ETSI ES 201 873-4 va.4.1 (2012-09

ETSI Standard

Methods for Testing and Specification (MTS);
The Testing and Test Control Notation version 3;
Part 4: TTCN-3 Operational Semantics

2 ETSI ES 201 873-4 V4.4.1 (2012-04)

Reference
RES/MTS-136-4 T3 ed441 OS

Keywords

interoperability, language, methodology, MTS,
testing, TTCN

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).
In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2012.
All rights reserved.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members.
3GPP™and LTE™ are Trade Marks of ETSI registered for the benefit of its Members and
of the 3GPP Organizational Partners.
GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.

ETSI

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
http://portal.etsi.org/chaircor/ETSI_support.asp

3 ETSI ES 201 873-4 V4.4.1 (2012-04)

Contents

INtellectual Property RIGNES.... ..ottt bbb renn e 7
0 Yo (o SRS 7
1 o010 SR 8
2 REFEIBINCES ...ttt b ettt b e s e et et e st et R e e bt e bt s b e se e ae st e se e st e benbeebeneeneenteneas 8
21 NOIMBLIVE FEFEIENCES ... ceeeeerieete ettt sttt a et e e eestesbesaeebeesees e e e esebeseeebesaeeseeneenseneeseesbesaessesneeneensens 8
22 INfOrMEEIVE FEFEIENCES. ... ettt st sttt a e et et e st e st e besaesaeeneenseeeseesbesaeerenneeneeneens 8
3 Definitions and aDbrEVIBLIONS.........c.oieeeieeiese ettt ee e e stesre e e snesaeeneesneeneeseeenes 8
31 D= T aT] (0] PO SO PP PRUPTPRUSTOSOI 8
3.2 ADDIEVIBLIONS ...ttt b b h e h et e e e e e e bt e bt eheeh e et et SR e eb e e Rt e Rt e e e R e besheebenneeneennen 8
4 gLl [N o1 o o ST RSRS 8
5 Structure of the PreSent AOCUMENL ..o b e nn e enes 9
6 = o o] 9
7 Replacement Of SO FOMMSoiiie e et seesreene e beereas 10
7.1 Order Of rEPIACEMENE SIEPS......oieeeiite ettt bbbt b et b e bt b e b et b e st et b et et eb e b 10
7.2 Replacement of global constants and MOodule ParaMELErS.........c.coieeiriieeirieeeeree s 11
7.3 Embedding single receiving operations into alt StALEMENES..........cccoireeiiirieireeereer s 11
7.4 Embedding stand-alone altstep callSinto alt SLALEMENLS.........cocoiiiriierirer s 12
7.5 Replacement Of iNterlEave STAEEMENESc.co i 12
7.6 Replacement Of trigQer OPErELIONS.........c.eiueiee e ieese e ete et e s e e e ste s stesaeseesreesse e teestesseesseesseeseensesneesneesnes 25
7.7 Replacement Of SElECt-CaSE SLALEMENLS.........cciicie et st e s esreete e re e teeteeneenneennes 25
7.8 Replacement of Simple break StateMENLS...........cuv et re e e nneesnes 27
7.9 Replacement of CONtINUE SLALEMENESuiieeiie ettt e s et e e te e teeeeeneenneeenes 27
7.10 Adding default parameters to disconnect and unmap operations without parameters..........cccoevvecvecvcceeseenen, 28
7.11 Adding default valueS Of PAraMELEN'S..........ocviiierieece et et se e s e ee et e enaeenaenseensean 28
8 Flow graph semantiCS Of TTCN-3........o ittt ae sttt te e seeeneeneeneeas 28
8.1 FLOW GFBINStttk b ek btk b e e h bt e bbb bbb bbbt bt e e bt e 29
811 FLOW QI8 FIBIME....cee ettt b e et b e et b e bbbt b et et b e b et et b s 29
812 FIOW QI8 NOOES.......c.eeiieeieeieete ettt bbb bbbt b b s et b e s e et b bbb 29
8121 SEAIT NMOUES.ttt sttt h et b e se ekt s bt bt e bt e a e e s e e e e b e SRt e b e n bt eh e e st e e e b e sbenbeeneebe e e ennennens 29
8.1.2.2 BN NOAES......ceeee et e bbbt e b bt eb e heeb e e st e e e b e se et e saeeb e e e e e s 29
8.1.23 BSIC NOES ...ttt bbbt bbb e bbbt bt et et ne e e bt bt ehe et e b e besheeb e e e eneenen 29
8.124 REFEIENCE NOTES ...ttt bbbttt seeeb e s bt e b e e e e b e besaeebesaeeneenen 30
81241 OR combination Of referenCe NOOES...........coirieieee bbb 30
8.1.24.2 Multiple occurrences Of referenCe NOUES..........cei i 30
8.1.3 FLOW TINES ..ottt ettt a et e e ee s e e be s et es e e e emeeseeseeebesaeebeemeeneeneeaeeseesaeeseeneenseseeas 31
814 FIOW GFah SEOIMENES ...ttt ettt et b e et b e it b e bt b e e bt b e se et b e b et eb e b 31
8.1.5 (0001111011 1TSS 32
8.1.6 Handling of flow graph deSCIPLIONS.........oiveiiiei bbb 33
8.2 Flow graph representation Of TTCN-3 DENAVIOUIccceiiiriiirieirreree e 33
821 Flow graph CONSLIUCLION PrOCEAUNEcc.eeiuieieeieeeeesteesee e teete e see e saeesteeae et e e saass e e teebe e seeseennesneeenes 33
8.2.2 Flow graph representation of MOAUIE CONLIOLccueiieiieiiee e 34
8.2.3 Flow graph representation Of tESE CASESccciieiieiicie et se e e sttt ettt e e e e naeenesneeenes 35
8.24 Flow graph representation Of FUNCLIONSccveiiciiiie et 35
8.25 Flow graph representation Of @ltSIEPRSc.viieiierieece e ettt aeeee e enes 36
8.2.6 Flow graph representation of component type definitions...........ccccvecvvceieere e 37
8.2.7 Retrieval of start Nodes of FIOW graphs.........cooi e 38
8.3 State definitions for TTCN-3 MOUUIES.........coiieeee ettt sreebe e nee e eneas 38
831 Yoo (B 1L = (= PSRN 38
8311 ACCESSING the MOAUIE SLALEccvieiiiieree ettt st b e 39
8.3.1a CONFIGUIBLION SEAEE. ...ttt sttt ettt et b e et b e se et e b e se et e b e se et bt sb e e eb e s b e e ebesbeneebesbennenen 39
8.3.1al Accessing the CONfigUIalion SEALE.........c.ccueieeieeece et e st e e e sreesneeseenneans 39

ETSI

832
8321
8.3.2.2
8.3.23
8324
8.3.25
8.3.2.6
8.3.2.7
8.3.3
8331
8.3.3.2
834
8.4
84.1
84.2
843
844
8.4.5
8.4.6
8.5
85.1
8.6
8.6.1
86.1.1
8.6.1.2
8.6.1.3
8.6.14
8.6.2

9

9.1
9.2
9.2a
9.2a1
9.2a.2
9.3
9.3.1
9.3.2
9.3.3
9.34
9.35
9.4
9.5
9.5a
9.6
9.6.1
9.6.1a
9.6.2
9.6.3
9.6.4
9.6.5
9.6.6
9.7
9.8
9.8.1
9.8.2
9.8a
9.8a1
9.8a.2
9.9
9.10
9.11

4 ETSI ES 201 873-4 V4.4.1 (2012-04)

Y0 == 40
ACCESSING ENLILY SIALES ...euveieeiieeeste et ee st e e te e e e e ste e eeeeeeaeeeseesbe e seestesssesseesneesneesneesseeseenseans 41
Datastate and variabl € DIiNAINGcceeiieii e 43
ACCESSING AL SLALES.cueeieeeieeesee et et e e e ae e esae e teeseeseeeseesseesseenseentesnsesneesnnesneesneanseensenns 43
Timer state and timer DINGINGccveieeiieii e e e st e re e aeeteeneesneesnes 44
ACCESSING LHMEE SLALES....c.ueeieeeieeecte e e e e e e s e e ste e te et e eseesse e seenteestesssesneesneesneesneenseensenns 45
Port references and POrt DiNGINGcceiireiiiree et b e eb e seene 46
ACCESSING POIT FEFEIENCESecviieeecee sttt b et sb e et eb et st sn e 47

PO SLALES. ...ttt b e e e e bt e s et e h et e e he e e e R et e e Re e e eRe e e e RR e e eRn e e eRe e e aRr e e snneennreennreennnas 47
Handling of CONNECEIONS @MONQ POITS.eiviueruirieieeierieeeie st se et e sb e e sbe e e b sbeneenea 48
HaNAING OF POIT SEALEScveeeeeeteieeeet ettt b e bbb e et sa e b e sbennenea 48

General functions for the handling of MOAUIE STALESccueeieiie e 49

Messages, procedure calls, replies and EXCEPLIONS..........ccviiiieieereere et e e eesnee e 50

Y SS-= 0 SRR SRPTR 50

Procedure CallS @and FEPIIESc.veee ettt et et et e et e e reeteeneeneeenes 50

(0T 0] T 51

Construction of messages, procedure calls, replies and eXCEPLIONS..........cccvvcevveerieceece e 51

Matching of messages, procedure calls, replies and EXCEPLIONScoeerererireienese e 51

Retrieval of information from reCelVed ItEBMS..........c.coi i 52

Call records for functions, altStePs aNd tESE CASES..........oririrererere ettt e ne s 52

HaNAIING OF CAll FECOITS. ...ttt bbb et b e et b e bbb 52

The evaluation procedure for A TTCN-3 MOTUIEc.ciiiiiiiieereee e 53

EVAIUBLTON PRASES ...ttt ettt b et b e et b e et b et b e et b et b e bbb 53
Phase |2 INITTAIIZAETON. ..ot et e b bt sb e neen 53
L T= S S | oo = SR 54
PRESE T2 SEIECTION ...ttt e b et b e bt e e et e be b sb e e e enneneens 54
PRESE TV1 EXECULION ...ttt sttt ettt st b ettt s e e e sa e eb e bt ebe e e e b e besbesbe e e enneneen 54

GlODE FUNCLIONS.......e et bbbttt b e et b e s bt eb et e b et e sbesb e s neene e e ennas 54

Flow graph segments for TTCN-3 CONSIIUCESc..oieeiiiiieeieii ettt ste et aesre e sreereas 55
F o 0 R (| P 55

F e A7 S = =0 | R 56
AlIVE COMPONENT OPEIELION ...tttk b bbbt b bbbt b et s bt e e bbb s e b b e e b e e e nnes 56
Flow graph segment <aliVe-COMP-BCESociiiieiicie et e st e st eeaeeneesneeenes 58

Flow graph segment <aliVe-COMP-SNAD>ccveiieiiiieseesee e esesae e s esaeesteeeeeaessaessaesteenteenseenteeneesnnesnes 59

F LR = (=011 o | PRSPPSO 59

Flow graph segment <take-SNAPSNOL>cccciiiiiiiieiesees et e st e be e te s e eteeneesneeenes 61

Flow graph segment <reCeiViNG-branCh>ccoooiiiiecie e 62

Flow graph segment <altstep-call-branch>.............c.oooooeiie e 63

Flow graph segment <elSe-Branch> ... 64

Flow graph segment <default-EVOCaHON>..........cccoivieiiiiee et be et ae s 65

ATESEEP CAIL. ..t b bt bbb e b b e bt E e bt R e bt e et bt bt eb e b e bt r e ene s 66
ASSIGINIMENTE SEAEEMENT. ...ttt ettt b et b bt b bt eb s b e sttt s b e e eb e s b e e eb e s b e e ebesb et ebese e e ebesbe st ebeebennenens 66
Break StALEMENES iN @ITSEEDS.ciuiieeieeeirieiet sttt b bbb et b et b e e 66
(0= 0] = = 11 oo TSRS 67

Flow graph segment <nb-Call-With-ONE-TECEIVEI>..........cccceeiieiieie e 69

Flow graph segment <nb-call-with-multiple-TECEIVEIS>.........cco e 69

Flow graph segment <nb-Call-WithOUL-TECEIVE>..........ccue et 71

Flow graph segment <b-call-Without-dUration™ccccoeeiieiiiie i 71

Flow graph segment <b-Call-With-AUration>ccocueiieiieiiece et 72

Flow graph segment <call-reCeption-Part>...........cccccvverieieierieeseie e sre et 73

Flow graph segment <catCh-timeOUt-EXCEPLION..........ccccciiieiieiieece e 74

102 (01 o] o< = [o] 0 EEN USSR TSRV PRSP 74
CRECK OPEIALTON. ...ttt b et b e et b e et bbb s e e bt b s e he b e e e he e b e e eneeb e s e et eb e s b e e eb et e e e 75
Flow graph segment <CheCK-With-SENAEr=ccooiiiiiii e 76
Flow graph segment <CheCK-WithOUL-SENAEI>...........ccceiiiiiiiie e 77
(0191501 16 =1 (= o0 0] = |1 o o SR 78
Flow graph segment <ChECK-POI-SIalUSSccuiiiiiieries ettt aesne e e 79
Flow graph segment <CheCK-port-CONNECLIONS...........c.ecieiiererie e see e e et ee e eeesnee e 79
(@<= T oo 0] 7= 110 o 1SS 8l
(01011 o100 0= = 11 o SRS 8l
CONSLANT AEFINITTON ...ttt bbbt et s et bRt eb e e he s heehe e e e s e besbeebesneeae e e eneas 82

ETSI

9.12
9.13
9.13.1
9.13.2
9.14
9.14.1
9.14.2
9.14.3
9.144
9.14.5
9.15
9.16
9.17
9.17.1
9.17.2
9.17.3
9.18
9.18.1
9.18.2
9.18.3
9.184
9.19
9.20
9.20a
9.20b
9.21
9.22
9.23
9.24
9.24.1
9.24.2
9.24.3
9.24.3a
9.24.4
9.245
9.25
9.26
9.27
9.28
9.28a
9.29
9.29a
9.2%a.1
9.29a.2
9.29a.3
9.29b
9.29b.1
9.29c
9.30
9.31
9.32
9.33
9.34
9.35
9.35.1
9.35.1a
9.35.2
9.36
9.37
9.37.1
9.37.2
9.37.3

