declarations, top-level attribute declarations, top-level complex type definitions, and user-defined top-level
simple type definitions;

b) TTCN-3 identifiers corresponding to the names of top-level element declarations, top-level attribute
declarations, local element declarations, and local attribute declarations;

¢) TTCN-3 identifiers for the mapping of certain simple type definitions with an enumeration facet
(see clause 6.1.5);

d) TTCN-3 identifiers of certain sequence components introduced by the mapping (see clause 7).

All of these TTCN-3 names shall be generated by applying clause 5.2.2 either to the name of the corresponding schema
component, or to a member of the value of an enumeration facet, or to a specified character string, as specified in the
relevant clauses of the present document.

522 Name conversion rules

Names of attribute declarations, element declarations, model group definitions, user-defined top-level simple type
definitions, and top-level complex type definitions can be identical to TTCN-3 reserved words, can contain characters
not allowed in TTCN-3 identifiers. In addition, there are cases in which TTCN-3 names are required to be distinct
where the names of the corresponding XSD schema components (from which the TTCN-3 names are mapped) are
allowed to be identical.

First:

a) the character strings to be used as names in a TTCN-3 module, shall be ordered in accordance to clause 5.2.3
(i.e. primary ordering the character strings according to their categories as names of elements, followed by
names of attributes, followed by names of type definitions, followed by names of model groups, and
subsequently ordering in alphabetical order);

NOTE 1: The above ordering of character strings is necessary to produce the same final names for the same
definitions independent of the order in which tools are processing schema elements with the same target
namespace. It does not affect the order in which the generated TTCN-3 definitions are written to the
modules by tools.

Secondly, the following character substitutions shall be applied, in order, to each character string being mapped to a
TTCN-3 name, where each substitution (except the first) shall be applied to the result of the previous transformation:

b) the characters " " (SPACE), ". " (FULL STOP), "-" (HYPEN-MINUS), ":" (COLON) and "/" (SOLIDUS)
shall all be replaced by a"_" (LOW LINE);

NOTE 2: Please note that the ":" (COLON) and "/" (SOLIDUS) character may appear in (target) namespace
attributes only but not in local parts of XML qualified names; i.e. the colon above does not refer to the
colon separating the Prefix and the NCName parts of XML qualified names (see [9], clause 3.2.18).

c) any character except "A" to "Z" (LATIN CAPITAL LETTER A to LATIN CAPITAL LETTER Z), "a" to "z"
(LATIN SMALL LETTER A to LATIN SMALL LETTER Z), "0" to "9" (DIGIT ZERO to DIGIT NINE), and
" " (LOW LINE) shall be removed;

ETSI

d)

9

h)

17 ETSI ES 201 873-9 V4.5.1 (2013-04)

a sequence of two or more "_" (LOW LINE) characters shall be replaced with a single *_" (LOW LINE);

(LOW LINE) characters occurring at the beginning or at the end of the name shall be removed;

if a character string that is to be used as a name of a TTCN-3 type starts with a lower-case letter, the first letter
shall be capitalized (converted to upper-case); if it starts with a digit (DIGIT ZERO to DIGIT NINE), it shall
be prefixed with an "X" (LATIN CAPITAL LETTER X) character;

if a character string that is to be used as an identifier of a structured type field or enumeration value starts with
an upper-case letter, the first letter shall be uncapitalized (converted to lower-case); if it starts with a digit
(DIGIT ZERO to DIGIT NINE), it shall be prefixed with an "x" (LATIN SMALL LETTER X) character;

if a character string that is to be used as a hame of a TTCN-3 type definition or as a type reference name is
empty, it shall be replaced by "X" (LATIN CAPITAL LETTER X); and

if a character string that is to be used a name of a record or union field or enumeration value is empty, it shall
be replaced by "x" (LATIN SMALL LETTER X).

Finally, depending on the kind of name being generated, one of the three following items shall apply:

)

k)

If the name being generated is the name of a TTCN-3 type and the character string generated by items a) to i)
above is identical to the name of another TTCN-3 type previously generated in the same TTCN-3 module, or
is one of the reserved words specified in clause 11.27 of Recommendation ITU-T X.680 [3], then a postfix
shall be appended to the character string generated according to the above rules. The postfix shall consist of a
" " (LOW LINE) followed by the canonical lexical representation (see W3C XML Schema Part 2 [9],

clause 2.3.1) of an integer. This integer shall be the least positive integer such that the new name is different
from the type reference name of any other TTCN-3 type assignment previously generated in any of those
TTCN-3 modules.

If the name being generated is the identifier of a field of a record or a union type, and the character string
generated by the rules in items a) to i) above is identical to the identifier of a previously generated field
identifier of the same type, then a postfix shall be appended to the character string generated by the above
rules. The postfix shall consist of a” " (LOW LINE) followed by the canonical lexical representation (see
W3C XML Schema Part 2 [9], clause 2.3.1) of an integer. This integer shall be the least positive integer such
that the new identifier is different from the identifier of any previously generated component of that sequence,
set, or choice type. Field names that are one of the TTCN-3 keywords (see clause A.1.5 of ES 201 873-1 [1])
or names of predefined functions (see clause 16.1.2 of ES 201 873-1 [1]) after applying the postfix to clashing

field names, shall be suffixed by a single " " (LOW LINE) character.

NOTE 3: ES 201 873-1 [1] clause A.1.5 table A.2 defines the keywords of the core language. However, TTCN-3

language extensions (see [i.3] to [i.8], but other extensions may also be published after the publication of
the present document) may define additional keywords and rules for handling those keywords in TTCN-3
modules requiring the given extension.

If the name being generated is the identifier of an enumeration item (see clause 6.2.4 of ES 201 873-1 [1]) of
an enumerated type, and the character string generated by the rules in items a) to i) above is identical to the
identifier of another enumeration item previously generated in the same enumerated type, then a postfix shall
be appended to the character string generated by the above rules. The postfix shall consist ofa"_" (LOW
LINE) followed by the canonical lexical representation (see W3C XML Schema Part 2 [9], clause 2.3.1) of an
integer. This integer shall be the least positive integer such that the new identifier is different from the
identifier in any other enumeration item already present in that TTCN-3 enumerated type. Enumeration names
that are one of the TTCN-3 keywords (see clause A.1.5 of ES 201 873-1 [1]) or names of predefined functions
(see clause 16.1.2 of ES 201 873-1 [1]) after applying the postfix to clashing enumeration names, shall be
suffixed by a single " " (LOW LINE) character.

EXAMPLE 1: Conversion of an XML Schema composed of two schema elements with identical target

namespaces:

<?xm version="1.0" encodi ng="UTF-8"?>
<schema xm ns="http://wwmv w3. or g/ 2001/ XM_Schema"

t ar get Nanespace="http://ww. exanpl e. org/ 1" >

<I—this file is: includeC rcularla.xsd -->

<i ncl ude schemaLocati on="incl udeC rcul ar 1b. xsd"/ >
<!-- sinpl eType "Foobar" -->

<si npl eType nane="Foobar" >

ETSI

18 ETSI ES 201 873-9 V4.5.1 (2013-04)

<restriction base="integer"/>
</ si nmpl eType>

<l-- attribute "Foo-Bar" -->

<attribute name="Foo-Bar" type="integer"/>
<l-- attribute "Foo_Bar" -->

<attribute name="Foo_Bar" type="integer"/>
<!-- attribute "Foobar" -->

<attribute name="Foobar" type="integer"/>
<l-- element "foobar" -->

<el ement nane="foobar" type="integer"/>
<!-- elenent "Foobar" -->

<el ement name="Foobar" type="integer"/>
<conpl exType nane="Akarm ">
<sequence/ >

<!-- conpl exType attribute "foobar" -->
<attribute name="foobar" type="integer"/>
<l-- conpl exType attribute "Foobar" -->

<attribute name="Foobar" type="integer"/>
</ conpl exType>
</ schema>

<?xm version="1.0" encodi ng="UTF-8"?>
<schema xm ns="http://ww. w3. or g/ 2001/ XM_Schenma"
t ar get Nanespace="http://ww. exanpl e. org/ 1" >
<I-- this file is: includeG rcularlb.xsd -->
<i ncl ude schemaLocati on="i ncl udeC rcul ar 1a. xsd"/ >
<l-- sinpleType "foobar" -->
<si npl eType nane="f oobar" >
<restriction base="integer"/>
</ si npl eType>

<l-- attribute "foobar" -->
<attribute name="foobar" type="integer"/>
</ schema>

/IWI11l be translated to:
modul e http_www_exanpl e_org_1 {
/* this file is: includeGCrcularla.xsd */
/* sinpl eType "Foobar" */
type XSD. | nteger Foobar_4
/] postfixed with "_4" as types are the third category and capital letters are preceding
/1 small letters in | SO 646.
with {
variant "name as ' Foobar
}

/* attribute "Foo-Bar" */
type XSD. I nteger Foo_Bar
with {
variant "nanme as 'Foo-Bar'"; variant "attribute"
}

/* attribute "Foo_Bar" */
type XSD.Integer Foo_Bar_1
/'l postfixed with "_1" as after changing dash to underscore in the nane of the attribute
// "Foo-Bar", the nanes of the two types are clashing with each other.
with {
variant "name as 'Foo_Bar'"; variant "attribute"
}

/* attribute "Foobar" */
type XSD. I nteger Foobar_2
// postfixed with "_2" as attributes are the second category and capital letters are
/] preceding snall letters in | SO 646.
with {
variant "name as ' Foobar'";
variant "attribute"

}

/* el enent "foobar" */
type XSD.|nteger Foobar_1

/1 postfixed with "_1" as elenments are the first category and small letters are follow ng
/] capital letters in | SO 646.
with {

variant "name as 'foobar'";
variant "el ement"

ETSI

19 ETSI ES 201 873-9 V4.5.1 (2013-04)

/* el ement "Foobar" */
type XSD. | nteger Foobar
/1 no postfix as elenents are the first category and capital letters are preceding
/1 small letters in | SO 646.
with {
vari ant "el ement"
}

type record Akarm {
/* conpl exType attribute "Foobar" */
XSD. | nt eger foobar optional,
/* conpl exType attribute "foobar" */
XSD. I nt eger foobar_1 optional

}

wth {
variant (foobar) "nane as capitalized";
variant (foobar_1) "name as 'foobar'";
variant (foobar,foobar_1) "attribute"

/* this file is: includeG rcul arlb. xsd*/
/* sinmpleType "foobar" */
type XSD. | nteger Foobar_5
/1 postfixed with "_5" as types are the third category and snall letters are follow ng
/] capital letters in |SO 646.
with {
variant "nanme as 'foobar'"
}

/* attribute "foobar" */
type XSD. | nteger Foobar_3
/] postfixed with "_3" as attributes are the second category and snall letters are
/1 followi ng capital letters in | SO 646.
with {
variant "name as 'foobar'";
variant "attribute"

}

}
with {

variant "namespace as 'http_ww. exanple.org/1""
}

For an TTCN-3 type definition name or field identifier that is generated by applying this clause to the name of an
element declaration, attribute declaration, top-level complex type definition or user-defined top-level simple type
definition, if the type definition name generated is different from the value of the name attribute of the corresponding
schema component, a final "name as..." variant attribute shall be attached to the TTCN-3 type definition with that type
definition name (or to the field with that identifier) as specified in the items below:

a) Ifthe only difference is the case of the first letter (which is upper case in the type definition name and lower
case in the name), then the variant attribute " nanme as uncapi tal i zed" shall be used.

b) If the only difference is the case of the first letter (which is lower case in the identifier and upper case in the
name), then the variant attribute " name as capital i zed" shall be applied to the field concerned or the
"name all as capitalized" shall be applied to the related type definition (in this case the attribute has effect on
all identifiers of all fields but not on the name of the type!).

¢) Otherwise, the "nanme as ' <name>'" variant attribute shall be used, where <narne> is the value of the

corresponding name attribute.

EXAMPLE 2: Using the "nane" variant attribute:

/1 The top-level conplex type definition
<xsd: conpl exType name=" COVPONENTS" >
<xsd: sequence>
<xsd: el ement name="El enf type="xsd: bool ean"/>
<xsd: el ement name="el ent type="xsd:integer"/>
<xsd: el ement name="El em 1" type="xsd: bool ean"/>
<xsd: el ement name="el em 1" type="xsd:integer"/>
</ xsd: sequence>
</ xsd: conpl exType>

/lis mapped to the TTCN-3 type assignnent:
type record COVPONENTS_1

ETSI

20 ETSI ES 201 873-9 V4.5.1 (2013-04)

bool ean el em
integer elem1,
bool ean elem1_1,
integer elem1_2

}

wth {

variant "nane as ' COWPONENTS' ";
variant (elem) "nane as capitalized";
variant (elem1) "nane as 'elem"”;
variant (elem1_1) "nane as 'Elem1'";
variant (elem1_2) "nane as 'elem1'";

}s

For an TTCN-3 identifier that is generated by applying this clause for the mapping of a simple type definition with an
enumeration facet where the identifier of the generated TTCN-3 enumeration value is different from the corresponding
member of the value of the enumeration facet, a "text as..." variant attribute shall be assigned to the TTCN-3
enumerated type, with qualifying information specifying the identifier of the enumeration item of the enumerated type.
One of the two following items shall apply:

a) Ifthe only difference is the case of the first letter (which is lower case in the identifier and upper case in the
member of the value of the enumeration facet), then the "text "<TTCN-3 enumeration identifier>" as
capitalized™ variant attribute shall be used.

b) If all TTCN-3 enumeration values differ in the case of the first letter only (which is lower case in the identifier
and upper case in the member of the value of the enumeration facet), then the "text all as capitalized" variant
attribute shall be used.

¢) Otherwise, the "text "<TTCN-3 enumeration identifier>" as "<member of the value of the enumeration facet>
variant attribute shall be used.

EXAMPLE 3: Using the "text as..." variant attribute:

/] The XSD enuneration facet:
<xsd: si npl eType name="state">
<xsd:restriction base="xsd:string">
<xsd: enuneration val ue="Off"/>
<xsd: enuneration val ue="off"/>
</xsd:restriction>
</ xsd: si npl eType>

/11s mapped to the TTCN-3 type assi gnment:

type enunerated State { off, off_1}

with {
variant "name as uncapitalized";
variant "text 'off' as capitalized";
variant "text 'off_1' as 'off'";

5.2.3 Order of the mapping

An order shall be imposed on the top-level schema components of the source XSD Schema on which the mapping is
performed. This applies to model group definitions, top-level complex type definitions, user-defined top-level simple
type definitions, top-level attribute declarations, and top-level element declarations.

NOTE: Other top-level schema components are not mapped to TTCN-3, and XSD built-in data types are mapped
in a special way.

The order is specified in the three following items:

a) Top-level schema components shall first be ordered by their target namespace, with the absent namespace
preceding all namespace names in ascending alphabetical order.

b) Within each target namespace, top-level schema components shall be divided into four sets ordered as follows:
1) element declarations;
2) attribute declarations;

3) complex type definitions and simple type definitions;

ETSI

21 ETSI ES 201 873-9 V4.5.1 (2013-04)

4) model group definitions.
¢) Within each set of item b), schema components shall be ordered by name in ascending alphabetical order.

TTCN-3 type definitions that correspond directly to the XSD schema components shall be generated in the order of the
corresponding XSD schema components.

5.3 Mapping of XSD schema components
Table 1la: Mapping of XSD schema components
XSD schema component Sub-category W3C XML Schema TTCN-3 mapping
reference defined by
attribute declaration Part1, 3.2 Clause 7.4
global Clause 7.3
element declaration local Part1, 3.3 Clause 7.3
head of a substitution Clause 8.1.1
group
complex type definition not substitutable Part1, 3.4 Clause 7.6
substitutable Clause 8.2
Built-in datatypes Part 2 Clause 6
attribute use Part1, 3.5 Clause 7.1.12
attribute group definition Part 1, 3.6 Clause 7.4.2
model group definition Part1, 3.7 Clause 7.9
model group use Part1, 3.8 Clause 7.6.7
particle Part1, 3.9 Clause
wildcard Part 1, 3.10 Clause 7.1.15
identity-constraint definition Part1, 3.11 Clause 7.10
notation declaration Part1, 3.12 ignored by the mapping
annotation Part1, 3.13 ignored by the mapping
simple type definition not substitutable Part 1, 3.14 Clause 7.5
substitutable Clause 8.2
schema Part 1, 3.15 Clause 7.2
ordered Part2,4.2.2.1 ignored by the mapping
bounded Part 2,4.2.3.1 ignored by the mapping
cardinality Part2,4.2.4.1 ignored by the mapping
numeric Part2,4.2.5.1 ignored by the mapping
length Part2,4.3.1.1 Clause 6.1.1
minLength Part 2, 4.3.2.1 Clause 6.1.2
maxLength Part 2, 4.3.3.1 Clause 6.1.3
pattern Part 2,4.3.4.1 Clause 6.1.4
enumeration Part 2,4.3.5.1 Clause 6.1.5
whiteSpace Part 2, 4.3.6.1 Clause 6.1.6
maxInclusive Part 2, 4.3.7.1 Clause 6.1.8
maxExclusive Part 2, 4.3.8.1 Clause 6.1.10
minExclusive Part 2, 4.3.9.1 Clause 6.1.9
minInclusive Part 2, 4.3.10.1 Clause 6.1.7
totalDigits Part 2,4.3.11.1 Clause 6.1.11
fractionDigits Part 2, 4.3.12.1 ignored by the mapping

5.4

XSD and TTCN-3 are very distinct languages. Therefore some features of XSD have no equivalent in TTCN-3 or make
no sense when translated to the TTCN-3 language. Whenever possible, these features are translated into encoding
instructions completing the TTCN-3 code. The following list contains a collection of the unsupported features:

Unsupported features

a) Numeric types are not allowed to be restricted by patterns.
b) List types are not allowed to be restricted by enumerations or patterns.

¢) Specifying the number of fractional digits for float types is not supported.

ETSI

22 ETSI ES 201 873-9 V4.5.1 (2013-04)

d) Translation of the identity-constraint definition schema components (unique, key, keyref, selector and field
elements) are not supported.

e) All time types (see clause 6.5) restrict year to 4 digits.

6 Built-in data types

XSD built-in data types may be primitive or derived types. The latter are gained from primitive types by means of a
restriction mechanism called facets. For the mapping of primitive types, a specific TTCN-3 module XSD is provided by
the present document, which defines the relation of XSD primitive types to TTCN-3 types. Whenever a new simpleType
is defined, with a built-in XSD type as its base type, it shall be mapped directly from types defined in the module XSD.

EXAMPLE:

<si npl eType name="el">
<restriction base="integer"/>
</ si npl eType>

/| Becones
type XSD.|nteger E1
wth {
variant "name as uncapitalized"
}

In the following clauses both the principle mappings of facets and the translation of primitive types are given. The
complete content of the XSD module is given in annex A.

6.1 Mapping of facets

Table 2 summarizes the facets for the built-in types that are mapped to TTCN-3 specifically, i.e. to a specific TTCN-3
language construct. Facets, allowed by XML Schema but without a counterpart in TTCN-3, shall be retained by a
"transparent" encoding instruction as given in clause 6.1.12 and therefore not marked in table 2.

Table 2: Mapping support for facets of built-in types

min max min max min max total whit
Facet | length Length Lenagth pattern | enum. Incl. Inil. Excl. Ex?:l. D(i)gﬁs Spacee
v v v v v
Type (see (see (see (see v (see
string note 1) | note 2) | note 2) | note 2) note 3)
integer v v v v v v
v
float v v v v v (see
note 4)
time v v
list v v v
boolean

NOTE 1: With the exception of QName which does not support length restriction.
NOTE 2: With the exception of hexBinary which does not support patterns.
NOTE 3: With the exception of some types (see clause 6.1.6).

NOTE 4: With the exception of decimal which does support totalDigits.

ETSI

23 ETSI ES 201 873-9 V4.5.1 (2013-04)

6.1.1 Length

The XSD facet length describes, how many units of length a value of the given simple type shall have. For string and
data types derived from string, length is measured in units of characters. For hexBinary and base64Binary and data
types derived from them, length is measured in octets. For data types derived by list, length is measured in number of
list items. A length-restricted XSD type shall be mapped to a corresponding length restricted TTCN-3 type.

EXAMPLE 1:

<si npl eType nane="e2">
<restriction base="string">
<l ength val ue="10"/>
</restriction>
</ si npl eType>

Is translated to the following TTCN-3 type

type XSD. String E2 | ength(10)
with {

variant "nanme as uncapitalized"
}

For built-in list types (see clause 6.6) the number of elements of the resulting structure will be restricted.

EXAMPLE 2:

<si npl eType name="e3">
<restriction base="NMIOKENS" >
<l ength val ue="10"/>
</restriction>
</ si nmpl eType>

/1 Mapped to TTCN 3:
type XSD. NMTOKENS E3 | engt h(10)
with {
variant "name as uncapitalized"
}

6.1.2 MinLength

The XSD facet minLength describes the minimal length that a value of the given simple type shall have. It shall be
mapped to a length restriction in TTCN-3 with a set lower bound and an open upper bound. The fixed XSD attribute
(see clause 7.1.5) shall be ignored.

EXAMPLE:

<si npl eType nane="e4">
<restriction base="string">
<m nLength val ue="3"/>
</restriction>
</ si npl eType>

/lls translated to
type XSD. String E4 length(3 .. infinity)
with {
variant "name as uncapitalized"
}

6.1.3 MaxLength

The XSD facet maxLength describes the maximal length that a value of the given simple type shall have. It shall be
mapped to a length restriction in TTCN-3 with a set upper bound and a lower bound zero. The fixed XSD attribute
(see clause 7.1.5) shall be ignored.

EXAMPLE:

<si npl eType name="e5">
<restriction base="string">
<maxLengt h val ue="5"/>
</restriction>
</ si nmpl eType>

ETSI

24 ETSI ES 201 873-9 V4.5.1 (2013-04)

/11ls mapped to:
type XSD. String E5 |l ength(O .. 5)
with {

variant "name as uncapitalized"
}

6.1.4

The XSD pattern facet allows constraining the value space of XSD data types by restricting the value notation by a
regular expression. This facet is supported for XSD types derived directly or indirectly from the XSD string type. For
these types pattern facets shall directly be mapped to TTCN-3 pattern subtyping. As the syntax of XSD regular patterns
differs from the syntax of the TTCN-3 pattern subtyping, a mapping of the pattern expression has to be applied. The
symbols "(" (LEFT PARENTHESIS), ")" (RIGHT PARENTHESIS), "|" (VERTICAL LINE), "[" (LEFT SQUARE
BRACKET), "1" (RIGHT SQUARE BRACKET) and """ (CIRCUMFLEX ACCENT) shall not be changed and shall be
translated directly. Other meta characters shall be mapped according to tables 3 and 4.

Pattern

Table 3: Translation of meta characters

XSD TTCN-3
?
\s [\a{0,0,0,201\g{0,0,0,10}\t\r]
(see note)
\S ["\g{0,0,0,20)\q{0,0,0,10}\t\r]
(see note)
\d \d
\D [M\d]
\w \w
\W [Mw]
\i [\wAd:]
\I [MwAd:]
\c [wAd.\-]
\C [Mw\d.\-_]

NOTE: \g{0,0,0,20} denotes the " "
(SPACE) graphical character and
\q{0,0,0,10} denotes the line feed
(LF) control character.

Table 4: Translation of quantifiers

XSD TTCN-3

? #(0, 1)

+ #(1,)

* #(0,)

{n, rr} #(n! n)
{n} #n

{n,} #(n!)

Unicode characters in XSD patterns are directly translated but the syntax changes from &#xgprc; in XSD to\q{g, p,
r, c} in TTCN-3, where g, p, r, and c each represent a single character.

Escaped characters in XSD shall be mapped to the appropriate character in TTCN-3 (e.g. ".", and "+") or, if this
character has a meta-character meaning in TTCN-3 patterns, to an escaped character in TTCN-3. The double quote
character shall be mapped to a pair of double quote characters in TTCN-3. Character categories and blocks (like \ p{ Lu}
or\ p{1sBasi cLat i n}) are not supported. The mapping shall result in a valid TTCN-3 pattern according to clause B.1.5
of ES 201 873-1 [1].

EXAMPLE:

<si npl eType nane="e6">
<restriction base="string">
<pattern val ue="(aUser|anotherUser) @i |l)nstitute"/>
</restriction>
</ si npl eType>

ETSI

25 ETSI ES 201 873-9 V4.5.1 (2013-04)

//WI1l be nmapped to the followi ng TTCN-3 expresion:

type XSD. String E6 (pattern "(aUser|anotherUser)@i|l)nstitute")
with {

variant "nanme as uncapitalized"
}

6.1.5 Enumeration
The facet enumeration constraints the value space of XSD simple types to a specified set of values.

A simple type definition that is derived from an XSD string type (directly or indirectly) by restriction using the
enumeration facet, shall be mapped to a TTCN-3 enuner at ed type (see clause 6.2.4 of ES 201 873-1 [1]), where
each XSD enumeration information item is mapped to a TTCN-3 enumeration value of a TTCN-3 enumerated type
(see clause 6.2.4 of ES 201 873-1 [1]), as follows:

a) For each member of the XSD enumeration facet, a TTCN-3 enumeration item shall be added to the enumerated
type that is an identifier (i.e. without associated integer value), except for members not satisfying a relevant
length, minLength, maxLength, pattern facet or a whiteSpace facet with a value of replace or collapse and the
member name contain any of the characters HORIZONTAL TABULATION, NEWLINE or CARRIAGE
RETURN, or (in the case of collapse) contain leading, trailing, or multiple consecutive SPACE characters.

b) Each enumeration identifier shall be generated by applying the rules defined in clause 5.2.2 of the present
document to the corresponding value of the enumeration facet.

¢) The members of the same enumeration facet (children of the sameXSD restriction element) shall be mapped in
ascending lexicographical order and any duplicate members shall be discarded.

A simple type definition that is derived from the XSD integer type (directly or indirectly) by restriction using the
enumeration facet, shall be mapped to a TTCN-3 enuner at ed type (see clause 6.2.4 of ES 201 873-1 [1]), where
each XSD enumeration information item is mapped a TTCN-3 enumeration value, as specified below. In this case the
enumeration names are artificial and the encoded XML component shall contain the integer values, not the TTCN-3
enumeration names. The encoder shall be instructed to do so with the encoding instruction "useNumber".

a) For each member of the XSD enumeration facet, a TTCN-3 enumeration item shall be added to the enumerated
type that is an enumeration identifier plus the associated integer value shall be added to the enumeration type,
except for facet values not satisfying a relevant length, minLength, maxLength, pattern facet or a whiteSpace
facet with a value of replace or collapse and the member name contain any of the characters HORIZONTAL
TABULATION, NEWLINE or CARRIAGE RETURN, or (in the case of collapse) contain leading, trailing, or
multiple consecutive SPACE characters.

b) The identifier of each enumeration item shall be generated by concatenating the character string "int" with the
canonical lexical representation (see W3C XML Schema Part 2 [9], clause 2.3.1) of the corresponding member
of the value of the enumeration facet. The assigned integer value shall be the TTCN-3 integer value notation
for the member.

¢) The members of the same enumeration facet (children of the sameXSD restriction element) shall be mapped in
ascending numerical order and any duplicate members shall be discarded.

Any other enumeration facet shall be mapped to value list subtyping, if this is allowed by ES 201 873-1 [1], that is
either a single value or a union of single values corresponding to the members of the enumeration facet. If a
corresponding value list subtyping is not allowed by ES 201 873-1 [1], the enumeration facet shall be ignored.

NOTE: The enumeration facet applies to the value space of the base type definition. Therefore, for an
enumer ation of the XSD built-in datatypes QName, the value of the uri component of the use_gname
record (see clause 6.6.4) is determined, in the XML representation of an XSD Schema, by the namespace
declarations whose scope includes the QName, and by the prefix (if any) of the QName.

EXAMPLE 1: The following represents a user-defined top-level simple type definition that is a restriction of
xsd:string with an enumeration facet:

<xsd: si npl eType name="state">

<xsd:restriction base="xsd:string">
<xsd: enunerati on val ue="of f"/>

ETSI

26 ETSI ES 201 873-9 V4.5.1 (2013-04)

<xsd: enuner ati on val ue="on"/>
</xsd:restriction>
</ xsd: si npl eType>

//1ls mapped to the TTCN-3 type definition
type enunerated State {off, on_}
wth {
variant "name as uncapitalized"
variant "text 'on_' as 'on'"

}

EXAMPLE 2: The following represents a user-defined top-level simple type definition that is a restriction of
xsd:integer with an enumeration facet:

<xsd: si npl eType name="i nt eger - 0-5- 10" >
<xsd:restriction base="xsd:integer">
<xsd: enuneration val ue="0"/>
<xsd: enunerati on val ue="5"/>
<xsd: enunerati on val ue="-5"/>
<xsd: enunerati on val ue="10"/>
</xsd:restriction>
</ xsd: si npl eType

/11s mapped to the TTCN-3 type definition
type enunerated Integer_0_5 10 {int_5(-5), int0(0), int5(5), int10(10)}
with {

variant "nanme as uncapitalized"

variant "useNunber"

}

EXAMPLE 3. The following represents a user-defined top-level simple type definition that is a restriction of
xsd:integer with a minInclusive and a maxInclusive facet:

<xsd: si npl eType name="i nt eger-1-10">
<xsd:restriction base="xsd:integer">
<xsd: m nl ncl usi ve val ue="1"/>
<xsd: maxl| ncl usi ve val ue="10"/>
</xsd:restriction>
</ xsd: si npl eType>

/11s mapped to the TTCN-3 type definition
type integer Integer_1 10 (1..10)
with {
variant "nanme as uncapitalized"
}

EXAMPLE 4: The following represents a user-defined top-level simple type definition that is a restriction (with a
minExclusive facet) of another simple type definition, derived by restriction from xsd:integer with
the addition of a minInclusive and a maxInclusive facet:

<xsd: si npl eType nanme="nul ti pl e-of -4">
<xsd:restriction>
<xsd: si npl eType>
<xsd:restriction base="xsd:integer">
<xsd: m nl ncl usi ve val ue="1"/>
<xsd: maxl ncl usi ve val ue="10"/>
</ xsd:restriction>
</ xsd: si npl eType>
<xsd: m nExcl usi ve val ue="5"/>
</xsd:restriction>
</ xsd: si npl eType>

/11s mapped to the TTCN-3 type definition
type integer Multiple_of_4 (1..4,6..10)
with {

variant "name as uncapitalized"
}

EXAMPLE 5: The following represents a user-defined top-level simple type definition that is a restriction (with a
minLength and a maxLength facet) of another simple type definition, derived by restriction from
xsd:string with the addition of an enumeration facet:

<xsd: si npl eType name="col our">
<xsd:restriction>
<xsd: si npl eType>
<xsd:restriction base="xsd:string">

ETSI

27 ETSI ES 201 873-9 V4.5.1 (2013-04)

<xsd: enunerati on val ue="white"/>
<xsd: enuner ati on val ue="bl ack"/>
<xsd: enuneration val ue="red"/>
</xsd:restriction>
</ xsd: si npl eType>
<xsd: mi nLength val ue="2"/>

xsd: restriction>
</ xsd: si npl eType>

//ls mapped to the TTCN-3 type definition
type enunerated Color { red }
with {
variant "nane as uncapitalized"
}

6.1.6 WhiteSpace

The whiteSpace facet has no corresponding feature in TTCN-3 but shall be preserved using the whitespace encoding
instruction.

EXAMPLE:

<si npl eType nane="e8">
<restriction base="string">
<whi t eSpace val ue="repl ace"/ >
</restriction>
</ si npl eType>

This can be mapped into a charstring, sending information about the whiteSpace facet to the codec.

type XSD. String E8

with {
vari ant "whiteSpace repl ace"
variant "nanme as uncapitalized"

}

For most built-in types the value of the whiteSpace facet shall be set to "collapse" and only for the string types
normalizedString (see clause 6.2.2), token (see clause 6.2.2), language (see clause 6.2.13), Name (see clause 6.2.4) and
NCName (see clause 6.2.6) are allowed to specify this facet.