5 ETSI ES 201 873-4 V4.4.1 (2012-04)

L@ (Yo o< = 1o o SRS 83
DEACTIVALE SLAEIMEN.........eeeeieieeete ettt sttt b bt st e et et b e bt eb e e st e e e eese e ke se e ebeeme e e e neeabenbeebeebeeneennennen 84
Flow graph segment <deactivale-One-defaUlt>.............ccovieiie e 85
Flow graph segment <deactivate-all-defaultS>...........ccooi e e e 85
D11 ol] 0= ot o o= (0] o 1SR 86
Flow graph segment <diSCONNECE-0NE-PaI-PaAIT>ccceeereereerierieeseeseeseeseesseeeeseesseesteesseessesssesssseesens 86
Flow graph segment <diSCONNECE-alI>covoiieiiiicce et 88
Flow graph segment <diSCONNECE-COMPoouiiiiieiieieeere ettt see e e seeseeseesnesbesneeneeneens 89
Flow graph segment <diSCONNECE-POITS........c.oiiiiiiiiiiecee et e e seesbe e e eneeneens 90
Flow graph segment <di SCONNECE-tWO-PAr-PaITS>.........couririeiriirieienie ettt sbe e 90
DO-WHITE SEAEEIMENL. ...ttt sttt et e st et e e e eeseesbesaeeaeeneeneeneeseesbesaeeneeneanseneens 91
DONE COMPONENE OPEIGLION. ... eeiteeieeeieeeteeteeeeesteestees e e e ssteseesseesseesseesseanseasseaseesseesseesseesensesseesneesseessnensennsenns 92
EXECULE SLALEIMIENL ..ottt et sh e e h e e st e an e ea s e she e s b e e b e e areenesmeesaeesneesneenreenneans 94
Flow graph segment <exeCute-WithOUL-tiIMEOULSceieeiieieeie e 95
Flow graph segment <EXECULE-TIMEOULS............ccciiiieiecie e ie e te et e s et e e e e e teeneesneennes 96
Flow graph segment <OYNaMIC-EITOIS...........cccuiieiieeseesee e eestesee e seesaeesteeaeesaessaessaesteeseeseesesnsesneesnns 97
0 == o 97
Flow graph Segment KHE-VAIUESooueieee ettt sae st e e e neen 98
FIOW graph SEgMENT SVAI-VBIUESccoiiiiiiieeeete st st 98
Flow graph segment <FUNC-0P-Call> ...t st seen 99
Flow graph segment <OPErator-apPl>........cocoiririie ettt e et saesbe e eneeneens 99
Flow graph segment <finalize-ComPONENt-iNIT>cooieiriirir s 100
Flow graph segment <init-COMPONENE-SCOPEScuerririeuiriirieertisteiereeseei st sb e e b s sbe e esesaesneneens 100
Flow graph segment <init-SCOPE-WIth-FUNS-0N>ccco i 101
Flow graph segment <init-SCOPe-WithOUL-TUNS-0N>ccociiiieiriieeiesees e 101
Flow graph segment <parameter-handling™...........ccooiiir e iieie e e snees 102
Flow graph segment <statement-DIOCK>cco i 102
FFOI SLBEEIMEIL ...ttt et s h e h e e a e et e e e e eR e e R e e R e e R e e e e sae e sae e she e nRe e n e e reenrennrennnennees 103
FUNCLION CaIL ... bbb e bbbt b e bt b et et e b e b e ebeeneen e e e e e e 104
Flow graph segment <value-par-CalCUIaLioN>...........c.cciiuiiririerieirieesesiees e 106
Flow graph segment <ref-par-Var-CalC>coviiriiiiieiiiseise ettt sa et ae s 106
Flow graph segment <ref-par-timer-CalC>couviiiiieiiii e 107
Flow graph segment <ref-par-port-CalC>covirieiiineiieseesesee et 107
Flow graph segment <user-def-fUNC-Call>...........cceiiiiieiiiiesesese e 108
Flow graph segment <predef-ext-fUNC-Call>.............ccvriiie i 109
LT or= | oo = = 1) P 109
LT = o LY 0] = 1 e o 109
LT VL= o [Toi l] = = o] 110
(GOLO SLALEMIENL.eeeieeete ettt ettt st sa e et e n e as e ae e s b e e R e e b e e Resaeeshe e sRe e nR e e s e ean e emn e emneemeenbeenbeenneeneennennns 110
L= L 00 0] 1= (o) o S 111
[F-E1SE SEALEIMENLottt et sttt e b et e e e e neem e e ee e besee et e eneeneenseneesbeseeeseeneeneeneeneas 111
Kill COMPONENT OPEIBEIION......c.ceuiitieetirteiet sttt ettt ettt b bbbt e b e eb e et e st s bt e e seeb et ne e s nb e s ens 112
Flow graph Segment SKiTI-MIECS ..o bbb 114
Flow graph segment <Kill-COMPONENEScoiiiriiiiiieiriees bbb 115
Flow graph segment <Kill-all-ComP>.......c.coiiiiiiieere bbb 116
Kl €XECULTON SEALEIMENTeieieeieieie ettt e ettt et eae e s e e e eese e beseesaeeaeeseeseeneensesseseesaeeneeneeneaneeses 116
Flow graph segment <Kill-CONLIOI>ccuioiiiie et se e e e nreeneens 117
Killed COMPONENT OPEFBLIONccueeiieeie et ee st e s ee e sae e te et e e e st e e te e e entesseesaeesaeesseenseenseenseensensansnnns 118
LAIDEI SEAEEIMENT ...t e bbb b et b e Rt bt et e e e b e bt aeene e e e 119
[0 [=0 | PSPPSR 119
Y =0 I o 1< = 1 o] o USSR 120
(0 0= = 1 o o S 120
Lo 0 (= o == 4o o SRR 121
RAISE OPEIBLION ...ttt ettt bt b et b e bt e e b bR e bRt h bR h e Rt R R Rt b e n e n e enn 121
Flow graph segment <rai Se-With-0NE-rECEIVEIr-0p>cooiiiiirireeiereese et 122
Flow graph segment <rai se-with-multiple-reCalVErS-0p>........ccoiiiiiiri e 122
Flow graph segment <rai Se-WithOUL-TECEIVEIr-0P>ccueviiiieiriieise e 124
LR e o I U0 1= e o< (o] o USSP 125
LR LS o A= o o< - (] o) o S 126
Flow graph segment <reCaiVE-WIth-SENAEI>...........cciieiieiece et eneens 127
Flow graph segment <reCeiVe-WithOUL-SENAEI>............ccoeiieiiiieee e ene s 128
Flow graph segment <reCEiVE-aSSIgNMENES..........ccueiiereereeieeseeseeseesteeae e sseesseesteessesseeseesaeesseensesnsenns 129

ETSI

6 ETSI ES 201 873-4 V4.4.1 (2012-04)

9.38 RS 0 S < 0 11 | PSPPSR 129
9.39 0] VA0 0= = 1o o USSP 130
9.39.1 Flow graph segment <reply-With-0Ne-reCEIVEIr-0P>cccceiiueieeiieseeseeeseesee e seesae s e see e e saeenseeseens 131
9.39.1a Flow graph segment <reply-with-multiple-reCeIVErS-0P>occveiieiiee e 131
9.39.2 Flow graph segment <reply-WithOUL-FECEIVEr-0D>cccoiceiieeiee et ete e e ee e te e s ee e e e enneenneens 133
9.40 RELUM SEBLEIMENT ...ttt r e r et ae e s b e e s b e R e e e e s e e sae e sheenre e neenreennennnennnennees 133
9.40.1 Flow graph segment <return-With-ValUE> ..o 135
9.40.2 Flow graph segment <return-WithOUE-VEIUES ..o e 136
941 RUNNING COMPONENT OPEIGLION ..ottt ettt b et b et sb et n e e enis 137
9.41.1 Flow graph segment <running-COMP-ACE>c.coirieiririeiriesieeeeste ettt b e b 138
9.41.2 Flow graph segment <running-COMP-SNBI>eurutrteirueriereeiestessesessessee s e b e s b et sessesbesseneens 139
9.42 RUNNING TIME OPEIBEION. ... eeitieiieeie ettt e ee e e sae e te e e e esaesteeste e teentesneesneesaeesaeeseenseenseansesnensnnns 140
9.43 TS 0 0= = 1 141
9.44 = 10 [T o 1= = 1 o) o 1 141
9.44.1 Flow graph segment <send-With-0Ne-reCEIVEr-0P>cccii i iee e eae e 142
9.44.1a Flow graph segment <send-with-multiple-reCeIVErS-0P>ccoeieeii e 142
9.44.2 Flow graph segment <send-WithOUL-FECEIVEI-0P>cccvieieeiiese et ee e re e nreeneens 144
9.45 SEIVEIAICT OPEIGLION.ceeetieeiet et bbbt bbb et b b e st e b bbb 144
9.46 Start COMPONENT OPEFALTON.cvieeuirtiietertet ettt s bbb st eeae b e b e st b e s e st eae s b e s e st e b et e e ebesbe e 145
9.47 SEAMT POIT OPEFBLION.......c.eceeteeetertee ettt ettt e e bbbt s e bbbt e bt b e e e bt b et e bt e b e b e st e b e bt et e bt 147
9.48 SEAME TIMEN OPEIGLIONttt e b et b e a bbb et e bt b e s st e b et et b b 147
9.48.1 Flow graph segment <start-timer-op-defallit> ... 148
9.48.2 Flow graph segment <start-timer-op-dUration............coeorerieinineeeese e 149
9.49 S o] el] g0 T0] 1= 0 A] 1= 11 o] 1 149
9.49.1 Yoo TSR 151
9.49.2 Flow graph segment <stop-alivVe-COMPONENTES..........ccviieiieiee e seese e eae e e eetesaeseesreesaeenseenseens 151
9.49.3 Flow graph segment <SEOP-all-COMPcuiiiiiiccic et ae e e e sneenreeneens 152
9.50 StOP EXECULTION SLBLEIMIENT ... eeieeiesie et ste et et et e e s e s e s teesteesseeseesseesaeesseenteenseeneensaesseesseesseeseenneanes 153
9.51 IS0 o] oo 0] 0= = 1 o o 154
9.52 SLOP TIMES OPEIBLION ...ttt ettt b et b b s bbbt bbb et b b e e bt e b e e e st b e bt eb e bt 155
9.53 SYSEEIM OPEIELTION ...tttk bkt b e st b b s bbbt £t e bt b et h b e e e bt e b e e e bt e b e et b e r et 155
9.53a TESE CASE SEOP OPEFALTON ...ttt ettt b et b e bbbt b e b e bt e et b et et b s bt ebe bt 156
9.54 QLI 0= (<ot =T o) o R 156
9.54.1 Flow graph segment <timer-decl-default>..............coociiii e 157
9.54.2 Flow graph segment <timer-deCl-NO-0Ef> ..o e 157
9.55 L= el 1 1= e o= (o) o S 158
9.56 L0 L0 7= 10] o]0 1= (0] o USSP 159
9.56.1 Flow graph segment <UNMER-al1>cooui it et re e saeeaesaeesneenseenneens 161
9.56.2 Flow graph segment <UNMED-COMMP™ccuiiieriieieeieeieseeseeesreesseesseeeseseesseasseesseesseessessssssssseesssenseensenns 162
9.56.3 Flow graph Segment SUNMED-POIE>.........coiiiieeie e see e steeseestesee e e sreesse e seesseessessaessaesseesaeesaeenseensenns 163
9.57 V= L= o L= (<o = T 1o o S 163
9.57.1 Flow graph segment <var-declaration-iNit>..........cccooeiiiriee e 164
9.57.2 Flow graph segment <var-declaration-Undef>............cccoiiiiieiiie e 165
9.58 WHIT@ SEELEMENL ...ttt ettt ettt et e st et e e e et e s aeese e e e eeseeseeebesaeeseeneenee e enseseeseeseeeneeneeneeneas 165
10 Listsof operational SemantiC COMPONENTSeeeerereeriesieiesesee e ste e e seeerees e sreeeesseeeeseesneeneeseeenes 166
10.1 FUNCLIONS @NO SEALES. ... ettt e bbb e b se e ke s bt e bt e e e e et e sbeebesaees e e e ennenes 166
10.2 0T o = =Y AT Lo o S 167
10.3 Flow graphs of TTCN-3 behaviour desCriptions...........ccciceiieiieri e snees 168
104 FIOW Qraph SEgMENES.eciiiie ettt ste et e et eeae e st e e teesteentesseesaeesaeesaeenseenteenseensesnansnnns 168
[TS S 171

ETSI

7 ETSI ES 201 873-4 V4.4.1 (2012-04)

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI member s and non-member s, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards’, which is available from the ETS| Secretariat. Latest updates are available on the ETSI Web

server (http://ipr.etsi.org).

Pursuant to the ETSI IPR Palicy, no investigation, including I PR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword

ThisETSI Standard (ES) has been produced by ETSI Technical Committee Methods for Testing and Specification
(MTS).

The present document is part 4 of amulti-part deliverable. Full details of the entire series can be found in part 1 [1].

ETSI

http://webapp.etsi.org/IPR/home.asp

8 ETSI ES 201 873-4 V4.4.1 (2012-04)

1 Scope

The present document defines the operational semantics of TTCN-3. The present document is based on the TTCN-3
core language defined in ES 201 873-1 [1].

2 References

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
reference document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
http://docbox.etsi.org/Reference.

NOTE: While any hyperlinksincluded in this clause were valid at the time of publication ETSI cannot guarantee
their long term validity.

2.1 Normative references
The following referenced documents are necessary for the application of the present document.

[1] ETSI ES 201 873-1: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 1: TTCN-3 Core Language".

2.2 Informative references

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

Not applicable.

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in ES 201 873-1 [1] apply.

3.2 Abbreviations

For the purposes of the present document, the following abbreviations apply:

BNF Backus-Nauer Form

MTC Master Test Component

SUT System Under Test

TTCN Testing and Test Control Notation
4 Introduction

This clause defines the meaning of TTCN-3 behaviour in an intuitive and unambiguous manner. The operational
semantics is not meant to be formal and therefore the ability to perform mathematical proofs based on this semanticsis
very limited.

ETSI

http://docbox.etsi.org/Reference

9 ETSI ES 201 873-4 V4.4.1 (2012-04)

This operational semantics provides a state oriented view on the execution of a TTCN module. Different kinds of states
are introduced and the meaning of the different TTCN-3 constructsis described by:

1) using state information to define the preconditions for the execution of a construct; and
2) defining how the execution of a construct will change a state.

The operational semantics is restricted to the meaning of behaviour in TTCN-3, i.e. functions, altsteps, test cases,
module control and language constructs for defining test behaviour, e.g. send and receive operations, i f-else-, Or
while- statements. The meaning of some TTCN-3 constructs is explained by replacing them with other language
constructs. For example, interleave statements are short forms for series of nested alt statements and the meaning
of each interleave statement is explained by its replacement with a corresponding series of nested alt statements.

In most cases, the definition of the semantics of alanguage is based on an abstract syntax tree of the code that shall be
described. This semantics does not work on an abstract syntax tree but requires a graphical representation of TTCN-3
behaviour descriptions in form of flow graphs. A flow graph describes the flow of control in afunction, alt step, test
case or the module control. The mapping of TTCN-3 behaviour descriptions onto flow graphsis straightforward.

NOTE: The mapping of TTCN-3 statements onto flow graphsis an informal step and is not defined by using the
BNF rulesin ES 201 873-1 [1]. The reason for this is that the BNF rules are not optimal for an intuitive
mapping because several static semantic rules are coded into BNF rulesin order to allow static semantic
checks during the syntax check.

5 Structure of the present document

The present document is structured into four parts:

1) Thefirst part (see clause 6) describes restrictions of the operational semantics, i.e. issues related to the
semantics, which are not covered by the present document.

2) The second part (see clause 8) defines the meaning of TTCN-3 short cut and macro notations by their
replacement with other TTCN-3 language constructs. These replacementsin a TTCN-3 module can be seen as
pre-processing step before the module can be interpreted according to the following operational semantics
description.

3) Thethird part (see clause 9) describes the operational semantics of TTCN-3 by means of flow graph
interpretation and state modification.

4) Thefourth part (see clause 10) specifies the mapping of the different TTCN-3 statements onto flow graph
segments, which provide the building blocks for flow graphs representing functions, alt steps, test cases and
module control.

6 Restrictions

The operational semantics only covers behavioural aspects of TTCN-3, i.e. it describes the meaning of statements and
operations. It does not provide:

a) A semanticsfor the data aspects of TTCN-3. Thisincludes aspects like encoding, decoding and the usage of
data imported from non-TTCN-3 specifications.

b) A semanticsfor the grouping mechanism. Grouping is related to the definitions part of a TTCN-3 module and
has no behavioural aspects.

¢) A semanticsfor the import statement. The import of definitions has to be done in the definitions part of a
TTCN-3 module. The operational semantics handlesimported definitions as if they are defined in the
importing module.

ETSI

10 ETSI ES 201 873-4 V4.4.1 (2012-04)

7 Replacement of short forms

Short forms have to be expanded by the corresponding complete definitions on a textual level before this operational
semantics can be used for the explanation of TTCN-3 behaviour.

TTCN-3 short forms are:

. lists of module parameter, constant and variable declarations of the same type and lists of timer declarations;

. stand-alone receiving operations;

. stand-alone altsteps calls;

. trigger operations,

. missing return and stop statements at the end of function and test case definitions;

. missing stop execution statements;

. interleave statements,

° select-case statements,

) break and continue Statements;

. disconnect and unmap operationswithout parameters; and

. default values of missing actual parameters.
In addition to the handling of short forms, the operational semantics requires a specia handling for module parameters,
global constants, i.e. constants that are defined in the module definitions part, and pre-processing macros. All references
to module parameters, global constants and pre-processing macros shall be replaced by concrete values. This means, it

is assumed that the value of module parameters, global constants and pre-processing macros can be determined before
the operational semantics becomes relevant.

NOTE 1: The handling of module parameters and global constants in the operational semantics will be different
from their handling in a TTCN-3 compiler. The operational semantics describes the meaning of TTCN-3
behaviour and is not a guideline for the implementation of a TTCN-3 compiler.

NOTE 2: The operational semantics handles parameters of and local constants in test components, test cases,
functions and module control like variables. The wrong usage of local constants or in, out and inout
parameters has to be checked statically.

7.1 Order of replacement steps

The textual replacements of short forms, global constants and modul e parameters have to be done in the following
order:

1) replacement of lists of module parameter, constant, variable and timer declarations with individual
declarations;

2) replacement of global constants and module parameters by concrete values,

3) replacement of all select-case statements by equivalent nested i £ -else statements;
4) embedding stand-alone receiving operationsinto alt statements,

5) embedding stand-alone altstep callsinto alt statements;

6) expansion of interleave Statements,

7) replacement of all trigger operations by equivaent receive operations and repeat statements;

ETSI

11 ETSI ES 201 873-4 V4.4.1 (2012-04)

8) adding return at the end of functions without return statement, adding sel f.stop operations at the end
of testcase definitions without a s top statement;

9) adding stop at the end a module control part without stop statement;

10) expansion of break statements;

11) expansion of continue statements;

12) adding default parametersto disconnect and unmap operations without parameters; and
13) adding default values of parameters.

NOTE: Without keeping this order of replacement steps, the result of the replacements would not represent the
defined behaviour.

7.2 Replacement of global constants and module parameters

Constants declared in the module definitions part are global for module control and all test components that are created
during the execution of a TTCN-3 module. Module parameters are meant to be global constants at run-time.

All references to global constants and module parameters shall be replaced by the actual values before the operational
semantics starts the interpretation of the module. If the value of a constant or module parameter is given in form of an
expression, the expression has to be evaluated. Then, the result of the evaluation shall replace all references of the
constant or module parameter.

7.3 Embedding single receiving operations into alt statements

TTCN-3 receiving operations are: receive, trigger, getcall, getreply, catch, check, timeout, and
done.

NOTE: Theoperationsreceive, trigger, getcall, getreply, catch and check operate on ports and
they allow branching due to the reception of messages, procedure calls, replies and exceptions. The
operations timeout and done are not real receiving operations, but they can be used in the same
manner as receiving operations, i.e. as aternativesin alt statements. Therefore, the operational
semantics handles timeout and done like receiving operations.

A receiving operation can be used as stand-al one statement in afunction, an atstep or atest case. The timeout
operation can also be used as stand-alone statement in modul e control. In such a case the receiving operation as
considered to be shorthand for an alt statement with only one alternative defined by the receiving operation. For the
operational semantics an alt statement in which the receiving statement is embedded shall replace all stand-alone
occurrences of receiving operations.

EXAMPLE:

// The stand-alone occurrence of

MyCL. trigger (MyType:?) ;

// shall be replaced by

alt {
[] MyCL.trigger (MyType:?) { }
1
// or
MyPTC.done;

// shall be replaced by

alt {
[l MyPTC.done { }

ETSI

12 ETSI ES 201 873-4 V4.4.1 (2012-04)

7.4 Embedding stand-alone altstep calls into alt statements

TTCN-3 alows calling altsteps like functions in functions, altsteps, test cases and module control. The meaning of a
stand-alone call of an atstep is given by an alt statement with one branch only that callsthe altstep. Thealt
statement is responsible for the snapshot that is evaluated within the altstep and for the invocation of the default
mechanism if none of the alternatives in the altstep can be chosen.

NOTE: An atsteps used in module control can only include aternatives with timeout operationsand an else
branch.

EXAMPLE:
// The stand-alone occurrence of

myAltstep (MyParlval) ;

// shall be replaced by

alt {
[1 myAltstep(MyParival) { }
1

7.5 Replacement of interleave statements

The meaning of an interleave statement is defined by its replacement by a series of nested alt statementsthat has
the same meaning. The agorithm for the construction of the replacement for an interleave statement is described in
this clause. The replacement shall be made on a syntactical level.

Withinan interleave statement it is not allowed:

1) tousethecontrol transfer statements for, while, do-while, goto, activate, deactivate, stop,
repeat and return,

2) tocal atsteps,
3) tocall user-defined functions which include communication operations;

4) to guard branches of the interleave statement with Boolean expressions; and

5) to specify else branches.

Due to these restrictions, all not mentioned stand-alone statements (e.g. assignment, 1og, send or reply), blocking
call operations and the compound statements interleave, if-else and alt can beused withinan interleave
statement.

NOTE 1: Blocking call operationsand if -else statements can be treated like stand-alone statements if they
have no embedded alt statements. In case of embedded alt statements, the alternatives contribute to
the interleave statement and need a specia handling. For simplicity, the algorithm bel ow does not
distinguish between these two cases.

NOTE 2: Non-blocking call operations are also allowed in interleave statements, they are considered to be
stand-alone statements.

The algorithm described in this clause only works for interleave statements without embedded interleave
statements. In case of an interleave statement that has embedded interleave statements, the embedded
interleave statements have to be replaced before the algorithm can be applied.

NOTE 3: Duetorestrictions1to 5, it isaways possible to find finite replacements for nested embeddings of
interleave Statements.

ETSI

13 ETSI ES 201 873-4 V4.4.1 (2012-04)

The replacement algorithm works on a graph representation of an interleave statement and transformsit into a
semantically equivalent tree structure describing a series of nested alt statements. For this, a graph representation of
stand-al one statements, the compound statements i £-else, blocking call, alt and interleave isneeded.

A stand-alone statement is described by a node with the statement as inscription. A sequence of stand-alone statements
is described by a set of hodes connected by aflow lines. Thisis shown in figure 1.

P1.send (MyVar) ; P1l.send (MyVar) ;

(a) TTCN-3 stand-alone statement (b) graph representation of (a)

P1l.send (MyVar) ;

P1l.send (MyVar) ;
x =7 + 5;

(c) Sequence of TTCN-3 stand-alone statements (d) graph representation of (c)

Figure 1. Graph representation of TTCN-3 stand-alone statements

The graph representation of an 1 f-else statement isshownin figure 2. An i f -else statement is represented by an
IF node with two flow lines connected to the first statement in the two alternatives. An i f -else statement without

EL SE branch is represented in the same manner, if there are statements following the i £ - el se statement. In this case
the flow line representing the el se branch is connected to the first statement following the i £ - else statement. An
if-else statement without EL SE branch and without following statements is represented by an IF node with one flow
line only.

NOTE 4: Theinscriptions on the flow linesin figure 1 are introduced for readability purposes only. The algorithm
only uses the relation expressed by the flow line and not the inscription.

if (x < 7) {
P1l.send (MyVar) ;
}

else {
x =7 + 5;
}

X =X * 2

(a) TTCN-3 if-else statement (b) Graph representation of (a)

if (x < 7)
P1l.send (MyVar) ;

Pl.send (MyVar) ;

X 1= X * 2

(c) TTCN-3 if-else statement without else branch (d) Graph representation of (c)

Figure 2: Graph representation of TTCN-3 if-else statements

ETSI

14 ETSI ES 201 873-4 V4.4.1 (2012-04)

The graph representation of a blocking call statement isshown infigure 3. A blocking call statement is represented
by aBLOCKING-CALL node with flow lines connected to the getreply and catch statements of the different
alternatives.

}

X

Pl.call (MyProc:{-, true}, 20E-3) {

:= 7 4+ 5;

[1 Pl.getreply (MyProc:{?,-} {
setverdict (pass) ;
1

[1 Pl.catch(MyProc, MyException) {}
[1 Pl.catch(timeout) {
setverdict (fail) ;
1

(a) TTCN-3 blocking call statement

BLOCKING CALL
Pl.call (MyProc:{-,true}, 20E-3)

Pl.getreply (MyProc:{?,-}) Pl.catch(timeout)

Pl.catch (MyProc, MyException)

setverdict (pass) ; setverdict (fail) ;

(b) Graph representation of (a)

Figure 3: Graph representation of a TTCN-3 blocking call statement

The graph representation of an alt statement is shown in figure 4. An alt statement is represented by an alt-node
with several flow lines connected to the different alternatives.

ETSI

15 ETSI ES 201 873-4 V4.4.1 (2012-04)

alt {
[x<5] Pl.receive (MyMessageOne} {
setverdict (pass) ;
1
[] Pl.receive (MyMessageTwo) {}
[] T1l.timeout {
setverdict (fail) ;

}

(a) TTCN-3 alt statement

Pl.receive (MyMessageOne)

Pl.receive (MyMessageTwo)

setverdict (pass) ; setverdict (fail) ;

(b) Graph representation of (a)

Figure 4: Graph representation of a TTCN-3 alt statement

In general, the graph representations of i £-else, blocking call and alt statements are directed graphs without
loops where the flow lines of the different alternatives join when leaving the statement. By means of duplication, it is
possible to transform such directed graphs into a semantically equivalent tree representation. Thisis shownin figure 5
for the alt statement in figure 4. The algorithm described below will construct such tree representations.

ETSI

16

ETSI ES 201 873-4 V4.4.1 (2012-04)

alt {
[x<5] Pl.receive (MyMessageOne} {
setverdict (pass) ;
X := 7 + 5;

.receive (MyMessageTwo) {
x :=7 + 5;
.timeout {
setverdict (fail) ;

x =7 + 5;

(a) TTCN-3 alt statement that is semantically equivalent to figure 4(a)

—

ALT

I

Pl.receive (MyMessageOne)

setverdict (pass) ;

Pl.receive (MyMessageTwo)

T1.timeout

setverdict (fail) ;

(b) Graph representation of (a) (semantically equivalent to figure 4(b))

Figure 5: Graph representation of a TTCN-3 alt statement

ETSI

17 ETSI ES 201 873-4 V4.4.1 (2012-04)

An interleave statement can be described by a graph that consists of a set of directed sub-graphs, each of whichis
constructed by means of stand-al one statements and the compound statements i £-else, blocking call and alt. The

directed sub-grap

hs describe the interleaved flows of control. An example is shown in figure 6. The node inscriptionsin

figure 6 (b) refer to the labels of the TTCN-3 statementsin figure 6(a).

interleave

[l Pl.receive (M1} { // L1
alt { // ALT
[1 Pl.receive (M3) ({ // L2
setverdict (pass) ; // L3
}
[1 T1l.timeout { } // La
}
}
[1 P2.receive (M2) ({ // L5
if (x < 5) | // IF
alt { // ALT
[1 P2.receive (M4) { // Lé
setverdict (pass) ; // L7
1
[l Compl.done { } // L8
}
X := 7 + 5; // L9
}
else {
P3.call (MyProcTempl, 20E-3) // BC (= BLOCKING CALL)
[l P3.getreply(ReplyTempl) ({ // L10
alt { // ALT

[1 P2.receive(M5) { } // L1l
[1 P2.receive(M6) { } // L12

1
1
[] P3.catch(timeout) { // L13
setverdict (fail) ; // Ll4
1

(a) TTCN-3 interleave statement

P&

L

(b) Graph representation of (a)

Figure 6: Graph representation of a TTCN-3 interleave statement

ETSI

18 ETSI ES 201 873-4 V4.4.1 (2012-04)

Formally, an interleave statement can be described by a graph Gl = (S, F) where:
St isthe set of allowed TTCN-3 statements; and
Fc (St X St) describesthe flow relation.
The term allowed TTCN-3 statements refers to the static restrictions 1-5 above.
For the construction algorithm the following functions need to be defined:
. The REACHABLE function returns all statements that are reachable from a statement sin agraph Gl = (St, F):

REACHABLE (s Gl)={s}u
{gtmt|stmte St A J(S=Xq, Xo, ... , X, = StMt) where x; € S,
ie{l..n} A (X Xjzp)e F}

. The SUCCESSORS function returns all successors of a statement sinagraph Gl = (St, F):
UCCESORS (s, Gl) ={ stmt |stmt € St A (s, stmt) € F}

. The ENABLED function returns all statements of a graph Gl = (St, F) which have no predecessors:
ENABLED (Gl)={ stmt|stmt e St A (F " (S X {s}) = D)}

. The KIND function returns the kind or type of a TTCN-3 statement in agraph representing an interleave
statement.

. The DISCARD function deletes a statement s or a set of statements S from a graph Gl = (St, F) and returns the
resulting graph GI'= (St', F'):

For single nodes:

DISCARD (s, Gl) = GI" where: GI' = (St', F'), with St' = St\{ s} and
F'=F N (St{s} X St\{s}).

For sets of nodes:
DISCARD (S, Gl) = GI' where: GI' = (St', F'), with St' = St\Sand F' = F n (St\S X $t\S).
. The RECEIVING function takes a set of statements of a graph Gl and returns all receiving statements:

RECEIVING (9§ ={ stmt|stmt € S A KIND(stnt) e {receive, trigger, getcall, getreply, catch, check,
done, timeout} }

. The RANDOM function selects randomly an element s from a given set Sand returns s.
RANDOM (S) =swherese S
The construction algorithm (see figure 7) of the tree is a recursive procedure where in each recursive call the successor

nodes for a given node is constructed. The procedure is provided in a C-like pseudo-code notation that uses the
functions defined above and some additional mathematical notation.