6.1.7 MinlInclusive

The mininclusive XSD facet is only applicable to the numerical types (integer, decimal, float, double and their
derivatives) and date-time types (duration, dateTime, time, gYearMonth, gYear, gMonthDay, gDay and gMonth). It
specifies the lowest bound of the type's value space, including the bound. This facet is mapped to TTCN-3 depending
on the base type of the facet's parent restriction element and the value of the facet:

a) if the minInclusive facet is applied to a float or double type (including their derivatives) and its value is one of
the special values INF (positive infinity) or NaN (not-a-number), it shall be translated to a list subtyping with
the single TTCN-3 value i nfi ni ty or not _a_nunber, respectively (independent of the value of a
max| nclusive or maxEclusive facet applied to the same type, if any);

b) otherwise, if the mininclusive facet is applied to a numeric type, it shall be translated to an inclusive lower
bound of a range restriction in TTCN-3. The upper bound of the base type range shall be:

- defined by a maxinclusive (see clause 6.1.8) or a maxEclusive (see clause 6.1.10) facet, which is a child
of the same restriction element, if any;

- or inherited from the base type; in case the base type is one of the XSD built-in types integer, decimal,
float, double, nonNegativel nteger or positivel nteger, it shall be setto i nf i ni ty if not set) (in case of
other built-in numerical types the upper bounds of their value spaces are defined in [9]);

ETSI

28 ETSI ES 201 873-9 V4.5.1 (2013-04)

c) for the date-time types the facet shall be ignored.

NOTE: Note, that the upper bound of the value space of the XSD float type is
3.4028234663852885981170418348452E38 ((2/24-1)*2"104) and of the XSD double type is
1.8268770466636284449305100043786E47 ((2/53-1)*27970). However, TTCN-3 does not place the
requirement to support these values by TTCN-3 tools. Therefore, to maintain the portability of the
generated TTCN-3 code, the upper bound is setto i nfi ni ty, if no maxinclusive or maxEclusive facet is
applied. However, users should respect the values above, otherwise the result of producing encoded XML
values in undeterministic.

EXAMPLE 1: Mapping of an integer element with a mininclusive facet:

<si npl eType nanme="e9%a">
<restriction base="integer">
<m nl ncl usi ve val ue="-5"/>
</restriction>
</ si nmpl eType>

/11s mapped to:
type XSD.Integer E9a (-5 .. infinity)
wth {
variant "nanme as uncapitalized"
}

EXAMPLE 2: Mapping of a float element with a numeric mininclusive value:

<si npl eType nanme="e9b" >
<restriction base="float">
<m nl ncl usi ve val ue="-5"/>
</restriction>
</ si npl eType>

/11ls nmapped to:
type XSD.Float E9b (-5.0 .. infinity)
with {
variant "name as uncapitalized"
}

EXAMPLE 3: Mapping of a float element with special mininclusive values:

<si npl eType nanme="e9c">
<restriction base="float">
<m nl ncl usi ve val ue="-1NF"/>
</restriction>
</ si nmpl eType>

/11s mapped to:
type XSD.Float E9c (-infinity .. infinity)
with {
variant "nanme as uncapitalized"
}

<si npl eType name="e9d" >
<restriction base="float">
<m nl ncl usi ve val ue="1NF"/>
</restriction>
</ si npl eType>

/11s mapped to:
type XSD.Float E9d (infinity)
with {

variant "name as uncapitalized"
}

<si npl eType nanme="e%e">
<restriction base="float">
<m nl ncl usi ve val ue="NaN'/ >
</restriction>
</ si npl eType>

ETSI

29 ETSI ES 201 873-9 V4.5.1 (2013-04)

/11ls mapped to:
type XSD. Fl oat E9e (not_a_nunber)
with {

variant "name as uncapitalized"
}

6.1.8 MaxInclusive

The maxinclusive facet is only applicable to the numerical types (integer, decimal, float, double and their derivatives)
and date-time types (duration, dateTime, time, gYearMonth, gYear, gMonthDay, gDay and gMonth). It specifies the
upmost bound of the type's value space, including the bound. This facet is mapped to TTCN-3 depending on the base
type defined in the facet's parent restriction element and the value of the facet:

a) if the maxinclusive facet is applied to a float or double type (including their derivatives) and its value is one of
the special values -INF (negative infinity) or NaN (not-a-number), it shall be translated to a list subtyping with
the single TTCN-3 value - i nfi ni ty ornot _a_nunber, respectively (independent of the value of a
mininclusive or minEclusive facet applied to the same restriction element, if any);

b) otherwise, if the maxinclusive facet is applied to a numeric type, it shall be translated to an inclusive upper
bound of a range restriction in TTCN-3. The lower bound of the range shall be:

- defined by a mininclusive (see clause 6.1.7) or a minEclusive (see clause 6.1.9) facet, which is a child of
the same restriction element, if any;

- or inherited from the base type; in case the base type is one of the XSD built-in types integer, decimal,
float, double, nonPositivel nteger or negativelnteger, it shall be set to (- i nf i ni ty if not set) (in case of
other built-in numerical types the lower bounds of their value spaces are given in [9]);

¢) for the date-time types the facet shall be ignored.

NOTE: Note, that the lower bound of the value space of the XSD float type is
-3. 4028234663852885981170418348452E38 ((2/24-1)*27104) and of the XSD double type is
-1. 8268770466636284449305100043786E47 ((2°53-1)*27970). However, TTCN-3 does not place
the requirement to support these values by TTCN-3 tools. Therefore, to maintain the portability of the
generated TTCN-3 code, the lower bound is set to -i nfi ni ty, if no mininclusive or minEclusive facet is
applied. However, users should respect the values above, otherwise the result of producing encoded XML
values in undeterministic.

EXAMPLE 1: Mapping of elements of type integer with maxinclusive facet:

<si npl eType nanme="el0Oa">
<restriction base="positivelnteger">
<max| ncl usi ve val ue="100"/>
</restriction>
</ si npl eType>

/11ls mapped to:
type XSD. Positivelnteger El10a (1 .. 100)
with {
variant "nanme as uncapitalized"
}

EXAMPLE 2: Mapping of a float type with a numeric maxinclusive facet:

<si npl eType nanme="elOb">
<restriction base="float">
<mex| ncl usi ve val ue="-5"/>
</restriction>
</ si nmpl eType>

/11s mapped to:
type XSD. Float E10b (-infinity .. -5.0)
//pls. note that XSD allows an integer-like value notation for float types but TTCN-3 does not!
with {
variant "name as uncapitalized"
}

ETSI

30 ETSI ES 201 873-9 V4.5.1 (2013-04)

EXAMPLE 3: Mapping of a float type with specific-value maxinclusive facets:

<si npl eType nane="elOc">
<restriction base="float">

<max| ncl usi ve val ue="I NF"/>
</restriction>

</ si npl eType>

/11ls mapped to:

type XSD. Float E10c (-infinity .. infinity)
with {
variant "name as uncapitalized"

}

<si npl eType nane="el0d">
<restriction base="float">

<max| ncl usi ve val ue="NaN'/ >
</restriction>

</ si npl eType>

/11s mapped to:
type XSD. Fl oat E10d (not_a_nunber)

with {

}

vari ant

6.1.9

"nane as uncapitalized"

MinExclusive

The XSD facet minExclusive is similar to mininclusive but the specified bound is not part of the range. It is also
applicable to the XSD numerical and date-time types (see clause 6.1.7). This facet is mapped to TTCN-3 depending on
the base type defined in the facet's parent restriction element and the value of the facet:

a)

if the minExclusive facet is applied to a float or double type and its value is one of the special values
INF (positive infinity) or NaN (not-a-number), this type shall not be translated to TTCN-3;

NOTE 1: If the value of the minExclusive facet is INF or NaN, this result an empty type in XSD, but empty types

b)

d)

do not exist in TTCN-3.

otherwise, if the minExclusive facet is applied to an integer, float, double or decimal type, it shall be translated
to an exclusive lower bound of a range restriction in TTCN-3; the value of the bound shall be the value of the
minExclusive facet;

in case b) the upper bound of the range shall be:

defined by a maxinclusive (see clause 6.1.8) or a maxEclusive (see clause 6.1.10) facet, which is a child
of the same restriction element, if any;

or inherited from the base type; in case the base type is one of the XSD built-in types integer, decimal,
float, double, nonNegativel nteger or positivelnteger, it shall be settoi nfi ni ty (in case of other
built-in numerical types the upper bounds of their value spaces are defined in [9]);

for the date-time types the facet shall be ignored.

NOTE 2: Note, that the upper bound of the value space of the XSD float type is

3. 4028234663852885981170418348452E38 ((2724-1)*2"104) and of the XSD double type is
1.8268770466636284449305100043786E47 ((2°53-1)*27970). However, TTCN-3 does not place the
requirement to support these values by TTCN-3 tools. Therefore, to maintain the portability of the
generated TTCN-3 code, the upper bound is set to i nf i ni ty, if no maxinclusive or maxEclusive facet is
applied. However, users should respect the values above, otherwise the result of producing encoded XML
values in undeterministic.

EXAMPLE 1: Mapping of the minExclusive facet applied to an integer type:

<si npl eType nanme="ella">
<restriction base="integer">

<m nExcl usi ve val ue="-5"/>
</restriction>

</ si nmpl eType>

ETSI

31 ETSI ES 201 873-9 V4.5.1 (2013-04)

/1ls mapped to TTCN-3 as:
type XSD.Integer Ella (!-5 .. infinity)
with {
variant "name as uncapitalized"
}

EXAMPLE 2: Mapping of a float type with minExclusive facet:

<si npl eType name="ellb">
<restriction base="float">
<m nExcl usi ve val ue="-5"/>
</restriction>
</ si npl eType>

/11s mapped to TTCN-3 as:

type XSD. Float Ellb (!-5.0 .. infinity)
/Ipls. note that XSD all ows an integer-like value notation for float types but TTCN-3 does not!
with {

variant "nanme as uncapitalized"

}

<si npl eType name="ellc">
<restriction base="ns:elOb">
<m nExcl usi ve val ue="-6"/>
</restriction>
</ si npl eType>

/11s mapped to TTCN-3 as
type XSD. Float Ellc (!-6.0 .. -5.0)
with {

variant "name as uncapitalized"
}

<si npl eType nane="elld">
<restriction base="float">
<m nExcl usi ve val ue="INF"/>
</restriction>
</ si npl eType>

/1 No corresponding TTCN-3 type is produced

6.1.10 MaxExclusive

The XSD facet maxExclusive is similar to maxinclusive but the specified bound is not part of the range. It is also
applicable to the XSD numerical and date-time types (see clause 6.1.8). This facet is mapped to TTCN-3 depending on
the base type defined in the facet's parent restriction element and the value of the facet:

a) if the maxExclusive facet is applied to a float or double type and its value is one of the special values -INF
(negative infinity) or NaN (not-a-number), this type shall not be translated to TTCN-3;

NOTE 1: If the value of the maxExclusive facet is -INF or NaN, this result an empty type in XSD, but empty types
do not exist in TTCN-3.

b) otherwise, if the maxExclusive facet is applied to an integer, float, double or decimal type, it shall be translated
to an exclusive upper bound of a range restriction in TTCN-3; the value of the bound shall be the value of the
maxExclusive facet;

¢) incase b) the lower bound of the range shall be:

- defined by a mininclusive (see clause 6.1.7) or a minEclusive (see clause 6.1.9) facet, which is a child of
the same restriction element, if any;

- or inherited from the base type; in case the base type is one of the XSD built-in types integer, decimal,
float, double, nonPositivel nteger or negativel nteger, it shall be setto - i nfi ni ty (in case of other
built-in numerical types the lower bounds of their value spaces are given in [9]);

ETSI

32

d) for the date-time types the facet shall be ignored.

ETSI ES 201 873-9 V4.5.1 (2013-04)

NOTE 2: Note, that the lower bound of the value space of the XSD float type is
-3.4028234663852885981170418348452E38 ((224-1)*27104) and of the XSD double type is
-1. 8268770466636284449305100043786E47 ((2"53-1)*27970). However, TTCN-3 does not place
the requirement to support these values by TTCN-3 tools. Therefore, to maintain the portability of the
generated TTCN-3 code, the lower bound is set to -i nfi ni ty, if no mininclusive or minEclusive facet is
applied. However, users should respect the values above, otherwise the result of producing encoded XML

values in undeterministic.

EXAMPLE 1:

<si npl eType nanme="el2a">
<restriction base="positivelnteger">
<maxExcl usi ve val ue="100"/>
</restriction>
</ si nmpl eType>

/1 1's mapped in TTCN-3 to:
type XSD. Positivel nteger El2a (1 .
wth {

variant "nanme as uncapitalized"
}

1100)

EXAMPLE 2:

<si npl eType nane="el2b">
<restriction base="float">
<maxExcl usi ve val ue="-5"/>
</restriction>
</ si npl eType>

/1 I's mapped in TTCN-3 to
type XSD. Float E12b (-infinity .. ! -5.0)

Mapping of a maxExclusive facet applied to the float type:

Mapping of a maxExclusive facet applied to a type, which is derivative of integer:

/Ipls. note that XSD allows an integer-like value notation for float types but TTCN-3 does not!

with {
variant "nanme as uncapitalized"
}

<si npl eType nane="el2c">
<restriction base="ns:e9b">
<maxExcl usi ve val ue="-4"/>
</restriction>
</ si mpl eType>

/1 1's mapped in TTCN-3 to:
type XSD. Float El12c (-5.0 .. ! -4.0)
with {

variant "name as uncapitalized"
}

<si npl eType nane="el2d">
<restriction base="float">
<maxExcl usi ve val ue="-1NF"/>
</restriction>
</ si mpl eType>

/I No corresponding TTCN-3 type is produced.

6.1.11 Total digits

This facet defines the total number of digits a numeric value is allowed to have. It shall be mapped to TTCN-3 using
ranges by converting the value of totalDigitsto the proper boundaries of the numeric type in question.

EXAMPLE:

<si npl eType nanme="el3">
<restriction base="negativelnteger">
<totalDigits val ue="3"/>
</restriction>
</ si nmpl eType>

ETSI

33 ETSI ES 201 873-9 V4.5.1 (2013-04)

/1 1s translated to:
type XSD. Negativelnteger E13 (-999 .. -1)
wth {
variant "name as uncapitalized"
}

6.1.12 Not specifically mapped facets

Whenever an XSD facet element is not mapped to a TTCN-3 by one of the preceding clauses, it shall be mapped to a
"transparent ..." encoding instruction containing the name and the value of the XSD facet element.

The content of the encoding instruction shall be of the form t r anspar ent <f acet> ' <val ue>' where
<f acet > is the XSD facet element’s name and <val ue> is the content of the value attribute of that facet element.

NOTE: Since the pattern and enumeration facets are the only facets which can contain the * character and this is
only possible for XSD string based types which will be mapped to value or pattern subtype restrictions
(see clauses 5 Mapping XML Schemas and 6 Built-in data types), it is never necessary to quote the
character in any valid pattern value.

EXAMPLE:

<si npl eType nane="deci mal Wt hWol e" >
<restriction base="deci mal ">
<pattern value="[0-9][.][0-9]*"/>
</restriction>
</ si npl eType>

/1 1s translated to:
type XSD. Deci nal Deci nal Wt hwhol e
with {
variant "name as uncapitalized";
variant "transparent pattern '[0-9][.][0-9]*""

}

<l-- The XSD type -->
<si npl eType name="deci mal Wt hlFracti on">
<restriction base="deci mal ">
<fractionDigits value="1"/>
</restriction>
</ si npl eType>

/Il Is translated to:
type XSD. Deci nal Deci mal Wt hlFraction
with {
variant "name as uncapitalized";
variant "transparent fractionbDigits '1'"

6.2 String types

XSD string types shall generally be converted to TTCN-3 as subtypes of universal charstring or octetstring as specified
in this and in subsequent clauses. For an overview of the allowed facets please refer to table 2. Following clauses
specify the mapping of all string types of XSD.

To support mapping, the following type definitions are added to the built-in data types (utf8string is declared as a
UTF-8 encoded subtype of universal charstring in clause D.2.2.0 of ES 201 873-1 [1]):

type utf8string XM.Conpati bl eString
(

char(0,0,0,9).. char(0,0,0,9),

char (0, 0,0, 10)..char (0,0, 0, 10),

char(0,0,0,13)..char(0,0,0,13),

char(0,0,0, 32)..char(0, 0, 215, 255),

char (0, 0, 224, 0). . char (0, 0, 255, 253),
1

char (0,1,0,0)..char(0, 16, 255, 253)

type utf8string XM.StringWthNoWitespace
(

ETSI

34 ETSI ES 201 873-9 V4.5.1 (2013-04)

char (0,0, 0, 33)..char(0, 0, 215, 255),

char (0, 0, 224, 0)..char (0, 0, 255, 253),

char(0,1,0,0)..char(0, 16, 255, 253)
)

type utf8string XM.StringW thNoCRLFHT
(
char(0,0,0, 32)..char (0,0, 215, 255),
char (0, 0,224, 0)..char (0, 0, 255, 253),
char(0,1,0,0)..char(0, 16, 255, 253)

)

6.2.1 String

The string type shall be translated to TTCN-3 as an XML compatible restriction of the universal charstring:
type XSD. XM_Conpati bl eString String
with {
variant "XSD:string"
}

6.2.2 Normalized string

The normalizedString type shall be translated to TTCN-3 using the following XML compatible restricted subtype of the
universal charstring:

type XSD. XMLStri ngW t hNoCRLFHT Nor nal i zedStri ng

with {

variant "XSD: normal i zedString"
}
6.2.3 Token

The token type shall be translated to TTCN-3 using the built-in data type NormalizedString:
type XSD. Nornal i zedString Token

with {
vari ant " XSD:token"
}

6.2.4 Name

The Name type shall be translated to TTCN-3 using the following XML compatible restricted subtype of the universal
charstring:

type XSD. XMLStri ngW t hNoWhi t espace Nane

with {
variant " XSD: Nange"
}

6.2.5 NMTOKEN

The NMTOKEN type shall be translated to TTCN-3 using the following XML compatible restricted subtype of the
universal charstring:

type XSD. XMLStri ngW t hNoWhi t espace NMICKEN
with {

variant " XSD: NMIOKEN'
}

ETSI

35 ETSI ES 201 873-9 V4.5.1 (2013-04)

6.2.6 NCName

The NCName type shall be translated to TTCN-3 using the built-in data type Name:
type XSD. Name NCNane

with {
vari ant " XSD: NCNane"
}

6.2.7 ID

The ID type shall be translated to TTCN-3 using the built-in data type NCName:
type XSD. NCNane | D

with {
variant "XSD:.|D'
}

6.2.8 IDREF

The IDREF type shall be translated to TTCN-3 using the built-in data type NCName:
type XSD. NCNane | DREF

with {
vari ant " XSD: | DREF"
}

6.2.9 ENTITY

The ENTITY type shall be translated to TTCN-3 using the built-in data type NCName:
type XSD. NCNanme ENTI TY

with {
variant " XSD: ENTI TY"
}

6.2.10 Hexadecimal binary

The hexBinary type shall be translated to TTCN-3 using a plain octetstring:
type octetstring HexBinary
with {
vari ant " XSD: hexBi nary"
}

No pattern shall be specified for hexBinary types.

6.2.11 Base 64 binary

The XSD base64Binary type shall be translated to an octetstring in TTCN-3. When encoding elements of this type, the
XML codec will invoke automatically an appropriate base64 encoder; when decoding XML instance content, the
base64 decoder will be called.

The base64Binary type shall be mapped to the TTCN-3 type:
type octetstring Base64Bi nary
with {

vari ant " XSD: base64Bi nary"
}

EXAMPLE:

<si npl eType name="E14">
<restriction base="base64Bi nary"/>

</ si mpl eType>

/1ls translated as:

ETSI

36 ETSI ES 201 873-9 V4.5.1 (2013-04)

type XSD. Base64Bi nary E14;

/1 and the tenplate:

tenpl ate E14 MyBase64Bi naryTenpl ate : = '546974616E52756C6573"' O
/1 1s encoded as:

<E14>VGE 0YWBSdWkI cw==\r\ n</ E14>

6.2.12 Any URI

The anyURI type shall be translated to TTCN-3 as an XML compatible restricted subtype of the universal charstring:

type XSD. XMLStri ngW t hNoCRLFHT AnyURI
with {

variant "XSD: anyURI "
}

6.2.13 Language

The language type shall be translated to the TTCN-3 type:

type charstring Language (pattern "[a-zA-Z]#(1,8)(-\w#(1,8))#(0,)")
with {

vari ant "XSD: | anguage"
}

6.2.14 NOTATION

The XSD NOTATION type shall not be translated to TTCN-3.

6.3 Integer types

XSD integer types shall generally be converted to TTCN-3 as subtypes of integer-based types. For an overview of the
allowed facets please refer to table 2. The following clauses specify the mapping of all integer types of XSD.

6.3.1 Integer

The integer type is not range-restricted in XSD and shall be translated to TTCN-3 as a plain integer:
type integer Integer
with {
variant "XSD:integer"
}

6.3.2 Positive integer

The positivel nteger type shall be translated to TTCN-3 as the range-restricted integer:
type integer Positivelnteger (1 .. infinity)

with { variant "XSD: positivelnteger"};

6.3.3 Non-positive integer

The nonPositivelnteger type shall be translated to TTCN-3 as the range-restricted integer:
type integer NonPositivelnteger (-infinity .. 0)
with {
vari ant "XSD: nonPositivel nteger"
}

ETSI

37 ETSI ES 201 873-9 V4.5.1 (2013-04)

6.3.4 Negative integer

The negativelnteger type shall be translated to TTCN-3 as the range-restricted integer:

type integer Negativelnteger (-infinity .. -1) with {
vari ant "XSD: negati vel nteger"
b

6.3.5 Non-negative integer

The nonNegativel nteger type shall be translated to TTCN-3 as the range-restricted integer:

type integer NonNegativelnteger (O .. infinity)
with {
vari ant "XSD: nonNegati vel nt eger"
}
6.3.6 Long

The long type is 64bit based in XSD and shall be translated to TTCN-3 as a plain longlong as defined in clause D.2.1.3
of ES 201 873-1 [1]:

type | ongl ong Long

with {
variant "XSD: | ong"
}

6.3.7 Unsigned long

The unsignedLong type is 64bit based in XSD and shall be translated to TTCN-3 as a plain unsignedlionglong as defined
in clause D.2.1.3 of ES 201 873-1 [1]:

type unsi gnedl ongl ong Unsi gnedLong

with {
vari ant " XSD: unsi gnedLong"
}

6.3.8 Int

The int type is 32bit based in XSD and shall be translated to TTCN-3 as a plain long as defined in clause D.2.1.2 of
ES 201 873-1 [1]):

type long Int

with {
variant "XSDiint"
}

6.3.9 Unsigned int

The unsignedint type is 32bit based in XSD and shall be translated to TTCN-3 as a plain unsignediong as defined in
clause D.2.1.2 of ES 201 873-1 [1]:

type unsi gnedl ong Unsi gnedl nt
with {

vari ant " XSD: unsi gnedl nt"
}

ETSI

38 ETSI ES 201 873-9 V4.5.1 (2013-04)

6.3.10 Short

The short type is 16bit based in XSD and shall be translated to TTCN-3 as a plain short as defined in clause D.2.1.1 of
ES 201 873-1 [1]:
type short Short

with {
variant "XSD:short"
}

6.3.11 Unsigned Short

The unsignedShort type is 16bit based in XSD and shall be translated to TTCN-3 as a plain unsignedshort as defined in
clause D.2.1.1 of ES 201 873-1 [1]:

type unsi gnedshort Unsi gnedShort

with {
vari ant " XSD: unsi gnedShort"
}

6.3.12 Byte

The byte type is 8bit based in XSD and shall be translated to TTCN-3 as a plain byte as defined in clause D.2.1.0 of
ES 201 873-1 [1]:

type byte Byte
with {

vari ant "XSD: byte"
}

6.3.13 Unsigned byte

The unsignedByte type is 8bit based in XSD and shall be translated to TTCN-3 as a plain unsignedbyte as defined in
clause D.2.1.0 of ES 201 873-1 [1]:

type unsi gnedbyte Unsi gnedByte
with {

variant "XSD: unsi gnedByte"
}

6.4 Float types

XSD float types are generally converted to TTCN-3 as subtypes of float. For an overview of the allowed facets refer to
table 2 in clause 6.1. Following clauses specify the mapping of all float types of XSD.

6.4.1 Decimal

The decimal type shall be translated to TTCN-3 as a plain float:

type float Decimal (!-infinity .. linfinity)
with {
variant " XSD: deci mal "
}
6.4.2 Float

The float type shall be translated to TTCN-3 as an |EEE754float as defined in clause D.2.1.4 of ES 201 873-1 [1]:

type | EEE754f| oat Fl oat
with { variant "XSD: float"};

ETSI

39 ETSI ES 201 873-9 V4.5.1 (2013-04)

6.4.3 Double

The double type shall be translated to TTCN-3 as an |EEE754double as defined in clause D.2.1.4 of ES 201 873-1 [1]:

type | EEE754doubl e Doubl e
with {

variant " XSD: doubl e"
}

6.5 Time types

XSD time types shall generally be converted to TTCN-3 as pattern restricted subtypes of charstring. For an overview of
the allowed facets refer to table 2. Details on the mapping of all time types of XSD are given in the following.

For the definition of XSD time types, the supplementary definitions below are used. These definitions are part of the
module XSD (see annex A). As a consequence, in case of both implicit and explicit mappings, it shall be possible to use
their identifiers in other (user defined) modules but also, it shall be possible to reference these definitions by using their
qualified names (e.g. XSD.year).

const charstring

dash : =

cln =":",

year := "(0(0(0[1-9]]|[1-9][0-9])|[1-9][0-9][0-9])|[1-9][0-9][0-9][0-9])",
year Expansion := "(-([1-9][0-9]#(0,))#(,1))#(,1)",

nonth := "(0[1-9]|1[0-2])",

dayOf Month := "(0[1-9]|[12][0-9]|3[01])",

hour := "([01][0-9]]2[0-3])",

mnute := "([0-5][0-9])",

second := "([0-5][0-9])",

sFraction := "(.[0-9]#(1,))#(,1)",

endOf DayExt := "24:00:00(.0#(1,))#(,1)",

nums = "[0-9]#(1,)",

Zor Ti meZoneExt := "(Z|[\+\-]((0[0-9]|1[0-3]):[0-5][0-9]|14:00))#(,1)",
durTime := "(T[0-9]#(1,)"&

"(H([0-9]#(1,) (M[0-9]#(1,)(S|.[0-9]1#(1,)9))#(,1)|.[0-9]1#(1,)S9)#(,1)|" &
:::’\3/|(‘[‘2L—9]#(1,)(5|-[0-9]#(1,)S)|-[0-9]#(1,)M#(,1)|"&
" [0-9]#(1,)9))"

NOTE 1: The patterns below implement the syntactical restrictions of ISO 8601 [i.2] and XSD (e.g. year 0000,
month 00 or 13, day 00 or 32 are disallowed) but the semantical restrictions of XSD (e.g. 2001-02-29 is a
non existing date as 2001 is not a leap year) are not imposed.

NOTE 2: The patterns in the subsequent clauses, i.e. the text between the double quotes, need to be one continuous
string without whitespace when being used in a TTCN-3 code. The lines below are cut for pure editorial
reasons, to fit the text to the standard page size of the present document.

6.5.1 Duration

The duration type shall be translated to TTCN-3 using the following pattern-restricted charstring:

type charstring Duration (pattern

" {dash}#(, 1) P({nuns} (Y({nuns} (M {nuns}D{dur Ti me}#(, 1) | {dur Time}#(, 1)) | D{dur Time}#(,1))|" &
"{durTime}#(,1))| M{nuns}D{dur Ti me}#(, 1) | {dur Ti me} #(, 1)) | D{dur Ti me} #(, 1)) | {durTime})"
)

with {
variant "XSD: duration"
}

ETSI

40 ETSI ES 201 873-9 V4.5.1 (2013-04)

6.5.2 Date and time

The dateTime type shall be translated to TTCN-3 using the following pattern-restricted charstring:

type charstring DateTine (pattern
.. "{year Expansi on}{year }{dash}{nont h} {dash}{dayOf Mont h} T({ hour }{cl n}{m nute}{cl n}{second}" &
"{sFraction}|{endO DayExt}) { Zor Ti meZoneExt } "

)
with {
variant "XSD: dateTi ne"
}
6.5.3 Time

The time type shall be translated to TTCN-3 using the following pattern-restricted charstring:

type charstring Tine (pattern
" ({hour}{cl n}{m nut e}{cl n}{second}{sFraction}|{endC DayExt }) { Zor Ti neZoneExt } "
)

with {

variant "XSD:time"
}
6.5.4 Date

The date type shall be translated to TTCN-3 using the following pattern-restricted charstring:

type charstring Date (pattern
.. "{year Expansi on} { year } { dash} { nont h} { dash} { dayCf Mont h} { Zor Ti neZoneExt } "

with {
vari ant " XSD: date"
}

6.5.5 Gregorian year and month

The gYearMonth type shall be translated to TTCN-3 using the following pattern-restricted charstring:

type charstring GyearMnth (pattern
.. "{year Expansi on} {year } { dash} { nont h} { Zor Ti neZoneExt } "
)

with {
vari ant " XSD: gYear Mont h"
}

6.5.6 Gregorian year

The gYear type shall be translated to TTCN-3 using the following pattern-restricted charstring:

type charstring Gyear (pattern
"{year Expansi on}{year }{ Zor Ti meZoneExt }"
)

with {
variant "XSD:gYear"
}

6.5.7 Gregorian month and day

The gMonthDay type shall be translated to TTCN-3 using the following pattern-restricted charstring:

type charstring GvonthDay (pattern
"{dash}{dash}{nont h} {dash}{dayOf Mont h}{ Zor Ti mreZoneExt } "
)

with {
variant " XSD: gvbnt hDay"
}

ETSI

41 ETSI ES 201 873-9 V4.5.1 (2013-04)

6.5.8 Gregorian day

The gDay type shall be translated to TTCN-3 using the following pattern-restricted charstring:

type charstring GDay (pattern
"{dash}{dash}{dash}{dayO Mont h}{ Zor Ti mreZoneExt }"
)

with {
vari ant " XSD: gDay"
}

6.5.9 Gregorian month

The gMonth type shall be translated to TTCN-3 using the following pattern-restricted charstring:

type charstring Gwonth (pattern
"{dash}{dash}{mont h}{ Zor Ti meZoneExt } "
)

with {
variant "XSD: gvbnt h"
}

6.6 Sequence types

XSD sequence types shall generally be converted to TTCN-3 as a record of their respective base types. For an overview
of the allowed facets refer to table 2. Following clauses specify the mapping of all sequence types of XSD.

6.6.1 NMTOKENS

The XSD NMTOKENS type shall be mapped to TTCN-3 using a record of construct of type NMTOKEN:
type record of XSD. NMTOKEN NMIOKENS

with {
vari ant " XSD: NMTOKENS"
}

6.6.2 IDREFS

The XSD IDREFStype shall be mapped to TTCN-3 using a record of construct of type IDREF:

type record of |DREF | DREFS
with { variant "XSD:|DREFS" };

6.6.3 ENTITIES

The XSD ENTITIEStype shall be mapped to TTCN-3 using a record of construct of type ENTITY:
type record of ENTITY ENTITIES

with {
vari ant " XSD: ENTI Tl ES"
}

6.6.4 QName

The XSD QName type shall be translated to the TTCN-3 type QName as given below:

type record QName {
AnyURI uri optional,
NCNare nane

}

with {
vari ant " XSD: QNane"

}

ETSI

42 ETSI ES 201 873-9 V4.5.1 (2013-04)

When encoding an element of type QName (or derived from QName), if the encoder detects the presence of an URI and
this is different from the target namespace, the following encoding shall result (the assumed target namespace is
http://www.example.org/).

EXAMPLE:

type record El4a
{

QNanme nane,
integer refld
}
tenpl ate Elda t_El4a: =
{
nane: ={
uri:="http://ww.organi zation.org/",
nane: =" soneNane"
b
refld: =10
}

<?xm version="1.0" encodi ng="UTF-8"?>

<El4a xm ns="http://ww. exanpl e.org/">

<nanme xm ns:ns="http://ww. organi zati on. or g/ " >ns: somreNane</ nanme>
<refl d>10</refl d>

</ El4a>

6.7 Boolean type

The XSD boolean type shall be mapped to the TTCN-3 boolean type:

type bool ean Bool ean
with {

vari ant " XSD: bool ean"
}

During translation of XSD boolean values it is hecessary to handle all four encodings that XSD allows for Booleans
("true”, "fal se", "0", and "1"); This shall be realized by using the "text" encoding instruction:
type XSD. Bool ean MyBool eanType
with {
variant "text 'true' as '1'"
variant "text 'false' as '0""

}

6.8 AnyType and anySimpleType types

The XSD anySmpleType can be considered as the base type of all primitive data types, while the XSD anyType is the
base type of all complex definitions and the anySimpleType.