ETSI

19 ETSI ES 201 873-4 V4.4.1 (2012-04)

CONSTRUCT-SUCCESSORS (statementType *predecessor, graphType GI) {

// - statementType refers to the type of a node of the tree that is constructed

// - *predecessor refers to the last node that has been created

// - graphType denotes type of the graph of TTCN-3 statements

// - GI is called by value and refers to the subgraph consisting of all remaining TTCN-3
// statements that have to be taken into consideration

var graphType myGraph;

var statementType 1, myStmt;

var statementType *newStmt, *firstInBranch; // pointers for new statement nodes in the
// tree that is constructed recursively

// Retrieving sets of TTCN-3 statements that have no predecessors in 'GI'

var statementSet enabStmts := ENABLED(GI) ; // all statements without predecessor
var statementSet enabRecStmts := RECEIVING(enabStmts); // receiving statements in 'enabStmts'
var statementSet enabNonRecStmts := enabStmts\enabRecStmts;

// non receiving statements in 'enabStmts'

if (GI.St == &) { // We assume that GI.St refers to the set of statements in GI
return; // No statements are left, termination criterion of Recursion

1

elseif (enabNonRecStmts !=) { // Handling of non receiving statements in 'enabStmts'
myStmt := RANDOM (enabNonRecStmts) ;

// There can only be one statement in 'enabNonRec', because the Algorithm
// continues the construction until there is a branch that contributes to
// the interlave statement.

newStmt := create (myStmt, predecessor) ;
// Creation of a new tree node representing 'myStmt' in the tree
// and update of pointers in 'newStmt' and 'predecessor'.

if (KIND(myStmt) == IF || KIND(myStmt) == BLOCKING_CALL) {
for each i in SUCCESSORS (myStmt, GI) {

firstInBranch := create (i, newStmt) ;

// Creation of a second node for the first statement of in a branch due to

// an if-else statement.

// Note, this create statement will be used to create tree nodes

// representing the receiving statements in blocking call operations.
myGraph := DISCARD({i, myStmt} U REACHABLE (myStmt, GI)\REACHABLE(i, GI))
// Removal of i, myStmt and all statements that are reachable from
// myStmt but not reachable from i. The latter considers the branching of
// a flow of control in a subgraph of GI.

CONSTRUCT-SUCCESSORS (firstInBranch, myGraph) ; // NEXT RECURSION STEP
}
}
elseif (KIND(myStmt) == ALT) ({
for each (i in SUCCESSORS (myStmt, GI) {

CONSTRUCT-SUCCESSORS (mystmt, DISCARD(REACHABLE (myStmt, GI)\REACHABLE(i, GI)));
// NEXT RECURSION STEP, the DISCARD (REACHABLE (myStmt, GI) \REACHABLE (i, GI))
// argument considers the branching of a flow of control due to different
// receiving events.

1
1
else { // mystmt is a stand-alone statement
CONSTRUCT-SUCCESSORS (newSonNode, DISCARD(myStmt, GI)) ;
// NEXT RECURSION STEP

}
}

else { // Handling of receiving events that interleave

if (KIND(predecessor) != ALT) { // an alt node is missing and has to be created, if the
// interleaving is not influenced by an embedded alt statement
predecessor := create (ALT, predecessor) ;

}

for each i in enabRecStmts)
newStmt := create(i, predecessor); // New tree node
CONSTRUCT-SUCCESSORS (newStmt, DISCARD(i, GI)); // NEXT RECURSION STEP (S)

Figure 7: Replacement algorithm for TTCN-3 interleave statements

ETSI

20 ETSI ES 201 873-4 V4.4.1 (2012-04)

Initialy, the CONSTRUCT-SUCCESSORS function (see figure 7) will be called with aroot node of an empty tree and
the graph of TTCN-3 statements describing the interleave statement that shall be replaced. After termination, the
root node can be used to access the constructed tree.

The application of the CONSTRUCT-SUCCESSORS function to the interleave statement shown in figure 6 leads
to the tree shown in figure 8. The labelsrefer to the statementsin figure 6(a). Multiple labels are the result of the
duplication of code. The TTCN-3 code that corresponds to the treein figure 8 is shown in figure 9.

NOTE 5: The example for the application of the algorithm in figure 7 (see figures 6, 8 and 9) is very
comprehensive. This example is provided in order to show most of the specia situations, i.e. branching
and joining of flow lines, an embedded alt statement, ablocking call statement and an if-else
statement.

ETSI

ETSI ES 201 873-4 V4.4.1 (2012-04)

21

=
<
@Q@@@@@@ A M@

e @ @ @ @ @ @ .]

L5
b 4
IF

Figure 8: Result of applying the algorithm in figure 7 to the interleave statement in figure 6
ETSI

22 ETSI ES 201 873-4 V4.4.1 (2012-04)
alt { // ALT
[l Pl.receive(M1l} // L1
alt { // ALT
[l Pl.receive(M3) { // L2
setverdict (pass) ; // L3
alt { // ALT
[l P2.receive(M2) // L5
if (x < 5) | // IF
alt { // BLT
[l P2.receive(M4) // L6
setverdict (pass) ; // L7
x :=7 + 5; // L9
}
[l Compl.done { // L8
X := 7 + 5; // L9
}ood }
else
P3.call (MyProcTempl, 20E-3) { // BC (= BLOCKING CALL)
[l P3.getreply(ReplyTempl) { // L10
alt { // BALT
[l P2.receive(M5) { } // L1l
[l P2.receive(M6) { } // L12
}
[l P3.catch(timeout) { // 113
setverdict (fail) ; // Ll4a
}oo) yoor o) }
[l T1.timeout // L4
alt { // ALT
[l P2.receive(M2) { // L5
if (x < 5) | // IF
alt { // ALT
[l P2.receive(M4) // L6
setverdict (pass) ; // L7
X =7 + 5; // L9
[l Compl.done // L8
x :=7 + 5; // L9
}ood }
else
P3.call (MyProcTempl, 20E-3) { // BC (= BLOCKING CALL)
[l P3.getreply(ReplyTempl) { // L10
alt { // BALT
[l P2.receive(M5) { } // L1l
[l P2.receive(M6) { } // L12
}
[l P3.catch(timeout) { // L13
setverdict (fail) ; // Lla
bl yoor o) }
[l P2.receive(M2) // L5
if (x < 5) | // IF
alt { // BLT

[l P2.receive(M4) // L6
setverdict (pass) ; // L7
X =7 + 5; // L9
alt { // BLT

[l Pl.receive(M3) { // L2
setverdict (pass) ; // L3
}
[l T1l.timeout { } // L4
b}

[l Compl.done // L8
X =7 + 5; // L9
alt { // BLT

[l Pl.receive(M3) { // L2
setverdict (pass) ; // L3
}
[l T1l.timeout { } // L4
}

[l Pl.receive(M3) (// L2
setverdict (pass) ; // L3
alt { // BLT

[l P2.receive(M4) { // L6
setverdict (pass) ; // L7
X := 7 + 5; // L9
}
[l Compl.done { // L8
x := 7 + 5; // L9
| }

ETSI

23

ETSI ES 201 873-4 V4.4.1 (2012-04)

[l T1.timeout {
alt {
(]

[l
yood ool

else
P3.call (MyProcTempl,
[l P3.getreply(
alt {
(1

}

P2.receive (M4)
setverdict (pass) ;
X =7 + 5;

}

Compl.done {
X =7 + 5;

}

20E-3) {
ReplyTempl) {

Pl.receive (M3)
setverdict (pass) ;
alt {
[l P2.receive(M5) { }
[l P2.receive(M6) { }
bl
T1l.timeout {
alt {
[l P2.receive(M5) { }
[l P2.receive(M6) { }
}ood
P2.receive (M5) {
alt {
[l Pl.receive(M3) {
setverdict (pass) ;

[l T1.timeout { }
bl
P2.receive (M6) {
alt {
[l Pl.receive(M3) (
setverdict (pass) ;

[] T1l.timeout { }

}

[l P3.catch(timeout) {
setverdict (fail) ;

alt {
(]

b}l

}
[l P2.receive(M2) ({
if (x < 5) {
{
[

] P2.receive(M4)
setverdict (pass) ;
x := 7 + 5;
alt {

Pl.receive (M3) {
setverdict (pass) ;

T1.timeout { }

[l Pl.receive(M1l} ({

alt {

bl bl

[l Compl.done {
x =7 + 5;
alt {

Pl.receive (M3)
setverdict (pass) ;

T1l.timeout { }

[l Pl.receive(M1l} {

alt {

ool ool

[l Pl.receive(M3) {
setverdict (pass) ;
alt {

Pl.receive (M3)
setverdict (pass) ;

T1.timeout { }

[l P2.receive(M4)
setverdict (pass) ;
X :=7 + 5;

}

[l Compl.done {

// BC (= BLOCKING CALL)

L4
ALT
Lé
L7
L9

L8
L9

L10
ALT
L2

L3

ALT
L1l
Li12

L4

ALT
L1l
Li2

L1l
ALT
L2
L3

L4

Li2
ALT
L2
L3

L4

L13
L14
ALT
L2
L3

L4

L5
IF
ALT
L6
L7
L9
ALT
Ll
ALT
L2
L3

L4

L8
L9
ALT
Ll
ALT
L2
L3

L4

L2
L3
ALT
L6
L7
L9

L8

ETSI

ETSI ES 201 873-4 V4.4.1 (2012-04)

}

o) }

[l T1.timeout {
alt {
[l P2.receive(M4)

{

setverdict (pass) ;

X := 7 + 5;

}

[l Compl.done {

X := 7 +
P Yooy

else
P3.call (MyProcTempl, 20E-3) ({
[l P3.getreply(ReplyTempl) {
alt {
[l P2.receive(M5)
alt {
[1 p1

5;

ol }

[l P2.receive (M6)
alt {
(1 Pp1

ool }

[l Pl.receive (M1}
alt {
[1 p1

} ool Yooy)

[l P3.catch(timeout) {
setverdict (fail) ;
alt {
[l Pl.receive (M1}
alt {
(1 p1

y oy oy})

{

.receive (M1}

alt {
[l P1.

}
1 T1.
}
{

.receive (M1}

alt {
[l P1.

}
1 T1.
}
{

.receive (M3)
setverdict (pass) ;

alt {
[1 P2.
[1 P2.

}

.timeout {

alt {
[1 P2
[1 P2

}

.receive (M5)

alt {
(1 P1

1 71

}

.receive (M6)

alt {

.receive (M3)
setverdict (pass) ;

.timeout { }

.receive (M5)
.receive (M6)

.receive (M3)

.timeout { }

.receive (M3)

.timeout { }

//

//
//
//
/7
//

/7
//

L9

L4
ALT
L6
L7
L9

L8
L9

// BC (= BLOCKING CALL)
//
//
//
//
{ //
//
//
//

//

L10
ALT
L1l1
ALT
Ll
ALT
L2
L3

receive (M3)
setverdict (pass) ;
timeout { } L4
L12
ALT
L1
ALT
L2
L3

{ //

receive (M3)
setverdict (pass) ;
timeout { } L4
Ll
ALT
L2
L3
ALT
L11
L12

{ //

receive (M5)
receive (M6)

L4

ALT
L11
Li12

L1l
ALT
L2
L3

{ //

setverdict (pass) ;
L4
{ // L1l2
ALT
L2

setverdict (pass) ; L3
L4

L13
L14
ALT
Ll
ALT
L2
L3

{ /7

L4

Figure 9: Semantically equivalent TTCN-3 code for the interleave statement in figure 6

ETSI

25 ETSI ES 201 873-4 V4.4.1 (2012-04)

7.6 Replacement of trigger operations

The trigger operation filters messages with a certain matching criterion from a stream of messages on a given port.
The semantics of the trigger operation can be described by its replacement with two receive operationsand a
goto statement. The operational semantics assumes that this replacement is done on the syntactical level.

EXAMPLE 1:
// The following trigger operation ..

alt {
[] MyCL.trigger (MyType:?) { }
1

// shall be replaced by ..

alt {
[] MyCL.receive (MyType:?) { }
[MyCL.receive {
repeat
1

}

If the trigger statement is used in a more complex alt statement, the replacement is done in the same manner.

EXAMPLE 2:

// The following alt statement includes a trigger statement ..

alt {
[] PCO2.receive
stop;
}

[] MyCL.trigger (MyType:?) { }
[l PCO3.catch {

setverdict (fail) ;

stop;

}

// which will be replaced by

alt {
[] PCO2.receive
stop;
}

[] MyCL.receive (MyType:?) { }
[] MyCL.receive
repeat;
1

[] PCO3.catch {
setverdict (fail) ;
stop;

7.7 Replacement of select-case statements

The select-case statement isan aternative to using a set of nested i £ - else statements when comparing avaue
(defined by a select-expression following the select keyword) to one or several other values (defined by template
instances in the case branches). Therefore, the semantics of a select-case statement can be described by its
replacement with a set of nested i £ -else statements. To avoid a multiple eval uation of the select-expression, the set
of nested i £ -else statements has to be placed into a statement block and value of the expression hasto be stored in a
variable at the beginning of the statement block. The operational semantics assumes that this replacement is done on the
syntactical level.

ETSI

26 ETSI ES 201 873-4 V4.4.1 (2012-04)

Schematically the select -case statement looks as follows:

select (<expressions>) {

case (<temp1ateInstla>, . <temp1ateInstln>)
<statementblock1>

case (<templateInst28>, v <templatelnst2n>)
<statementblock,>

case (<templateInstxa>, v <templatelnstxn>)

<statementblockx>

case else

<statementblock_ >
x+1

}

The syntactical replacement of the schematic select-case statement by nested i f -else statementslooks as
follows:

var <expressions>Type myTempVar := <expressions; // temporary variable for storing the

// value of the expression
if (match(myTempVar, <templateInst, >) or .. or match(myTempVar, <templatelnst, >)

<statementblock, >
else
if (match(myTempVar, <templateInst, >) or .. or match(myTempVar, <templatelnst, >)
<statementblock,>
else {

if (match(myTempVar, <templateInst >) or .. or match(myTempVar, <templatelnst >)
<statementblock, >
else

<statementblock_ >
x+1

EXAMPLE:

// The following select-case statement:

select (MyModulePar) { // where MyModulePar is of charstring type
case ("firstvValue") {

log ("The first branch is selected");

case (MyCharstingVar, MyCharstringConst) {
log ("The second branch is selected");
1

case else {
log ("The else branch is selected");
}

}

// 1is semantically equivalent to:

{

var charstring myTempVar := MyModulePar;
if (match(myTempVar, "firstvalue")) {

log ("The first branch is selected");
}

else {

if (match(myTempVar, MyCharstingVar) or match(myTempVar, MyCharstingConst)) ({
log ("The second branch is selected");
}

else {

}

log ("The else branch is selected");

ETSI

27 ETSI ES 201 873-4 V4.4.1 (2012-04)

7.8 Replacement of simple break statements

"Simple" break statements are break statements used for leaving loops, interleave statements and alt statements. Such
simple break statements are considered to be a short-hand form for using a pair of goto-1label statements. For each
break statement a label statement is added after the loop, alt statement or expanded interleave Statement. The
label statement shall have an unused label. Thebreak statement is replaced by a goto statement to this specific
label.