The anySmpleType shall be translated as an XML compatible restricted subtype of the universal charstring.

EXAMPLE:
type XSD. XM_Conpati bl eString AnySi npl eType
with {
vari ant " XSD: anySi npl eType"
}
//while anyType is translated into XM. content opaque to the codec:
type record AnyType {

record length (1 .. infinity) of XSD.String attr optional,
record of XSD.String elemlist

ETSI

http://www.example.org/

43 ETSI ES 201 873-9 V4.5.1 (2013-04)

with {
variant "XSD: anyType";
variant(attr) "anyAttributes";
variant(elemlist) "anyEl enent";

}

See also clause 7.7.

7 Mapping XSD components
After mapping the basic layer of XML Schema (i.e. the built-in types) a mapping of the structures shall follow. Every
structure that may appear, globally or not, shall have a corresponding mapping to TTCN-3.

7.1 Attributes of XSD component declarations
Tables 5 and 6 contain an overview about the the use of XSD Mappings of the attributes are described in the

corresponding clauses. Tables 5 and 6 show which attributes shall be evaluated when converting to TTCN-3, depending
on the XSD component to be translated.

Table 5: Attributes of XSD component declaration #1

components . . .
. simple |{complex |simple |complex wild-
element |attribute group
attributes type type |content |content card
id v v v v v v v
final v v v
name v v v v v
maxOccurs v v
(see note 1)
minOccurs v v

(see note 1)

ref
abstract
block
default

AN
AN
\

=
x
)
o

_.,
o
=
3

ANENENENENAN
ANENENEN

{13 =
k|
8(0

3
)
=2
)
AN

use v

substitutionGroup v

(see note 2)
processContents v

NOTE 1: Can be used in locally defined components only.

NOTE 2: Can be used in globally defined components only.

Table 6: Attributes of XSD component declaration #2

omponents
all choice |sequence | attribute |annotation |restriction list union |extension

attributes Group

id v v v v v v v v v

name v
maxOccurs v v v
minOccurs v v v

ref v

ETSI

44 ETSI ES 201 873-9 V4.5.1 (2013-04)

It is also necessary to consider default values for attributes coming from the original definitions of the XSD components
(e.g. minOccursis set to 1 for element components by default) when translating.

7.1.1 Id

The attribute id enables a unique identification of an XSD component. They shall be mapped to TTCN-3 as simple type
references, e.g. any component mapping to a type with name typeName and an attribute id="1D" shall result in an
additional TTCN-3 type declaration:

type <Typenanme> |D;

7.1.2 Ref

The ref attribute may reference an id or a schema component in XSD. The ref attribute is not translated on its own but
the local element, attribute, attributeGroup or group references is mapped as specified in the appropriate clauses of the
present document.

7.1.3 Name

The XSD attribute name holds the specified name for an XSD component. A component without this attribute shall
either be defined anonymously or given by a reference (see clause 7.1.2). Names shall directly be mapped to TTCN-3
identifiers; please refer to clause 5.2.2 on constraints and properties of this conversion.

7.1.4 MinOccurs and maxOccurs

The minOccurs and maxOccurs XSD attributes provide the number of times an XSD component can appear in a
context. In case of mapping locally defined XSD elements, choice and sequence compositors, this clause is invoked by
clauses 7.3, 7.6.5 and 7.6.6.6 respectively. In case of the all compositor, mapping of the minOccurs and maxOccurs
attributes are specified in clause 7.6.4.

The minOccurs and maxOccurs attributes of an XSD component shall be mapped together as follows:

. In the general case, when both the minOccurs and maxQOccurs attribute equal to "1" (either explicitly or by
defaulting to "1"), they shall be ignored, i.e. are not mapped to TTCN-3.

. If the parent of the component being translated is a sequence or all, the minOccurs attribute equals to 0" and
the maxOccurs attribute equals to "1" (either explicitly or by defaulting to "1"), the TTCN-3 field resulted by
mapping the respective XSD component shall be set to opt i onal .

o In all other cases, the type of the related TTCN-3 type or field shall be settor ecor d of , where the
replicated inner type is the TTCN-3 type that would be the type of the field in the general case above. The
initial name of the field shall be postfixed with "_list", the encoding instruction "untagged" shall be attached to
the outer recor d of and, finally, if no "untagged" encoding instruction is attached to the inner TTCN-3 type
being iterated, a "name as '<initial name>"' encoding instruction shall be attached to the inner type, where
<initial name> is the name resulted from applying clause 5.2.2 to the name of the XSD component being
translated. The r ecor d of shall be:

- if the parent of the component being translated is a choice, the minOccurs attribute equals to "0" and the
maxOccurs attribute equals to "1™ (either explicitly or by defaulting to "1") and:

" if the component being translated is the first direct child of the choice with minOccurs="0",
restricted to the length range from 0 to 1;

" if the component being translated is not the first direct child of the choice with minOccurs="0",
restricted to the fixed length 1;

- if the parent of the component is a sequence or all,minOccurs equals to "0" and maxOccurs equals to
"unbounded", the r ecor d of shall be unrestricted;

ETSI

45

ETSI ES 201 873-9 V4.5.1 (2013-04)

- if the parent of the component is a choice, the minOccurs attribute equals to "0" and the maxOccurs
attribute is more than "1", and:

if the component being translated is the first direct child of the choice with minOccurs="0", it shall

be restricted to the length range from 0 to the upper bound corresponding to the value of the
maxOccurs attribute (where maxOccurs="unbounded" shall be translated to the upper bound

infinity);

if the component being translated is not the first child of the choice with minOccurs="0", it shall be

restricted to the length range from 1 to the upper bound corresponding to the value of the
maxOccurs attribute (where maxOccurs="unbounded" shall be translated to the upper bound

infinity);

- if the minOccurs attribute does not equal to "0" and the maxOccurs attribute is more than "1", the
record of shall be restricted to the length range corresponding to the values of the minOccurs and
maxOccurs attributes (where maxOccurs="unbounded" shall be translated to the upper bound
infinity).

NOTE 1: The effect of the "name as ..." encoding instruction is, that each repetition of the given element in an
encoded XML document will be tagged with the specified name. Thus, in this case the instruction has
effect on the elements of the TTCN-3 record of field and not on the field itself.

NOTE 2: Please note, that TTCN-3 constructs corresponding to anonymous XSD types always have the "untagged”

encoding instruction attached before this clause is invoked.

Table 7: Summary of mapping the minOccurs and maxOccurs attributes

minOccurs | maxOccurs in... TTCN-3 mapping
TTCN-3 construct preserved field
name postfix
0 0
1 or not :
0 present opti onal
1 or not 1 or not <the TTCN-3 element is
present present all other cases mandatory>
0 unbounded then below record of <initial type> list
<X>..<y>
<x>>0 <> 21 ' ecorfi r'“et”ig;lh (t ;pé>y) of list
record | ength
<> >1or (<x>..infinity)of <initial
- unbounded type> _list
not present note: if mnCccurs is not
present <x>equalstol
0 1 or not child of XSD choice, record length (0..1) of list
present the first alternative with <initial type> -
unbounded minOccurs="0" record of <initial type> list
1 or not record length (1) of i
present child of XSD choice, <initial type> st
not the first alternative with record | ength
0 unbounded minOccurs="0" (1..infinity)of _list
<initial type>
EXAMPLE 1: Mapping of an optional element:

<conpl exType nal
<sequence>

<el ement name="fo00" type="integer"

me="el5a" >

<el ement name="bar" type="float"/>

</ sequence>
</ conpl exType>

/Il |Is translate

type record E15

XSD. I nt eger foo optional

XSD. Fl oat

d to an optional field as

a {

bar

ETSI

m nCccurs="0"/>

46 ETSI ES 201 873-9 V4.5.1 (2013-04)

with {
variant "nanme as uncapitalized"
}

EXAMPLE 2: Mapping of elements allowing multiple recurrences:

<!-- The unrestricted case: -->
<conpl exType nane="el5b">
<sequence>
<el ement nanme="foo0" type="integer" m nCccurs="0" maxCccurs="unbounded"/>
<el ement name="bar" type="float"/>
</ sequence>
</ conpl exType>

/1 1Is translated to TTCN-3 as:

type record E15b {
record of XSD.|nteger foo_list,
XSD. Fl oat bar

}

with {
variant "name as uncapitalized"
variant(foo_list) "untagged"
variant(foo_list[-]) "name as 'foo""

}
<l-- The length restricted case: -->
<conpl exType nane="elbc">

<sequence>
<el ement name="foo" type="integer" m nCccurs="5" maxCccurs="10"/>
<el ement name="bar" type="float"/>
</ sequence>
</ conpl exType>

/l Is translated to TTCN-3 as:

type record El15c {
record | ength(5..10) of XSD.Integer foo_list,
XSD. Fl oat bar

}
with {
variant "name as uncapitalized ";
variant(foo_list) "untagged"
variant(foo_list[-]) "name as 'foo""
}
EXAMPLE 3: Mapping of a group reference:
<!-- Provided we have: -->
<group nane="f oobar G oup" >
<sequence>
<el ement name="foo" type="string"/>
<el ement name="bar" type="string"/>
</ sequence>
</ group>
<!-- The optional case: -->

<conpl exType nanme="el5d">
<group ref="ns:foobar G oup" m nCccurs="0"/>
</ conpl exType>

/1 1s translated to TTCN-3 as:
type record Foobar G oup {

XSD. String foo,

XSD. String bar

3
with {
variant "untagged"
//pls. note, no "nane as..." instruction is attached to the type due to the presence

/1 of the untagged instruction

}

type record E15d {
Foobar Group foobar Group optiona

}
with {

variant "name as uncapitalized"
}

ETSI

a7 ETSI ES 201 873-9 V4.5.1 (2013-04)

EXAMPLE 4: Mixed case, both elements and a group reference are present:

<conpl exType nane="el5f">
<sequence>
<el ement nanme="comrent" m nCccurs="0" maxCccur s="unbounded" type="string"/>
<group ref="ns:foobar G oup" m nCccurs="5" maxCccurs="10"/>
</ sequence>
</ conpl exType>

/1 1s translated to TTCN-3 as:
type record E15f {
record of XSD. String coment_|list,
record length (5..10) of Foobar G oup foobarGoup_list

}
wth {
variant "name as uncapitalized "
variant (comrent _Il i st) "untagged"
vari ant(coment _list[-]) "nanme as 'coment'"
vari ant (f oobar G oup_l i st) "untagged"
/Ipls. note, no "nane as..." instruction is attached to foobarGoup[-] due to the
/I presence of the "untagged" instruction attached to the Foobar G oup type

EXAMPLE 5: Resolving a name clash:

The Schema

<?xm version="1.0" encodi ng="UTF-8"?>
<xs:schema xm ns: xs="http://ww. w3. or g/ 2001/ XM_Schenma"
xm ns: ns="www. exanpl e. or g/ nane_cl ash_el enent-attri bute"
t ar get Nanespace="www. exanpl e. or g/ nane_cl ash_el ement-attri bute">

<xs:sinpleType name="start_list">
<xs:list itenlype="xs:string"/>
</ xs: si nmpl eType>

<xs:conpl exType name="start">
<XS:sequence>
<xs:element name="start" type="xs:integer" m nCccurs="0" maxCccurs="10"/>
</ xs: sequence>
<xs:attribute nane="start_list" type="ns:start_list"/>
</ xs: conpl exType>
</ xs: schema>

/lis translated to the TTCN-3 nodul e
nmodul e http_ww_exanpl e_org_nane_cl ash_el ement _attribute {

import from XSD all;

type record of XSD.String Start_|ist

with {
variant "name as uncapitalized"
variant "list"

}

type record Start {
Start_list start_list optional
record length(0 .. 10) of XSD.Integer start_list_1
//the conposed nane of the record of field would clashes with the nane of the field
//added for the XSD attribute, this is resolved by postfixing it according to $5.2.2

}
wth {
variant "name as uncapitalized"
variant (start_list) "attribute";
variant (start_list_1) "untagged";
variant (start_list_1[-]) "nanme as 'start'";

}s

}

with {
encode "XM.";
variant "namespace as 'www. exanpl e. org/ nane_cl ash_el enent-attribute' prefix 'ns'"
variant "control Namespace ' http://ww. w3. or g/ 2001/ XM_Scheme- i nstance' prefix 'xsi'";

}

ETSI

48 ETSI ES 201 873-9 V4.5.1 (2013-04)

EXAMPLE 6: Mapping of childs of choice components:

<! —Fhe XSD el ements -->
<el ement nane="Choi ceChi | dM nMax" >
<conpl exType>
<choi ce>
<el enent nane="el enD" type="string" m nCccurs="1" naxCccurs="5"/>
<el enent nane="el enl" type="string" m nCccurs="0" />
<el enent nane="el enR" type="string" m nCccurs="0" />
<el ement nanme="el enB8" type="string" m nCccurs="0" maxQccurs="unbounded"/>
</ choi ce>
</ conpl exType>
</ el emrent >

<l-- added only to enable showi ng all cases in one XM instance -->
<xs:element name="m nCccurs_nmaxCccurs_franme">
<xs:conpl exType>
<xs:choi ce m nCccurs="0" maxCccurs="unbounded">
<xs: el ement ref="ns: ChoiceChildM nMax"/>
</ xs: choi ce>
</ xs: conmpl exType>
</ xs: el emrent >

/1l Are translated to TTCN-3 as:
type record ChoiceChildM nMax {
uni on {
record length(l .. 5) of XSD.String elenD_|ist,
/1 child of choice with nminCccurs different fromoO
record length(0 .. 1) of XSD.String elenl_|ist,
/1 first child of choice with m nCccurs O;
/1 this alternative is to be used create an enpty choice el ement
record length(1l) of XSD.String elenR_|ist,
/'l second child of choice with minCccurs 0
record length(l .. infinity) of XSD. String elenB_list
/1 third child of choice with m nCccurs 0
} choice

}

wth {

variant "el enent";

variant (choice) "untagged";

variant (choice.elenD_list) "untagged";

variant (choice.elenD_list[-]) "nane as 'elenD'";
variant (choice.elenml_|ist) "untagged";

variant (choice.elenml_list[-]) "nane as 'elenl'";
variant (choice.elen2_|ist) "untagged";

variant (choice.elen2_ list[-]) "nane as 'elenm'";
variant (choice.elenB_list) "untagged";

variant (choice.elenB_list[-]) "nane as 'elenB'";

}s

/* added only to enable showing all cases in one XM instance */
type record M nCccurs_maxQccurs_franme {
record of union {
Choi ceChi | dM nMax choi ceChi | dM nMax
} choice_list

}

wth {

variant "name as uncapitalized";

variant "el enent";

variant (choice_list) "untagged";

variant (choice_list[-]) "untagged";

variant (choice_list[-].choiceChildMnMax) "nane as capitalized";

}
/1 and the TTCN-3 tenpl ate:
tenmpl ate M nCccurs_nmaxCccurs_frame t_M nCccurs_nmaxCccurs_i nChoice : = {

choice_list :={
/'l instances of the elenent elenD

choiceChildM nMax := { choice :={ elenD_list := {"e01", "e02" }}}},
/'l an instance of the el enent eleml

choiceChildM nMax := { choice :={ eleml_list :={ "el" }}}},
/'l an instance of the elenent elenk

choiceChildM nMax := { choice :={ elen2_list :={ "e2" }}}},
/'l instances of the el enent elenB

choi ceChil dM nMax :={ choice :={ elemB_list :={ "e31", "e32", "e33" }}}},
/1 an enpty choice el enent

choi ceChildM nMax : = { choice :={ eleml_list :={}}}}

e e T e

ETSI

49 ETSI ES 201 873-9 V4.5.1 (2013-04)

} <l—ould be encoded in XM_ e.g. as -->

<?xm version="1.0" encodi ng="UTF-8"?>

<this:m nCccurs_maxCccurs_frame xm ns:this="http://ww. exanpl e.org/ m nCccurs_nmaxQccurs"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="http://ww. exanpl e. or g/ m nCccurs_maxCccur s

../ XSD/ mi nCccurs_maxCccurs. xsd" >
<l-- instances of the elenent elenD -->
<t hi s: Choi ceChi | dM nMax><el enD>e01</ el enD><el enD>e02</ el enD></t hi s: Choi ceChi | dM nMax>

<l-- an instance of the elenent elenml -->
<t hi s: Choi ceChi | dM nMax><el enll>el</ el eml></t hi s: Choi ceChi | dM nMax>

<l-- an instance of the elenent elen2 -->
<t hi s: Choi ceChi | dM nMax><el en2>e2</ el en2></t hi s: Choi ceChi | dM nMax>

<l-- instances of the elenent elenB -->
<t hi s: Choi ceChi | dM nMax><el enB>e31</ el enB><el enB>e32</ el enB><el enB>e33</ el enB>
</t his: Choi ceChi | dM nVax>

<l—an enpty choice el enment -->
<t hi s: Choi ceChi | dM nMax/ >

</this:mnCccurs_maxCccurs_frane>

7.1.5 Default and Fixed

The XSD default attribute assigns a default value to a component in cases where it is missing in the XML data.

The XSD fixed attribute gives a fixed constant value to a component according to the given type, so in some XML data
the value of the component may be omitted. The XSD fixed attribute can also be applied to XSD facets, preventing a
derivation of that type from modifying the value of the fixed facets.

As default has no equivalent in TTCN-3 space, it shall be mapped to a "defaultForEmpty ..." encoding instruction. The
fixed attribute applied to attribute or element elements shall be mapped to a subtype definition with the single allowed
value identical to the value of the fixed attribute plus a "defaultForEmpty ..." encoding instruction identifying the value
of the fixed attribute as well. The fixed attribute applied to XSD facets shall be ignored.

EXAMPLE:

<el ement nanme="el emrent Def aul t" type="string" defaul t="defaul tVal ue"/>
<el ement nanme="el ement Fi xed" type="string" fixed="fixedVal ue"/>

/!l 1s be translated to:

type XSD. String El ement Def aul t

with {
variant "elenent";
vari ant "defaul t ForEnpty as 'defaultValue";
variant "nane as uncapitalized";

}
type XSD. String El ementFi xed ("fixedVal ue")
wth {
variant "el enent";
variant "defaultForEnpty as 'fixedVal ue'";
variant "name as uncapitalized"
}
7.1.6 Form

The XSD form attribute controls if an attribute or element tag shall be encoded in XML by using a qualified or
unqualified name. The values of the form attributes shall be preserved in the "form as..." encoding instructions as
specified below:

a) If the value of the formattribute is qualified and the attributeFormQualified encoding instruction is attached to
the TTCN-3 module the given XSD declaration contributes to, or the value of the form attribute is unqualified
and no attributeFormQualified encoding instruction is assigned to the corresponding TTCN-3 module, the
formattribute shall be ignored.

ETSI

50

ETSI ES 201 873-9 V4.5.1 (2013-04)

b) If the value of a formattribute of an XSD attribute declaration is qualified and no attributeFormQualified
encoding instruction is attached to the target TTCN-3 module, or the value of a form attribute of an element
declaration is qualified and no elementFormQualified encoding instruction is attached to the target TTCN-3
module,a” f orm as qual i fi ed" encoding instruction shall be attached to the TTCN-3 field resulted
from mapping the given XSD attribute or element declaration.

¢) Ifthe value of a formattribute of an XSD attribute declaration is unqualified and the attributeFormQualified
encoding instruction is attached to the target TTCN-3 module, or the value of a formattribute of an element
declaration is unqualified and the elementFormQualified encoding instruction is attached to the target TTCN-3
module, a" f orm as unqual i fi ed" encoding instruction shall be attached to the TTCN-3 field resulted
from mapping the given XSD attribute or element declaration.

NOTE:

of a given XSD declaration item a) and b) or c) above may apply at the same time.

An XSD declaration may contribute to more than one TTCN-3 module (see clause 5.1), therefore in case

Table 8 summarizes the mapping of the attributeFormDefault, el ementFormDefault (see also clause 5.1) and form XSD

attributes.

Table 8: Summary of mapping of the form XSD attribute

ag,?rénnecsc?;ze attributeFormQualified and/or
; ding elementFormQualified encoding
instruction ; !
instructions attached to the
attached to the target TTCN-3 module
target 9
TTCN-3 module absent present
any value form |any value or absent "form as..." N/A
or absent |attribute absent absent (see note)
"form as..." "form as
absent present absent unqualified"
. unqualified | form - "form as..." "form as
attrlbut:rljg/rcr)r;Default or absent |attribute unqualified present absent unqualified"
elementFormDefault qualified present fuoarlrinﬂ:(i' fo;?ggﬁi“
in the ancestor 9 N/A " m
schema element absent present orm as...
(see note) absent
- form . N/A "form as
qualified attribute unqualified present (see note) unqualified"
. N/A "form as..."
qualified present (see note) absent
NOTE: Excluded by the mapping of attributeFormDefault and elementFormDefault in clause 5.1.
7.1.7 Type

The XSD type attribute holds the type information of the XSD component. The value is a reference to the global
definition of simpleType, complexType or built-in type. If type is not given, the component shall define either an
anonymous (inner) type, or contain a reference attribute (see clause 7.1.2), or use the XSD ur-type definition.

7.1.8

Mixed

The mixed content attribute allows inserting text between the elements of XSD complex type or element definitions. Its
translation is defined in clause 7.6.8.

ETSI

51 ETSI ES 201 873-9 V4.5.1 (2013-04)

7.1.9 Abstract

The abstract XSD attribute can be used in global element XSD element information items and complexType XSD
element information items. When its value is set to "true" in a global element XSD definition, the given element shall
not be used in instances of the given XML Schema but is forced to be substituted with a member element of the
substitution group of which the abstract element is the head of (if there is no substitutable elements in the Schema, the
element cannot be used in instance documents). When its value is set to "true" in a global complexType XSD definition,
XSD elements referencing this type in their type attribute are forced to be instantiated by using an another type
definition, which is derived from the abstract type (the actual type used at instantiation shall be indicated by the xsi:type
XML attribute in the instance of the given element). See more details on mapping of substitutions in clause 8.

The abstract XSD attribute shall be translated to TTCN-3 by adding the "abstract" encoding instruction to the generated
TTCN-3 type definition corresponding to the XSD element or complexType information items with the abstract
attribute value "true". If the value of the abstract attribute information item is set to "false" directly or indirectly (i.e. by
defaulting to "false"), the abstract XSD attribute shall be ignored. See example in clause 8.1.1.

7.1.10 Block and blockDefault

The XSD block and blockDefault attribute information items control the allowed element and type substitutions at the
instance level; blockDefault can be used in XSD schema elements, and has effect on all element and type child of the
schema. This default value can be overridden by a block attribute applied to a given element or complexType element
information item directly. This will result produce the effective block value for the given element or complexType. See
also clauses 3.3.2 and 3.4.2 of XML Schema Part 1 [9].

The effective block value shall be translated together with substitution. If a TTCN-3 code allowing element
substitutions is generated (see clause 8), the effective block value of head elements shall be translated together with the
head element of the substitution group according to clause 8.1.1. If a TTCN-3 code allowing type substitutions is
generated (see clause 8), the effective block value of substitutable parent types shall be translated together with the
substitutable parent types according to clause 8.2. The blockDefault and block attributes shall be ignored in all other
cases.

7.1.11 Nillable

If the nillable attribute of an element declaration is set to "true", then an element may also be valid if it carries the
namespace qualified attribute with (local) name nil from the namespace
"http://www.w3.0rg/2001/XMLSchema-instance" and the value "true" (instead of a value of its type).

A nillable XSD element shall be mapped to a TTCN-3 r ecor d type (in case of global elements) or field (in case of
local elements), with the name resulted by applying clause 5.2.2 to the name of the corresponding element. The

r ecor d type or field shall contain one opt i onal field with the name "content" and its type shall be the TTCN-3 type
of the element if the value of the nillable attribute would be "false". The r ecor d type or field shall be appended with
the "useNil" encoding instruction.

EXAMPLE 1: Mapping of nillable elements:
<el ement name="remarkNi || abl e" type="string" nillable="true"/>

<conpl exType nane="el6c" >
<sequence>
<el ement nanme="foo" type="integer"/>
<el ement nanme="bar" type="string" nillable="true"/>
</ sequence>
</ conpl exType>

//Are translated to TTCN-3 as:
type record RemarkN Il abl e {
XSD. String content optiona

b
with {
variant "name as uncapitalized"

variant "elenment";
variant "useNi|"

ETSI

52 ETSI ES 201 873-9 V4.5.1 (2013-04)

type record El6c {
XSD. I nt eger foo
record {
XSD. String content optiona
} bar

}

wth {
variant "name as uncapitalized"
variant (bar) "useN "

}

/1 Which allows e.g. the follow ng encodi ng
tenpl ate El6a t_El6a : =

{
f oo: =3,
bar:= { content := omt }
}
<?xm version="1.0" encodi ng="UTF-8"?>
<el6a>
<f 00>3</ f 00>
<bar xsi:nil="true"/>
</ el6a>

EXAMPLE 2: Joint use of the nillable, minOccurs and maxOccurs attributes:

<el ement nanme="SegNi | | abl e" nill abl e="true">
<conpl exType>
<sequence>
<el ement nane="forenanme" type="string" nillable="true"/>
<el ement nanme="surnanme" type="string" mnCccurs="0" nillable="true"/>
<el ement name="bor nPl ace" type="string" mnCccurs="0" maxCccur s="unbounded"
nillable="true"/>
<el ement ref="ns:remarkN || able"/>
</ sequence>
</ conpl exType>
</ el ement >

//ls translated to TTCN-3 as:
type record SeqNi |l abl e {
record {
record {
XSD. String content optiona
} forenane,
record {
XSD. String content optiona
} surnane optional
record of record {
XSD. String content optiona
} bornPl ace_li st,
record {
XSD. String content optiona
} remarkNi || abl e
} content optional

}
with {
variant "el enent";
variant "useN |"
variant (content.bornPlace_list) "name as'bornPl ace'"
vari ant (content. forenanme, content.surname, content.bornPlace_list, content.remarkN || abl e)
"useNi | "
}
7.1.12 Use

XSD local attribute declarations and references may contain also the special attribute use. The use attribute specifies the
presence of the attribute in an XML value. The values of this attribute are: optional, prohibited and required with the
default value optional. If the use attribute is missing or its value is optional in an XSD attribute declaration, the
TTCN-3 field resulted by the mapping of the corresponding attribute shall be opt i onal . If the value of the use
attribute is required, the TTCN-3 field corresponding to the XSD attribute shall be mandatory (i.e. without

opti onal). XSD attributes with the value of the use attribute prohibited shall not be translated to TTCN-3 (for an
example see clause 7.6.2.2).

ETSI

53 ETSI ES 201 873-9 V4.5.1 (2013-04)

EXAMPLE: Mapping of the use attribute:

<xsd: conmpl exType nanme="el7a">
<xsd: sequence>
</ xsd: sequence>
<xsd:attribute name="foolLocal " type="xsd:float" use="required" />
<xsd:attribute name="barLocal 1" type="xsd:string" />
<xsd:attribute name="barLocal 2" type="xsd:string" use="optional" />
<xsd:attribute name="di ngLocal " type="xsd:integer" use="prohibited" />
</ xsd: conpl exType>

/lis translated to TTCN-3 as:
type record El7a {

XSD. String barlLocal 1 opti onal

XSD. String barLocal 2 opti onal

XSD. Fl oat foolLocal
}
wth {

variant "nane as uncapitalized ";

vari ant (barLocal 1, barlLocal 2, foolLocal) "attribute"
}

7.1.13 Substitution group

The XSD substitutionGroup attribute can be used in global XSD element information items. Its value is the name of the
head element of a substitutionGroup and thus the XSD element definition containing the substitutionGroup attribute
becomes a member of that substitution group.

The substitutionGroup attribute information item shall be ignored when the element is translated to TTCN-3.

NOTE: See more details on mapping XSD substitutions in clause 8.

7.1.14 Final

The final XSD attribute information item constrains the creation of derived types and types of substitution group
members (see more details on mapping of substitutions in clause 8).

The final XSD attribute information item(s) shall produce no TTCN-3 language construct when translating an XML
Schema to TTCN-3.

NOTE: As specified in clause 5, the XML Schema is validated before the actual translation process can be
started. Therefore the restrictions imposed by any final attribute(s) will be enforced during schema
validation and no need to reflect it in the generated TTCN-3 code.

7.1.15 Process contents

The processContents XSD attribute information item controls the validation level of the content of instances
corresponding to XSD any and anyAttribute information items (see clause 7.7). Its allowed values are "strict", "lax" and
"skip". This attribute shall be translated by attaching a "processContents ..." encoding instruction replicating the value
of the XSD attribute to the TTCN-3 component generated for the XSD element with the processContents XSD attribute.

If the value of the processContents XSD attribute is "strict", and no XSD schema is present with a target namespace
allowed by the namespace attribute of the XSD any or anyAttribute element being translated, or the schema does not
contain an XSD element or attribute declaration respectively, this shall cause an error.

7.2 Schema component

The schema element information items are not directly translated to TTCN-3 but the content(s) of schema element
information item(s) with the same target namespace (including absence of the target namespace) are mapped to
definitions of a target TTCN-3 module. See more details in clause 5.1.

ETSI

54 ETSI ES 201 873-9 V4.5.1 (2013-04)

7.3 Element component

An XSD element component defines a new XML element. Elements may be global (as a child of either schema or
redefine), in which case they are obliged to contain a name attribute or may be defined locally (as a child of all, choice
or segquence) using a name or ref attribute.

Globally defined XSD elements shall be mapped to TTCN-3 type definitions. In the general case, when the nillable
attribute of the element is "false” (either explicitly or by defaulting to "false"), the type of the TTCN-3 type definition
shall be one of the following:

a) Incase of XSD datatypes, and simple types defined locally as child of the element, the type of the XSD
element mapped to TTCN-3.

b) In case of XSD user-defined types referenced by the type attribute of the element, the TTCN-3 type generated
for the referenced XSD type.

c) Incase the child of the element is a locally defined complexType, it shall be a TTCN-3 r ecor d.

d) If none of the above cases apply and the element has the substitutionGroup attribute, it shall be the type of the
head element of the substitution group.

e) Otherwise it shall be the type XSD.AnyType (see clauses 6.8 and B.3.1).
NOTE: In the last case the element’s type defaults to the ur-type definition in XSD, see clause 3.3.2 of [5].

The name of the TTCN-3 type definition shall be the result of applying clause 5.2.2 to the name of the XSD element.
When nillable attribute is "true", the procedures in clause 7.1.11 shall be invoked. The encoding instruction "element"
shall be appended to the TTCN-3 type definition resulted by mapping of a global XSD element.

EXAMPLE 1: Mapping of a globally defined element:
<el erent nane="el6a" type="typenane"/>

/] is translated to:
type typenane El6a
wth {
variant "el enent";
ariant "name as uncapitalized "

}

Locally defined elements shall be mapped to fields of the enframing type or structured type field. In the general case,
when both the minOccurs and maxOccurs attribute equal to "1™ (either explicitly or by defaulting to "1") and the
nillable attribute of the element is "false™ (either explicitly or by defaulting to "false), the type of the field shall be the
type resulted by mapping the type of the XSD element as specified for global elements in this clause above and the
name of the field shall be the result of applying clause 5.2.2 to the name of the XSD element.

When a local element is defined by reference (the ref attribute is used) and the target namespace of the XSD Schema in
which the referenced element is defined differs from the target namespace of the referencing XSD Schema (including
the no target namespace case), the TTCN-3 field generated for this element reference shall be appended with a
"namespace as" encoding instruction (see clause B.3.1), which shall identify the namespace and optionally the prefix of
the XSD schema in which the referenced entity is defined.

When either the minOccurs or the maxOccurs attributes or both differ from "1", the procedures in clause 7.1.4 shall be
invoked.

When the nillable attribute is "true", the procedures in clause 7.1.11 shall be invoked.

EXAMPLE 2: Mapping of locally defined elements, general case (see further examples in clauses 7.1.4 and
7.1.11):

<conpl exType name="el6b">
<sequence>
<el ement name="foo" type="integer"/>
<el ement name="bar" type="string"/>
</ sequence>
</ conpl exType>

ETSI

55 ETSI ES 201 873-9 V4.5.1 (2013-04)
/11s translated into:
type record El6b

XSD. | nt eger foo,
XSD. String bar

b
with {

variant "name as uncapitalized"
}

7.4 Attribute and attribute group definitions

7.4.1 Attribute element definitions

Attribute elements define valid qualifiers for XML data and are used when defining complex types. Just like XSD
elements, attributes can be defined globally (as a child of schema or redefine) and then be referenced from other
definitions or defined locally (as a child of complexType, restriction, extension or attributeGroup) without the
possibility of being used outside of their context.

Global attributes shall be mapped to TTCN-3 type definitions. In the general case, the type of the TTCN-3 type
definition shall be one of the following:

a) Incase of XSD datatypes, and simple types defined locally as child of the attribute element, the type of the
XSD attribute mapped to TTCN-3.

b) In case that a XSD user-defined type is referenced by the type attribute of the XSD attribute element, the
TTCN-3 type generated for the referenced XSD type.

¢) Otherwise it shall be the type XSD.AnySimpleType (see clause 6.8 and B.3.1).
NOTE: In the last case the element's type defaults to the simple ur-type definition in XSD, see clause 3.2.2 of [5].

The name of the TTCN-3 type definition shall be the result of applying clause 5.2.2 to the name of the XSD attribute
element. The generated TTCN-3 type definition shall be appended with the "attribute” TTCN-3 encoding instruction.

EXAMPLE: Mapping of a globally defined attribute:
<attribute name="el7" type="typenane"/>
/1 is mapped to:
type typenane E17
with {
variant "attribute";
variant "name as uncapitalized "

}

For the mapping of locally defined attributes please refer to clause 7.6.7.

7.4.2 Attribute group definitions

An XSD attributeGroup defines a group of attributes that can be included together into other definitions by referencing
the attributeGroup. As children attribute elements of attributeGroup definitions are directly mapped to the TTCN-3
record types corresponding to the complexType referencing the attributeGroup, attributeGroup-s are not mapped to
TTCN-3. See also clauses 7.6.1 and 7.6.7.

7.5 SimpleType components

XSD simple types may be defined globally (as child of scherma and using a mandatory nane attribute) or locally (as a
child of el enent , attribute, restriction,list Orunion)inanamed or anonymous fashion. The si npl eType
components are used to define new simple types by three means:

e Restricting a built-in type (with the exception of anyType, anySimpleType) by applying a facet to it.

. Building lists.

ETSI

56 ETSI ES 201 873-9 V4.5.1 (2013-04)

. Building unions of other simple types.

These means are quite different in their translation to TTCN-3 and are explained in the following clauses. For the
translation of attributes for simple types please refer to the general mappings defined in clause 7.1. Please note that an
XSD si npl eType is not allowed to contain elements or attributes, redefinition of these is done by using XSD

conpl exType-S (see clause 7.6).

7.5.1 Derivation by restriction

For information about restricting built-in types, please refer to clause 6 which contains an extensive description on the
translation of restricted simpleType using facets to TTCN-3.

It is also possible in XSD to restrict an anonymous simple type. The translation follows the mapping for built-in data
types, but instead of using the base attribute to identify the type to apply the facet to, the base attribute type shall be
omitted and the type of the inner, anonymous simpleType shall be used.

EXAMPLE: Consider the following example restricting an anonymous simpleType using a pattern facet (the
bold part marks the inner ssmpleType):

<si npl eType nanme="el8">
<restriction base="string"/>
<pattern val ue="(aUser|anotherUser)@i|l)nstitute"/>
</restriction>
</ si npl eType>

/1 This will generate a nmapping for the inner type and a restriction thereof:
type XSD. String E18 (pattern "(aUser|anotherUser)@i|l)nstitute")
with {
variant "nanme as uncapitalized "
}

7.5.2 Derivation by list

XSD list components shall be mapped to the TTCN-3 record of type. In their simplest form lists shall be mapped by
directly using the listltem attribute as the resulting type.

EXAMPLE 1:

<si npl eType nanme="el9">
<list itenlype="float"/>
</ si nmpl eType>

/1l WII translate to
type record of XSD.Float E19
wth {
variant "list";
variant "name as uncapitalized"

}

When using any of the supported XSD facets (length, maxLength, minLength) the translation shall follow the mapping
for built-in list types, with the difference that the base type shall be determined by an anonymous inner list item type.

EXAMPLE 2: Consider this example:

<si npl eType nanme="e20">
<restriction>
<si npl eType>
<list itenmlype="float"/>
</ si nmpl eType>
<l ength val ue="3"/>
</restriction>
</ si nmpl eType>

/1 WIl map to
type record |l ength(3) of XSD.Fl oat E20
wth {

variant "list";

variant "name as uncapitalized"

}

/Il For instance the tenplate

ETSI

57 ETSI ES 201 873-9 V4.5.1 (2013-04)

tenplate E20 t_E20:={ 1.0, 2.0, 3.0}
/1 will be encoded as

<?xm version="1.0" encodi ng="UTF-8"?>
<e20>

1.0 2.0 3.0

</ e20>

The other XSD facets shall be mapped accordingly (refer to respective 6.1 clauses). If no itemType is given, the
mapping has to be implemented using the given inner type (see clause 7.5.3).

7.5.3 Derivation by union

An XSD union is considered as a set of mutually exclusive alternative types for a smpleType. As this is compatible
with the union type of TTCN-3, a simpleType derived by union in XSD shall be mapped to a union type definition in
TTCN-3. The generated TTCN-3 uni on type shall contain one alternative for each member type of the XSD union,
preserving the textual order of the member types in the initial XSD union type. The field hames of the TTCN-3 uni on
type shall be the result of applying clause 5.2.2 to either to the unqualified hame of the member type (in case of built-in
XSD data types and user defined named types) or to the string "alt" (in case of unnamed member types).

NOTE 1: XSD requires (see XML Schema Part 2: Datatypes [9], clause 2.5.1.3) that an element or attribute value
of an instance is validated against the member types in the order in which they appear in the XSD
definition until a match is found (considering any xsi:type attribute present, see also clause B.3.24). A
TTCN-3 tool has to use this strategy as well, when decoding an XSD union value.

The encoding instruction “useUnion" shall be applied to the generated uni on type and, in addition, the "name as "
("name as followed by a pair of single quote followed by a double quote) encoding instruction shall be applied to each

field generated for an unnamed member type.

NOTE 2: Please note, that alt and the names of several built-in XSD data types are TTCN-3 keywords, hence
according to the naming rules these field identifiers will be postfixed with a single underscore character.

EXAMPLE 1: Mapping of named si npl e type definitions derived by union:

<?xm version="1.0" encodi ng="UTF-8"?>

<xsd: schema xm ns="http://wmv. exanpl e. or g/ uni on"
xm ns: xsd="htt p: / / www. w3. or g/ 2001/ XM_Schema"

t ar get Nanmespace="ht t p: / / ww. exanpl e. or g/ uni on" >

<xsd: si npl eType nanme="e2lnmenberlist">
<xsd: uni on nmenber Types="xsd: string xsd:integer xsd:bool ean"/>
</ xsd: si npl eType>

<xsd: el enent nane="e2lnamedEl enent" type="e2lnmenberlist"/>
</ xsd: schema>

/1 Results in the follow ng napping:
nodul e http_ww_exanpl e_org_uni on {

import from XSD all;

type E21lnenberlist E21lnanmedEl enent
with {
variant "name as uncapitalized";
variant "el enent";

}

type union E21lnenberlist {
XSD. String string,
XSD. | nt eger integer_,
XSD. Bool ean bool ean_

}
with {
variant "name as uncapitalized";
variant "useUnion";
variant (integer_) "nane as 'integer'";
variant (bool ean_) "nanme as 'bool ean'"
}

ETSI

58 ETSI ES 201 873-9 V4.5.1 (2013-04)

with {
encode " XM.";
vari ant "nanespace as 'ww. exanpl e. org/union'";
variant "control Namespace ' http://ww. w3. or g/ 2001/ XM_Schena-i nstance' prefix 'xsi'"

}

/1 For instance, the below structure:

tenpl ate E21nanedEl enent t_UnionNanedint :={ integer_ :=1}
/1 will result in the follow ng encoding:

<?xm version="1.0" encodi ng="UTF-8"?>
<e2lnanedEl emrent xm ns='" www. exanpl e. or g/ uni on' xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schena'
xm ns: xsi =" http://ww. w3. or g/ 2001/ XM_Schena- i nst ance' xsi:type= 'xsd:integer'>1</e2lnanmedEl emrent >

EXAMPLE 2: Mapping of unnamed si npl e type definitions derived by union;

<?xm version="1.0" encodi ng="UTF-8"?>

<xsd: schema xm ns="http://wwm. exanpl e. or g/ uni on"
xm ns: xsd="ht t p: / / wwn. w3. or g/ 2001/ XM_Schema"

tar get Namespace="htt p: // www. exanpl e. or g/ uni on" >

<l-- Please conpare with the previous exanple -->
<si npl eType name="e2lunnaned" >
<uni on>
<si npl eType>

<restriction base="xsd:string"/>
</ si nmpl eType>
<si npl eType>
<restriction base="xsd:float"/>
</ si mpl eType>
<si npl eType>
<restriction base="xsd:integer"/>
</ si mpl eType>
</ uni on>
</ si npl eType>

<xsd: el enent nane="e2lunnanmedEl emrent" type="e2lunnaned"/>

</ xsd: schema>

/! Results in the foll ow ng mappi ng:
nmodul e http_ww_exanpl e_or g_uni on {

inmport from XSD all;

/'l Please conpare with the previous exanple
type E2lunnanmed E2lunnanedEl enment
with {

variant "nanme as uncapitalized";

variant "el enment";

}

type uni on E21lunnaned {
XSD. String alt_,
XSD. Fl oat alt_1,
XSD. I nteger alt_2

}
with {

variant "name as uncapitalized";

variant "useUnion"

variant(alt_, alt_1, alt_2) "panme as ''"
}
}
with {

encode "XM.";

vari ant "nanespace as 'ww. exanpl e. org/union'";
vari ant "control Nanespace ' http://ww. w3. or g/ 2001/ XM_Schen®- i nstance' prefix 'xsi'";

}
/1 For instance, the bel ow structure:
tenpl ate E2lunnaned t_Uni onUnnanedint :={ alt_2 := 1}

ETSI

59 ETSI ES 201 873-9 V4.5.1 (2013-04)

/1 will result in the follow ng encoding

<?xm version="1.0" encodi ng="UTF-8"?>

<e2lunnanedEl emrent xm ns="www. exanpl e. or g/ uni on' xm ns: xsd="http://wwm. w3. or g/ 2001/ XM_Schema"

xm ns: xsi =" http://ww. w3. or g/ 2001/ XM_Schema- i nst ance' xsi:type='xsd:integer' >1</e2lunnanmedEl erent >

EXAMPLE 3: Mixed use of named and unnamed types:

<xsd: si mpl eType nanme="Ti me-or-int-or-bool ean-or-dat eRestricted">
<xsd: uni on nmenber Types="xsd: ti me e2lmenberlist">
<xsd: si npl eType>
<xsd:restriction base="xsd: date">
<xsd: m nl ncl usi ve val ue="2003-01-01"/>
</ xsd:restriction>
</ xsd: si npl eType>
</ xsd: uni on>
</ xsd: si npl eType>

//WI1l be mapped to the TTCN-3 type definition
type union Tinme_or_int_or_bool ean_or_dateRestricted {
XSD. Time tinme
XSD. | nt eger integer_,
XSD. Bool ean bool ean_,
XSD. Date alt_

3

with {
variant "useUnion";
variant(alt_) "nanme as ''"

}

The only supported facet is enumeration, allowing mixing enumerations of different kinds.

EXAMPLE 4: Mapping member type with an enumeration facet:

<xsd: el enent nanme="nmaxCccurs">
<xsd: si mpl eType>
<xsd: uni on menber Types="xsd: nonNegati vel nt eger" >
<xsd: si npl eType>
<xsd:restriction base="xsd:token">
<xsd: enuner ati on nanme="unbounded"/ >
</xsd:restriction>
</ xsd: si npl eType>
</ xsd: uni on>
</ xsd: si npl eType>
</ xsd: el enent >

[IWI1Il be translated to TTCN-3 as:

type union MaxCccurs {
XSD. NonNegat i vel nt eger nonNegat i vel nt eger
enunerated {unbounded} alt_

}

with {
variant "name as uncapitalized"
variant "elenent";
variant "useUnion";
variant(alt_) "nanme as ''"

EXAMPLE 5: Mapping member types with enumeration facets applied to different member types:

<si npl eType nanme="e22">
<restriction base="e2lunnamed">
<enuner ation val ue="20"/>
<enuner ation val ue="50"/>
<enuneration value="small"/>
</restriction>
</ si nmpl eType>

/1 will be translated to
type E2lunnamed E22 ({alt_1:=20.0},{alt_1:=50.0},{alt_:="small"})
with {

variant "nanme as uncapitalized"

}

ETSI

60 ETSI ES 201 873-9 V4.5.1 (2013-04)

7.6 ComplexType components

The XSD complexType is used for creating new types that contain elements and attributes. XSD complexTypes may be
defined globally as child of schema or redefing(in which case the name XSD attribute is mandatory), or locally in an
anonymous fashion (as a child of element, without the name XSD attribute).

Globally defined XSD complexTypes shall be translated to a TTCN-3 r ecor d type. Thisr ecor d type shall enframe
the fields resulted by mapping the content (the children) of the XSD complexType as specified in the next clauses. The
name of the TTCN-3 record type shall be the result of applying clause 5.2.2 to the XSD name attribute of the
complexType definition.

Locally defined anonymous complexTypes shall be ignored. In this case the r ecor d type generated for the parent
element of the complexType (see clause 7.3), shall enframe the fields resulted by mapping the content (the children) of
the XSD complexType.

NOTE: The mapping rules in subsequent clauses may be influenced by the attributes applied to the component, if
any. See more details in clause 7.1, especially in clause 7.1.4.

7.6.1 ComplexType containing simple content

An XSD simpleContent component may extend or restrict an XSD simple type, being the base type of the
simpleContent and expands the base type with attributes, but not elements.

76.1.1 Extending simple content
When extending XSD simpleContent, further XSD attributes may be added to the original type.

The base type of the extended simpleContent and the additional XSD attributes shall be mapped to fields of the TTCN-3
r ecor d type, generated for the enclosing XSD complexType (see clause 7.6). At first, attribute elements and attribute
groups shall be translated according to clause 7.6.7, and added to the enframing TTCN-3 r ecor d (see clause 7.6).
Next, the extended type shall be mapped to TTCN-3 and added as a field of the enframing r ecor d. The field name of
the latter shall be "base" and the variant attribute "untagged™ shall be attached to it.

EXAMPLE: The example below extends a built-in type by adding an attribute:

<conpl exType nane="e23">
<si npl eCont ent >
<ext ensi on base="string">
<attribute name="foo" type="float"/>
<attribute name="bar" type="integer"/>
</ ext ensi on>
</ si npl eCont ent >
</ conpl exType>

/1 WIl be mapped as:
type record E23

XSD. | nt eger bar optional,
XSD. Fl oat foo optional,
XSD. String base

}

with {
variant "name as uncapitalized";
vari ant (base) "untagged";
variant (bar, foo) "attribute"

}

/1 and the tenplate
tenplate E23 t_E23 := {

bar := 1,
foo := 2.0,
base := "sonet hi ng"

}

/'l shall be encoded as:
<?xm version="1.0" encodi ng="UTF-8"?>
<e23 bar=1 fo0=2. 0>sonet hi ng</ e23>

ETSI

61 ETSI ES 201 873-9 V4.5.1 (2013-04)

7.6.1.2 Restricting simple content

An XSD simpleContent may restrict its base type or attributes of the base type by applying more restrictive facets than
those of the base type (if any).

Such XSD simpleContent shall be mapped to fields of the enframing TTCN-3 record (see clause 7.6). At first, the
fields corresponding to the local attribute definitions, attribute and attributeGroup references shall be generated
according to clause 7.6.7, followed by the field generated for the base type. The field name of the latter shall be "base".
The restrictions of the given simpleContent shall be applied to the "base" field directly (i.e. the base type shall not be
referenced but translated to a new type definition in TTCN-3).

Other base types shall be dealt with accordingly, see clause 6.

EXAMPLE: Example for restriction of a base type:

<conpl exType nane="e24">
<si npl eCont ent >
<restriction base="ns:e23">
<l ength val ue="4"/>
</restriction>
</ si nmpl eCont ent >
</ conpl exType>

//ls translated to

type record E24 {
XSD. | nt eger bar optional
XSD. Fl oat foo optional
XSD. String base | ength(4)

}

with {
vari ant (base) "untagged";
variant (bar, foo) "attribute";
variant "name as uncapitalized"

}

/1 and the tenplate
tenplate E24 t_E24 : = {

bar :=1
foo := 2.0,
base : = "sone"

}

/1 shall be encoded as:
<?xm version="1.0" encodi ng="UTF-8"?>
<e23 bar=1 fo0=2. 0>sone</ e23>

7.6.2 ComplexType containing complex content

In contrast to simpleContent, complexContent is allowed to have elements. It is possible to extend a base type with by
adding attributes or elements, it is also possible to restrict a base type to certain elements or attributes.

76.2.1 Complex content derived by extension

By using the XSD extension for a complexContent it is possible to derive new complex types from a base (complex)
type by adding attributes, elements or groups (group, attributeGroup). The compositor of the base type may be
sequence or choice (i.e. complex types with the compositor all shall not be extended).

This shall be translated to TTCN-3 as follows (the generated TTCN-3 constructs shall be added to the enframing
TTCN-3record, see clause 7.6, in the order of the items below):

a) At first, attributes and attribute and attribute group references of the base type and the extending type shall be
translated according to clause 7.6.7 and the resulted fields added to the enframing TTCN-3 r ecor d directly
(i.e. without nesting).

b) The choice or sequence content model of the base (extended) complexType shall be mapped to TTCN-3
according to clauses 7.6.5 or 7.6.6 respectively, and the resulted TTCN-3 constructs shall be added to the
enframing r ecor d.

ETSI

62 ETSI ES 201 873-9 V4.5.1 (2013-04)

¢) The extending choice or sequence content model of the extending complexContent shall be mapped to
TTCN-3 according to clauses 7.6.5 or 7.6.6 respectively, and the resulted TTCN-3 constructs shall be added to
the enframing r ecor d.

EXAMPLE 1: Both the base and the extending types have the compositor sequence:

<!-- The base definitions: -->
<conpl exType nanme="e25seq" >
<sequence>

<el ement name="titl eEl enBase" type="string"/>
<el ement name="f or enaneEl enBase" type="string"/>
<el ement name="sur naneEl enBase" type="string"/>
</ sequence>
<attribute name="gender AttrBase" type="integer"/>
<attributeGoup ref="ns:g25attr2"/>
</ conpl exType>

<group nanme="g25seq">
<sequence>
<el ement nane="fam | ySt at usél em nG oup" type="string"/>
<el ement nane="spouseEl em nG oup" type="string" m nCccurs="0"/>
</ sequence>
</ group>

<attributeG oup name="g25attrl1">
<attribute name="birthPl aceAttr G oup" type="string"/>
<attribute name="birthDateAttrG oup" type="string"/>
</attributeG oup>

<attributeG oup name="g25attr2">
<attribute name="jobPositionAttrGoup" type="string"/>
</attributeG oup>

<I-- Now a type is defined that extends e25seq by adding a new el ement, group and attributes: -->
<conpl exType nanme="e26seq" >
<conpl exCont ent >
<ext ensi on base="ns: e25seq" >
<sequence>
<el ement nanme="ageEl enExt" type="integer"/>
<group ref="ns:g25seq"/>
</ sequence>
<attribute name="unitCf Age" type="string"/>
<attributeGoup ref="ns:g25attr1"/>
</ ext ensi on>
</ conpl exCont ent >
</ conpl exType>

/1 This is translated to the TTCN-3 structure:
type record E26seq

/1 fields corresponding to attributes of the base and the extending type
/1 (in al phabetical order)

XSD. String birthDateAttr G oup optional,

XSD. String birthPlaceAttr G oup optional,

XSD. | nt eger gender AttrBase opti onal

XSD. String jobPositionAttrG oup optional

XSD. String unitCOf Age optional

/1 followed by fields corresponding to elements of the base type

XSD. String titl eEl enBase

XSD. String forenaneEl enBase

XSD. String surnaneEl enBase

/1 finally fields corresponding to the extending el enent and group reference
XSD. | nt eger ageEl enExt,

&25seq g25seq

}
with {
variant "nane as uncapitalized ";
variant (birthDateAttrGoup, birthPlaceAttrGoup, genderAttrBase, jobPositionAttrG oup,
uni t Of Age) "attribute";
b
/'l where
type record &5seq {
XSD. String fam|yStatusEl eml nG oup,
XSD. String spouseEl em nG oup opti onal

}
with {

ETSI

63 ETSI ES 201 873-9 V4.5.1 (2013-04)

vari ant "untagged"

}
EXAMPLE 2: Both the base and the extending types have the compositor sequence and multiple occurrences are
allowed:
<!-- Additional base definition:-->

<conpl exType nane="e25seqRecurrence">
<sequence m nCccurs="0" maxCccur s="unbounded" >
<el ement name="titl eEl enBase" type="string"/>
<el ement name="f or enaneEl enBase" type="string"/>
<el ement name="sur namekl enBase" type="string"/>
</ sequence>
<attribute name="gender AttrBase" type="integer"/>
<attributeGoup ref="ns:g25attr2"/>
</ conpl exType>

<!-- The extending type definition: -->

<conpl exType nane="e26seqReccurrence">
<conpl exCont ent >
<ext ensi on base="ns: e25seq" >
<sequence nmi nCccurs="0" maxCccur s="unbounded" >
<group ref="ns:g25seq"/>
<el ement name="ageEl enExt" type="integer"/>
</ sequence>
<attribute name="unitCf Age" type="string"/>
</ ext ensi on>
</ conpl exCont ent >
</ conpl exType>

<conpl exType nane="e26seqDoubl eRecurrence">
<conpl exCont ent >
<ext ensi on base="ns: e25seqRecurrence" >
<sequence m nCccurs="0" maxCccur s="unbounded" >
<group ref="ns:g25seq"/>
<el ement nane="ageEl enExt" type="integer"/>
</ sequence>
<attribute name="unitCf Age" type="string"/>
</ ext ensi on>
</ conpl exCont ent >
</ conpl exType>

/1 The extending types are translated to TTCN-3 as

type record E26seqRecurrence {
/1 fields corresponding to attributes of the base and the extending type
/1 (in al phabetical order)
XSD. | nt eger gender AttrBase opti onal
XSD. String jobPositionAttrG oup optional
XSD. String unitCOf Age optional
/1 followed by a "sinple" field list corresponding to el ements of the base type
XSD. String titl eEl enBase
XSD. String forenaneEl enBase
XSD. String surnanmeEl enBase
/1 the extending sequence is recurring (see clause 7.6.6.6 for the mappi ng)
record of record {
&25seq g25seq
XSD. | nt eger ageEl enExt,
} sequence_li st

with {

variant "name as uncapitalized"

vari ant (sequence_list) "untagged"

vari ant (gender AttrBase, jobPositionAttrGoup, unitCfAge) "attribute”
}

type record E26seqDoubl eRecurrence {
/1 fields corresponding to attributes of the base and the extending type
/1 (in al phabetical order)
XSD. | nt eger gender AttrBase opti onal
XSD. String jobPositionAttrG oup optional
XSD. String unitCOf Age optional
/1 followed by a record of record field containing the fields corresponding to el ements of
/1 the base type; the base type is a recurring sequence (see clause
/1l 7.6.6.6 for the

/'l mappi ng)

ETSI

64 ETSI ES 201 873-9 V4.5.1 (2013-04)

record of record {
XSD. String titl eEl enBase
XSD. String forenanmeEl enBase
XSD. String surnanmeEl enBase
} sequence_li st,
/1 the extending sequence is recurring too(see cl ause
/1 7.6.6.6 for the
/'l mappi ng)
record of record {
&25seq g25seq
XSD. | nt eger ageEl enExt,
} sequence_list_1

with {
vari ant "nanme as uncapitalized"
vari ant (sequence_list, sequence_list_1) "untagged"
variant (genderAttrBase, jobPositionAttrG oup, unitCf Age) "attribute"

EXAMPLE 3: Both the base and the extending types have the compositor choice:

<conpl exType nanme="e25cho" >
<choi ce>
<el ement name="titl eEl enBase" type="string"/>
<el emrent name="f or enaneEl enBase" type="string"/>
<el ement name="sur naneEl enBase" type="string"/>
</ choi ce>
<attribute name="gender AttrBase" type="string"/>
</ conpl exType>

<l-- and -->
<conpl exType nane="e26cho" >
<conpl exCont ent >
<ext ensi on base="ns:e25cho">
<choi ce>
<el ement name="ageEl enExt" type="integer"/>
<el ement name="birthdayEl enExt" type="date"/>
</ choi ce>
<attribute name="unitAttrExt" type="string"/>
</ ext ensi on>
</ conpl exCont ent >
</ conpl exType>

[/ Are translated to TTCN-3 as:
type record E26cho {
XSD. String genderAttrBase optional
XSD. String unitAttrExt optional
uni on {
XSD. String titl eEl enBase
XSD. String forenaneEl enBase
XSD. String surnaneEl enBase
} choice
uni on {
XSD. | nt eger ageEl enExt
XSD. Dat e bi rt hdayEl emExt
} choice_1

}

with {
variant "name as uncapitalized"
vari ant (gender AttrBase, unitAttrExt) "attribute";
vari ant (choi ce, choice_1) "untagged"

EXAMPLE 4: Extension of a sequence base type by a choice model group:

<conpl exType nane="e27cho" >
<conpl exCont ent >
<ext ensi on base="ns: e25seq" >
<choi ce>
<el ement nanme="ageEl enExt" type="integer"/>
<el ement name="bi rt hdayEl enExt" type="date"/>
</ choi ce>
<attribute name="unitAttrExt" type="string"/>
</ ext ensi on>
</ conpl exCont ent >
</ conpl exType>

/]l is translated to TTCN-3 as:

ETSI

65 ETSI ES 201 873-9 V4.5.1 (2013-04)

type record E27cho

XSD. | nt eger gender AttrBase opti onal
XSD. String jobPositionAttrG oup optional
XSD. String unitAttrExt optional
XSD. String titl eEl enBase
XSD. String forenaneEl enBase
XSD. String surnaneEl enBase
uni on {
XSD. | nt eger ageEl enExt,
XSD. Dat e bi rt hdayEl enExt
} choice

}

with {
variant "nanme as uncapitalized"
variant (gender AttrBase, jobPositionAttrGoup, unitAttrExt) "attribute"
vari ant (choi ce) "untagged"

EXAMPLE 5: Extending of a base type with choice model group by a sequence model group:

<conpl exType nanme="e27seq" >
<conpl exCont ent >
<ext ensi on base="ns:e25cho">
<sequence>
<el ement nanme="ageEl enExt" type="integer"/>
</ sequence>
<attribute name="unitAttrExt" type="string"/>
</ ext ensi on>
</ conpl exCont ent >
</ conpl exType>

/Il 1Is translated to TTCN-3 as:
type record E27seq {
XSD. String gender AttrBase opti onal
XSD. String unitAttrExt optional
uni on {
XSD. String El enBase
XSD. String forenaneEl enBase
XSD. String surnaneEl enBase
} choice
XSD. | nt eger ageEl enExt

}

with {
variant "name as uncapitalized"
variant (gender AttrBase, unitAttrExt) "attribute";
vari ant (choi ce) "untagged"

EXAMPLE 6: Recursive extension of an anonymous inner type is realized using the TTCN-3 dot notation (starts
from the name of the outmost type):

<conpl exType nane="X">
<sequence>
<el ement name="x" type="string"/>
<el ement name="y" m nCccurs="0">
<conpl exType>
<conpl exCont ent >
<ext ensi on base="ns: X"'>
<sequence>
<el ement name="z" type="string"/>
</ sequence>
</ ext ensi on>
</ conpl exCont ent >
</ conpl exType>
</ el ement >
</ sequence>
</ conpl exType>

ETSI

66 ETSI ES 201 873-9 V4.5.1 (2013-04)

/1 1s translated to the TTCN-3 structure
type record X {
XSD. String x,
record {
XSD. String X,
X.y y optional
XSD. String z
} y optional

7.6.2.2 Complex content derived by restriction
The restriction uses a base complex type and restricts one or more of its components.

All components present in the restricted type shall be mapped to TTCN-3, applying the restrictions, and the resulted
fields shall be added to the enframing TTCN-3 r ecor d (see clause 7.6). Thus neither the base type nor its components
are referenced from the restricted type.

EXAMPLE 1: Restricting anyType: in the example below anyType (any possible type) is used as the base type
and it is restricted to only two elements:

<conpl exType nane="e28">
<conpl exCont ent >
<restriction base="anyType">
<sequence>
<el ement name="si ze" type="nonPositivelnteger"/>
<el ement name="unit" type="NMIOKEN'/>
</ sequence>
</restriction>
</ conpl exCont ent >
</ conpl exType>

/Il Is translated to:

type record E28 {
XSD. NonPosi ti vel nteger size
XSD. NMIOKEN uni t

}
with {

variant "name as uncapitalized"
}

EXAMPLE 2: Restricting a user defined complex type (the effect of the use attribute is described in
clause 7.1.12):

<el ement name="comrent" type="string"/>

<l-- The base type is: -->
<conpl exType nane="Pur chaseO der Type" >
<sequence>
<el ement name="shi pTo" type="string"/>
<el ement name="bill To" type="string"/>
<el ement ref="ns:comrent" m nCccurs="0"/>
<el ement nanme="itens" type="ns:Itens"/>

</ sequence>

<attribute name="shi pDate" type="date"/>

<attribute name="orderDate" type="date"/>
</ conpl exType>

<l-- The restricting type is: -->
<conpl exType nane="Restri ct edPurchaseO der Type" >
<conpl exCont ent >
<restriction base="ns: PurchaseO der Type">
<sequence>
<el ement name="shi pTo" type="string"/>
<el ement name="bill To" type="string"/>
<el ement ref="ns:comrent" m nCccurs="1"/>
<el ement name="itens" type="ns:ltens"/>
</ sequence>
<attribute name="shi pDate" type="date" use="required" />
<attribute name="orderDate" type="date" use="prohibited" />
</restriction>
</ conpl exCont ent >
</ conpl exType>

ETSI

67 ETSI ES 201 873-9 V4.5.1 (2013-04)

/lis translated to TTCN-3 as:

type XSD. String Comrent

with {
variant "name as uncapitalized";
vari ant "el ement”

}

/* base type */

type record PurchaseOrder Type {
XSD. Dat e orderDate optional,
XSD. Dat e shi pDate optional,
XSD. String shipTo,
XSD. String billTo,
Comment comment optional,
Itens itens

}
with {

variant (orderDate, shipDate) "attribute"
}

/* restricting type */
type record RestrictedPurchaseO der Type {
XSD. Date orderDate, //note that this field becone mandatory
/Inote that the field shipDate is not added
XSD. String shipTo,
XSD. String billTo,
Comrent comment, /Inote that this field becone mandatory
Items itens

}
with {

variant (orderDate) "attribute"
}

7.6.3 Referencing group components
Referenced model group components shall be translated as follows:

. when group reference is a child of complexType, the compositor of the referenced group definition is sequence
and both the minOccurs and maxOccurs attributes of the group reference equal to "1™ (either explicitly or by
defaulting to "1"), it shall be translated as if the child elements of the referenced group definition were was
present in the complexType definition directly;

. when the referenced group has the compositor all, it has to be translated is the content of the referenced group
definition was present directly, i.e. according to clause 7.6.4;

. in all other cases the referenced group component shall be translated to a field of the enclosing record of type
(generated for the parent complexType, sequence or choice element) referencing the TTCN-3 type generated
for the referenced group definition, considering also the attributes of the referenced group component
according to clause 7.1.

NOTE: Please note, as the "untagged" attribute is applied to the TTCN-3 type generated for the referenced model
group, the name of the field corresponding to the group reference will never appear in an encoded XML
value.

When a referenced group is defined in an XSD Schema with a target namespace, different from the target namespace of
the referencing XSD schema (including the no target namespace case), all TTCN-3 fields generated for this group
reference shall be appended with a "namespace as" encoding instruction (see clause B.3.1), which shall identify the
namespace and optionally the prefix of the XSD schema in which the referenced entity is defined.