Note, that interleave statements are explained already. Therefore the limitation that goto statements cannot be
used within interleave statements does not hold.

NOTE: The semanticsfor the break statement used to leave an altstep is defined in clause 9.5a.

EXAMPLE:
// The following loop with a break statement:
while (condl) { // condl is a Boolean condition guarding the loop
If(cond2) {

break;
}i

}

// is semantically equivalent to:
while (condl) { // condl is a Boolean condition guarding the loop

if (cond2) {
goto break 12345; // break_ 12345 is a unique label
Vi

label break 12345;

7.9 Replacement of continue statements

The continue statement is a short-hand form for using a pair of goto-1abel statements. For each continue
statement a label statement is added at the end of the loop body. The 1abel statement shall have an unused label.
The continue statement isreplaced by a goto statement to this specific label.

EXAMPLE:

// The following loop with a continue statement:
while (condl) { // condl is a Boolean condition guarding the loop

if (cond2) {
continue;
i

// 1is semantically equivalent to:
while (condl) { // condl is a Boolean condition guarding the loop
if (cond2) {

goto continue 12345; // continue 12345 is a unique label
}i

label continue 12345;

}

ETSI

28 ETSI ES 201 873-4 V4.4.1 (2012-04)

7.10 Adding default parameters to disconnect and unmap
operations without parameters

The usage of adisconnect or unmap operation without any parameters is a shorthand form for using the operation
with the parameter self:all port. It disconnects or unmaps all ports of the component that calls the operation. For
the operational semanticsthe parameter self:all port shall be added to al occurrences of disconnect and
unmap operations without parameters.

EXAMPLE:

// each occurrence of
disconnect;

// shall be expanded in the following manner:
disconnect (self:all port) ;

// and

// each occurrence of
unmap ;

// shall be expanded in the following manner:
unmap (self:all port) ;

7.11 Adding default values of parameters

Formal parameters may have default values. If no actual parameter is provided in a specific invocation, then the default
value is added to the actual parameter list. If list notation has been used for the actual parameter list, then the default
value isinserted according to the order in the formal parameter list. If assignment notation has been used for the actual
parameter list, then the default values are appended to the actual parameters, the order among the default val ues
corresponds to their order in the formal parameter list.

EXAMPLE:
function f comp (in integer p intl, in integer p int2 := 3) return integer ({
var integer v := p_intl + p_int2;
return v;

}

// Each occurrence of
f comp (1)

// shall be expanded to
f comp(1l, 3);

// Each occurrence of
f_comp(p_intl := 1)

// shall be expanded to
f_comp(p_intl := 1, p_int2 := 3);

8 Flow graph semantics of TTCN-3

The operational semantics of TTCN-3 is based on the interpretation of flow graphs. In this clause flow graphs are
introduced (see clause 8.1), the construction of flow graphs representing TTCN-3 module control, test cases, altsteps,
functions and component type definitionsis explained (see clause 8.2), module and component states for the description
of the execution states of a TTCN-3 module are defined (see clause 8.3), the handling of messages, remote procedure
calls, replies to remote procedure calls and exceptionsis described (see clause 8.4) and the evaluation procedure of
module control and test cases is explained (see clause 8.6).

ETSI

29 ETSI ES 201 873-4 V4.4.1 (2012-04)

8.1 Flow graphs

A flow graph is a directed graph that consists of labelled nodes and labelled edges. Traversing a flow graph describes
the possible flow of control during the execution of a represented behaviour description.

8.1.1 Flow graph frame

A flow graph shall be put into aframe defining the border of the flow graph. The name of flow graph follows the
keywords flow graph (these are not TTCN-3 core language keywords) and shall be put into the upper left corner of the
flow graph. As convention it is assumed that the flow graph name refersto the TTCN behaviour description represented
by the flow graph. A ssimple flow graph is shown in figure 10.

flow graph
MySimpleFlowGraph

Figure 10: A simple flow graph

8.1.2 Flow graph nodes

Flow graphs consist of start nodes, end nodes, basic nodes and reference nodes.

8.1.2.1 Start nodes

Start nodes describe the starting point of aflow graph. A flow graph shall only have one start node. A start nodeis
shown in figure 11(a).

h 4 A

(a) Flow graph start node (b) Flow graph end node

Figure 11: Start and end nodes

8.1.2.2 End nodes

End nodes describe end points of a flow graph. A flow graph may have several end nodes or in case of loops no end
node. Basic nodes (see clause 8.1.2.3) and reference nodes (see clause 8.1.2.4) that have no successor nodes shall be
connected to an end node to indicate that they describe the last action of a path through a flow graph. An end node is
shown in figure 11(b).

8.1.2.3 Basic nodes

A basic node describes an execution unit, i.e. it is executed in one step. A basic node has atype and, depending on the
type, may have an associated list of attributes. Two basic nodes are shown in figure 12.

In the inscription of a basic node the attributes of a node follow the node type and are put into round parentheses. Type
and attributes are used to determine the action to be performed during execution of the represented language construct.
The attributes describe information to be retrieved from the corresponding TTCN-3 construct.

ETSI

30 ETSI ES 201 873-4 V4.4.1 (2012-04)

Attributes have values and the operational semantics will retrieve these values by referring to the attribute name. If
required, it is alowed to assign explicit values in basic hodes by using assignment ":=". An example is shown in
figure 12(b).

node-type
(attry := 7, ..,
attr, := 8.0)

node-type
(attr,, attr,,
attry)

(@ ()

Figure 12: Basic nodes with attributes

8.1.24 Reference nodes

Reference nodes refer to flow graph segments (see clause 8.1.4) that are sub-flow graphs. The meaning of areference
node is defined by its replacement by the referenced flow graph segment in the flow graph. The node inscription of the
reference node provides the reference to a flow graph segment. A reference node is shown in figure 13(a).

segment -reference;
OR

segment -reference,
OR

segment-reference;

segment-reference

(a) Single reference node (b) OR combination of three reference nodes

Figure 13: Reference node

8.1.24.1 OR combination of reference nodes

In some cases severa flow graph segments may replace a reference node. For these cases an OR operator may be used
to refer to several flow graph segments (see figure 13(b)). In the actual flow graph representing the module control, a
test case or afunction, one alternative is determined by the represented construct.

8.1.2.4.2 Multiple occurrences of reference nodes

In some cases the same kind of reference node may occur zero, one or more timesin aflow graph. In regular
expressions the possibl e repetition of parts of aregular expression is described by using the operator symbols”+" (one
or more repetitions) and "*" (zero or more repetitions). As shown in figure 14, these operators have been adopted to
flow graphs by introducing double-framed reference nodes with associated operator symbols. A single flow

(see clause 8.1.3) line shall replace areference node, in case of zero occurrences (using a double-framed reference node

with "*"-operator).

B B

segment-reference segment-reference

Figure 14: Repetition of reference nodes
An upper bound of possible repetitions of areference node can be given in form of an integer number in round

parenthesis following the "*" or "+" symbol in the double framed reference node. The segment reference shown in
figure 15 may occur from zero up to 5 times.

ETSI

31 ETSI ES 201 873-4 V4.4.1 (2012-04)

Q

segment-reference

Figure 15: Restricted repetition of a reference node

8.1.3 Flow lines

Flow lines are represented by means of arrows. A flow line has an inscription of true or false which indicates a
condition under which the flow line is chosen during the flow graph interpretation. As a short hand notation it is
allowed to omit the true inscription. Examples of flow lines are shown below:

false

>

true

> which isidentical to >

To support the joining of several flow linesinto one flow line on a graphical level, a special join node isintroduced.
Thejoin node and an example for its usage are shown below:

join node: o

™

usage of join node: >Q® >

/'

Drawing long flow linesin big diagrams asit is, for example, necessary to model the TTCN-3 constructs goto and
label, isawkward. For this purpose, labels for outgoing and incoming flow lines can be used. Examples are shown
below:

Incoming flow line with label: in-label ——
Outgoing flow line with label: — out-label

An outgoing flow line with alabel is connected with an incoming flow line with alabel, if the |abels areidentical. The
flow line labels for the incoming flow lines shall be unique. If there are several outgoing flow lines with the same label,
thisis considered to be ajoin of lines to the incoming flow line with an identical |abel.

8.1.4 Flow graph segments

Flow graph segments are sub-flow graphs. They are referenced in reference nodes and define the meaning of that
reference node. Flow graph segments may include further reference nodes.

Asshownin figure 16, flow graph segments have precise interfaces that consist of incoming and outgoing flow lines.
Thereis only one unlabeled incoming and one or none unlabeled outgoing flow lines. In addition there might exist
severa labelled incoming and outgoing flow lines. For example, the labelled incoming and outgoing flow lines are
needed to describe the meaning of TTCN-3 statementsgoto and alt.

ETSI

32 ETSI ES 201 873-4 V4.4.1 (2012-04)

Flow graph segments are put into aframe and the name of the flow graph segment shall follow the keyword segment
followed by the segment name in the upper left corner of the frame. The flow lines describing the flow graph segment
interface shall cross the flow graph segment frame.

segment SegmentNamel

LI, > .

LO; LO, ... LOn

Figure 16: Structure of a flow graph segment description

8.1.5 Comments

To improve readability and coherence a special comment symbol can be used to associate comments to flow graph
nodes and flow lines. The comment symbol and its usage are shown in figure 17.

i
]
]
; Comment related to
flow line
A 4
inscription e ggsnln:]igterel aedto
Thisisacomment in
........................ acomment meol
i
(&) Comment symbol (b) Usage of comment symbols

Figure 17: Flow graph representation of comments

ETSI

33 ETSI ES 201 873-4 V4.4.1 (2012-04)

8.1.6 Handling of flow graph descriptions

The evaluation procedure of the operational semantics traverses flow graphs that only consist of basic nodes, i.e. all
reference nodes have to be expanded by the corresponding flow graph segment definitions. The NEXT functionis
required to support this traversal. NEXT is defined in the following manner:

actualNodeRef NEXT(bool) := successorNodeRef where:
. actualNodeRef isthe reference of abasic flow graph node;
. successorNodeRef isthe reference of a successor node of the node referenced by actual NodeRef;

. bool is a Boolean specifying whether the true or the fal se successor is returned
(see clause 8.1.3).

8.2 Flow graph representation of TTCN-3 behaviour

The operational semantics assumes that TTCN-3 behaviour descriptions are provided in form of a set of flow graphs,
i.e. for each TTCN-3 behaviour description a separate flow graph has to be constructed.

The operational semantics interprets the following kinds of TTCN-3 definitions as behaviour descriptions:
a) module control;
b) test case definitions;
c) function definitions;
d) atstep definitions,
€) component type definitions.

The module control specifies the test campaign, i.e. the execution order (possibly repetitious) of the actual test cases.
Test case definitions define the behaviour of the MTC. Functions structure behaviour. They are executed by the module
control or by the test components. Altsteps are used for the definition of default behaviour or in a function-like manner
to structure behaviour. Component type definitions are assumed to be behaviour descriptions because they specify the
creation, declaration and initialization of ports, constants, variables and timers during the creation of an instance of a
component type.

8.2.1 Flow graph construction procedure

The flow graphs presented in the figures 18 to 22 and the flow graph segments presented in clause 8 are only templates.
They include placeholders for information that has to be provided in order to produce a concrete flow graph or flow
graph segment. The placeholders are marked with "<" and ">" parenthesis.

The construction of a flow graph representation of a TTCN-3 module is done in three steps:

1) For each TTCN-3 statement in module control, test cases, altsteps, functions and component type definitions a
concrete flow graph segment is constructed.

2) For the module control and for each test case, altstep, function and component type definition a concrete flow
graph (with reference nodes) is constructed.

3) Inastepwise procedure all reference nodesin the concrete flow graphs are replaced by corresponding flow
graph segment definitions until all flow graphs only include one start node, end nodes and basic flow graph
nodes.

NOTE 1: Basic flow graph nodes describe basic indivisible execution units. The operational semantics for TTCN-3
behaviour is based on the interpretation of basic flow graph nodes. Clause 8.6 presents execution methods
for basic flow graph nodes only.

ETSI

34 ETSI ES 201 873-4 V4.4.1 (2012-04)

The replacement of a reference node by the corresponding flow graph segment definition may lead to unconnected parts
in aflow graph, i.e. parts which cannot be reached from the start node by traversing through the flow graph along the
flow lines. The operational semantics will ignore unconnected parts of a flow graph.

NOTE 2: An unconnected part of aflow graph isaresult of the mechanical replacement procedure. For the
construction of an optimal flow graph representation the different combinations of TTCN-3 statements
also hasto be taken into consideration. However, the goal of the present document isto provide a correct
and complete semantics, not an optimal flow graph representation.

8.2.2 Flow graph representation of module control

Schematically, the syntactical structure of a TTCN-3 moduleis:

module <identifier> <module-definitions-parts> control <statement-block>

For the flow graph behaviour representation the following information is relevant only:

module <identifier> <statement-blocks>

Thisis comparable to a function definition and therefore the flow graph representation of module control is similar to

the flow graph representation of afunction (see clause 8.2.4). The semantics will access the flow graph representing the
module control by using the module name.

NOTE: The meaning of the module definitions part is outside the scope of this operational semantics. Module
parameters are defined as global constants at run-time. References to module parameters have to be
replaced by their concrete values on a syntactical level (see clause 8.3).

The scheme of the flow graph representation of the module control is shown in figure 18. The flow graph name
control identifies the flow graph representing the module control. The nodes of the flow graph have associated
comments describing the meaning of the different nodes. The reference node <stop-entity-op> coversthe case

where no explicit stop operation is specified, i.e. the operational semantics assumes that a stop operationis
implicitly added.

flow graph control

// The module control behaves like a
<init-component-scope> // component and therefore, its scope
// has to be initialised.

A

// The body of the module control
<statement-blocks> // specifies the statements to be
// executed.

* (1) // For the case that an explicit stop
// operation is missing at the end of
// module control

<stop-entity-op>

A

Figure 18: Flow graph representation of module control

ETSI

35 ETSI ES 201 873-4 V4.4.1 (2012-04)

8.2.3 Flow graph representation of test cases

Schematically, the syntactical structure of a TTCN-3 test case definitioniis:

testcase <identifier> (<parameter>) <testcase-interface> <statement-blocks>

The <testcase-interface> above refersto the (mandatory) runs on and the (optional) system clausesin the
test case definition. The flow graph description of atest case describes the behaviour of the MTC. Variables, timers and
constants defined and declared in the component type definition are made visible to the MTC behaviour by the runs
on clauseinthe <testcase-interfaces. The system clauseis not relevant for the MTC and is therefore not
represented in the flow graph representation of atest case.