EXAMPLE 1: Mapping of a group reference, child of complexType, compositor <sequence>:

<!-- Referencing a group with conpositor <sequence> (see group declaration in $7.9) -->
<xsd: conpl exType nanme="Lonel ySeqG oup" >

<xsd: group ref="ns:shipAndBill"/>
</ xsd: conpl exType>

//ls translated to TTCN-3 as:
type record Lonel ySeqG oup {
XSD. String shipTo,
XSD. String bill To

ETSI

68 ETSI ES 201 873-9 V4.5.1 (2013-04)

<!-- The group reference is optional, conpositor <sequence> (see group declaration in $7.9) -->
<xsd: conpl exType name="Lonel ySeqG oupOpti onal ">
<xsd: group ref="ns:shipAndBill" m nCccurs="0"/>

</ xsd: conpl exType>

/lls translated to TTCN-3 as:
type record Lonel ySeqG oupOptional {
Shi pAndBi | | shi pAndBi || optional

}
<!-- The group reference is iterative, conpositor <sequence> (see group declaration in $7.9) -->
<xsd: conmpl exType nanme="Lonel ySeqG oupRecurrence">

<xsd: group ref="ns:shipAndBill" m nCccurs="0" maxCccurs="unbounded"/ >
</ xsd: conpl exType>

//ls translated to TTCN-3 as:
type record Lonel ySeqG oupRecurrence {

record of ShipAndBill shipAndBill _list
}
with {
variant (shipAndBill _Iist) "untagged";
}
EXAMPLE 2: Mapping of a group reference, child of complexType, compositor <all>:
<!-- Referencing a group with conpositor <all> (see group declaration in $7.9) -->

<xsd: conpl exType name="Lonel yAl | G oup" >
<xsd: group ref="ns:shipAndBill A|l"/>
</ xsd: conpl exType>

//ls translated to TTCN-3 as:

type record Lonel yAl | G oup {
record of enunerated { shipTo, billTo } order,
XSD. String shipTo,
XSD. String bill To

13
with {
variant "useOrder"
}
<l-- The group reference is optional, conpositor <all> (see group declaration in $7.9) -->

<xsd: conpl exType name="Lonel yAl | G oupOpti onal ">
<xsd: group ref="ns:shipAndBi [l All" m nCccurs="0"/>
</ xsd: conpl exType>

//ls translated to TTCN-3 as:

type record Lonel yAl | G oupOptional {
record of enumerated { shipTo, billTo } order,
XSD. String shipTo optional,
XSD. String bill To optional

3
with {
variant "useOrder"
}
EXAMPLE 3: Mapping of a group reference, child of complexType, compositor <choice>:
<!-- Referencing a group with conpositor <choice> (see group declaration in $7.9) -->

<xsd: conpl exType name="Lonel yChoG oup" >
<xsd: group ref="ns:shipOoBill"/>
</ xsd: conpl exType>

/l1s translated to TTCN-3 as:
type record Lonel yChoG oup {
ShipOrBill shipOBill

}
<l-- The group reference is optional, conpositor <choice> (see group declaration in $7.9) -->
<xsd: conpl exType name="Lonel yChoG oupOpti onal ">

<xsd: group ref="ns:shipOBill" mnCccurs="0"/>
</ xsd: conpl exType>

/lls translated to TTCN-3 as:

type record Lonel yChoG oup {
ShipOBill shipOBill optional
}

ETSI

69 ETSI ES 201 873-9 V4.5.1 (2013-04)

<xsd: conpl exType nanme="Lonel yChoG oupRecurrence">

<annot ati on><docunent ati on xml : | ang="EN'>choi ce group reference</docunent ati on></annot ati on>
<xsd: group ref="ns:shipOBill" mnCccurs="0" maxCccurs="unbounded"/ >

</ xsd: conpl exType>

//ls translated to TTCN-3 as:
type record Lonel yChoG oup {

record of ShipOBill shipOBill_list
}
with {
variant (shipAndBill _list) "untagged";
}
EXAMPLE 4: Mapping of group references, children of <sequence> or <choice>:
<!-- Referencing a group with conpositor <sequence> in <sequence>

(see group declaration in clause 7.9) -->
<xsd: conpl exType name="SeqG oupAndEl ement sl nSequence" >
<xsd: sequence i d="enbeddi ngSequence" >
<xsd: group ref="ns:shipAndBill"/>
<xsd: el ement name="comrent" type="xsd:string" mnCccurs="0" />
<xsd: el ement name="itenms" type="xsd:string" />
</ xsd: sequence>
</ xsd: conpl exType>

//ls translated to TTCN-3 as:
type record SeqG oupl nSequence {
Shi pAndBi | | shi pAndBi | |,

XSD. String comment optional,
XSD. String items

}

<l-- Referencing a group with conpositor <sequence> in <choice>
(see group declaration in clause 7.9) -->
<xsd: conpl exType name="SeqG oupAndEl ement sAndAt tri but el nChoi ce" >
<xsd: choi ce i d="enbeddi ngChoi ce" >
<annot at i on><docunent ati on xnl : 1 ang="EN'>sequence group ref.</docunentati on></annotati on>
<xsd: group ref="ns:shipAndBill"/>
<xsd: el enent nane="comment" nmi nCQccurs="0" type="xsd:string"/>
<xsd: el enent nane="itens" type="xsd:string"/>
</ xsd: choi ce>
<xsd: attribute nane="orderDate" type="xsd:date"/>
</ xsd: conpl exType>

//ls translated to TTCN-3 as:
SeqG oupAndEl enent sAndAt t ri but el nChoi ce ::= SEQUENCE {
XSD. Dat e orderDate optional,
uni on {
/* sequence group ref.*/
Shi pAndBi | | shi pAndBi | |,
record length (0..1) of XSD.String conment_|ist,
XSD. String itens
} choice

}
with {
variant (orderDate) "attribute";
variant (choice) "untagged";
variant (choice.coment _list) "untagged";
variant (choice.coment_list[-]) "name as coment"

ETSI

70 ETSI ES 201 873-9 V4.5.1 (2013-04)

7.6.4 All content

An XSD all compositor defines a collection of elements, which can appear in any order in an XML value.

In the general case, when the values of both the minOccurs and maxOccurs attributes of the all compositor equal 1"
(either explicitly or by defaulting to "1"), it shall be translated to TTCN-3 by adding the fields resulted by mapping the
XSD elements to the enframing TTCN-3 r ecor d (see clause 7.6). By setting the minOccurs XSD attribute of the all
compositor to 0, all elements of the all content model are becoming optional. In this case all record fields corresponding
to the elements of the all model group shall be set to opt i onal too. In addition, to these fields, an extra first field
named "order" shall be inserted into the enframing r ecor d. The type of this extra field shall be r ecor d of

enuner at ed, where the names of the enumeration values shall be the names of the fields resulted by mapping the
elements of the all structure. Finally, a "useOrder" variant attribute shall be attached to the enframing r ecor d.

The or der field shall precede the fields resulted by the translation of the attributes and attribute and attributeGroup
references of the given complexType but shall follow the enbed_val ues field, if any, generated for the mixed="true"
attribute value (see also clause 7.6.8).

NOTE: When encoding, the presence and order of elements in the encoded XML instance will be controlled by
the or der field. This is indicated by the "useOrder" encoding instruction. When decoding, the presence
and order of elements in the XML instance will control the value of the or der field that appears in the
decoded structure. See more details in annex B. This mapping is required by the alignment to
Recommendation ITU-T X.694 [4].

EXAMPLE 1: XSD all content model with mandatory elements:

<conpl exType name="e29a">
<al |l >
<el ement name="foo" type="integer"/>
<el ement name="bar" type="float"/>
<el ement name="di ng" type="string"/>
</all>
</ conpl exType>

/1 1's mapped to the following TTCN-3 structure
type record E29a {
record of enunerated {foo, bar, di ng} order
XSD. | nt eger foo
XSD. Fl oat bar
XSD. String ding

3

with {
variant "name as uncapitalized "
variant "useOrder"

EXAMPLE 2: XSD all content model with each element being optional:

<conpl exType name="e29b" >
<all mnCccurs="0">
<el ement name="foo" type="integer"/>
<el ement nanme="bar" type="float"/>
<el ement nanme="di ng" type="string"/>
</all>
</ conpl exType>

/1 |'s mapped to the following TTCN-3 structure
type record E29b {
record of enumerated {foo, bar, ding} order
XSD. | nt eger foo optional
XSD. Fl oat bar optional
XSD. String ding optiona

13

with {
variant "nane as uncapitalized ";
variant "useOrder"

ETSI

71

EXAMPLE 3: XSD all content model, with selected optional elements:

<conpl exType nane="e29c" >
<al | >
<el ement name="foo" type="integer"/>
<el ement name="bar" type="float" m nCccurs="0"/>
<el ement name="di ng" type="string"/>
</all>
</ conpl exType>

/1 1s mapped to the following TTCN-3 structure:
type record E29c {
record of enunerated {foo, bar, di ng} order,
XSD. I nt eger foo,
XSD. Fl oat bar optional,
XSD. String ding

}

with {
variant "nane as uncapitalized ";
variant "useOrder"

EXAMPLE 4: XSD complex type with attributes and all content model:
<attribute name="attrd obal " type="token"/>

<attributeG oup name="attr G oup">
<attribute name="attrlnG oup2" type="token"/>
<attribute name="attrlnG oupl" type="token"/>
</attributeG oup>

<conpl exType nane="e29aAndAttri butes">
<al | >
<el ement name="foo0" type="integer"/>
<el ement name="bar" type="float"/>
<el ement name="di ng" type="string"/>
</all>
<attribute name="attrLocal " type="integer"/>
<attribute ref="ns:attrd obal "/>
<attributeGoup ref="ns:attrGoup"/>
</ conpl exType>

/lls translated to TTCN-3 as:
type record E29aAndAttributes {
record of enunmerated { foo, bar, ding } order,
XSD. Token attrlInG oupl optional,
XSD. Token attrlnG oup2 optional,
XSD. I nteger attrLocal optional,
XSD. Token attrd obal optional,
XSD. | nt eger foo,
XSD. Fl oat bar,
XSD. String ding

)

with {
variant "name as uncapitalized";
variant "useOrder";

ETSI ES 201 873-9 V4.5.1 (2013-04)

variant(attrinGoupl, attrinGoup2, attrlLocal, attrdobal) "attribute"

7.6.5 Choice content

An XSD choice content defines a collection of mutually exclusive alternatives.

In the general case, when both the minOccurs and maxOccurs attribute equal to "1" (either explicitly or by defaulting
to "1"), it shall be mapped to a TTCN-3 uni on field with the field name "choice"” and the encoding instruction

"untagged" shall be attached to this field.

If the value of the minOccurs or the maxOccurs attributes or both differ from "1", the following rules shall apply:

a) The union field shall be generated as above (including attaching the "untagged™ encoding instruction).

ETSI

72 ETSI ES 201 873-9 V4.5.1 (2013-04)

b) The procedures in clause 7.1.4 shall be called for the uni on field.

NOTE: As the result of applying clause 7.1.4, the type of the field may be changed to r ecord of uni on and
in parallel the name of the field may be changed to "choice_list".

c) Finally, clause 5.2.2 shall be applied to the name of the resulted field and subsequently the field shall be added
to the enframing TTCN-3 record type (see clause 7.6) or record or union field corresponding to the parent of
the mapped choice compositor.

The content for a choice component may be any combination of element, group, choice, sequence or any. The following
clauses discuss the mapping for various contents nested in a choice component.

7.6.5.1 Choice with nested elements

Nested elements shall be mapped as fields of the enframing TTCN-3 uni on or r ecord of uni on field
(see clause 7.6.5) according to clause 7.3.

EXAMPLE:

<conpl exType nane="e30">
<choi ce>
<el ement name="foo" type="integer"/>
<el ement nanme="bar" type="float"/>
</ choi ce>
</ conpl exType>

/'l WIIl be translated to
type record E30 {
uni on {
XSD. | nt eger foo
XSD. Fl oat bar
} choice
}
with {
variant "name as uncapitalized"
vari ant (choi ce) "untagged"

7.6.5.2 Choice with nested group

Nested group components shall be mapped along with other content as a field of the enframing TTCN-3 union or
record of uni on field (see clause 7.6.5). The type of this field shall refer to the TTCN-3 type generated for the
corresponding group and the name of the field shall be the name of the TTCN-3 type with the first character
uncapitalized.

EXAMPLE: The following example shows this with a sequence group and an el ement:

<group nane="e31">
<sequence>
<el ement name="foo0" type="string"/>
<el ement name="bar" type="string"/>
</ sequence>
</ gr oup>

<conpl exType nane="e32">
<choi ce>
<group ref="ns:e31"/>
<el ement name="di ng" type="string"/>
</ choi ce>
</ conpl exType>

//ls translated to TTCN-3 as
type record E31 {

XSD. String foo,

XSD. String bar
ith

variant "name as uncapitalized "

— ~ s

ETSI

73

type record E32 {
uni on {
E31 e3l
XSD. String ding
} choice

}

wth {
variant "name as uncapitalized "
vari ant (choi ce) "untagged"

7.6.5.3 Choice with nested choice

An XSD choice nested to a choice shall be translated according to clause 7.6.5:

EXAMPLE:

<conpl exType nane="e33">
<choi ce>
<choi ce>
<el ement name="foo" type="string"/>
<el ement name="bar" type="string"/>
</ choi ce>
<el ement name="di ng" type="string"/>
</ choi ce>
</ conpl exType>

/1 |'s mapped to TTCN-3 as:
type record E33 {
uni on {
uni on {
XSD. String foo
XSD. String bar
} choice
XSD. String ding
} choice

b
with {
variant "name as uncapitalized"
vari ant (choi ce, choice. choice) "untagged"

7654 Choice with nested sequence

ETSI ES 201 873-9 V4.5.1 (2013-04)

An XSD sequence nested to a choice shall be mapped to a TTCN-3 r ecor d field of the enframing TTCN-3 uni on or

record of uni on field (see clause 7.6.5), according to clause 7.6.6.

EXAMPLE 1: Single sequence nested to choice:

<conpl exType nane="e34a">
<choi ce>
<sequence>
<el ement name="foo0" type="string"/>
<el ement name="bar" type="string"/>
</ sequence>
<el ement name="di ng" type="string"/>
</ choi ce>
</ conpl exType>

/1 1s translated to:
type record E34a {

uni on {
record {
XSD. String foo,
XSD. String bar
} sequence
XSD. String ding
} choice
}
with {
variant "name as uncapitalized ";
vari ant (choi ce, choice. sequence) "untagged"
}

ETSI

74 ETSI ES 201 873-9 V4.5.1 (2013-04)

EXAMPLE 2: Multiple sequence-s nested to choice:

<conpl exType nanme="e34b" >
<choi ce>
<sequence>
<sequence>
<el ement name="foo0" type="string"/>
<el ement name="bar" type="string"/>
</ sequence>
<el ement name="di ng" type="string"/>
<el ement name="foo0" type="string"/>
<el ement name="bar" type="string"/>
</ sequence>
<el ement name="di ng" type="string"/>
</ choi ce>
</ conpl exType>

/1 1Is translated to
type record E34b {
uni on {
record {
record {
XSD. String foo
XSD. String bar
} sequence
XSD. String ding
XSD. String foo
XSD. String bar
} sequence
XSD. String ding
} choice

}
with {
variant "nane as uncapitalized ";
vari ant (choi ce, choice. sequence, choice. sequence. sequence) "untagged"

7.6.55 Choice with nested any
An XSD any element nested to a choice shall be translated according to clause 7.7.

EXAMPLE:

<conpl exType nane="e35">
<choi ce>
<el ement name="foo0" type="string"/>
<any nanespace="other"/>
</ choi ce>
</ conpl exType>

/1 1s translated to:
type record E35 {
uni on {
XSD. String foo
XSD. String el em
} choice

}.
with {
variant "nanme as uncapitalized"

vari ant (choi ce) "untagged"
vari ant (choi ce. el em) "anyEl enent from' ot her’

7.6.6 Seqguence content

An XSD sequence defines an ordered collection of components and its content may be of any combination of XSD
elements, group references, choice, sequence or any.

Clauses 7.6.6.1 to 7.6.6.5 discuss the mapping for various contents nested in an XSD sequence component in the
general case, when both the minOccurs and maxOccurs attribute equal to "1" (either explicitly or by defaulting to "1").

Clause 7.6.6.6 describes the mapping when either the minOccurs or the maxOccurs attribute of the sequence compositor
or both do not equal to "1".

ETSI

75 ETSI ES 201 873-9 V4.5.1 (2013-04)

7.6.6.1 Sequence with nested element content

In the general case, child elements of a sequence, which is a child of a complexType, shall be mapped to TTCN-3 as
fields of the enframing r ecor d (see clause 7.6) (i.e. the sequence itself is not producing any TTCN-3 construct).

EXAMPLE: Mapping a mandatory sequence content:

<conpl exType nane="e36a">
<sequence>
<el ement name="foo" type="integer"/>
<el ement name="bar" type="float"/>
</ sequence>
</ conpl exType>

/1 |'s nmapped to

type record E36a {
XSD. | nt eger foo
XSD. Fl oat bar

\}Nith {
variant "name as uncapitalized"
}
7.6.6.2 Sequence with nested group content

In the general case, nested group reference components shall be mapped to a field of the enframing r ecor d type
(see clause 7.6) or field. The type of the field shall be the TTCN-3 type generated for the referenced group and the name
of the field shall be the result of applying clause 5.2.2 to the name of the referenced group.

EXAMPLE: The following example shows this translation with a choice group and an element:

<group nane="e37">
<choi ce>
<el ement name="foo" type="string"/>
<el ement name="bar" type="string"/>
</ choi ce>
</ group>

<conpl exType nanme="e38">
<sequence>
<group ref="ns:e37"/>
<el ement name="ding" type="string"/>
</ sequence>
</ conpl exType>

/1 1Is translated to

type union E37 {
XSD. String foo
XSD. String bar

}

with {
variant "name as uncapitalized"
variant "untagged"

}
type record E38 {
E37 e37
XSD. String ding
}
with {
variant "name as uncapitalized"
}
7.6.6.3 Sequence with nested choice content

An XSD choice nested to a sequence shall be mapped as a field of the enframing r ecor d (see clauses 7.6, 7.6.5.4 and
7.6.6.4), according to clause 7.6.5 (i.e. the sequence itself is not producing any TTCN-3 construct).

ETSI

76

EXAMPLE:

<conpl exType nane="e39">
<sequence>
<choi ce>
<el ement name="foo0" type="string"/>
<el ement name="bar" type="string"/>
</ choi ce>
<el ement name="di ng" type="string"/>
</ sequence>
</ conpl exType>

/1 1s translated to:
type record E39 {
uni on {
XSD. String foo,
XSD. String bar
} choice
XSD. String ding

}

with {
variant "nanme as uncapitalized"
vari ant (choi ce) "untagged"

7.6.6.4 Sequence with nested sequence content

ETSI ES 201 873-9 V4.5.1 (2013-04)

In the general case, a sequence nested in a sequence shall be translated to TTCN-3 according to clause 7.6.6 and the
resulted constructs shall be added to the enframing r ecor d type or field (see also clauses 7.6 and 7.6.5.4).

EXAMPLE 1: Sequence nesting a mandatory sequence:

<conpl exType nane="e40a">
<sequence>
<sequence>
<el ement name="foo" type="string"/>
<el ement name="bar" type="string"/>
</ sequence>
<el ement name="di ng" type="string"/>
</ sequence>
</ conpl exType>

/'l |'s mapped as

type record E40a {
XSD. String foo,
XSD. String bar
XSD. String ding

}
with {

variant "name as uncapitalized"
}

EXAMPLE 2: Sequence nesting another sequence, choice and an additional element:

<conpl exType nanme="e40b" >
<sequence>
<sequence>
<el erent nanme="foo0" type="string"/>
<el ement name="bar" type="string"/>
</ sequence>
<choi ce>
<el ement name="foo" type="string"/>
<el ement name="bar" type="string"/>
</ choi ce>
<el ement name="di ng" type="string"/>
</ sequence>
</ conpl exType>

/'l 1s mapped as
type record E40b {
XSD. String foo
XSD. String bar
uni on {
XSD. String foo
XSD. String bar
} choice

ETSI

77 ETSI ES 201 873-9 V4.5.1 (2013-04)

XSD. String ding

}

with {
variant "name as uncapitalized"
vari ant (choi ce) "untagged"

7.6.6.5 Sequence with nested any content

An XSD any element nested in a sequence shall be translated according to clause 7.7.

EXAMPLE:
<conpl exType nane="e4l">
<sequence>
<el ement name="foo0" type="string"/>
<any/ >

</ sequence>
</ conpl exType>

/Il Is translated to:

type record E41 {
XSD. String foo
XSD. String el em

}

with {
variant "nanme as uncapitalized"
vari ant (el em) "anyEl enment”

7.6.6.6 Effect of the minOccurs and maxOccurs attributes on the mapping

When either or both the minOccurs and/or the maxOccurs attributes of the sequence compositor specify a different
value than 1", the following rules shall apply:

a) First, the sequence compositor shall be mapped to a TTCN-3 r ecor d field (as opposed to ignoring it in the
previous clauses, when both minOccurs and maxOccurs equal to 1) with the name "sequence”.

b) The encoding instruction "untagged" shall be attached to the field corresponding to sequence.
¢) The procedures in clause 7.1.4 shall be applied to this r ecor d field.

NOTE: As the result of applying clause 7.1.4, the type of the field may be changed torecord of record
and in parallel the name of the field may be changed to "sequence_list".

d) Finally, clause 5.2.2 shall be applied to the name of the resulted field and the field shall be added to the
enframing TTCN-3 record (see clauses 7.6 and 7.6.6) or uni on field (see clause 7.6.5).

EXAMPLE 1: Mapping an optional sequence:

<conpl exType name="e36b">
<sequence mi nCccurs="0">
<el ement name="foo" type="integer"/>
<el ement name="bar" type="float"/>
</ sequence>
</ conpl exType>

/1 |'s nmapped to
type record E36b {
record {
XSD. | nt eger foo
XSD. Fl oat bar
} sequence opti onal

with {

variant "name as uncapitalized"
variant (sequence) "untagged"

ETSI

78 ETSI ES 201 873-9 V4.5.1 (2013-04)

EXAMPLE 2: Sequence nesting an optional sequence:

<conpl exType nane="e40c" >
<sequence>
<sequence m nCccurs="0">
<el ement name="foo0" type="string"/>
<el ement name="bar" type="string"/>
</ sequence>
<choi ce>
<el ement name="fool" type="string"/>
<el ement name="bar 1" type="string"/>
</ choi ce>
<el ement name="di ng" type="string"/>
</ sequence>
</ conpl exType>

/1 1I's mapped to
type record E40c {
record {
XSD. String foo
XSD. String bar
} sequence optional
uni on {
XSD. String fool
XSD. String barl
} choice
XSD. String ding

}
with {
variant "name as uncapitalized"
vari ant (sequence, choice) "untagged"

EXAMPLE 3: Sequence nesting a sequence of multiple recurrence:

<conpl exType nane="e40d" >
<sequence>

<el ement name="foo0" type="string"/>
<el ement name="bar" type="string"/>
</ sequence>
<el ement name="di ng" type="string"/>
</ sequence>
</ conpl exType>

/1 |'s napped to
type record E40d {
record of record {
XSD. String foo,
XSD. String bar
} sequence_li st,
XSD. String ding
}
with {
variant "nanme as uncapitalized"
vari ant (sequence_list) "untagged"

7.6.7 Attribute definitions, attribute and attributeGroup references

Locally defined attribute elements, references to global attribute elements and references to attributeGroups shall be
mapped jointly. XSD attributes, either local or referenced global (including the content of referenced attributeGroups)
shall be mapped to individual fields of the enframing TTCN-3 r ecor d (see clause 7.6) directly (i.e. without nesting).
The types of the fields shall be the types of the corresponding attributes, mapped to TTCN-3 the same way as specified
in clause 7.4.1 for global attribute elements, and the names of the fields shall be the names resulted in applying

clause 5.2.2 to the attribute names. The fields generated for local attribute definitions, references and contents of
referenced attribute groups shall be inserted in the following order: they shall first be ordered, in an ascending
alphabetical order, by the target namespaces of the attribute declarations, with the fields without a target namespace
preceding fields with a target namespace, and then by the names of the attribute declarations within each target
namespace (also in ascending alphabetical order).

XSD local attribute declarations and references may contain also the special attribute use. The above mapping shall be
carried out jointly with the procedures specified for the use attribute in clause 7.1.12.

ETSI

79 ETSI ES 201 873-9 V4.5.1 (2013-04)

TTCN-3 r ecor d fields generated for attribute element or attributeGroup references, where the namespace of the
referenced XSD entity differs from the target namespace of the referencing XSD schema (including the no target
namespace case), shall be appended with a "namespace as" encoding instruction (see clause B.3.1), which shall identify
the namespace and optionally the prefix of the XSD schema in which the referenced entity is defined.

All generated TTCN-3 fields shall also be appended with the "attribute” encoding instruction.

EXAMPLE 1: Referencing an attributeGroup in a complexType:

<attributeG oup nanme="e42">
<attribute name="foo" type="float"/>
<attribute name="bar" type="float"/>
</attributeG oup>

<conpl exType nane="e44">
<sequence>
<el ement name="di ng" type="string"/>
</ sequence>
<attributeGoup ref="ns:e42"/>
</ conpl exType>

/1 1s translated to TTCN-3 as:
type record E44 {
XSD. Fl oat bar optiona
XSD. Fl oat foo optional
XSD. String ding

}

with {
variant "nane as uncapitalized"
vari ant (bar, foo) "attribute"

EXAMPLE 2: Mapping of a local attributes, attribute references and attribute group references without a target
namespace:

<xsd:attribute name="food obal " type="xsd:float" />
<xsd:attribute name="bard obal " type="xsd:string" />
<xsd:attribute name="di ngd obal " type="xsd:integer" />

<xsd: attributeG oup nane="Agroup">
<xsd: attribute name="f ool nAgroup" type="xsd:float" />
<xsd:attribute name="bar | nAgroup" type="xsd:string " />
<xsd: attribute name="di ngl nAgroup" type="xsd:integer " />
</ xsd: attri buteG oup>

<xsd: conpl exType name="el7A">
<xsd: sequence>
<xsd: el enent nane="el en!' type="xsd:string"/>
</ xsd: sequence>
<xsd:attribute ref="food obal" />
<xsd:attribute ref="bard obal" />
<xsd:attribute ref="dingd obal" />
<xsd:attribute name="foolLocal " type="xsd:float" />
<xsd: attribute name="bar Local " type="xsd:string" />
<xsd: attribute name="di ngLocal " type="xsd:integer" />
<xsd: attributeGoup ref="Agroup" />
</ xsd: conpl exType>

/lis translated to TTCN-3 as:

type XSD. Fl oat Food oba

with {
variant "name as uncapitalized ";
variant "attribute"

}

type XSD. String Bard oba

with {
variant "name as uncapitalized ";
variant "attribute"

}

type XSD. | nteger Dingd oba

with {
variant "nane as uncapitalized ";
variant "attribute"

}

ETSI

80 ETSI ES 201 873-9 V4.5.1 (2013-04)

type record E17A {
XSD. String bard obal optional,
XSD. String barlnAgroup optional,
XSD. String barLocal optional,
XSD. | nt eger di ngd obal optional,
XSD. | nt eger di ngl nAgroup opti onal,
XSD. | nt eger di ngLocal optional,
XSD. Fl oat food obal optional,
XSD. Fl oat f ool nAgroup optional,
XSD. Fl oat foolLocal optional,
XSD. String el em

}
wth {
variant "nane as uncapitalized ";
vari ant (bar @ obal , bar | nAgr oup, bar Local , di ngd obal , di ngl nAgr oup, di ngLocal , f ood obal ,
f ool nAgroup, f ooLocal) "attribute”
/1 Please note, the order of the field nanes in the attribute qualifier may be arbitrary

}

EXAMPLE 3: Mapping the same local attributes, attribute references and attribute group references as above but
with a target schema namespace:

<l-- Using the sanme global attribute, attribute group and conplex type definitions as in the
previ ous exanple -->

/1el7A is translated to TTCN-3 as:

type record E17A {
XSD. Fl oat bar | nAgroup opti onal,
XSD. String barLocal optional,
XSD. | nt eger di ngl nAgroup optional,
XSD. | nt eger di ngLocal optional,
XSD. Fl oat fool nAgroup optional,
XSD. Fl oat fooLocal optional,
XSD. String bard obal optional,
XSD. | nt eger di ngd obal optional,
XSD. Fl oat food obal optional,
XSD. String el em

}
with {
variant "name as uncapitalized "
vari ant (bar | nAgroup, bar Local , di ngl nAgr oup, di ngLocal , f ool nAgr oup, f ooLocal , bar G obal ,
di ngd obal , food obal) "attribute"
/I Pl ease note, the order of the field nanes in the attribute qualifier nay be arbitrary

}

7.6.8 Mixed content

When mixed content is allowed for a complex type or content, (i.e. the mixed attribute is set to "true™) an additional
record of XSD. Stri ng field, with the field name "embed_values" shall be generated and inserted as the first
field of the outer enframing TTCN-3 r ecor d type generated for the all, choice or sequence content (see clauses 7.6,
7.6.4,7.6.5 and 7.6.6). In TTCN-3 values, elements of the enbed_val ues field shall be used to provide the actual
strings to be inserted into the encoded XML value or extracted from it (the relation between the record of elements and
the strings in the encoded XML values is defined in clause B.3.10). In TTCN-3 values the number of components of the
enbed_val ues field (the number of strings to be inserted) shall not exceed the total number of components present in
the enclosing enframing r ecor d, corresponding to the child element elements of the complexType with the
mixed="true" attribute, i.e. ignoring fields corresponding to attribute elements, the embed_val ues field itself and the
or der field, if present (see clause 7.6.4), plus 1 (i.e. all components of enclosed record of -s).

The enbed_val ues field shall precede all other fields, resulted by the translation of the attributes and attribute and
attributeGroup references of the given complexType and the or der field, if any, generated for the all content models
(see also clause 7.6.4).

EXAMPLE 1: Complex type definition with sequence constructor and mixed content type:

<el ement name="M/SeqM xed" >
<xsd: conmpl exType mi xed="true">
<xsd: sequence>
<xsd: el ement nanme="a" type="xsd:string"/>
<xsd: el ement name="b" type="xsd: bool ean"/>
</ xsd: sequence>
<attribute name="attrib" type="integer"/>

ETSI

81 ETSI ES 201 873-9 V4.5.1 (2013-04)

</ xsd: conpl exType>
</ el ement >

I/l Is translated to the TTCN-3 type definition (note that in a TTCN-3 val ue notation the
enbed_val ues field may have nax. 3 record of conponents)

type record MySegM xed {
record of XSD. String enbed_val ues,
XSD. I nteger attrib optional,
XSD. String a,
XSD. Bool ean b

}

with {
variant "elenment";
variant "enbedVal ues";
variant(attrib) "attribute"

}

/1 And the tenplate
tenpl ate MySeqM xed t_MySeqM xed : = {

enbed_val ues: = {"The ordered ", " has arrived ", "Wait for further information."},
attrib := om t,

a:= "car",

b:= true

}

//will be encoded, for exanple, as

< ns: MySegM xed xm ns: ns='http://ww. exanpl e. org/ nm xed' >The ordered <a>car has arrived
trueWait for further information.

</ MySegM xed>

EXAMPLE 2: Complex type definition with sequence constructor of multiple occurrences and mixed content
type:

<el ement name="MyConpl exEl em 16" >
<xsd: conpl exType name="M/Conpl exType- 16" m xed="true">
<xsd: sequence maxCccur s="unbounded" m nCccurs="0">
<xsd: el ement nanme="a" type="xsd:string"/>
<xsd: el ement name="b" type="xsd: bool ean"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ el ement >

/1 I's translated to the TTCN-3 type definition
type record MyConpl exTypeEl em 16 {
record of XSD. String enbed_val ues,
record of record {
XSD. String a,
XSD. Bool ean b
} sequence_li st

with {
variant "name as ' MyConpl exEl em 16" ";
variant "el enent"
vari ant "enbedVal ues"

}

/1 And the tenplate
tenpl ate MyConpl exTypeEl em 16 t_M/Conpl exTypeEl em 16 : = {

enbed_val ues : = { "The ordered", "has arrived",
"the ordered", "has arrived!", "Wait for further infornation."},
sequence_list = {
{ a:= "car", b:= fal se},
{ a:= "bicycle", b:=true}
}
//will be encoded as

<MyConpl exTypeEl em 16>

The ordered

<a>car </ a>

has arrived

f al se</ b>

the ordered

<a>bi cycl e</ a>

has arrived!

t rue</ b>

Wait for further information.
</ MyConpl exTypeEl em 16>

ETSI

82

ETSI ES 201 873-9 V4.5.1 (2013-04)

EXAMPLE 3: Complex type definition with all constructor and mixed content type:

<el emrent name="MyConpl exEl em 13" >

<xsd: conpl exType name="M/Conpl exType- 13" m xed="true">

<xsd: al | >
<xsd: el ement name="a" type="xsd:string"/>

<xsd: el ement name="b" type="xsd: bool ean"/>

</ xsd:al | >
</ xsd: conpl exType>
</ el ement >

/Il I's translated to the TTCN-3 type definition
type record MyConpl exTypeEl em 13 {

record of XSD. String enbed_val ues,

record of enunerated {a, b} order,

XSD. String a,

XSD. Bool ean b

}
with {
variant "name as ' MyConpl exEl em 13" ";
variant "el enent";
variant "enbedVal ues";
variant "useOrder"

}
/1 And the tenplate

tenpl ate MyConpl exTypeEl em 13 t_M/Conpl exTypeEl em 13 : = {
enbed_val ues: = {"Arrival status", "product name","Wait for further
order := {b, a},
a:= "car",
b:= fal se

/Iwill be encoded as
<MyConpl exTypeEl em 13>

Arrival status

f al se</ b>

product nane

<a>car </ a>

Wait for further information.
</ MyConpl exTypeEl em 13>

information."},

EXAMPLE 4: Complex type definition with all constructor, optional elements and mixed content type:

<xsd: conpl exType name="M/Conpl exType- 15" m xed="true">

<xsd:all m nQccurs="0">
<xsd: el ement nanme="a" type="xsd:string"/>
<xsd: el ement name="b" type="xsd: bool ean"/>
</ xsd:al | >
</ xsd: conpl exType>

/Il I's translated to the TTCN-3 type definition
type record MyConpl exType_15 {

record of XSD. String enbed_val ues,

record of enunerated {a, b} order,

XSD. String a optional,

XSD. Bool ean b opti onal

}

with {
variant "enbedVal ues";
variant "useOrder"

}

/1 And the tenplate
tenpl ate MyConpl exType_15 t _MyConpl exType_15 : = {

enbed_val ues: = {"Arrival status", "Wait for further

order := {b},
a:= omt,
b: = fal se

/Iwill be encoded as
<MyConpl exType- 15>

Arrival status

f al se</ b>

Wait for further information.
</ MyConpl exType- 15>

ETSI

information."},

83 ETSI ES 201 873-9 V4.5.1 (2013-04)

EXAMPLE 5: Complex type definition with choice constructor and mixed content type:

<el ement name="M/Conpl exEl em 14" >
<xsd: conpl exType name="M/Conpl exType- 14" m xed="true">
<xsd: choi ce>
<xsd: el ement nanme="a" type="xsd:string"/>
<xsd: el ement name="b" type="xsd: bool ean"/>
</ xsd: choi ce>
</ xsd: conpl exType>
</ el ement >

/1 |Is translated to the TTCN-3 type definition
type record MyConpl exTypeEl em 14 {
record of XSD. String enbed_val ues,

uni on {
XSD. String a,
XSD. Bool ean b
} choice
}
with {

variant "name as ' MyConpl exEl em 14" ";
variant "el enent";
variant "enbedVal ues"

}

/1 And the tenplate

tenpl ate MyConpl exTypeEl em 14 t_My/Conpl exTypeEl em 14 : = {
enbed_val ues: = {"Arrival status", "Wait for further information."},
choice := { b:= false }

//will be encoded as
<MyConpl exTypeEl em 14>

Arrival status

f al se</ b>

Wait for further information.
</ MyConpl exTypeEl em 14>

7.7 Any and anyAttribute

An XSD any element can be defined in complex types, as a child of sequence or choice (i.e. locally only) and specifies
that any well-formed XML is permitted in the type's content model. In addition to the any element, which enables
element content according to namespaces, there is an analogous XSD anyAttribute element which enables transparent
(from the codec's point of view) attributes to appear in elements.

7.7.1 The any element

The XSD any element shall be translated, like other elements, to a field of the enframing r ecor d type or field or

uni on field (see clauses 7.6, 7.6.5 and 7.6.6). The type of this field shall be XSD. St ri ng and the name of the field
shall be the result of applying clause 5.2.2 to "elem". Finally the "anyElement..." encoding instruction shall be attached,
which shall also specify the namespace wildcards and/or list of namespaces which are allowed or restricted to qualify
the given element, in accordance with the namespace attribute of the XSD any element, if present (see details in

clause B.3.2).

In the translation of any XSD elements, when a processContents XSD attribute is present, also clause 7.1.15 shall be
considered.

NOTE: The mapping may also be influenced by other attributes applied to the component, if any. See more
details in clause 7.1, especially clause 7.1.4.

In the value notation the XSD. St r i ng shall specify a syntactically correct XML element. It shall use a namespace
(including the no namespace case) allowed by the final "anyElement"” encoding instruction.

EXAMPLE: Translating any:

The Schema

<?xm version="1.0" encodi ng="UTF-8"?>
<schema xm ns="http://ww. w3. or g/ 2001/ XM_Schema"
xm ns: this="http://ww. exanpl e. org/ wi | dcar ds"
t ar get Nanmespace="ht t p: / / www. exanpl e. or g/ wi | dcar ds" >

ETSI

http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/

84 ETSI ES 201 873-9 V4.5.1 (2013-04)

<i mport namespace="http://ww. exanpl e. org/ ot her" schemaLocati on="any_addi ti onal El ements. xsd"/>
<el ement nanme="anyEl ement O her Namespace" type="thi s: e46a" ></ el ement >

<conpl exType name="e46" >
<sequence>
<any nanespace="##any"/ >
</ sequence>
</ conpl exType>

<conpl exType nane="e46a">
<sequence>
<any m nCQccurs="0" namespace="##other"/>
</ sequence>
</ conpl exType>

<conpl exType nane="e46b" >
<sequence>
<any m nCccurs="0" maxCccurs="unbounded" nanespace="##l ocal "/>
</ sequence>
</ conpl exType>
</ schema>

<?xm version="1.0" encodi ng="UTF-8"?>
<schema xm ns=http://ww. w3. or g/ 2001/ XM_Schema
t ar get Nanespace="ht t p: / / www. exanpl e. or g/ ot her ">
<el ement name="val am " type="string"/>
</ schema>

/11s mapped to the following TTCN-3 nodul e

nodul e http_ww_exanpl e_org_wi | dcards {
import from XSD all;

type E46a AnyEl enent O her Nanespace
wth {
variant "name as uncapitalized"
variant "el ement”

}

type record E46 {
XSD. String el em

}

wth {
variant "name as uncapitalized"
variant (el em) "anyEl enent”

}

type record E46a {
XSD. String elemoptiona

}
wth {
variant "name as uncapitalized"
variant (el em) "anyEl enent except unqualified, ' http://ww. organi zation.org/w | dcards'"

}

type record E46b {
record of XSD.String elemlist

}
with {
variant "name as uncapitalized"
variant (elemlist) "untagged"
variant (elemlist[-]) "anyEl ement except unqualified"

}
}
with {
encode "XM.";
variant "namespace as 'http://ww. exanple.org/wildcards' prefix '"this'"
variant "control Nanespace ' http://ww. w3. or g/ 2001/ XM_Schena- i nst ance' prefix 'xsi'";
}
And the template:
nmodul e EncDec_checki ng {

import from http_ww _exanpl e_org_wi |l dcards all;

ETSI

85 ETSI ES 201 873-9 V4.5.1 (2013-04)

tenpl ate AnyEl ement & her Nanmespace t_AnyEl ement & her Nanespace : = {
el em: = "<other:val am xm ns:other=""http://ww. exanpl e. org/ ot her"">t ext </ ot her: val am >"

}

}//end nodul e

Can be encoded e.g. to the following XML instance:

<?xm version="1.0" encodi ng="UTF-8"?>

<t hi s: anyEl ement & her Nanespace xm ns:this="http://ww. exanpl e. org/ wi | dcards' >
<ot her:val ami xm ns: ot her="http://ww. exanpl e. or g/ ot her " >t ext </ ot her: val am >
</ this:anyEl emrent & her Namespace>

While, for example, receiving the following XML instance is causing a decoding failure, because the XML element
used in place of the any element shall be from a namespace different from "http://www.example.org/wildcards":

<?xm version="1.0" encodi ng="UTF-8"?>

<t hi s: anyEl ement O her Nanmespace xm ns:this="http://ww.exanpl e.org/w | dcards' >
<ot her:val am xml ns: other="http://ww. exanpl e. org/ wi | dcar ds" >t ext </ ot her: val am >
</t hi s: anyEl emrent & her Nanespace>

71.7.2 The anyAttribute element

The anyAttribute element shall be translated, like other attributes, to a field of the enframing r ecor d type or field or
uni on field (see clauses 7.6, 7.6.5 and 7.6.6). The type of this field shallberecord length (1..infinity)
of XSD. St ri ng, the field shall always be opti onal and the name of the field shall be the result of applying
clause 5.2.2 to "attr". In the case an XSD component contains more than one anyAttribute elements (e.g. by a complex
type extending an another complex type already containing an anyAttribute), only one new field shall be generated for
all the anyAttribute elements (with the name resulted from applying clause 5.2.2 to "attr") but the namespace
specifications of all anyAttribute components shall be considered in the "anyAttributes" encoding instruction (see
below). The field shall be inserted directly after the fields generated for the XSD attribute elements of the same
component or, if the component does not contain an attribute component, in the place where the first field generated for
an XSD attribute would be inserted (see clause 7.6.7).

Finally the " anyAttributes ..." encoding instruction (see clause B.3.3) shall be attached, which shall also specify the
namespace wildcards and/or list of namespaces which are allowed or restricted to qualify the given element, in
accordance with the namespace attribute of the XSD anyAttribute element if present (see details in clause B.3.3).

NOTE 1: When translating XSD attribute elements, the use attribute determines if the generated field is
opt i onal or not (see clause 7.1.12). Because the use attribute is not allowed for anyAttribute elements,
the generated record of field will always be optional.

In the translation of anyAttribute XSD elements, when a processContents XSD attribute is present, also clause 7.1.15
shall be considered.

In the value notation each XSD. St r i ng of the generated r ecor d of shall specify exactly one XML attribute using
the following format: it shall be composed of an optional URI followed by whitespace, followed by the non-qualified
name of the XML attribute, followed by an EQUALS SIGN (=) character, followed by a APOSTROPHE (') character
or two QUOTATION MARK (") characters, followed by the XML attribute value, followed by a APOSTROPHE (')
character or two QUOTATION MARK (") characters. In the string there shall be no other whitespace than specified
above. Each string shall use a namespace (including the no namespace case) allowed by the final "anyAttributes™
encoding instruction.

NOTE 2: The metaformat of each XSD. Stri ng is:
"[<URI><whitespace>]<non-qualified attribute name>=('|"")< attribute value>(|"")".

NOTE 3: Decoders are always using a single SPACE character as whitespace between the URI and the non-
qualified attribute name parts of the string (see clause B.3.3) to allow the user to employ specific values
for matching.

ETSI

http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/

86 ETSI ES 201 873-9 V4.5.1 (2013-04)

EXAMPLE: Translating anyAttribute:

The Schema

<?xm version="1.0" encodi ng="UTF-8"?>
<schema xm ns="http://ww. w3. or g/ 2001/ XM_Schema"
xm ns: this="http://ww. exanpl e. org/ wi | dcar ds"
t ar get Nanmespace="htt p: / / www. exanpl e. or g/ wi | dcar ds" >

<el ement name="anyAttr AnyNanespace" type="this:e45"/>

<el ement name="anyAttr Thi sNamespace" type="this:e45b"/>
<conpl exType name="e45">
<xs:attribute name="attr" type="xs:string"/>
<attribute name="bb" type="xs:date"/>
<attribute name="aa" type="xs:date"/>
<anyAttribute namespace="##any"/>
</ conpl exType>

<conpl exType nane="e45a">
<anyAttri bute nanespace="##ot her"/>
</ conpl exType>

<conpl exType nane="e45b" >
<anyAttri bute nanespace="##t ar get Nanespace"/ >
</ conpl exType>

<conpl exType nane="e45c" >
<anyAttri bute nanespace="##l ocal http://ww.exanple.org/attribute"/>
</ conpl exType>

<conpl exType nanme="e45d" >
<conpl exCont ent >
<ext ensi on base="e45c">
<anyAttribute namespace="##t ar get Namespace"/ >
</ ext ensi on>
</ conpl exCont ent >
</ conpl exType>
</ schema>

/1 1s mapped e.g. to the follow ng TTCN-3 nodul e:
modul e http_www_exanpl e_org_w | dcards {

import from XSD al | ;

type E45 AnyAttr AnyNamespace

with {
variant "name as uncapitalized"
variant "el enent";

type E45b AnyAttr Thi sNanespace
with {
variant "name as uncapitalized"
variant "el enent";

}

type record E45 {
XSD. Date aa optional
XSD. String attr optional
XSD. Dat e bb optiona
record length (1..infinity) of XSD.String attr_1 optiona

wth {
variant "name as uncapitalized"
variant(aa, attr, bb) "attribute";
variant(attr_1) "anyAttributes"

}

type record E45a {
record length (1..infinity) of XSD.String attr optiona

with {

variant "nanme as uncapitalized"
variant(attr) "anyAttributes except unqualified, ' http://ww.exanple.org/wldcards'"

ETSI

87 ETSI ES 201 873-9 V4.5.1 (2013-04)

type record E45b {
record length (1..infinity) of XSD.String attr optional

}
with {
variant "nane as uncapitalized";
variant(attr) "anyAttributes from' http://ww.exanpl e.org/w | dcards'"
}

type record E45c {
record length (1..infinity) of XSD. String attr optional

}
with {
variant "nane as uncapitalized";
variant(attr) "anyAttributes fromunqualified,' http://ww.exanple.org/w |l dcards'"

type record E45d {
record length (1..infinity) of XSD. String attr optional

with {
variant "name as uncapitalized";
variant(attr) "anyAttributes fromunqualified, ' http://ww.exanple.org/wldcards',

http://ww. exanpl e. org/ wi | dcards' "

} //end nodul e
with {
encode "XM.";
variant "namespace as 'http://ww. exanple.org/wildcards' prefix 'this'";
variant "control Namespace ' http://ww. w3. org/ 2001/ XM_Schema-i nst ance' prefix 'xsi'";

}
For example the template:

tenpl ate AnyAttr Thi sNamespace t_AnyAttr Thi sNamespace : = {
attr := omt

}
Shall be encoded as an empty element with no attribute in XML.:

<?xm version="1.0" encodi ng="UTF-8"?>
<t hi s: anyAttr Thi sNamespace xm ns:this="http://ww.exanpl e.org/w | dcards'/>

And the template:

tenpl ate AnyAttr Thi sNamespace t_AnyAttr Thi sNamespace : = {
attr := {"http://ww. exanpl e. org/w | dcards akarm ='tinky-w nky'",
"http://ww. exanpl e. org/wi | dcards val am ='di psy' "}

Can be encoded e.g. to one of the following XML instances:

<?xm version="1.0" encodi ng="UTF-8"?>

<t hi s: anyAttr Thi sNamespace xm ns:this="http://ww. exanpl e. org/w | dcar ds’
xm ns: b0=" http://ww. exanpl e. org/wi | dcards' b0: akarm ='ti nky-w nky'
xm ns: bl="http://ww. exanpl e. org/wi | dcards' bO0: val am =" di psy' />

Or

<?xm version="1.0" encodi ng="UTF-8"?>
<t hi s: anyAttr Thi sNamespace xm ns:this="http://ww. exanpl e. org/ wi | dcar ds"
t hi s: akarm ="ti nky-w nky" this:val am ="di psy"/>

While, for example, receiving the following XML instance shall cause a decoding failure, because all XML attributes
shall be from the namespace "http://www.example.org/wildcards":

<?xm version="1.0" encodi ng="UTF-8"?>

<t hi s: anyAttrThi sNamespace xmi ns:this="http://ww. exanpl e. org/ w | dcards"
xm ns: ot her ="http://ww. exanpl e. org/ ot her "
thi s:akarm ="tinky-wi nky" other:val am ="di psy"/>

ETSI

88 ETSI ES 201 873-9 V4.5.1 (2013-04)

7.8 Annotation

An XSD annotation is used to include additional information in the XSD data. Annotations may appear in every
component and shall be mapped to a corresponding comment in TTCN-3. The comment shall appear in the TTCN-3
code just before the mapped structure it belongs to. The present document does not describe a format in which the
comment shall be inserted into the TTCN-3 code.

EXAMPLE:

<annot at i on>

<appi nf o>Not e</ appi nf o>

<docunent ati on xm :lang="en">This is a hel pi ng note! </ docunment ati on>
</ annot at i on>

//Could be translated to
/1 Note: This is a hel ping note

7.9 Group components

XSD group definition, defined globally, enables groups of elements to be defined and named, so that the elements can
be used to build up the content models of complex types. The child of a group shall be one of the all, choice or
sequence compositors.

They shall be mapped to TTCN-3 type definitions the same way as their child components would be mapped inside a
complexType with one difference: the "untagged™ encoding instruction shall be attached to the generated TTCN-3
component, corresponding to the group element.

EXAMPLE: Mapping of groups:

<xs:group name="shi pAndBill">
<xs:sequence>
<xs: el ement name="shi pTo" type="xs:string"/>
<xs: el ement name="bill To" type="xs:string"/>
</ xs: sequence>
</ xs: group>

<xs:group name="shi pOBill">
<xs: choi ce>
<xs:el ement nanme="shi pTo" type="xs:string"/>
<xs: el ement name="bill To" type="xs:string"/>
</ xs: choi ce>
</ xs: group>

<xs:group name="shi pAndBill Al | ">
<xs:all >
<xs:el ement name="shi pTo" type="xs:string"/>
<xs:element name="bill To" type="xs:string"/>
</xs:all>
</ xs: gr oup>

//ls translated to TTCN-3 as
type record ShipAndBill {
XSD. String shipTo
XSD. String bill To

}
with {

variant "untagged"
}

type union ShipOBill {
XSD. String shipTo
XSD. String billTo

}
with {

variant "untagged"
}

type record ShipAndBill Al {
record of enunerated { shipTo, billTo } order
XSD. String shipTo
XSD. String bill To

ETSI

89 ETSI ES 201 873-9 V4.5.1 (2013-04)

with {
variant "untagged";
variant "useCOrder"

7.10 Identity-constraint definition schema components

The XSD unique element enables to indicate that some XSD attribute or element values shall be unique within a certain
scope. As TTCN-3 does not allow a similar relational value constraint, mapping of the unique, key and keyref elements
are not supported by the present document, i.e. these elements shall be ignored in the translation process.

NOTE 1: Itis recommended that converter tools are retain the information of the unique, key and keyref elements in
a TTCN-3 comment, to help the user in producing TTCN-3 values and templates complying to the
original XSD specification.

NOTE 2: As the selector and field XSD elements may only appear as child elements of a unique, key or keyref
element, they are automatically ignored when their parent element is ignored.

8 Substitutions

XSD allows two types of substitutions:

. XML elements in instance documents may be replaced by other XML elements that have been declared as
members of the substitution group in XSD (of which the replaced element is the head); both the head element
and the substitution group members shall be global XSD elements; the types of the substitution group members
shall be the same or derived from the type of the head element.

e The XSD type actually used to create the instance of an XSD element information item may also be a named
simple or complex type derived from the type referenced by the type attribute of the XSD element information
item declaration; in this case the xsi:type (schema instance namespace) XML attribute shall identify the name
of the type used to create the given instance.

Depending on the SUT to be tested, it may be known a priori if the SUT could use element and/or type substitution or
not. For this reason, to simplify the generated TTCN-3 code in certain cases, TTCN-3 tools claiming to conform with
the present document shall support the following modes of operation, selectable by the user:

. generate a TTCN-3 code allowing both element substitution (code generated according to clause 8.1) and
allowing type substitution (code generated according to clause 8.2);

. generate a TTCN-3 code allowing element substitution (code generated according to clause 8.1) but
disallowing type substitution (code generated according to clauses 7.5 and 7.6);

. generate a TTCN-3 code disallowing element substitution (code generated according to clauses 7.3 and 8.1.2)
but allowing type substitution (code generated according to clause 8.2);

. generate a TTCN-3 code disallowing both element and type substitutions; for backward compatibility with the
previous versions of the present document this shall be the default mode.

8.1 Element substitution

8.1.1 Head elements of substitution groups

This clause is invoked if the global XSD element information item being translated is referenced by the
substitutionGroup attribute of one or more other global element information item(s) in the set of schemas being
translated (i.e. it is the head of an element substitution group) and the user has requested to generate TTCN-3 code
allowing using element substitution (see clause 8).

Substitution group head elements shall be translated to TTCN-3 uni on types. The name of the uni on type shall be
the result of applying clause 5.2.2 to the name composed of the header element's name and the postfix *_group".

ETSI

90 ETSI ES 201 873-9 V4.5.1 (2013-04)

One alternative shall be added for the head element itself and one for each member of the substitution group. The first
alternative (field) of the uni on type shall correspond to the head element. The alternatives corresponding to the
member elements shall be added in an ordered manner, first alphabetically ordering the elements according to their
target namespaces (elements with no target namespace first) and subsequently alphabetically ordering the elements with
the same namespace based on their names. For each alternative the field name shall be the name applying clause 5.2.2
to the name of the XSD element corresponding to the given alternative. The type of the alternative shall be:

e the TTCN-3 type resulted by applying clause 7.3 to the head element, in the case of the head element;

. the TTCN-3 type resulted by applying clause 8.1.2 to the member element, in the case of the member elements
(i.e. it shall reference the TTCN-3 type generated for the given global XSD element information item).

NOTE 1: In XSD, substitution group membership is transitive, i.e. the members of a substitution group (ESG1)
whose head is a member of another substitution group (ESG2) are all also members of the second
substitution group (ESG2).

If the value of the head element's abstract attribute is "true", the "abstract" encoding instruction has to be attached to the
field corresponding to the head element (i.e. to the first field).

NOTE 2: If the value of a member element’s abstract attribute is "true”, the "abstract” encoding instruction is
attached to the TTCN-3 type generated for that element, according to clause 7.1.9.

If the head element'’s effective block value (see clause 7.1.10) is "#all" or "substitution", the "block™ encoding
instruction shall be attached to all fields of the uni on type except the field corresponding to the head element (the first
field).

If the head element's effective block value (see clause 7.1.10) is "restriction” or "extension™ the "block™ encoding
instruction shall be attached to all fields, generated for group member elements with a type, which has been derived
from the type of the head element by restriction or by extension , respectively, at any step along the derivation path.

NOTE 3: The TTCN-3 syntax allows to attach the same attribute to several fields of the same structured type in one
with attribute.

Finally, the uni on type shall be appended with the "untagged" encoding instruction.

When translating XSD references to the head element to TTCN-3, the TTCN-3 uni on type generated according to this
clause shall be used.

EXAMPLE 1: Substitution group:

<?xm version="1.0" encodi ng="UTF-8"?>
<schema xm ns="http://ww. w3. or g/ 2001/ XM_Schema"
tar get Namespace="ht t p: / / ww. exanpl e. or g/ Si npl eCase"
xm ns: ns="http://ww. exanpl e. or g/ Si npl eCase" >
<l-- THE HEAD ELEMENT -->
<el ement name="head" type="string" />

<!-- SUBSTI TUTI ON ELEMENT OF THE SAME TYPE AS THE HEAD -->
<el ement name="nenber 1" type="string" substituti onG oup="ns:head"/>

<!-- SUBSTI TUTI ON ELEMENT OF A TYPE RESTRI CTI NG THE TYPE OF THE HEAD -->
<si npl eType name="stri ngEnunt' >
<restriction base="string">
<enuner ation val ue="sonet hi ng"/ >
<enuner ation val ue="el se"/ >
</restriction>
</ si npl eType>

<el ement name="nenber2" type="ns:stringEnunt substitutionG oup="ns: head"/>

<l-- SUBSTI TUTI ON ELEMENT OF A TYPE EXTENDI NG THE TYPE OF THE HEAD -->
<conpl exType nane="conpl exEnuni >
<si npl eCont ent >
<ext ensi on base="string">
<attribute name="foo" type="float"/>
<attribute name="bar" type="integer"/>
</ ext ensi on>
</ si npl eCont ent >
</ conpl exType>

ETSI

91 ETSI ES 201 873-9 V4.5.1 (2013-04)

<el ement nane="nenber 3" type="ns: conpl exEnum' substituti onG oup="ns: head"/>

<!-- TOP LEVEL ELEMENT TO DEMONSTRATE SUBSTI TUTI ON - - >
<el ement name="ize">
<conpl exType>
<sequence>
<el enent ref="ns:head" m nCccurs="0" maxCccur s="unbounded"/ >
</ sequence>
</ conpl exType>
</ el ement >

</ schema>

//ls translated to TTCN-3 as:

nodul e http_ww_exanpl e_or g_Si npl eCase {

/* SUBSTI TUTI ON ELEMENT OF THE SAME TYPE AS THE HEAD */
type XSD. String Menber 1

with {

variant "name as uncapitalized";

variant "elenment";

}s

/* SUBSTI TUTI ON ELEMENT OF A TYPE RESTRI CTI NG THE TYPE OF THE HEAD */
type enunerated StringEnum { something, else}

with {

variant "name as uncapitalized";
b

type StringEnum Menber 2

with {

variant "name as uncapitalized";
variant "elenent";

b

/* SUBSTI TUTI ON ELEVMENT OF A TYPE EXTENDI NG THE TYPE OF THE HEAD */
type record Conpl exEnum

XSD. | nt eger bar optional,
XSD. Fl oat foo optional,
XSD. String base

}

with {

variant "name as uncapitalized";
variant (bar) "attribute";
variant (foo) "attribute";

vari ant (base) "untagged";

}s

type Conpl exEnum Menber 3

wth {

variant "name as uncapitalized";
variant "elenent";

}s

/* THE HEAD ELEMENT */
type union Head_group {
XSD. String head,

.. Menber 1 nenber 1,
.. Menber 2 nenber 2,
Member 3 menber 3

3
with {

vari ant "untagged"
}

/* TOP LEVEL ELEMENT TO DEMONSTRATE SUBSTI TUTI ON */
type record |ze

{

record of Head_group head_|i st

}

with {

variant "name as uncapitalized";
variant "el enent";

variant (head_list) "untagged";

.
} with {
encode "XM.";
variant "namespace as 'http://ww. exanpl e. org/ Si npl eCase' prefix 'ns'";

ETSI

92 ETSI ES 201 873-9 V4.5.1 (2013-04)

vari ant "control Nanespace ' http://ww. w3. or g/ 2001/ XM_Schen®- i nstance' prefix 'xsi'";

}
//and the tenplate
template lze t_lze := {
{ head := "anything" },
{ nmenberl := "any thing" },
{ menber2 := sonething },
{ menber3 :={ bar:=5, foo := onit, base := "anything el se" }
}
//will be encoded in XM. as:
<?xm version="1.0" encodi ng="UTF-8"?>
<ns:ize
xm ns: ns="http://ww. exanpl e. or g/ Si npl eCase"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
Xsi : schemaLocati on="htt p://ww. exanpl e. or g/ Si npl eCase Si npl eCase. xsd" >
<ns: head>anyt hi ng</ ns: head>
<ns: nenber 1>any t hi ng</ ns: nenber 1>
<ns: menber 2>sonet hi ng</ ns: menber 2>
<ns: menber 3>akar m </ ns: nenber 3>
<ns: nmenber 3 bar="5" >anyt hi ng el se</ns: nenber 3>
</ns:ize>

EXAMPLE 2: Effect of the block and abstract attributes on element substitution:

<?xm version="1.0" encodi ng="UTF-8"?>

<schema xm ns="http://ww. w3. or g/ 2001/ XM_Schema"
t ar get Nanespace="htt p: // www. exanpl e. or g/ Bl ockRestri cti on"
xm ns: ns="http://ww. exanpl e. or g/ Bl ockRestricti on">

<l-- THE HEAD ELEMENT -->
<el ement name="head" type="string" block="restriction" abstract="true"/>

<l-- Substitution group menbers menber1, nenber2, menber3, their types and el ement "ize" are the
sane as in exanple 1 above, hence not repeated here -->

</ schema>

/lls translated to TTCN-3 as:
/1l TTCN-3 type definitions Menberl, StringEnum Menber2, Conpl exEnum Menber3 and |ze
/1 are the sane as in exanple 1 above, hence not repeated here

modul e http_ww_exanpl e_org_Bl ockRestriction {
/* THE HEAD ELEMENT */
type union Head_group {
XSD. String head,
.. Menber 1 menber 1,
.. Menber 2 menber 2,
Menber 3 menber 3

}

with {
variant "untagged";
vari ant (head) "abstract";
vari ant (nmenber2) "bl ock"

/* Substitution group nenbers nenberl, nenber2, nenber3, their types and el enent "ize" are the sane
as in exanple 1 above, hence not repeated here */
} with {

encode " XM.";

vari ant "nanmespace as 'http://ww. exanpl e. org/ Bl ockRestriction' prefix 'ns'";

vari ant "control Nanmespace ' http://ww. w3. or g/ 2001/ XM_Schen®- i nst ance' prefix 'xsi'";

/land the tenplate
tenplate lze t_lze :={
{ head := "anything" },
{ menberl := "any thing" },
{ nmenber2 := sonething },
{ menber3 := { bar:=5, foo := omt, base := "anything else" }

}

/w1l be encoded in XM. as:
<?xm version="1.0" encodi ng="UTF-8"?>
<ns:ize
xm ns: ns="http://ww. exanpl e. org/ Bl ockRestriction "

ETSI

93 ETSI ES 201 873-9 V4.5.1 (2013-04)

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi:schemaLocati on="http://ww. exanpl e. or g/ Bl ockRestricti on Bl ockRestriction.xsd">

<l-- allowed to send but causes a decoding failure if present in the received XM. docunent
(the head el enment is abstract) -->
<ns: head>anyt hi ng</ ns: head>

<l-- OKto send and receive -->
<ns: menber 1>any t hi ng</ ns: menber 1>

<I-- allowed to send but causes a decoding failure if present in the received XM. docunent
(the type of menber2 is derived by restriction in XSD) -->
<ns: menber 2>sonet hi ng</ ns: menber 2>

<l-- OKto send and receive (the type of menber3 is derived by extension in XSD) -->
<ns: menber 3>akar m </ ns: nenber 3>
<ns: nmenber 3 bar="5" >anyt hi ng el se</ns: menber 3>

</ns:ize>

EXAMPLE 3: Blocking substitution:

<?xm version="1.0" encodi ng="UTF-8"?>

<schema xm ns="http://wwmv. w3. or g/ 2001/ XM_Schema"
t ar get Nanespace="ht t p: / / wwww. exanpl e. or g/ Bl ockAl | "
xm ns: ns="http://ww. exanpl e. or g/ Bl ockAl | ">

<!-- THE HEAD ELEMENT -->
<el ement name="headNoSubstition" type="string" block="#all"/>

<el ement nane="groupMenber 1" type="string" substituti onG oup="ns: headNoSubstition"/>
<el ement name="groupMenber2" type="string" substituti onG oup="ns: headNoSubstition"/>

<l-- TOP LEVEL ELEMENT TO DEMONSTRATE SUBSTI TUTION -->
<el enent name="ize2">
<conpl exType>
<sequence>
<el ement ref="ns: headNoSubstition" m nCccurs="0" nmaxCccurs="unbounded"/>
</ sequence>
</ conpl exType>
</ el ement >

</ schema>

/l1s translated to TTCN-3 as:
modul e http_www_exanpl e_org_Bl ockAl | {

type XSD. String G oupMenber 1
with {

variant "nanme as uncapitalized";
variant "elenent";

}

type XSD. String G oupMenber 2
with {

variant "name as uncapitalized";
variant "el enent";

¥

/* THE HEAD ELEMENT */

type uni on HeadNoSubstition_group {
XSD. String headNoSubstiti on,

.. GroupMenber1 groupMenberl,

.. GroupMenber2 groupMenber 2

}
with {
variant "untagged";
vari ant (groupMenberl, groupMenber2) "bl ock"

}

/* TOP LEVEL ELEMENT TO DEMONSTRATE SUBSTI TUTI ON */
type record |ze2

record of HeadNoSubstition_group head_|i st
b
with {
variant "name as uncapitalized";

variant "elenment";
variant (head_list) "untagged";

ETSI

94 ETSI ES 201 873-9 V4.5.1 (2013-04)

b
} with {
encode " XM.";
vari ant "nanmespace as 'http://ww. exanpl e.org/ Bl ockAll' prefix 'ns'";

variant "control Namespace ' http://ww. w3. or g/ 2001/ XM_Schena-i nstance' prefix 'xsi'"

/land the tenplate

tenplate Ize2 t_lze2 :={
{ headNoSubstition := "anything" },
{ groupMenberl := "any thing" },
{ groupMenber2 := "sonething" }

//will be encoded in XM as:
<?xm version="1.0" encodi ng="UTF-8"?>
<ns:ize

xm ns: ns="http://ww. exanpl e. or g/ Bl ockAl |
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
Xsi : schemaLocati on="http://ww. exanpl e. or g/ Bl ockAl | Bl ockAl I .xsd">

<l-- OKto send and receive -->
<ns: headNoSubsti ti on>anyt hi ng</ ns: headNoSubsti ti on>

<l-- allowed to send but causes a decoding failure if present in the received XM. docunent
(all substitutions are disallowed) -->
<ns: groupMenber 1>any t hi ng</ ns: gr oupMenber 1>

<l-- allowed to send but causes a decoding failure if present in the received XM. docunent
(all substitutions are disallowed) -->
<ns: gr oupMenber 2>sonet hi ng</ ns: gr oupMenber 2>
</ns:ize>

8.1.2 Substitution group members

XSD elements with a substitutionGroup attribute information item shall be translated to TTCN-3 according to
clauses 7.3 and 7.1.13 with one addition: if the type of the XSD element is not defined in the element declaration, the
type of the head element shall be used for the conversion.