The scheme of the flow graph representation of atest case is shown in figure 19. The flow graph name
<identifiers> refersto the name of the represented test case. The nodes of the flow graph have associated
comments describing the meaning of the different nodes. The reference node <stop-entity-op> coversthe case

where no explicit stop operation for the MTC is specified, i.e. the operational semantics assumesthat a stop
operation isimplicitly added.

flow graph <identifiers>

// Considers scope information provided
<init-scope-with-runs-on> // by the runs-on clause in the
// interface of the test case.

v // - Actual parameter values are
// assumed to be in the value stack
. //
<parameter-handling> // - Formal parameters are handled
// like local variables and local
// timers

\4

// The body of the test case specifies
<statement-blocks> // the statements to be executed
// by the MTC.

* (1) // For the case that an explicit stop
// operation is missing at the end of
//

the test case

<stop-mtc>

A

Figure 19: Flow graph representation of test cases

8.2.4 Flow graph representation of functions

Schematically, the syntactical structure of a TTCN-3 functionis:

function <identifier> (<parameters>) [<function-interface>] <statement-blocks>

Theoptional <function-interface> above refersto the (optional) runs on and the (optional) return clauses
in the function definition.

ETSI

36 ETSI ES 201 873-4 V4.4.1 (2012-04)

The scheme of the flow graph representation of a function is shown in figure 20. The flow graph name
<identifiers> refersto the name of the represented function. Variables, timers, constants and ports defined and
declared in the component type definition are made visible to within the function by the runs on clause in the
<function-interfaces>. A missing runs on clause meansthat definitions within the component type definition
are not known within the scope of the function. The operational semantics distinguishes these two cases by the
referencenodes <init-scope-with-runs-ons> and <init-scope-without-runs-ons. Thereference
node <return-without-values> coversthe case where no explicit return statement is specified, i.e. the
operational semantics assumes that a return statement isimplicitly added.

flow graph <identifiers

)

<init-scope-with-runs-on>
OR
<init-scope-without-runs-on>

// Considers the cases where either
// a runs-on clause is present or
// absent.

// - Actual parameter values are

A 4 // assumed to be in the value stack
//
<parameter-handling> // - Formal parameters are handled
// like local variables and local
// timers

v

// The body of the function specifies
<statement-blocks> // the statements to be executed
// by the component.

* (1)
// For the case that an explicit
//

return statement is missing at the
<return-without-values // end of the function.

A

Figure 20: Flow graph representation of functions

8.2.5 Flow graph representation of altsteps

Schematically, the syntactical structure of a TTCN-3 altstepis:

altstep <identifier> (<parameters>) [<altstep-interfaces>]
<constant-variable-timer-declarations>
{ <receiving-branch> | <else-branch> }*

NOTE: Only the alternatives up to the first else branch and the first else branch are taken into consideration.
Branches following the first el se branch are unreachable.

Theoptiona <altstep-interface> aboverefersto the runs on clausein the altstep definition.

ETSI

37 ETSI ES 201 873-4 V4.4.1 (2012-04)

The scheme of the flow graph representation of an altstep is shown in figure 21. The flow graph name

<identifiers> refersto the name of the represented altstep. Variables, timers, constants and ports defined and
declared in the component type definition are made visible to within the function by the runs on clause in the
<function-interfaces>. A missing runs on clause means that definitions made within the component type
definition are not known within the scope of the function. The operational semantics distinguishes these two cases by
the reference nodes <init-scope-with-runs-on> and <init-scope-without-runs-on>. Thereference
node <return-without-value> coversthe case where no else-branch is specified and none of the alternatives

can be selected.

flow graph <identifiers>

)

<init-scope-with-runs-on>

OR
<init-scooe-without-runs-

A 4

<parameter-handlings>

// Considers the cases where either
// a runs-on clause is present or
// absent.

* ||<constant—definition>

OR

// - Actual parameter values are

// assumed to be in the value stack
//

// - Formal parameters are handled

// like local variables and local
// timers

<variable-declaration>
OR
<timer-declaration>

+

<receiving-branch> OR
<altstep-call-branch>
OR <else-branch>

% (1)

<return-without-values>

i

// Constants, variables and timers
// may be declared and initialised

// Alternative
// branches

// For the case where no else branch
// is specified and none of the
// alternatives can be selected.

Figure 21: Flow graph representation of altsteps

8.2.6

Flow graph representation of component type definitions

Schematically, the syntactical structure of a TTCN-3 component type definition is:

type component <identifiers> <port-constant-variable-timer-declarationss>

The semantics will access flow graphs representing types by using the component type names.

The scheme of the flow graph representation of a component type definition is shown in figure 22. The flow graph

name <identifier> refersto the name of the represented component type.

ETSI

38 ETSI ES 201 873-4 V4.4.1 (2012-04)

flow graph <identifiers>

// The component scope is initialised

<init-component-scope>

*
|| <port-declarations>

OR

<constant-definitions> // Ports are created
OR

<variable-declarations // Constants, variables and timers
OR // are declared and initialised

<timer-declaration>

// The 'father' component waits for the
// completion of the component creation,
v // i.e., is in a 'blocking' state.

<finalise-component-inits // The created component gives the
// control back to the 'father' component.

// 'blocking' state and waits to be

// The new component goes into a
// started.

Figure 22: Flow graph representation of component type definitions

8.2.7 Retrieval of start nodes of flow graphs

For the retrieval of the start node reference of aflow graph the following function is required:

The GET-FLOW-GRAPH function: GET-FLOW-GRAPH (flow-graph-identifier)

The function returns a reference to the start node of aflow graph with the name flow-graph-identifier. The
flow-graph-identifier refers to the module name for the control, to test case names, to function names, to altstep names
and to component type names.

8.3 State definitions for TTCN-3 modules

During the interpretation of flow graphs representing TTCN-3 behaviour, module states are manipulated. A module
state is a structured state that consists of several sub-states describing the states of module control and the different test
configurations. A test configuration state describes the states of test components and ports. Module states, configuration
states, component states and port states are introduced in this clause. In addition, functions to retrieve information from
and to manipulate states are defined.

8.3.1 Module state

As shown in figure 23 amodule state is structured into a module CONTROL state and a TEST-CONFIGURATION state.
The module CONTROL state describes the state of the module control. Module control is handled like a test component,
i.e. CONTROL isan entitiy state as defined in clause 8.3.2. The TEST-CONFIGURATION state represents the test
configurations that isinstantiated when atest case is executed by module control.

CONTROL TEST-CONFIGURATION

Figure 23: Structure of a module state

ETSI

39 ETSI ES 201 873-4 V4.4.1 (2012-04)

8.3.1.1 Accessing the module state

The CONTROL state and the TEST-CONFIGURATION state of the module state can be addressed by using their names,
i.e. CONTROL and TEST-CONFIGURATION.

8.3.1a Configuration state

As shown in figure 23athe configuration state is structured into ALL-ENTITY-STATES, ALL-PORT-STATES,
TC-VERDICT, DONE and KILLED. ALL-ENTITY-STATES represents the states of all instantiated test components
during the execution of atest case. Thefirst element of ALL-ENTITY-STATES s the reference to the MTC of the
configuration. ALL-PORT-STATES describes the states of the different ports. TC-VERDICT stores the actual global test
verdict of atest case, DONE isalist of al currently stopped test components during test case execution and KILLED is
alist of al terminated test components during test case execution.

NOTE 1. The number of updates of TC-VERDICT isidentical to the number of test components that have
terminated.

NOTE 2: An dive-type test component is put into the DONE list each time when it is stopped and removed from
the DONE list each time when it is started. It is put into the KILL and the DONE list when it iskilled.

NOTE 3: Port states may be considered to be part of the entity states. By connect and map ports are made visible
for other components and therefore, this operational semantics handles ports on the top level of the
configuration state.

ALL-ENTITY-STATES ALL-PORT-STATES | TC-VERDICT | DONE [KILLED
| MTC [ESy|..[ESp[| [Pa]]Pn]

Figure 23a: Structure of a configuration state

8.3.1a.1 Accessing the configuration state

The TC-VERDICT and the lists ALL-ENTITY-STATES, ALL-PORT-STATES, DONE and KILLED can be accessed like
variables by their name.

For the handling of lists, e.g. ALL-ENTITY-STATES, ALL-PORT-STATES, DONE and KILLED in module states, the list
operations add, append, delete, member, first, last, length, next, random and change can be used. They have the
following meaning:

. myList.add(item) adds item as first element into the list myList and myList.add(sublist) adds the list sublist to
list myList, i.e. add can be used to add single elements or liststo lists;

. myList.append(item) appendsitem as last element into the list myList and myList.append(sublist) appends the
list sublist to list myList, i.e. append can be used to append single elements or liststo lists;

. myList.delete(item) deletes item from the list myList;

e myList.member(item) returns true if itemis an element of the list myList, otherwise false;

e myListfirst() returnsthe first element of myList;

. myList.last() returns the last element of myList;

. myList.length() returns the length of myList;

e myList.next(item) returns the element that follows itemin myList, or NULL if itemisthe last element in myList;

e myList.random(<condition>) returns randomly an element of myList, which fulfils the Boolean condition
<condition> or NULL, if no element of myList fulfils <condition>;

. myL ist.change(<operation>) allows to apply <operation> on al elements of myL.ist.

NOTE: The operations random and change are not common list operations. They are introduced to explain the
meaning of the keywordsall and any in TTCN-3 operations.

ETSI

40 ETSI ES 201 873-4 V4.4.1 (2012-04)

Additionally, a general copy operation is available. The copy operation copies and returns an item instead of returning a
reference to an item:

. copy(item) returns a copy of item.

8.3.2 Entity states

Entity states are used to describe the actual states of module control and test components. In the module state,
CONTROL isan entity state and in the configuration state, the test component states are handled in the list
ALL-ENTITY-STATES The structure of an entity state is shown in figure 24.

STATUS

CONTROL-STACK

DEFAULT-LIST

DEFAULT-POINTER

VALUE-STACK

E-VERDICT

TIMER-GUARD

DATA-STATE

TIMER-STATE

PORT-REF

SNAP-ALIVE

SNAP-DONE

SNAP-KILLED

KEEP-ALIVE

Figure 24: Structure of an entity state

The STATUS describes whether the module control or atest component iSACTIVE, BREAK, SNAPSHOT, REPEAT Of
BLOCKED. Module control is blocked during the execution of atest case. Test components are blocked during the
creation of other test components, i.e. when they call acreate operation, and when they wait for being started. The
status SNAPSHOT indicates that the component is active, but in the evaluation phase of a snapshot. The status REPEAT
denotes that the component is active and in an alt statement that should be re-evaluated due to a repeat statement.
The BREAK statusis set when abreak statement is executed for leaving altstep. In this case, the alt statement in
which the altstep was directly or indirectly (i.e. by means of the default mechanism) called isimmediately left.

The CONTROL-STACK isa stack of flow graph node references. The top element in CONTROL-STACK isthe flow
graph node that has to be interpreted next. The stack is required to model function callsin an adegquate manner.

The DEFAULT-LIST isalist of activated defaults, i.e. itisalist of pointersthat refer to the start nodes of activated
defaults. Thelist isin the reverse order of activation, i.e. the default that has been activated first is the last element in
thelist.

During the execution of the default mechanism, the DEFAULT-POINTER refers to the next default that hasto be
evauated if the actual default terminates unsuccessfully.

The VALUE-STACK isastack of values of al possible types that allows an intermediate storage of final or intermediate
results of operations, functions and statements. For example, the result of the eval uation of an expression or the result of
themtc operation will be pushed onto the VALUE-STACK. In addition to the values of all datatypesknownin a
module we define the special value MARK to be part of the stack alphabet. When leaving a scope unit, the MARK is used
to clean VALUE-STACK.

The E-VERDICT stores the actua local verdict of atest component. The E-VERDICT isignored if an entity state
represents the module control.

The TIMER-GUARD represents the specia timer, which is necessary to guard the execution time of test cases and the
duration of call operations. The TIMER-GUARD is modelled as atimer binding (see clause 8.3.2.4 and figure 28).

ETSI

41 ETSI ES 201 873-4 V4.4.1 (2012-04)

The DATA-STATE is considered to be alist of lists of variable bindings. The list of lists structure reflects nested scope
units due to nested function and altstep calls. Each list in the list of lists of variable bindings describes the variables
declared in a certain scope unit and their values. Entering or leaving a scope unit corresponds to adding or deleting alist
of variable bindings from the DATA-STATE. A description of the DATA-STATE part of an entity state can be found in
clause 8.3.2.2.

The TIMER-STATE is considered to be alist of lists of timer bindings. Thelist of lists structure reflects nested scope
units due to nested function and altstep calls. Each list in the list of lists of timer bindings describes the known timers
and their statusin a certain scope unit. Entering or leaving a scope unit corresponds to adding or deleting alist of timer
bindings from the TIMER-STATE. A description of the TIMER-STATE part of an entity state can be found in

clause 8.3.2.4.

The PORT-REF is considered to be alist of lists of port bindings. The list of lists structure reflects nested scope units
due to nested function and altstep calls. Nested scope units for ports are the result of port parametersin functions and
atsteps. Each list inthelist of lists of port bindings identifies the known ports in a certain scope unit. Entering or
leaving a scope unit corresponds to adding or deleting alist of port bindings from the PORT-REF. A description of the
PORT-REF part of an entity state can be found in clause 8.3.2.6.

NOTE: The TTCN-3 semantics administrates ports globally in the module state. Due to port parameterization, a
test component may access a port by using different names in different scopes. The PORT-REF part of an
entity state is used to identify port states uniquely in the module state.

The SNAP-ALIVE supports the snapshot semantics of test components. When a snapshot is taken, a copy of the
ALL-ENTITY-STATES|ist of the module state will be assigned to SNAP-ALIVE, i.e. SNAP-ALIVE includes al entities
(test components and test control) which are alive in the test system.

The SNAP-DONE supports the snapshot semantics of test components. When a snapshot is taken, a copy of the DONE
list of the module state will be assigned to SNAP-DONE, i.e. SNAP-DONE isalist of component identifiers of stopped
components.

The SNAP-KILLED supports the snapshot semantics of test components. When a snapshot is taken, a copy of the
KILLED list of the module state will be assigned to SNAP-KILL, i.e. SNAP-DONE is alist of component identifiers of
terminated components.

The KEEP-ALIVE field indicates whether the entity can be restarted after its termination or not. It is set to trueif the
entity can be restarted. Otherwise it is set to false.

8.3.2.1 Accessing entity states

The STATUS, DEFAULT-POINTER, E-VERDICT and TIMER-GUARD parts of an entity state are handled like
variablesthat are globally visible, i.e. the values of STATUS, DEFAULT-POINTER and E-VERDICT can be retrieved or
changed by using the "dot" notation, e.g. myEntity.STATUS, myEntity. DEFAULT-POINTER and myEntity.E-VERDICT,
where myEntity refers to an entity state.

NOTE: Inthe following, we assume that we can use the "dot" notation by using references and unique identifiers.
For example, in myEntity. STATUS, myEntityState may be pointer to an entity state or be the value of the
<identifier> field.

The CONTROL-STACK, DEFAULT-LIST and VALUE-STACK of an entity state myEntity can be addressed by using the
"dot" notation myEntity. CONTROL-STACK, myEntity. DEFAULT-LIST and myEntity. VALUE-STACK.