8.2 Type substitution

This clause is invoked if the XSD simpleType or complexType is referenced by the base attribute of the restriction or
extension element information item(s) of one or more global XSD type definition(s) (i.e. the type is a parent type of one
or more global derived types) AND the parent type occurs as the type of at least one XSD element declaration and the
user has requested to generate TTCN-3 code allowing using type substitution (see clause 8). These types are called
substitutable parent types (as opposed to parent types that cannot be substituted because e.g. referenced only in attribute
declarations). Please note that when the type of an element is substituted in an instance document, XSD requires that the
actual type is identified by an xsi:type XML attribute.

NOTE 1: This definition also includes the case when the type of an element is a built-in XSD data type and one or
more user-defined types are derived from this built-in type.

Substitutable parent types shall be translated to TTCN-3 uni on types. The name of the uni on type shall be the result
of applying clause 5.2.2 to the name composed of the substitutable parent type's name and the postfix *_derivations"”. In
case of built-in XSD types, the names defined in clause 6 shall be used as the name of the substitutable parent type, of
course, without the "XSD" qualifier part.

ETSI

95 ETSI ES 201 873-9 V4.5.1 (2013-04)

One alternative shall be added for the substitutable parent type itself and one for each type derived from it in one or
more derivation steps. The first alternative (field) of the uni on type shall correspond to the substitutable parent type.
The alternatives corresponding to the derived types shall be added in an ordered manner, first alphabetically ordering
the types according to their target namespaces (types with no target namespace first) and subsequently alphabetically
ordering the types with the same namespace based on their names. For each alternative, the field name shall be the
name applying clause 5.2.2 to the name of the XSD type corresponding to the given alternative. The type of the
alternative shall be:

e the TTCN-3 type resulted by applying clauses 7.5 or 7.6, respectively, to the substitutable parent type for the
first field (corresponding to the substitutable parent type);

. the TTCN-3 type resulted by the translation of the derived type for the other fields.

If the value of the substitutable parent type's abstract attribute is "true", the "abstract” encoding instruction has to be
attached to the field corresponding to the substitutable parent type, i.e. to the first field.

NOTE 2: If the value of a derived type's abstract attribute is "true", the "abstract" encoding instruction is attached
to the TTCN-3 type generated for that XSD type, according to clause 7.1.9.

If the substitutable parent type's effective block value (see clause 7.1.10) is "#all", the "block™ encoding instruction shall
be attached to all fields of the uni on type except the field corresponding to the substitutable parent type (the first
field).

If the substitutable parent type's effective block value (see clause 7.1.10) is "restriction” or "extension" the "block™
encoding instruction shall be attached to all fields, generated for types, derived from the substitutable parent type by
restriction or by extension , respectively, at any step along the derivation path.

NOTE 3: The TTCN-3 syntax allows to attach the same attribute to several fields of the same structured type in one
with attribute.

Finally the "useType" encoding instruction shall be attached to the TTCN-3 uni on type.

NOTE 4: Please note that the first alternative of the union is encoded without an xsi:type attribute. The user, if he
wants to force xsi:type for the first alternative, needs to add the "useType" encoding instruction to the
first field manually.

When translating XSD references to the substitutable parent type to TTCN-3, the TTCN-3 uni on type generated
according to this clause shall be used.

ETSI

96 ETSI ES 201 873-9 V4.5.1 (2013-04)

Annex A (normative):
TTCN-3 module XSD

This annex defines a TTCN-3 module containing type definitions equivalent to XSD built-in types.

NOTE: The capitalized type names used in annex A of Recommendation ITU-T X.694 [4] have been retained for
compatibility. All translated structures are the result of two subsequent transformations applied to the
XSD Schema: first, transformations described in Recommendation ITU-T X.694 [4], then transformations
described in ES 201 873-7 [2]. In addition, specific extensions are used that allow codecs to keep track of
the original XSD nature of a given TTCN-3 type.

nmodul e XSD {

/] These constants are used in the XSd date/tine type definitions

const charstring

dash : =

cln :=":",

year = "(0(0(0[1-9]|[1-9][0-9])|[1-9][0-9][0-9])|[1-9][0-9][0-9][0-9])",
year Expansion := "(-([1-9][0-9]#(0,))#(,1))#(,1)",

nonth := "(0[1-9]|1[0-2])",

dayOf Month := "(0[1-9]|[12][0-9]|3[01])",

hour := "([01][0-9]]2[0-3])",

mnute := "([0-5][0-9])",

second := "([0-5][0-9])",

sFraction := "(.[0-9]#(1,))#(,1)",

endOf DayExt := "24:00: 00(.0#(1,))#(,1)",

nums = "[0-9]#(1,)",

Zor Ti meZoneExt := "(Z|[\+\-]((0[0-9]|1[0-3]):[0-5][0-9]|14:00))#(,1)",
durTime := "(T[0-9]#(1,)"&

"(H([0-9]#(1,) (M[0-9]#(1,)(S|.[0-9]1#(1,)9))#(,1)|.[0-9]1#(1,)S 9)#(,1)["&
::gf‘[‘g@]#(l,)(sl-[0-9]#(1,)S)|-[0-9]#(1,)M#(,1)|"&
" [0-9]#(1,)9))"

/1 anySi npl eType

type XM.Conpati bl eString AnySi npl eType with {

variant "XSD: anySi npl eType"
b
[anyType,;

type record AnyType
{

record length (1 .. infinity) of String attr optional,
record of String elemlist
} with {

vari ant "XSD: anyType";
variant(attr) "anyAttributes";
variant(elemlist) "anyEl enent";
/1 String types
type XM.ConpatibleString String with {
variant "XSD:string"
b

type XMStringWthNoCRLFHT NormalizedString wth {
variant "XSD: nornmalizedString"
b

type NormalizedString Token with {
vari ant " XSD:token"
}s

type XM.StringWthNowiitespace Name with {
variant " XSD: Nane"
b

ETSI

97 ETSI ES 201 873-9 V4.5.1 (2013-04)

type XM.StringWthNowitespace NMTOKEN with {
variant " XSD: NMIOKEN'
b

type Nanme NCName with {
variant " XSD: NCNane"
}

type NCNanme ID with {
variant "XSD: | D'

type NCNanme IDREF with {
variant " XSD: | DREF"

type NCName ENTITY wth {
variant " XSD: ENTI TY"

type octetstring HexBinary with {
vari ant "XSD: hexBi nary"

type octetstring Base64Binary with {
variant "XSD: base64Bi nary";
h

type XM.StringWthNoCRLFHT AnyURI with {
variant "XSD:anyURl "
}

type charstring Language (pattern "[a-zA-Z]#(1,8)(-\w#(1,8))#(0,)") with {
variant "XSD:| anguage"
b

/'l Integer types

type integer Integer with {
variant "XSD:integer"

b

type integer Positivelnteger (1 .. infinity) with {
variant "XSD: positivel nteger"

b

type integer NonPositivelnteger (-infinity .. 0) with {
variant "XSD: nonPositivel nteger”

b

type integer Negativelnteger (-infinity .. -1) with {
vari ant "XSD: negati vel nteger"

b

type integer NonNegativelnteger (0 .. infinity) with {
variant " XSD: nonNegati vel nt eger”

b

type longlong Long with {
vari ant "XSD: | ong"

type unsi gnedl ongl ong Unsi gnedLong with {
vari ant " XSD: unsi gnedLong"

type long Int with {
variant "XSD:int"

type unsignedlong Unsignedint with {
vari ant "XSD: unsi gnedl nt"

ETSI

98 ETSI ES 201 873-9 V4.5.1 (2013-04)

type short Short with {
variant "XSD:short"

type unsi gnedshort UnsignedShort with {
vari ant " XSD: unsi gnedShort"

type byte Byte with {
vari ant " XSD: byte"

type unsi gnedbyte UnsignedByte with {
vari ant "XSD: unsi gnedByte"

b
/'l Float types
type float Decimal (!-infinity .. linfinity) with {

vari ant " XSD: deci mal "

type | EEE754float Float with {
variant "XSD: fl oat"

type | EEE754doubl e Double with {
variant " XSD: doubl e"

}

/1 Time types

type charstring Duration (pattern ") with {
vari ant "XSD: duration"
s

type charstring Duration (pattern

"{dash}#(, 1) P({nunms} (Y({nunms} (M {nuns}D{dur Ti me}#(, 1) | {dur Ti me}#(, 1)) | D{dur Ti me}#(,1))|"

"{durTime}#(,1))| M{nunms}D{dur Ti me} #(, 1) | {dur Ti me} #(, 1)) | D{dur Ti me} #(, 1)) | {durTime})"
) with {
vari ant "XSD: duration"
H

type charstring DateTine (pattern

"{year Expansi on}{year }{dash}{nont h} {dash} {dayOf Mont h} T({ hour }{cl n}{m nute}{cl n}{second}"

"{sFraction}|{endO DayExt}){Zor Ti meZoneExt }"
) with {
variant " XSD:dateTi me"
b

type charstring Tine (pattern
"({hour}{cl n}{m nute}{cl n}{second}{sFraction}|{endO DayExt}) {Zor Ti neZoneExt }"
) with {
variant "XSD:time"
h

type charstring Date (pattern
"{year Expansi on}{year }{dash} { nont h} { dash} { dayOf Mont h} { Zor Ti neZoneExt } "
) with {
variant " XSD: dat e"
b

type charstring GYearMnth (pattern
"{year Expansi on}{year }{dash}{nont h}{Zor Ti neZoneExt }"
) with {
variant "XSD: gYear Mont h"
}s

type charstring GYear (pattern
"{year Expansi on}{year }{ Zor Ti neZoneExt } "
) with {
variant "XSD: gYear"
H

type charstring GvonthDay (pattern
"{dash}{dash}{nont h}{dash}{dayO Mont h}{ Zor Ti mreZoneExt } "
) with {

ETSI

&

vari ant " XSD: ghont hDay"
H

type charstring GCbDay (pattern

99

" d_ash} {dash}{dash}{dayOf Mont h}{ Zor Ti mreZoneExt } "

) with {
vari ant " XSD: gDay"
b

type charstring Gwonth (pattern
"{dash}{dash}{nont h}{Zor Ti mreZoneExt }"
) with {

}s

variant " XSD: gvbnt h"

/'l Sequence types

type record of NMIOKEN NMIOKENS with {

vari ant " XSD: NMTOKENS"
}s

type record of |IDREF IDREFS with {
vari ant " XSD: | DREFS"
}s

type record of ENTITY ENTITIES with {

variant " XSD: ENTI TI ES"
}

type record QNane

AnyURI uri optional,
NCName nane
Iwith {
variant " XSD: QNane"
s

/1 Bool ean type

type bool ean Boolean with {
vari ant " XSD: bool ean"
b

ETSI ES 201 873-9 V4.5.1 (2013-04)

/I TTCN-3 type definitions supporting the mapping of WBC XML Schenm built-in datatypes

type utf8string XM.Conpati bl eString

char(0,0,0,9).. char(0,0,0,9),

char (0, 0,0, 10)..char (0,0, 0, 10),

char (0, 0,0, 13)..char(0,0,0, 13),
char(0,0,0, 32)..char(0, 0, 215, 255),
char (0, 0, 224, 0)..char (0, 0, 255, 253),
char (0, 1,0,0)..char(0, 16, 255, 253)

)

type utf8string XM.StringWthNoWitespace
(
char (0, 0,0, 33)..char (0,0, 215, 255),
char (0,0, 224,0)..char(0, 0, 255, 253),
char(0,1,0,0)..char(0, 16, 255, 253)
)

type utf8string XM.StringWthNoCRLFHT
(
char (0, 0,0, 32)..char (0,0, 215, 255),
char (0,0, 224, 0)..char (0, 0, 255, 253),
char (0,1,0,0)..char(0, 16, 255, 253)
)

}//end nodul e

ETSI

100 ETSI ES 201 873-9 V4.5.1 (2013-04)

Annex B (normative):
Encoding instructions

As described in clause 5 of the present document, in case of explicit mapping, the information not necessary to produce
valid TTCN-3 abstract types and values but needed to produce the correct encoded value (an XML document), shall be
retained in encoding instructions. Encoding instructions are contained in TTCN-3 encode and var i ant attributes
associated with the TTCN-3 definition, field or value of a definition. This annex defines the encoding instructions for
the XSD to TTCN-3 mapping.

NOTE: In case of implicit mapping the information needed for correct encoding is to be retained by the TTCN-3
tool internally and thus its form is out of scope of the present document.

B.1 General

A single attribute shall contain one encoding instruction only. Therefore, if several encoding instructions shall be
attached to a TTCN-3 language element, several TTCN-3 attributes shall be used.

The "syntactical structure™ paragraphs of each clause below identify the syntactical elements of the attribute (i.e. inside
the "with { }" statement. The syntactical elements shall be separated by one or more whitespace characters. A
syntactical element may precede or follow a double quote character without a whitespace character. There shall be no
whitespace between an opening single quote character and syntactical element directly following it and between a
closing single quote character and the syntactical element directly preceding it. All characters (including whitespaces)
between a pair of single quote characters shall be part of the encoding instruction.

Typographical conventions: bold font identify TTCN-3 keywords. The syntactical elements freetext and name are
identified by italic font; they shall contain one or more characters and their contents are specified by the textual
description of the encoding instruction. Normal font identify syntactical elements that shall occur within the TTCN-3
attribute as appear in the syntactical structure. The following character sequences identify syntactical rules and shall not
appear in the encoding instruction itself:

. (]) - identify alternatives.
. [1 - identify that the part of the encoding instruction within the square brackets is optional.
o {}-identify zero or more occurrences of the part between the curly brackets.

. - identify the opening or the enclosing double quote of the encoding instruction.

B.2 The XML encode attribute

The encode attribute "XML" shall be used to identify that the definitions in the scope unit to which this attribute is
attached shall be encoded in one of the following XML formats:

. "XML" or "XML1.0" for W3C XML 1.0; and

. "XML1.1" for W3C XML 1.1.

Syntactical structure

encode """ (XML | XML1.0 | XM.1.1) """
Applicable to (TTCN 3)
Modul e, group, definition.

ETSI

101 ETSI ES 201 873-9 V4.5.1 (2013-04)

B.3 Encoding instructions

B.3.1 XSD data type identification

Syntactical structure(s)

variant """ (- XSD:string | XSD:normalizedString | XSD:token | XSD:Name | XSD:NMTOKEN |
XSD:NCName | XSD:ID | XSD:IDREF | XSD:ENTITY | XSD:hexBinary | XSD:base64Binary |
XSD:anyURI | XSD:language | XSD:integer | XSD:positivelnteger | XSD:nonPositivelnteger |
XSD:negativelnteger | XSD:nonNegativelnteger | XSD:long | XSD:unsignedLong | XSD:int |
XSD:unsignedint | XSD:short | XSD:unsignedShort | XSD:byte | XSD:unsignedByte |
XSD:decimal | XSD:float | XSD:double | XSD:duration | XSD:dateTime | XSD:time | XSD:date |
XSD:gYearMonth | XSD:gYear | XSD:gMonthDay | XSD:gDay | XSD:gMonth |
XSD:NMTOKENS | XSD:IDREFS | XSD:ENTITIES | XSD:QName | XSD:boolean) """

Applicableto (TTCN-3)

These encoding instructions shall not appear in a TTCN-3 module mapped from XSD. They are attached to the TTCN-3
type definitions corresponding to XSD data types.

Description

The encoder and decoder shall handle instances of a type according to the corresponding XSD data type definition. In
particular, record of elements of instances corresponding to the XSD sequence types NMTOKENS IDREFS and
ENTITIES shall be combined into a single XML list value using a single space as separator between the list elements.
At decoding the XML list value shall be mapped to a TTCN-3 record of value by separating the list into its itemType
elements (the whitespaces between the itemType elements shall not be part of the TTCN-3 value). The uri and nane
fields of a TTCN-3 instance of an XSD:QName type shall be combined to an XSD QName value at encoding. At
decoding an XSD QName value shall be separated to the URI part and the non-qualified name part (the double colon
between the two shall be disposed) and those parts shall be assigned to the ur i and nane fields of the corresponding
TTCN-3 value correspondingly.

B.3.2 Any element

Syntactical structure(s)

variant """ anyElement [except ('freetext' | unqualified) |

from [unqualified ,] [{ freetext', } 'freetext']] ™"
Applicableto (TTCN-3)
Fields of structured types generated for the XSD any element (see clause 7.7.1).

NOTE 1: If the any element has a maxOccurs attribute with a value more than 1 (including "unbounded"), the
element is mappedtoarecord of XSD. Stri ng field, in which case the anyElement instruction will
be applied to the XSD.String type as well, as in all other cases. See for example the conversion of XSD
complex type e46b in clause 7.7.1.

Description

One TTCN-3 encoding instruction shall be generated for each field corresponding to an XSD any element. The freetext
part(s) shall contain the URI(s) identified by the namespace attribute of the XSD any element. The namespace attribute
may also contain wildcards. They shall be mapped as given in table B.1.

ETSI

102 ETSI ES 201 873-9 V4.5.1 (2013-04)

Table B.1: Mapping namespace attribute wildcards

acet Value of the XSD "except" or "from" clause in the Remark
namespace attribute TTCN-3 attribute
#any <nor except neither from clause
present>
type ##local from unqualified
##other except unqualified, "<target Also disallows unqualified

namespace of the ancestor elements, i.e. elements
schema element of the given any |without a target
element>" namespace
##other In the case no target
namespace is ancestor
schema element of the
given any element

except unqualified

##targetNamespace from "<target namespace of the
ancestor schema element of the
given any element >"

"http://www.w3.0rg/1999/xhtml from
#H#targetNamespace" "http://www.w3.0rg/1999/xhtml",
"<target namespace of the
ancestor schema element of the
given any element >"

In the encoding process the content of the TTCN-3 value shall be handled transparently, except when maxQOccurs is
greater than 1: in this case the elements of the TTCN-3 record of value (corresponding to the any XSD element), shall
be concatenated transparently to produce the encoded XML value.

In the decoding process, the decoder shall check if the fragment of the received XML document corresponding to the
TTCN-3 field with the "anyElement" encoding instruction fulfils the namespace specification in the encoding
instruction and, if no "processContents" encoding instruction is present for the element being decoded, it shall check if
it is a well-formed XML element (i.e. the content shall be assessed according to XML Schema Part 1 [9], clause 3.10.1,
assessment level skip. If a "processContents™ encoding instruction is present, the content shall be assessed according to
it. The failure of the namespace checking or the content assessment shall cause a decoding failure.

NOTE 2: Please note that any other assessment level (strict or lax) could result in different outcomes if a schema
related to the content of the any element is available for the decoder or not. As this would have adverse
effect on test result reproducibility, only the skip assessment level is necessary.

B.3.3 Any attributes

Syntactical structure(s)
variant """ anyAttributes [except 'freetext’ | from [unqualified ,] { 'freetext’, } ‘freetext] ™"
Applicable to (TTCN-3)
Fields of structured types generated for the XSD anyAttribute element (see clause 7.7.2).
Description

One TTCN-3 encoding instruction shall be generated for each field corresponding to an XSD anyAttribute element. The
freetext part(s) shall contain the URI(s) identified by the namespace attribute of the XSD anyAttribute element. The
namespace attribute may also contain wildcards. They shall be mapped as given in table B.1.

In the encoding process, if the type is encoded as a top-level type, this encoding instruction shall be ignored.

ETSI

103 ETSI ES 201 873-9 V4.5.1 (2013-04)

In all other cases, in the encoding process one XML attribute shall be added to the XML element being encoded for
each element of the corresponding TTCN-3 record of value. When the <URI> part is present in the given TTCN-3
string element (see clause 7.7.2), the encoder shall use the <URI> and the <non-qualified attribute name> part of string
to create a qualified XML attribute name and, using the <attribute value> part it shall create a valid XML attribute.
When the <URI> part is not present, the XML attribute created for the given record of element shall have a non-
qualified name in the XML instance. See also example in clause 7.7.2. The order of the generated XML attribute shall
correspond to the order they are defined in the record of value to which the encoding instruction relates to. The
namespace prefix used and if already existing namespace prefixes identifying a given namespace is reused or not, is an
encoder option.

In the decoding process, the decoder shall create one TTCN-3 record of element for each attribute of the XML element
being decoded that is not from the control namespace, and whose name is not that of the identifier (possibly

modified in accordance with any final "name as" or "namespace as" encoding instructions) of another component of the
enclosing type that has a final "attribute” encoding instruction. The decoder shall create the TTCN-3 strings (the
elements of the record of to which the "anyAttribute” encoding instruction is attached) in the order of the affected XML
attributes in the XML element. The decoder shall check if the namespace of the actually decoded XML attribute
satisfies the namespace restrictions of the "anyAttribute™ encoding instruction (including the no namespace case) and in
case of non-compliance it shall cause a decoding failure. If the XML attribute has a namespace-qualified name, the
<URI> part (see clause 7.7.2) of the generated string value shall be present, otherwise the <URI> part shall be absent.
If the <URI> part present, the decoder shall insert a lonely SPACE character between the <URI> and the <non-
qualified attribute name> parts of the generated TTCN-3 string value.

B.3.4 Attribute

Syntactical structure(s)

variant """ attribute
Applicableto (TTCN-3)
Top-level type definitions and fields of structured types generated for XSD attribute elements.
Description

This encoding instruction designates that the instances of the TTCN-3 type or field shall be encoded and decoded as
XML attributes.

B.3.5 AttributeFormQualified

Syntactical structure(s)

variant """ attributeFormQualified
Applicableto (TTCN-3)

Modules.

Description

This encoding instruction designates that names of XML attributes that are instances of TTCN-3 definitions in the given
module shall be encoded as qualified names and at decoding qualified names shall be expected as valid attribute names.

B.3.6 Control namespace identification

Syntactical structure(s)

variant """ controlNamespace ‘freetext' prefix 'freetext’ """
Applicableto (TTCN-3)

Module.

ETSI

104 ETSI ES 201 873-9 V4.5.1 (2013-04)

Description

This encoding instruction commands the encoder to use the identified namespace and prefix whenever at ype, nil,
schemal ocation or noNamespaceSchemal ocation schema-related attributes are to be inserted into the encoded XML
document (see also clauses 3.1 and 5.1.5 of the present document). The first freetext component shall identify a
syntactically valid namespace and the second freetext component shall identify a namespace prefix.

B.3.7 Default for empty
Syntactical structure(s)
variant """ defaultForEmpty as ‘freetext' """
Applicable to (TTCN-3)
TTCN-3 components generated for XSD attribute or element elements with a fixed or default attribute.
Description
The "freetext” component shall designate a valid value of the type to which the encoding instruction is attached to.

This encoding instruction has no effect on the encoding process and designates that the decoder shall insert the value
specified by freetext if the corresponding attribute is omitted or when the corresponding element appears without any
content in the XML instance being decoded; it has no effect in other cases.

NOTE: If an element with a defaultForEmpty encoding instruction attached is missing in the XML instance being
decoded, its corresponding field will also be absent in the decoded TTCN-3 value.

B.3.8 Element

Syntactical structure(s)

variant """ element
Applicableto (TTCN-3)
Top-level type definitions generated for XSD element elements that are direct children of a schema element.
Description

This encoding instruction designates that the instances of the TTCN-3 type shall be encoded and decoded as XML
elements.

B.3.9 ElementFormQualified

Syntactical structure(s)

variant """ elementFormQualified
Applicableto (TTCN-3)

Modules.

Description

This encoding instruction designates that tags of XML local elements that are instances of TTCN-3 definitions in the
given module shall be encoded as qualified names and at decoding qualified names shall be expected as valid element
tags names.

ETSI

105 ETSI ES 201 873-9 V4.5.1 (2013-04)

B.3.10 Embed values

Syntactical structure(s)

variant embedValues

Applicableto (TTCN-3)

TTCN-3 record types generated for XSD complexType-s and complexContent-s with the value of the mixed attribute
"true".

Description

The encoder shall encode the record type to which this attribute is applied in a way, which produces the same result as
the following procedure: first a partial encoding of the record is produced, ignoring the embed_values field. The first
string of the embed_values field (the first record of element) shall be inserted at the beginning of the partial encoding,
before the start-tag of the first XML element (if any). Each subsequent string shall be inserted between the end-tag of
the XML element and the start-tag of the next XML element (if any), until all strings are inserted. In the case the
maximum allowed number of strings is present in the TTCN-3 value (the number of the XML elements in the partial
encoding plus one) the last string will be inserted after end-tag of the last element (to the very end of the partial
encoding). The following special cases apply:

a) Atdecoding, strings before, in-between and following the XML elements shall be collected as individual
components of the embed_values field. If no XML elements are present, and there is also a defaultForEmpty
encoding instruction on the sequence type, and the encoding is empty, a decoder shall interpret it as an
encoding for the freetext part specified in the defaultForEmpty encoding instruction and assign this abstract
value to the first (and only) component of the embed_values field.

b) If the type also has a useNil encoding instruction and the optional component is absent, then the embedValues
encoding instruction has no effect.

c) If the type has a useNil encoding instruction and if a decoder determines that the optional component is
present, by the absence of a nil identification attribute (or its presence with the value false), then item a) above
shall apply.

B.3.11 Form

Syntactical structure(s)

variant """ form as (qualified | unqualified)
Applicableto (TTCN-3)

Top-level type definitions generated for XSD attribute elements and fields of structured type definitions generated for
XSD attribute or element elements.

Description

This encoding instruction designates that names of XML attributes or tags of XML local elements corresponding to
instances of the TTCN-3 type or field of type to which the form encoding instruction is attached, shall be encoded as
qualified or unqualified names respectively and at decoding qualified or unqualified names shall be expected
respectively as valid attribute names or element tags.

B.3.12 List

Syntactical structure(s)
variant """ list """
Applicable to (TTCN-3)

Record of types mapped from XSD simpleType-s derived as a list type.

ETSI

106 ETSI ES 201 873-9 V4.5.1 (2013-04)

Description

This encoding instruction designates that the record of type shall be handled as an XSD list type, namely, record of
elements of instances shall be combined into a single XML list value using a single SP(32) (space) character as
separator between the list elements. At decoding the XML list value shall be mapped to a TTCN-3 record of value by
separating the list into its itemType elements (the whitespaces between the itemType elements shall not be part of the
TTCN-3 value).

B.3.13 Name

Syntactical structure(s)

variant name (as ('freetext’' | changeCase) | all as changeCase) """,

where changeCase := (capitalized | uncapitalized | lowercased | uppercased)
Applicableto (TTCN-3)

Type or field of structured type. The form when freetext is empty shall be applied to fields of union types with the
"useUnion" encoding instruction only (see clause B.3.16).

Description

The name encoding instruction identifies if the name of the TTCN-3 definition or field differs from the value of the
name attribute of the related XSD element. The name resulted from applying the name encoding attribute shall be used
as the non-qualified part of the name of the corresponding XML attribute or element tag.

When the "name as ‘freetext™ form is used, freetext shall be used as the attribute name or element tag, instead of the
name of the related TTCN-3 definition (e.g. TTCN-3 type name or field name).

The "name as " (i.e. freetext is empty) form designates that the TTCN-3 field corresponds to an XSD unnamed type,
thus its name shall not be used when encoding and decoding XML documents.

The "name as capitalized" and "name as uncapitalized" forms identify that only the first character of the related
TTCN-3 type or field name shall be changed to lower case or upper case respectively.

The "name as lowercased™ and "name as uppercased” forms identify that each character of the related TTCN-3 type or
field name shall be changed to lower case or upper case respectively.

The "name all as capitalized", "name all as uncapitalized", "name as lowercased" and "name as uppercased" forms has
effect on all direct fields of the TTCN-3 definition to which the encoding instruction is applied (e.g. in case of a
structured type definition to the names of its fields in a non-recursive way but not to the name of the definition itself and
not to the name of fields embedded to other fields).

The narre encoding instruction shall not be applied when the unt agged encoding instruction is used. However, if
both instructions are applied to the same TTCN-3 component in the same or in different TTCN-3 definitions, the
unt agged instruction takes precedence (i.e. no start and end tags shall be used, see clause B.3.21).

B.3.14 Namespace identification

Syntactical structure(s)

variant """ namespace as 'freetext' [prefix 'freetext']
Applicableto (TTCN-3)
. Modules.

. Fields of record types generated for attributes of complexTypes taken in to complexType definitions by
referencing attributeGroup(s), defined in schema elements with a different (but not absent) target namespace
and imported into the schema element which is the ancestor of the complexType.

ETSI

107 ETSI ES 201 873-9 V4.5.1 (2013-04)

Description

The first freetext component identifies the namespace to be used in qualified XML attribute names and element tags at
encoding, and to be expected in received XML documents. The second freetext component is optional and identifies the
namespace prefix to be used at XML encoding. If the prefix is not specified, the encoder shall either identify the
namespace as the default namespace (if all other namespaces involved in encoding the XML document have prefixes)
or shall allocate a prefix to the namespace (if more than one namespace encoding instructions are missing the prefix
part).

B.3.15 Nillable elements

Syntactical structure(s)

variant """ useNil
Applicableto (TTCN-3)
Top-level record types or record fields generated for nillable XSD element elements.
Description

The encoding instruction designates that the encoder, when the optional field of the record (corresponding to the
nillable element) is omitted, it shall produce the XML element with the xsi:nil="true" attribute and no value. When the
nillable XML element is present in the received XML document and carries the xsi:nil="true" attribute, the optional
field of the record in the corresponding TTCN-3 value shall be omitted. If the nillable XML element carries the
xsi:nil="true" attribute and has a children (either any character or element information item) at the same time, the
decoder shall initiate a test case error.

B.3.16 Use union

Syntactical structure(s)
variant """ useUnion """

Applicableto (TTCN-3)

Types and field of structured types generated for XSD simpleTypes derived by union (see clause 7.5.3).

Description

The encoding instruction designates that the encoder shall not use the start-tag and the end-tag around the encoding of
the selected alternative (field of the TTCN-3 union type) and shall use the type identification attribute (xsi:type),
identifying the XSD base datatype of the selected alternative, except when encoding attributes or the encoded
component has a "list" encoding instruction attached or the "noType" encoding instruction is also present (see

clause B.3.27). At decoding the decoder shall place the received XML value into the corresponding alternative of the
TTCN-3 uni on type, based on the received value and the type identification attribute, if present.