CONTROL-STACK and VALUE-STACK can be accessed and manipulated by using the stack operations push, pop, top,
clear and clear-until. The stack operations have the following meaning:

. myStack.push(item) pushes item onto myStack;

. myStack.pop() pops the top item from myStack;

. myStack.top() returns the top element of myStack or NULL if myStack is empty;
. myStack.clear() clears myStack, i.e. pops al items from myStack;

. myStack.clear-until (item) pops items from myStack until itemis found or myStack is empty.

ETSI

42 ETSI ES 201 873-4 V4.4.1 (2012-04)

DEFAULT-LIST can be accessed and manipulated by using the list operations add, append, delete, member, first,
length, next, random and change. The meaning of these list operationsis defined in clause 8.3.1a.1.

For the creation of a new entity state the function NEW-ENTITY is assumed to be available:
. NEW-ENTITY (flow-graph-node-reference, keep-alive);

creates a new entity state and returnsits reference. The components of the new entity state have the following values:
. STATUSIisset to ACTIVE;

o flow-graph-node-reference isthe only (top) element in CONTROL-STACK;

. DEFAULT-LIST isan empty list;

. DEFAULT-POINTER has the value NULL;

e VALUE-STACK isan empty stack;
. E-VERDICT is set to none;

e TIMER-GUARD isanew timer binding (see clause 8.3.2.4) with name GUARD, status | DL E and no default
duration;

. DATA-STATE isan empty list;

e TIMER-STATE isan empty list;

. PORT-REF isan empty list;

. SNAP-ALIVE isan empty list;

. SNAP-DONE is an empty list;

. SNAP-KILLED isan empty list;

. KEEP-ALIVE is set to the value of the keep-alive parameter.

During the traversal of aflow graph the CONTROL-STACK changes its value often in the same manner: the top element
is popped from and the successor node of the popped node is pushed onto CONTROL-STACK. This series of stack
operations is encapsulated in the NEXT-CONTROL function:

myEntity.NEXT-CONTROL (myBool) {
successorNode := myEntity.CONTROL-STACK.NEXT (myBool) .top() ;
myEntity.CONTROL-STACK.pop () ;
myEntity.CONTROL-STACK.push (successorNode) ;

ETSI

43 ETSI ES 201 873-4 V4.4.1 (2012-04)

8.3.2.2 Data state and variable binding

As shown in figure 25, the data state DATA-STATE of an entity stateisalist of lists of variable bindings. Each list of
variable bindings defines the variable bindings in a certain scope unit. Adding anew list of variable bindings
corresponds to entering a new scope unit, e.g. afunction is called. Deleting alist of variable bindings corresponds to
leaving a scope unit, e.g. a function executes areturn statement.

VariableBinding, VariableBinding,

v v
v v

VariableBinding, VariableBinding,

Figure 25: Structure of the DATA-STATE part of an entity state

The structure of avariable binding is shown in figure 26. A variable has a name, a <location> and a VALUE.
VAR NAME identifies a variable in a scope unit. The <location> isaunique identifier of the storage location of the
value of the variable. The VALUE part of avariable binding describes the actual value of avariable.

NOTE: Unique location identifiers should be provided automatically when avariable is declared.

VAR-NAME <location> VALUE

Figure 26: Structure of a variable binding

The distinction between variable name and location has been made to model function calls and the execution of test
cases with value and reference parameterization in an appropriate manner:

a) A parameter passed in by valueis handled like the declaration of a new variable, i.e. anew variable binding is
appended to the list of variable bindings of the scope of the called function or executed test case. The new
variable binding uses the formal parameter name as VAR-NAME, receives a new location and gets the value
that is passed into the function or test case.

b) A parameter passed in by reference also leads to a new variable binding in the scope of the called function or
executed test case. The new variable binding also uses the formal parameter name as VAR-NAME, but receives
no new location and no new value. The new variable binding gets a copy of <location> and VALUE of the
variable that is passed in by reference.

When updating a variable value, e.g. in case of an assignment to avariable, the variable name is used to identify a
location and al variable bindings with the same location are updated at the same time. Thus, when leaving the scope
unit, the list of variables belonging to this scope unit can be deleted without further update. Due to the update
procedure, variables passed in by reference automatically have the correct value.

8.3.2.3 Accessing data states

The value of avariable can be retrieved by using the "dot" notation myEntity.myVar . VALUE, where myEntity refersto
an entity state and myVar isthe name of avariable.

For the handling of variables and variable scope the following functions are considered to be defined:
a The VAR-SET function: myEntity. VAR-SET (myVar, myValue)

sets the VALUE part of variable myVar in the actual scope of an entity myEntity to myVal. In addition, the
VALUE part of al variables with the same location as variable myVar will also be set to myVal.

ETSI

44 ETSI ES 201 873-4 V4.4.1 (2012-04)

b) ThelNIT-VAR function: myEntity.INIT-VAR (myVar, myVal)

creates anew variable binding for a variable myVar with the initial value myVal in the actual scope unit of an
entity myEntity. Using the keyword NONE as myVal means that a variable with undefined initial valueis
created. A new and unique <location> value is automatically created.

€c) The GET-VAR-LOC function: myEntity. GET-VAR-LOC (myVar)
retrieves the location of variable myVar owned by myEntity.
d) ThelINIT-VAR-LOC function: myEntity.INIT-VAR-LOC (myVar,myLoc)

creates anew variable binding for a variable myVar with the location myLoc in the actual scope unit of
myEntity. The variable will be initialized with the value of another variable with the location myLoc.

NOTE: Variableswith the samelocation are aresult of parameterization by reference. Due to the handling of
reference parameters as described in clause 8.3.2.2 all variables with the same location will have identical
values during their lifetime.

e) ThelNIT-VAR-SCOPE function: myEntity.INI T-VAR-SCOPE ()

initializes a new variable scope in the data state of entity myEntity, i.e. an empty list is added asfirst list in the
list of lists of variable bindings.

f) The DEL-VAR-SCOPE function: myEntity.DEL-VAR-SCOPE ()
deletes a variable scope of the data state of myEntity, i.e. thefirst list in the list of lists of variable bindingsis
deleted.
8.3.24 Timer state and timer binding

As shown in figures 27 and 25 the timer state TIMER-STATE and the data state DATA-STATE of an entity state are
comparable. Both are alist of lists of bindings and each list of bindings defines the valid bindingsin a certain scope.
Adding anew list corresponds to entering a new scope unit and deleting alist of bindings correspondsto leaving a

scope unit.
root . P? »? P cecccrcces

TimerBinding, TimerBinding,

v v
v v

TimerBinding, TimerBinding,

Figure 27: Structure of the TIMER-STATE part of an entity state

The structure of atimer binding is shown in figure 28. The meaning of TIMER-NAME and <location> is similar to the
meaning of VAR-NAME and <location> for a variable binding (figure 26).

TIMER-NAME | <location> | STATUS | DEF-DURATION | ACT-DURATION | TIME-LEFT |SNAP-VALUE | SNAP-STATUS

Figure 28: Structure of a timer binding

ETSI

45 ETSI ES 201 873-4 V4.4.1 (2012-04)

STATUS denotes whether atimer is active, inactive or has timed out. The corresponding STATUSvalues are IDLE,
RUNNING and TIMEOUT. DEF-DURATION describes the default duration of atimer. ACT-DURATION stores the
actual duration with which arunning timer has been started. TIME-LEFT describes the actual duration that a running
timer has to run before it times out.

NOTE: DEF-DURATION isundefined if atimer is declared without default duration. ACT-DURATION and
TIME-LEFT are set to 0.0 if atimer is stopped or times out. If atimer is started without duration, the
value of DEF-DURATION is copied into ACT-DURATION. A dynamic error occursif atimer is started
without a defined duration.

NAP-VALUE and SNAP-STATUS are needed to support the snapshot semantics of TTCN-3. When taking a snapshot,
NAP-VALUE gets the actual value of ACT-DURATION — TIME-LEFT. And SNAP-STATUS gets the same value as
STATUS The evaluation of a snapshot will only be based on the values in SNAP-VALUE and SNAP-STATUS.

Timer can be only passed by reference into functions, i.e. the mechanism is similar to the mechanism for variables
described in clause 8.3.2.2. This means a new timer binding (with the formal parameter name) is created which gets
copies of <location>, STATUS, DEF-DURATION, ACT-DURATION, TIME-LEFT, SNAP-VALUE and SNAP-STATUS
from the timer that is passed in by reference. When updating atimer all timer bindings with the same <location> value
are updated at the same time.

8.3.25 Accessing timer states

The values of STATUS, DEF-DURATION, ACT-DURATION, TIME-LEFT, SNAP-VALUE and SNAP-STATUS of a
timer myTimer can be retrieved by using the dot notation:

. myEntity.myTimer.STATUS;

. myEntity.myTimer. DEF-DURATION;

e myEntity.myTimer, ACT-DURATION;

. myEntity.myTimer TIME-LEFT;
. myEntity.myTimer. SNAP-VALUE;
. myEntity.myTimer.SNAP-STATUS.

The myEntity in the dot notation refers to an entity state representing the state of atest component or module control
that owns the timer myTimer.

For changing the values of STATUS DEF-DURATION, ACT-DURATION, TIME-LEFT, SNAP-VALUE and
SNAP-STATUS of atimer timer-name, the generic TIMER-SET operation has to be used, for example:

. myEntity. TIMER-SET(myTimer, STATUS, myVal)

sets the STATUS value of timer myTimer in the actual scope of myEntity to the value myVal. In addition, the STATUS of
all timers with the same location as timer myTimer will also be set to myVal. The TIMER-SET function can aso be used
to change the values of DEF-DURATION, ACT-DURATION, TIME-LEFT, SNAP-VALUE and SNAP-STATUS.

For the handling of timers, timer scope and snapshot the following functions have to be defined:
a) TheINIT-TIMER function: myEntity.INIT-TIMER (myTimer, myDuration)

creates a new timer binding for atimer myTimer with the default duration myDuration in the actual scope of an
entity myEntity. Using the keyword NONE as myDuration means that atimer without default duration is
created.

b) The GET-TIMER-LOC function: myEntity. GET-TIMER-LOC (myTimer)

retrieves the location of timer myTimer owned by myEntity.

ETSI

46 ETSI ES 201 873-4 V4.4.1 (2012-04)

¢) ThelNIT-TIMER-LOC function: myEntity. INIT-TIMER-LOC (myTimer, myLocation)

creates a new timer binding for atimer myTimer with the location myLocation in the actual scope unit of
myEntity. The timer will beinitialized with the values of STATUS DEF-DURATION, ACT-DURATION and
TIME-LEFT of another timer with the location <location>.

NOTE: Timerswith the same location are aresult of parameterization by reference. Due to the handling of timer
reference parameters as described in clause 8.3.2.3 al timers with the same location will have identical
values for STATUS, DEF-DURATION, ACT-DURATION and TIME-LEFT during their lifetime.

d) TheINIT-TIMER-SCOPE function: myEntity.INIT-TIMER-SCOPE ()

initializes a new timer scope in the timer state of entity myEntity, i.e. an empty list isadded asfirst list in the
list of lists of timer bindings.

e) TheDEL-TIMER-SCOPE function: myEntity.DEL-TIMER-SCOPE ()

deletes atimer scope of the timer state of entity myEntity, i.e. thefirst list in the list of lists of timer bindingsis
deleted.

f) The SNAP-TIMER function: myEntity. SNAP-TIMER ()
makes an update of SNAP-VALUE and SNAP-STATUS, in all timers owned by myEntity , i.e.:

myEntity.SNAP-TIMERS () {
for all myTimer in TIMER-STATE {
myEntity.myTimer.SNAP-VALUE := myEntity.myTimer.ACT-DURATION -
myEntity.myTimer.TIME-LEFT;
myEntity.myTimer.SNAP-STATUS := myEntity.myTimer.STATUS;

8.3.2.6 Port references and port binding

Asshown in figures 28a, 27 and 25 the port references PORT-REF, the timer state TIMER-STATE and the data state
DATA-STATE of an entity state are comparable. All three are alist of lists of bindings and each list of bindings defines
the valid bindingsin a certain scope. Adding a new list corresponds to entering a new scope unit and deleting alist of
bindings corresponds to leaving a scope unit.

root . :? > P cccccscsns

PortBinding: PortBinding:

{ {
} |

PortBindingn PortBindingx

Figure 28a: Structure of the PORT-REF part of an entity state

The structure of a port binding is shown in figure 28b. A port has two names. PORT-NAME identifies aport in a scope
unit. COMP-PORT-NAME is the port name given in the component type to a port.

PORT-NAME|COMP-PORT-NAME

Figure 28b: Structure of a port binding

NOTE: PORT-NAME and COMP-PORT-NAME are equal directly after the creation of a component.

ETSI

a7 ETSI ES 201 873-4 V4.4.1 (2012-04)

Ports can be only passed by reference into functions and atsteps, i.e. the mechanism is similar to the mechanism for
variables described in clause 8.3.2.2. This means a new port binding (with the formal parameter name) is created which
gets a copy of COMP-PORT-NAME from the port that is passed in by reference. When accessing a port which is passed
in by reference, the corresponding port binding is used to retrieve the port name declared in the component type
definition.

8.3.2.7 Accessing port references

The value of COMP-PORT-NAME can be retrieved by using the dot notation:

. myEntity.myport. COMP-PORT-NAME

The myEntity in the dot notation refersto an entity state representing the state of atest component that owns the port
myPort.

For the handling of port parameters and port scopes the following functions have to be defined:

a) ThelINIT-PORT function: myEntity.INIT-PORT (myPort, myCompPortName)

creates a new port binding for a port myPort with myCompPortName as value for COMP-PORT-NAME in the
actual scope of an entity myEntity.

b) TheINIT-PORT-SCOPE function: myEntity.INIT-PORT-SCOPE ()

initializes a new port scope in the port references of entity myEntity, i.e. an empty list isadded asfirst list in
the list of lists of port bindings.

¢) TheDEL-PORT-SCOPE function: myEntity.DEL -PORT-SCOPE ()

deletes a port scope of the port references of entity myEntity, i.e. thefirst list in the list of lists of port bindings
is deleted.

8.3.3 Port states

Port states are used to describe the actual states of ports. Within a module state, the port states are handled in the
ALL-PORT-STATES it (see figure 23). The structure of a port state is shown in figure 29. The COMP-PORT-NAME
refers to the port name that is used to declare the port in the component type definition of the test component OWNER
that owns the port. STATUS provides the actua status of the port. A port may either be STARTED, HALTED Or
STOPPED.

NOTE: A portinatest system is uniquely identified by the owning test component and by the port name used in
the component type definition to declare the port.

The CONNECTIONS-LIST of aport state keeps track of the connections between the different portsin the test system.
The mechanism is explained in clause 8.3.3.1.

The VALUE-QUEUE in a port state stores the messages, calls, replies and exceptions that are received at this port but
have not yet been consumed.

The SNAP-VALUE supports the TTCN-3 snapshot mechanism. When a snapshot is taken, the first element in
VALUE-QUEUE is copied into SNAP-VALUE. SNAP-VALUE will get the value NULL if VALUE-QUEUE is empty or
STATUSis STOPPED.