B.3.17 Text

Syntactical structure(s)
variant """ text ('name' as ('freetext' |) | all as changeCase) """
NOTE 1: The definition of changeCase is given in clause B.3.13.
Applicableto (TTCN-3)

Enumeration types generated for XSD enumeration facets where the enumeration base is a string type (see clause 6.1.5,
first paragraph), and the name(s) of one or more TTCN-3 enumeration values is(are) differs from the related XSD
enumeration item. XSD.Boolean types, instances of XSD.Boolean types(see clause 6.7).

ETSI

108 ETSI ES 201 873-9 V4.5.1 (2013-04)

Description

When name is used, it shall be generated for the differing enumerated values only. The name shall be the identifier of
the TTCN-3 enumerated value the given instruction relates to. If the difference is that the first character of the XSD
enumeration item value is a capital letter while the identifier of the related TTCN-3 enumeration value starts with a
small letter, the "text 'name’ as capitalized" form shall be used. Otherwise, freetext shall contain the value of the related
XSD enumeration item.

NOTE 2: The "text name' as uncapitalized", "text 'name' as lowercased" and "text 'name' as uppercased" forms are
not generated by the current version of the present document but tools are encouraged to support also
these encoding instructions for consistency with the "name as ... " encoding instruction.

If the first characters of all XSD enumeration items are capital letters, while the names of all related TTCN-3
enumeration values are identical to them except the case of their first characters, the "text all as capitalized" form shall
be used.

The encoding instruction designates that the encoder shall use freetext or the capitalized name(s) when encoding the
TTCN-3 enumeration value(s) and vice versa.

When the text encoding attribute is used with XSD.Boolean types, the decoder shall accept all four possible XSD
boolean values and map the received value 1 to the TTCN-3 boolean value t r ue and the received value 0 to the
TTCN-3 boolean value f al se. When the text encoding attribute is used on the instances of the XSD.Boolean type, the
encoder shall encode the TTCN-3 values according to the encoding attribute (i.e. t rue as 1 and f al se as0).

B.3.18 Use number

Syntactical structure(s)

variant useNumber
Applicableto (TTCN-3)

Enumeration types generated for XSD enumeration facets where the enumeration base is integer (see clause 6.1.5,
second paragraph).

Description

The encoding instruction designates that the encoder shall use the integer values associated to the TTCN-3 enumeration
values to produce the value or the corresponding XML attribute or element (as opposed to the names of the TTCN-3
enumeration values) and the decoder shall map the integer values in the received XML attribute or element to the
appropriate TTCN-3 enumeration values.

B.3.19 Use order

Syntactical structure(s)

variant """ useOrder """

Applicableto (TTCN-3)

Record type definition, generated for XSD complexType-s with all constructor (see clause 7.6.4).
Description

The encoding instruction designates that the encoder shall encode the values of the fields corresponding to the children
elements of the all constructor according to the order identified by the elements of the or der field. At decoding, the
received values of the XML elements shall be placed in their corresponding record fields and a new record of element
shall be inserted into the or der field for each XML element processed (the final order of the record of elements shall
reflect the order of the XML elements in the encoded XML document).

ETSI

109 ETSI ES 201 873-9 V4.5.1 (2013-04)

B.3.20 Whitespace control

Syntactical structure(s)

variant """ whitespace (preserve | replace | collapse)

Applicableto (TTCN-3)
Types or fields of structured types generated for XSD components with the whitespace facet.
Description

The encoding instruction designates that the value of the received XML attribute shall be normalized before decoding as
follows (see also clause 3.3.3 of XML 1.1 [5]):

. preserve: no normalization shall be done, the value is not changed (this is the behaviour required by XML
Schema Part 2 [9] for element content);

. replace: all occurrences of HT(9) (horizontal tabulation), LF(10) (line feed) and CR(13) (carriage return) shall
be replaced with an SP(32) (space) character;

. collapse: after the processing implied by replace, contiguous sequences of SP(32) (space) characters are
collapsed to a single SP(32) (space) character, and leading and trailing SP(32) (space) characters are removed.

B.3.21 Untagged elements

Syntactical structure(s)

variant untagged

Applicableto (TTCN-3)
Structured type definitions and structured type fields.
Description

Without this attribute the names of the structured type fields (as possible modified by a nane as and nanespace
encoding instructions) or, in case of TTCN-3 type definitions corresponding to global XSD element declarations the
name of the TTCN-3 type (as possible modified by a nane as and nanmespace encoding instructions) are used as
the local part of the start and end tags of XML elements at encoding. If the unt agged encoding instruction is applied
to a TTCN-3 type or structured type field, the name of the type or field shall not produce an XML tag when encoding
the value of that type or field (in other words, the tag that would be produced without the untagged attribute shall be
suppressed during encoding and shall not be expected during decoding). The unt agged encoding instruction shall
only have effect on the TTCN-3 language element to which it is directly applied; e.g. if applied to a structured type, the
type itself shall not result a starting and end tag in the encoded XML document but the fields of the structured type shall
be encoded using starting and end tags (provided no unt agged attribute is applied to the fields). At decoding no XML
starting and end tags shall be present in the encoded XML document.

Shall not be applied to TTCN-3 components generated for XSD attribute elements (neither global nor local).

For typical use in case of extending or restricting simple content see clauses 7.6.1.1 and 7.6.1.2 and for typical use in
case of model groups see clause 7.9.

NOTE: Please note, that using the unt agged encoding instruction in other cases than specified in the present
document, may result in an undecodable XML document.

ETSI

110 ETSI ES 201 873-9 V4.5.1 (2013-04)

B.3.22 Abstract

Syntactical structure(s)

variant """ abstract
Applicableto (TTCN-3)
Type definitions (generated for global XSD elements and XSD complex types).
Description

This encoding instruction shall have no effect on the encoding process (i.e. it is allowed to send an abstract element or
an element with an abstract type to the SUT).

NOTE: Please note that when the "useType" encoding instruction is also appended to the type being used for
encoding the element, the xsi:type XML attribute will be inserted into the encoded XML element,
identifying the name of the abstract XSD type, according to clause B.3.24.

In the decoding process, any of the following cases shall cause a failure of the decoding process:

e the TTCN-3 type corresponding to the XML element to be decoded has both the "element" and "abstract"
encoding instructions appended;

e the type of the TTCN-3 field or the field corresponding to the XML element to be decoded has the "abstract"
encoding instruction appended and the XML element has no xsi:type attribute; or

. if the XML element to be decoded has an xsi:type attribute identifying a type to which the "abstract” encoding
instruction is appended.

Otherwise the encoding instruction shall have no effect on the decoding process.

B.3.23 Block

Syntactical structure(s)
variant """ block™"
Applicableto (TTCN-3)
Field of the uni on type generated for substitutable XSD elements and types.
Description
The encoding instruction shall have no effect on the encoding process.

NOTE: This behaviour is defined to allow sending of intentionally incorrect data to the SUT. Tools may notify
the user when the data to be encoded is not valid (a blocked type is used for substitution).

In the decoding process, any of the following cases shall cause a decoding failure:

. the XML element, considering all applied name and namespace encoding instructions and a possible xsi:type
XML attribute, would decode to a field of a TTCN-3 union type with a "block™ encoding instruction;

e the XML element, considering all applied name and namespace encoding instructions and a possible xsi:type

XML attribute, would decode to field of a TTCN-3 union type without a "block" encoding instruction, but the
TTCN-3 type of the field has a "block™ encoding instruction.

ETSI

111 ETSI ES 201 873-9 V4.5.1 (2013-04)

B.3.24 Use type

Syntactical structure(s)

variant useType

Applicableto (TTCN-3)
Types, fields of structured types.
Description

The type identification attribute identifies the type of an XML element using the xsi:type attribute from the control
namespace (see clause 5.1.5).

In the encoding process useType instructs the encoder that it shall include the xsi:type XML attribute into the start tag
of the corresponding encoded XML element, with the exception given below. The attribute shall identify the XSD type
of the given element, possibly modified in accordance with any final name as and nanmespace encoding
instructions. In case of unnamed XSD types the name of the XSD base type shall be used. When useType is applied to
a TTCN-3 uni on type, the first alternative of the uni on type shall be encoded without an xsi:type XML attribute.
When useType is applied to a TTCN-3 uni on type supplemented with an unt agged encoding instruction, the
useType encoding instruction shall apply to the alternatives of the uni on (i.e. the selected alternative shall be
encoded using the xsi:type attribute). See examples in clauses 7.5.3 and 8.2. When useType is applied to a TTCN-3
record of typewithal i st encoding instruction, the xsi:type attribute shall be applied to the XML element
enclosing the list value. See example in clause 7.5.2.

If a "noType" encoding instruction is applied to the TTCN-3 value to be encoded, the type of which is appended with a
useType encoding instruction, the useType instruction shall be ignored.

In the decoding process the presence of the xsi:type attribute in an XML element is used in two ways: it shall be used:
a) inthe schema validation process of the XML instance to be decoded; and

b) ifapplied to a TTCN-3 uni on type, to select the alternative of the uni on, to which the decoded value shall
be stowed (see also note in clause 7.5.3). In particular, in the case of type substitution (see clause 8.2), if the
XML element to be decoded does not contain an xsi:type attribute and it cannot be decoded to the first
alternative, the decoding process shall fail (provided no useType is applied to this field directly). If it is
applied to selected alternatives of a uni on type but not for the whole type, only these alternatives shall be
evaluated taking into account the xsi:type attribute.

If used in conjunction with the useUnion encoding instruction, the useType encoding instruction has no additional
effect (the xsi:type attribute is inserted only once). If the selected alternative of the TTCN-3 union type with the
useType encoding instruction is a union type with a final useUnion encoding instruction, the type identification
attribute shall identify the chosen alternative of the inner union (with the useUnion instruction) instead of the
alternative of the outer union (with the useType encoding instruction).

B.3.25 Process the content of any elements and attributes

Syntactical structure(s)

variant """ processContents (skip | lax | strict)
Applicable to (TTCN-3)

XSD.String and record of XSD.String fields of structured types.
Description

The "processContents" encoding instruction controls the validation level of the content received at the place of XSD
any and anyAttribute elements at decoding. It has no effect at encoding and does not influence checking the correctness
of the namespace of the XML instance being decoded (the namespace shall always satisfy the "anyElement" or
"anyAttribute™ encoding instruction, see clauses B.3.2 and B.3.3).

ETSI

112 ETSI ES 201 873-9 V4.5.1 (2013-04)

If the value of the encoding instruction is "skip", the decoder shall only check if the content is a well-formed XML
element or attribute and in case of a defect it shall cause a decoding failure.

If the value of the encoding instruction is "lax", the decoder shall check if the content is well-formed XML element or
attribute. If the TTCN-3 definition corresponding to the XML element or attribute being decoded is available for the
decoder , the decoder shall also check if the content comply with the TTCN-3 definition. A defect in the well-
formedness or in the content validation shall cause a decoding failure. The decoder shall not attempt to retrieve a
schema for the element or attribute being decoded from an external source.

If the value of the encoding instruction is "strict", the decoder shall check if the content is well-formed XML element
or attribute and, if its content is valid according to the TTCN-3 definition corresponding to the XML element or
attribute being decoded. A defect in the well-formedness or in the content validation shall cause a decoding failure. If
the corresponding TTCN-3 definition is not available for the decoder, this shall cause a decoding failure. The decoder
shall not attempt to retrieve a schema for the element or attribute being decoded from an external source.

B.3.26 Transparent

Syntactical structure(s)
variant """ transparent name 'value' """
Applicableto (TTCN-3)
Types generated for XSD data types with facet(s) with no direct mapping to TTCN-3.
Description

The "transparent™ encoding instruction encapsulates XSD facets that are not directly mapped to TTCN-3 (for directly
mapped facets see clause 6, and in particular table 2 of the present document). The name part of the instruction shall be
the name of the XSD facet and the value part of the instruction shall be the value of the facet as defined in XSD (i.e.
XSD patterns shall not be converted to TTCN-3 patterns when included into the transparent encoding instruction). In
other words, the "transparent” encoding instruction transports the non-mapped XSD facet elements between the XSD
specification and the XML codec in a transparent way.

The encoder shall use the content of the "transparent” encoding instruction to generate a correct XML instance for the
TTCN-3 value being encoded.

The decoder shall use the "transparent™" encoding instruction to validate the received XML document while decoding it.

B.3.27 No Type

Syntactical structure(s)

variant noType
Applicableto (TTCN-3)
Templates, values and fields of templates and values.
Description

The "noType" encoding variant can be applied to any TTCN-3 value or template, where normally an xsi:type attribute
would be generated when encoding this element (see clause 5.1.5). This is normally the result of the "useType" or
"useUnion" encoding instructions appended to the type of the value or template. This is especially useful for
suppressing the type identification attribute for elements derived from simpleType via union. The "noType" encoding
instruction takes precedence over the "useType" and "useUnion" encoding instructions.

For decoding purposes, this encoding instruction shall be ignored.

ETSI

113 ETSI ES 201 873-9 V4.5.1 (2013-04)

Annex C (informative):

Examples

The following examples show how a mapping would look like for example XML Schemas. It is only intended to give
an impression of how the different elements have to be mapped and used in TTCN-3.

C.1 Examplel

XML Schema:

<xs:schema xm ns: xs="http://ww. w3. or g/ 2001/ XM_Schema" >

<l-- This is an enbedded exanple. An elenent with a sequence body and an attribute
The sequence body is formed of elements, two of themare al so conpl exTypes. -->

<xs: el ement name="shi porder">

<xs: conpl exType>
<Xs: sequence>

<xs: el ement name="orderperson" type="xs:string"/>

<xs: el ement nane="shi pt 0" >
<xs: conpl exType>
<XS:sequence>

<xs: el ement
<xs: el enent
<xs: el enent
<xs: el ement

</ xs: sequence>
</ xs: conpl exType>
</ xs: el enent >

<xs: el ement name="itenl
<xs: conpl exType>
<Xs: sequence>

<xs: el ement
<xs: el ement
<xs: el ement
<xs: el ement

</ xs: sequence>
</ xs: conmpl exType>
</ xs: el enent >

</ xs: sequence>

nane="nanme" type="xs:string"/>
name="addr ess" type="xs:string"/>
name="city" type="xs:string"/>
name="country" type="xs:string"/>

name="title" type="xs:string"/>
name="note" type="xs:string" mnCccurs="0"/>
name="quantity" type="xs:positivelnteger"/>
nane="price" type="xs:deci mal"/>

<xs:attribute nane="orderid" type="xs:string" use="required"/>

</ xs: conpl exType>
</ xs: el enent >
</ xs: schema>

TTCN-3 Module:

nodul e NoNanespace {

import from XSD | anguage "XM." all

type record Shiporder {
XSD. String orderid
XSD. String orderperson
record

XSD. String nane,
XSD. String address_1,
XSD. String city,
XSD. String country
} shipto
record

{

ETSI

114 ETSI ES 201 873-9 V4.5.1 (2013-04)

XSD. String title,
XSD. String note optional,
XSD. Posi tivel nteger quantity,
XSD. Deci mal price
} item
} with {
variant "nane as uncapitalized";
vari ant (shi pto.address_1)"nane as 'address'";
variant (orderid) "attribute";

}

} with {
encode "XM.";
}

modul e Exanpl elTenpl ate {

import from XSD | anguage "XM." all;
import from Exanplel all;

tenpl at e Shi porder t_Shiporder: ={
orderid: ="18920320_17",
order person: =" Dr. Wat son",
shipto: =
{
nane: =" Sher | ock Hol mes",
addr essFi el d: =" Baker Street 221B",
city: ="London",
country: ="Engl and"
I
item=
{
title:="Menoirs",
note:= omt,
quantity: =2,
price:=3.5
}
}

}/ 1 end nodul e

<?xm version="1.0" encodi ng="UTF-8"?>
<shi porder orderid=18920320_17>
<or der per son>Dr . WAt son</ or der per son>
<shi pt o>
<nane>Sher | ock Hol mes</ name>
<addr ess>Baker Street 221B</address>
<city>London</city>
<count r y>Engl and</ count ry>
</ shi pt o>
<itenp
<title>Menoirs</title>
<quantity>2</quantity>
<price>3.5</price>
</itenmr
</ shi porder >

C.2 Example 2

XML Schema:
<xs:schema xm ns: xs="http://ww:. w3. or g/ 2001/ XM_Schema" >

<xs:si npl eType name="S1">
<xs:restriction base="xs:integer">
<xs: maxl ncl usi ve val ue="2"/>
</xs:restriction>
</ xs: si npl eType>

ETSI

<xs:si npl eType name="S2">
<xs:restriction base="S1">
<xs: m nlnclusive val ue="-23"/>
<xs: maxl| ncl usi ve val ue="1"/>
</xs:restriction>
</ xs: si npl eType>

<xs:sinmpl eType nanme="S3">
<xs:restriction base="S2">
<xs: mnlnclusive val ue="-3"/>
<xs: maxExcl usi ve val ue="1"/>
</xs:restriction>
</ xs: sinmpl eType>

<xs: conpl exType name="C1">
<xs: si nmpl eCont ent >
<xs: extension base="S3">

<xs:attribute nane="Al" type="xs:integer"/>
<xs:attribute nane="A2" type="xs:float"/>

</ xs: extensi on>
</ xs: si npl eCont ent >
</ xs: conpl exType>

</ xs: schema>

TTCN-3 Module:

modul e NoNanespace {
import from XSD | anguage "XM." all
type XSD.Integer S1 (-infinity .. 2);
type S1 S2 (-23 .. 1);
type S2 S3 (-3 .. 0);

type record Cl1 {
S3

base,
XSD. | nt eger al optional
XSD. Fl oat a2 optiona

} with {
variant(al, a2) "nane as capitalized ";
variant(al, a2) "attribute";
vari ant (base) "untagged"
}
} with {
encode "XM.";
}

nmodul e Exanpl e2Tenpl ates {

import from XSD | anguage "XM." all;
import from Exanpl e2 all

tenplate ClL t_Cl:= {

base i=-1,
al :=1
a2 :=2.0

<?xm version="1.0" encodi ng="UTF-8"?>
<Cl Al1="1" A2="2.0">-1</Cl>

115

ETSI

ETSI ES 201 873-9 V4.5.1 (2013-04)

116 ETSI ES 201 873-9 V4.5.1 (2013-04)

C.3 Example 3

XML Schema:
<xs:schema xm ns: xs="http://ww. w3. or g/ 2001/ XM_.Schema" xm ns="nsA" tar get Namespace="nsA">

<xs: conpl exType nanme="Cl">
<xs: si npl eCont ent >
<xs: extensi on base="xs:integer">
<xs:attribute name="Al" type="xs:integer"/>
<xs:attribute nane="A2" type="xs:integer"/>
</ xs: ext ensi on>
</ xs: si npl eCont ent >
</ xs: conpl exType>

<xs: conpl exType name="C2">
<xs: si npl eCont ent >
<xs:restriction base="Cl">
<xs: mnl ncl usi ve val ue="23"/>
<xs: maxl ncl usi ve val ue="26"/>
<xs:attribute nane="Al" type="xs:byte" use="required"/>
<xs:attribute nane="A2" type="xs:negativel nteger"/>
</xs:restriction>
</ xs: si npl eCont ent >
</ xs: conpl exType>

<xs: conpl exType nanme="C3">
<xs: si npl eCont ent >
<xs:restriction base="C2">
<xs: mnlnclusive val ue="25"/>
<xs: maxl| ncl usi ve val ue="26"/>
</xs:restriction>
</ xs: si npl eCont ent >
</ xs: conpl exType>

</ xs: schema>

TTCN-3 Module:
nmodul e nsA {
import from XSD | anguage "XWM." all

type record Cl {
XSD. | nt eger base
XSD. I nt eger al optional
XSD. | nt eger a2 optiona
} with {
vari ant (al, a2)"nanme as capitalized"
variant (al, a2) "attribute";
vari ant (base) "untagged"

type record C2 {
XSD. I nteger (23 .. 26) base

XSD. Byt e al
XSD. Negat i vel nteger a2 optiona
} with {

variant (al, a2)"name as capitalized"
variant(al, a2) "attribute";
vari ant (base) "untagged"

}

type record C3 {
XSD. I nteger (25 .. 26) base

XSD. Byt e al
XSD. Negati vel nteger a2 optiona
} with {

vari ant (al, a2)"nanme as capitalized"
vari ant (al, a2) "attribute";
vari ant (base) "untagged"

ETSI

117

ETSI ES 201 873-9 V4.5.1 (2013-04)

prefix "xsi""

} with {

encode "XM.";

variant "namespace as 'nsA "

variant "control Nanespace' http://ww. w3. or g/ 2001/ XM_Schena- i nst ance
}

nmodul e Exanpl e3Tenpl ates {

import from XSD | anguage "XWM." all
i mport from Exanpl e3 all

template C1 t_Cl: = {
base :=-1000
al :=1
a2 :=2

}

template C2 t_C2: = {
base =24
al =1,
a2 =-

}

tenplate C3 t_C3:={
base =25
al :=1
a2 :=-1000

}

}

<?xm version="1.0" encodi ng="UTF-8"?>
<Cl xm ns="nsA" Al=1 A2=2>-1000</Cl1>
<?xm version="1.0" encodi ng="UTF-8"?>

<C2 xm ns="nsA" Al=1 A2=-2>24</ C2>

<?xm version="1.0" encodi ng="UTF-8"?>
<C3 xm ns="nsA" Al="1" A2="-1000">25</C3>

C.4 Example 4

XML Schema:

<xs:schema xm ns: xs="http://wwm. w3. or g/ 2001/ XM_Schema"

<xs:include schenaLocati on="Exanpl e3. xsd"/>
<xs:inmport schemaLocati on="Exanpl e2. xsd"/>

<xs: conpl exType nanme="newCl">
<xs: conpl exCont ent >
<xs: extension base="NA:Cl"/>
</ xs: conpl exCont ent >
</ xs: conpl exType>

<xs:si npl eType name="news1">
<xs:restriction base="S1"/>
</ xs: sinmpl eType>
</ xs: schena>
TTCN-3 Module:
nodul e nsA {
inmport from XSD | anguage "XWM." all

i mport from Exanpl e2 | anguage "XM."
i mport from Exanpl e3 | anguage " XM."

ETSI

xm ns: NA="nsA" target Namespace="nsA">

118 ETSI ES 201 873-9 V4.5.1 (2013-04)

type Exanpl e3. CL NewCl
with {variant "nanme as uncapitalized"}

type Exanpl e2. S1 NewSl
with {variant "name as uncapitalized"}

} with {

encode "XM.";

variant "namespace as ‘nsA prefix ‘NA"

vari ant "control Nanmespace' http://ww. w3. or g/ 2001/ XM_Schene-i nstance' prefix 'xsi'"

}

nodul e Exanpl e4Tenpl ates {

import from XSD | anguage "XM." all;

i mport from Exanpl e2 | anguage "XM." all;
i mport from Exanpl e3 | anguage "XM." all;
import from Exanpl e4 all;

tenpl ate NewCl t_NewCl: = {

base :=-1000,
al :=1,
a2 :=2

}

tenpl ate NewSl NewSl: =1
}

<?xm version="1.0" encodi ng="UTF-8"?>
<NA: newCl xm ns: NA="nsA" Al="1" A2="2">-1000</ NA: newCl1>

<?xm version="1.0" encodi ng="UTF-8"?>
<NA: newS1 xm ns: NA="nsA" >1</ NA: newS1>

ETSI

119 ETSI ES 201 873-9 V4.5.1 (2013-04)

Annex D (informative):
Deprecated features

D.1 Using the anyElement encoding instruction to record
of fields

The TTCN-3 core language, ES 201 873-1 [1], up to and including V3.4.1, did not allow referencing the type replicated
in a TTCN-3 record of or set of type definition. As a consequence, when the any XSD element have had a maxOccurs
attribute with the value more then 1 (including “unbounded™), and is converted toa TTCN-3 r ecord of

XSD. St ri ng field, the any El enent encoding instruction could not be attached to the XSD.String type, as in all
other cases, but have had to be attached to the r ecor d of . As the above limitation was removed in the core language,
using the anyEl enment encoding instruction with other types than the XSD.String, resulted from the conversion of an
XSD any element is deprecated. TTCN-3 tools, however, are encouraged to accept both syntaxes in TTCN-3 modules
further on, but, when converting XSD Schemas to TTCN-3, generate only the syntax according to the present
document.

EXAMPLE 1: The outdated syntax:

<xs: conpl exType name="e46b" >
<Xs: sequence>
<xs:any mnCccurs="0" maxCccur s="unbounded" nanespace="##l ocal "/ >
</ xs: sequence>
</ xs: conpl exType>

/1 Was mapped to the following TTCN-3 code and encodi ng extensions according to
/ /el der versions of this docunent:
type record E46b {

record of XSD.String elemlist

}
with {

variant "nanme as uncapitalized"

variant(elemlist) "anyEl ement except unqualified"
}

EXAMPLE 2: The present syntax:

<xs: conpl exType name="e46b" >
<XS:sequence>
</ xs: sequence>

</ xs: conpl exType>

//ls mapped to the followi ng TTCN-3 code and encodi ng extensi ons
type record E46b {
record of XSD.String elemlist

}
with {

variant "nanme as uncapitalized"

variant(elemlist[-]) "anyEl ement except unqualified"
/1 AN~ pls. note the dash syntax here

}

D.2 Using the XML language identifier string

When importing from an XSD Schema, previous versions of the present document (up to v4.3.1) required to use the
following language identifier strings:

e "XML" or "XML1.0" for W3C XML 1.0; and

e "XMLL1.1" for W3C XML 1.1.

ETSI

120 ETSI ES 201 873-9 V4.5.1 (2013-04)

These strings are deprecated and have been replaced by another string (see clause 5) and may be fully removed in a
future edition of the present document.

NOTE: Please note, that the encoding attribute values associated with the XSD to TTCN-3 language mapping
specified in the present document remain unchanged (see clause B.2).

ETSI

121 ETSI ES 201 873-9 V4.5.1 (2013-04)

Annex E (informative):
Bibliography

ISO/IEC 646: "Information technology - 1SO 7-bit coded character set for information interchange™.

ETSI

122 ETSI ES 201 873-9 V4.5.1 (2013-04)

History
Document history

V3.3.1 July 2008 Publication

V4.1.1 June 2009 Publication

V4.2.1 July 2010 Publication

V4.3.1 June 2011 Publication

V4.4.1 April 2012 Publication

V4.5.1 February 2013 Membership Approval Procedure MV 20130423: 2013-02-22 to 2013-04-23
V4.5.1 April 2013 Publication

ETSI

	Intellectual Property Rights
	Foreword
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Introduction
	4.1 Conformance and compatibility

	5 Mapping XML Schemas
	5.1 Namespaces and document references
	5.1.1 Namespaces
	5.1.2 Includes
	5.1.3 Imports
	5.1.4 Attributes of the XSD schema element
	5.1.5 The control namespace

	5.2 Name conversion
	5.2.1 General
	5.2.2 Name conversion rules
	5.2.3 Order of the mapping

	5.3 Mapping of XSD schema components
	5.4 Unsupported features

	6 Built-in data types
	6.1 Mapping of facets
	6.1.1 Length
	6.1.2 MinLength
	6.1.3 MaxLength
	6.1.4 Pattern
	6.1.5 Enumeration
	6.1.6 WhiteSpace
	6.1.7 MinInclusive
	6.1.8 MaxInclusive
	6.1.9 MinExclusive
	6.1.10 MaxExclusive
	6.1.11 Total digits
	6.1.12 Not specifically mapped facets

	6.2 String types
	6.2.1 String
	6.2.2 Normalized string
	6.2.3 Token
	6.2.4 Name
	6.2.5 NMTOKEN
	6.2.6 NCName
	6.2.7 ID
	6.2.8 IDREF
	6.2.9 ENTITY
	6.2.10 Hexadecimal binary
	6.2.11 Base 64 binary
	6.2.12 Any URI
	6.2.13 Language
	6.2.14 NOTATION

	6.3 Integer types
	6.3.1 Integer
	6.3.2 Positive integer
	6.3.3 Non-positive integer
	6.3.4 Negative integer
	6.3.5 Non-negative integer
	6.3.6 Long
	6.3.7 Unsigned long
	6.3.8 Int
	6.3.9 Unsigned int
	6.3.10 Short
	6.3.11 Unsigned Short
	6.3.12 Byte
	6.3.13 Unsigned byte

	6.4 Float types
	6.4.1 Decimal
	6.4.2 Float
	6.4.3 Double

	6.5 Time types
	6.5.1 Duration
	6.5.2 Date and time
	6.5.3 Time
	6.5.4 Date
	6.5.5 Gregorian year and month
	6.5.6 Gregorian year
	6.5.7 Gregorian month and day
	6.5.8 Gregorian day
	6.5.9 Gregorian month

	6.6 Sequence types
	6.6.1 NMTOKENS
	6.6.2 IDREFS
	6.6.3 ENTITIES
	6.6.4 QName

	6.7 Boolean type
	6.8 AnyType and anySimpleType types

	7 Mapping XSD components
	7.1 Attributes of XSD component declarations
	7.1.1 Id
	7.1.2 Ref
	7.1.3 Name
	7.1.4 MinOccurs and maxOccurs
	7.1.5 Default and Fixed
	7.1.6 Form
	7.1.7 Type
	7.1.8 Mixed
	7.1.9 Abstract
	7.1.10 Block and blockDefault
	7.1.11 Nillable
	7.1.12 Use
	7.1.13 Substitution group
	7.1.14 Final
	7.1.15 Process contents

	7.2 Schema component
	7.3 Element component
	7.4 Attribute and attribute group definitions
	7.4.1 Attribute element definitions
	7.4.2 Attribute group definitions

	7.5 SimpleType components
	7.5.1 Derivation by restriction
	7.5.2 Derivation by list
	7.5.3 Derivation by union

	7.6 ComplexType components
	7.6.1 ComplexType containing simple content
	7.6.1.1 Extending simple content
	7.6.1.2 Restricting simple content

	7.6.2 ComplexType containing complex content
	7.6.2.1 Complex content derived by extension
	7.6.2.2 Complex content derived by restriction

	7.6.3 Referencing group components
	7.6.4 All content
	7.6.5 Choice content
	7.6.5.1 Choice with nested elements
	7.6.5.2 Choice with nested group
	7.6.5.3 Choice with nested choice
	7.6.5.4 Choice with nested sequence
	7.6.5.5 Choice with nested any

	7.6.6 Sequence content
	7.6.6.1 Sequence with nested element content
	7.6.6.2 Sequence with nested group content
	7.6.6.3 Sequence with nested choice content
	7.6.6.4 Sequence with nested sequence content
	7.6.6.5 Sequence with nested any content
	7.6.6.6 Effect of the minOccurs and maxOccurs attributes on the mapping

	7.6.7 Attribute definitions, attribute and attributeGroup references
	7.6.8 Mixed content

	7.7 Any and anyAttribute
	7.7.1 The any element
	7.7.2 The anyAttribute element

	7.8 Annotation
	7.9 Group components
	7.10 Identity-constraint definition schema components

	8 Substitutions
	8.1 Element substitution
	8.1.1 Head elements of substitution groups
	8.1.2 Substitution group members

	8.2 Type substitution

	Annex A (normative): TTCN-3 module XSD
	Annex B (normative): Encoding instructions
	B.1 General
	B.2 The XML encode attribute
	B.3 Encoding instructions
	B.3.1 XSD data type identification
	B.3.2 Any element
	B.3.3 Any attributes
	B.3.4 Attribute
	B.3.5 AttributeFormQualified
	B.3.6 Control namespace identification
	B.3.7 Default for empty
	B.3.8 Element
	B.3.9 ElementFormQualified
	B.3.10 Embed values
	B.3.11 Form
	B.3.12 List
	B.3.13 Name
	B.3.14 Namespace identification
	B.3.15 Nillable elements
	B.3.16 Use union
	B.3.17 Text
	B.3.18 Use number
	B.3.19 Use order
	B.3.20 Whitespace control
	B.3.21 Untagged elements
	B.3.22 Abstract
	B.3.23 Block
	B.3.24 Use type
	B.3.25 Process the content of any elements and attributes
	B.3.26 Transparent
	B.3.27 No Type

	Annex C (informative): Examples
	C.1 Example 1
	C.2 Example 2
	C.3 Example 3
	C.4 Example 4

	Annex D (informative): Deprecated features
	D.1 Using the anyElement encoding instruction to record of fields
	D.2 Using the XML language identifier string

	Annex E (informative): Bibliography
	History