COMP-PORT-NAME OWNER STATUS CONNECTIONS-LIST | VALUE-QUEUE | SNAP-VALUE

Figure 29: Structure of a port state

ETSI

48 ETSI ES 201 873-4 V4.4.1 (2012-04)

8.3.3.1 Handling of connections among ports

A connection between two test components is made by connecting two of their ports by means of aconnect
operation. Thus, a component can afterwards use itslocal port name to address the remote queue. As shown in

figure 30, connection is represented in the states of both connected queues by a pair of REMOTE-ENTITY and
REMOTE-PORT-NAME. The REMOTE-ENTITY is the unique identifier of the test component that owns the remote
port. The REMOTE-PORT-NAME refers to the port name that is used to declare the port in the component type
definition of the test component REMOTE-ENTITY. TTCN-3 supports one-to-many connections of ports and therefore
al connections of a port are organized in alist.

NOTE 1: Connections made by map operations are also handled in the list of connections. Themap operation:
map(PTC1:MyPort, system.PCOL) leads to a new connection (system, PCO1) in the port state of
MyPort owned by PTC1. The remote side to which PCOL1 is connected to, resides inside the SUT. Its
behaviour is outside the scope of this semantics.

NOTE 2: The operational semantics handles the keyword system as a symbolic address. A connection
(system, myPort) inthelist of connections of a port it indicates that the port is mapped onto the port
myPort in the test system interface.

REMOTE-ENTITY REMOTE-PORT-NAME

Figure 30: Structure of a connection

8.3.3.2 Handling of port states

The queue of valuesin a port state can be accessed and manipulated by using the known queue operations enqueue,
dequeue, first and clear. Using a GET-PORT or a GET-REMOTE-PORT function references the queue that shall be
accessed.

NOTE 1: The queue operations enqueue, degqueue, first and clear have the following meaning:
L] myQueue.engqueue(item) putsitem as last item into myQueue;
" myQueue.dequeue() deletes the first item from myQueue;
L] myQueue.first() returns the first item in myQueue or NULL if myQueue is empty;
L] myQueue.clear () removes al elements from myQueue.
The handling of port statesis supported by the following functions:
a) The NEW-PORT function: NEW-PORT (myEntity, myPort)

creates a new port and returns its reference. The OWNER entry of the new port is set to myEntity and
COMP-PORT-NAME has the value myPort. The status of the new port is STARTED. The CONNECTIONS-LIST
and the VALUE-QUEUE are empty. The SNAP-VALUE has the value NULL (i.e. the input queue of the new port
is empty).

b) The GET-PORT function: GET-PORT (myEntity, myPort)

returns a reference to the port identified by OWNER myEntity and COMP-PORT-NAME myPort.

¢) The GET-REMOTE-PORT function: GET-REMOTE-PORT (myEntity, myPort, myRemoteEntity)

returns the reference to the port that is owned by test component myRemoteEntity and connected to a port
identified by OWNER myEntity and COMP-PORT-NAME myPort. The symbolic address SYSTEM is returned,
if the remote port is mapped onto a port in the test system interface.

NOTE 2: GET-REMOTE-PORT returns NULL if there is no remote port or if the remote port cannot be identified
uniquely. The special value NONE can be used as value for the myRemoteEntity parameter if the remote
entity is not known or not required, i.e. there exists only a one-to-one connection for this port.

ETSI

49 ETSI ES 201 873-4 V4.4.1 (2012-04)

d) TheSTATUSof aport ishandled like avariable. It can be addressed by qualifying STATUS with a GET-PORT
call:

GET-PORT(myEntity, myPort).STATUS
€) The ADD-CON function: ADD-CON (myEntity, myPort, myRemoteEntity, myRemotePort)

adds a connection (myRemoteEntity, myRemotePort) to the list of connections of the port identified by
OWNER myEntity and COMP-PORT-NAME myPort.

f) The DEL-CON function: DEL-CON (myEntity, myPort, myRemoteEntity, myRemotePort)

removes a connection (myRemoteEntity, myRemotePort) from the list of connections of the port identified by
OWNER myEntity and COMP-PORT-NAME myPort.

g) The SNAP-PORTS function: SNAP-PORTS (myEntity)

updates SNAP-VALUE for all ports owned by myEntity, i.e.

SNAP-PORTS (myEntity) {
for all ports p /* in the module state */ {
if (p.OWNER == myEntity) {
if (p.STATUS == STOPPED) {
p.SNAP-VALUE := NULL;
1

else {
if (p.STATUS == HALTED && p.first() == HALT-MARKER) {
// Port is halted and halt marker is reached
p.SNAP-VALUE := NULL;
p.dequeue() ; // Removal of halt marker
p.STATUS := STOPPED;

}

else
p.SNAP-VALUE := p.first()
1

}

NOTE 3: The SNAP-PORTS function handles the HALT -MARKER that may be put by ahalt port operation into
the port queue. If such a marker isfound, the marker is removed, the SNAP-VALUE of the port is set to
NULL and the status of the port is changed to STOPPED.

8.3.4 General functions for the handling of module states
The operational semantics assumes the existence of the following functions for the handling of module states.

NOTE 1: During the interpretation of a TTCN-3 module, there only exists one module state. It is assumed that the
components of the module state are stored in global variables and not in a complex data object. Thus, the
following functions are assumed to work on global variables and do not address a specific module state
object.

ad) TheDEL-ENTITY function: DEL-ENTITY(myEntity)
deletes an entity with the unique identifier myEntity. The deletion comprises:
- the deletion of the entity state of myEntity;
- deletion of all ports owned by myEntity;
- deletion of all connections in which myEntity isinvolved.

b) The UPDATE-REMOTE-REFERENCES function:

UPDATE-REMOTE-REFERENCES (source, target)

the UPDATE-REMOTE-REFERENCES updates variables and timers with the same location in both entities.
The values that will be used for the update are the values of variables and timers owned by source.

ETSI

50 ETSI ES 201 873-4 V4.4.1 (2012-04)

NOTE 2: The UPDATE-REMOTE-REFERENCES s used during the termination of test cases. It alows updating of
variables of module control, which are passed as reference parameters to test cases.

8.4 Messages, procedure calls, replies and exceptions

The exchange of information among test components and between test components and the SUT is related to messages,
procedure calls, replies to procedure calls and exceptions. For communication purposes these items have to be
constructed, encoded and decoded. The concrete encoding, i.e. mapping of TTCN-3 data types to bits and bytes, and
decoding, i.e. mapping of bits and bytes to TTCN-3 data types, is outside the scope of the operational semantics. In the
present document messages, procedure calls, replies to procedure calls and exceptions are handled on a conceptual
level.

8.4.1 Messages

Messages are related to message-based communication. Values of al (pre- and user-defined) data types can be
exchanged among the entities that communicate. As shown in figure 31, the operational semantics handles a message as
structured object that consist of a sender atype and avalue part. The sender part identifies the sender entity of a
message, the type part specifies the type of a message and the value part defines the message value.

sender type value

Figure 31: Structure of a message

NOTE: The operational semantics only presents a model for the concepts of TTCN-3. Whether and how the
sender information is or has to be sent and/or received depends on the implementation of the test system,
e.g. in some cases the sender information may be part of the value part of a message and therefore is no
separate part of the message structure.

8.4.2 Procedure calls and replies

Procedure calls and replies to procedures are related to procedure-based communication. They are defined like values of
arecord with components representing the parameters. The operational semantics also handles procedure calls and
replies to procedure calls like values in structured types. The structure of a procedure call and the structure of areply
are presented in figures 32 and 33.

The sender and the procedure-reference parts have the same meaning in both figures. The sender part refersto the
sender entity of acall or the reply to a procedure call. The procedure-reference refers to the procedure to which call and
reply belong. The parameter-part of the procedure call in figure 32 refersto the in parametersand inout parameters
and the parameter- part of the reply in figure 33 refersto the inout parameters and out parameters of the procedure
to which call and reply belong. In addition, the reply has a value part for the return values in the reply to a procedure.

NOTE 1: Asstated in the previous note, the operational semantics only presents a model for the concepts of
TTCN-3. Whether and how the information described in figures 32 and 33 is or has to be sent and/or
received depends on the implementation of the test system.

NOTE 2: For aprocedure call, out parameters are of no relevance and are omitted in figure 32. For areply to a
procedure call, in parameters are of no relevance and are omitted in figure 33.

NOTE 3: Thetypes of parameters and the type of the return value can always be derived unanimously from the
related signature definition.

sender procedure-reference parameter-part

in-or-inout-parameter, | ... | in-or-inout-parameter

Figure 32: Structure of a procedure call

ETSI

51 ETSI ES 201 873-4 V4.4.1 (2012-04)

sender | procedure-reference parameter-part value

inout-or-out-parameterl inout-or-out-parametern

Figure 33: Structure of a reply to a procedure call

8.4.3 Exceptions

Exceptions are also related to procedure-based communication. The structure of an exception is shown in figure 34. It
consists of four parts. The sender part identifies the sender of the exception; the procedure-reference part refersto the
procedure to which the exception belongs, the type part identifies the type of the exception and the value part provides
the value of the exception. The procedure signature referred to in the procedure reference part defines the list of allowed
types of exceptions. A received exception shall comply with one of the listed types. In general it can be of any pre- or
user-defined TTCN-3 data type.

sender procedure-reference type value

Figure 34: Structure of an exception

8.4.4 Construction of messages, procedure calls, replies and exceptions

The operations for sending a message, a procedure call, areply to a procedure call or an exception are send, call,
reply and raise. All these sending operations are built up in the same manner:

<port-names>.<sending-operation> (<send-specification>) [to <receivers>]

The <port-name> and <sending-operation> define port and operation used for sending an item. In case of one-to-many
connections a <receiver> entity needs to be specified. The item to be sent is constructed by using the
<send-specification>. The send specification may use concrete values, template references, variable values, constants,
expressions, functions, etc. to construct and encode the item to be sent.

The operational semantics assumes that there exists a generic CONSTRUCT-ITEM function:

CONSTRUCT-ITEM (myEntity, <sending-operation>, <send-specification>)

returns a message, a procedure call, areply to a procedure call or an exception depending on the
<sending-operations> andthe <send-specification> (both, <sending-operations> andthe
<send-specification> refer to the corresponding partsin the TTCN-3 sending operation). The entity
reference myEntity is the sender of the item to be sent. This sender information is also assumed to be part of
the item to be sent (figures 31 to 34).

8.4.5 Matching of messages, procedure calls, replies and exceptions

The operations for receiving a message, a procedure call, areply to aprocedure call or an exception are receive,
getcall, getreply and catch. All these receiving operations are built up in the same manner:

<port-names.<receiving-operations (<matching-part>) [from <sender>] [<assignment-parts>]

The <port-names> and <receiving-operation> define port and operation used for the reception of anitem. In
case of one-to-many connections a £ rom-clause can be used to select a specific sender entity <sender>. Theitemto
be received has to fulfil the conditions specified in the <matching-part>, i.e. it hasto maich. The <matching-
part> may use concrete values, template references, variable values, constants, expressions, functions, etc. to specify
the matching conditions.

ETSI

52 ETSI ES 201 873-4 V4.4.1 (2012-04)

The operational semantics assumes that there exists a generic MATCH-ITEM function:
MATCH-ITEM (myltem, <matching-part>, <senders)
returns true if myltem fulfils the conditions of <matching-part> and if myltem has been sent by
<sender>, otherwiseit returns false.
8.4.6 Retrieval of information from received items

Information from received messages, procedure calls, replies to procedure calls and exceptions can be retrieved in the
<assignment-part> (seeclause 8.4.5) of the receiving functions receive, getcall, getreply and catch.
The <assignment -part > describes how the parameters of procedure calls and replies, return values encoded in
replies, messages, exceptions and the identifier of the <sender> entity are assigned to variables.

The operational semantics assumes that there exists a generic RETRIEVE-INFO function:

RETRIEVE-INFO (myltem, <assignment-parts>)

al valuesto be retrieved according to the <assignment -part > areretrieved and assigned to the variables
listed in the assignment part. Assignments are done by means of the VAR-SET operation, i.e. variables with the
same location are updated at the same time.

8.5 Call records for functions, altsteps and test cases

Functions, altsteps and test cases are called (or executed) by their name and allist of actual parameters. The actual
parameters provide references for reference parameter and concrete values for the value parameter as defined by the
formal parameters in the corresponding function, altstep or test case definition. The operational semantics handles calls
of functions, altsteps and test cases by using call records as shown in figure 35. The value of BEHAVIOUR-ID is the
name of afunction or test case, value parameters provide concrete values <parld,> ... <parld,> for the formal

parameters <parld,> ... <parld>. Variable and timer reference parameters provide references to locations of existing

variables and timers. Port reference parameters provide the port names declared in the component type definition of the
test component that calls the function or altstep. Before afunction or test case can be executed an appropriate call
record has to be constructed.

NOTE: Port reference parameters can only appear in functions and altsteps which are executed on a test
component.

behaviour-id value-parameters variable and timer port
reference-parameters reference-parameters

parld, |...| parld, parld, |...| parld, parld |...| parld,

value, |...|value, loc loc name, |...| name,

n r

Figure 35: Structure of a call record

8.5.1 Handling of call records

The function, altstep or test case name and the actual parameter values can be retrieved by using the dot notation,
e.g. myCallRecord.parld,, or myCallRecord.behaviour-id where myCallRecord is a pointer to acall record.

For the construction of acall the function NEW-CALL-RECORD is assumed to be available:

NEW-CALL-RECORD(myBehaviour)

creates anew call record for function, altstep or test case myBehaviour and returns a pointer to the new record.
The parameter fields of the new call record have undefined values.

ETSI

53 ETSI ES 201 873-4 V4.4.1 (2012-04)

myEntity.INIT-CALL-RECORD (myCallRecord)

creates variables, timers and port references for the handling of value and reference parameters in the actual
scope of the test component or module control myEntity. The variables for the handling of value parameters
areinitialized with the corresponding values provided in the call record. The variables and timers for the
handling of reference parameters get the provided location. In addition, they get a value of an existing variable
or timer in another scope unit of the component in which the call record was created. Port references get the
provided name as value for the COMP-PORT-NAME field.

8.6 The evaluation procedure for a TTCN-3 module

8.6.1 Evaluation phases
The evauation procedure for a TTCN-3 module is structured into:
(1) initialization phase;
(2) update phase;
() selection phase; and
(4) execution phase.

The phases (2), (3) and (4) are repeated until module control terminates. The evaluation procedure is described by
means of a mixture of informal text, pseudo-code and the functions introduced in the previous clauses.

8.6.1.1 Phase I: Initialization
The initialization phase includes the following actions:
a) Declaration and initialization of variables:

- INIT-FLOW-GRAPHY); // Initialization of flow graph handling. INIT-FLOW-GRAPHS is
/I explained in clause 8.6.2.

- Entity := NULL; /1 Entity will be used to refer to an entity state. An entity state either
/I represents module control or atest component.

- MTC :=NULL; /I MTC will be used to refer to the entity state of the main test component of
/I atest case during test case execution.

NOTE 1. The global variable CONTROL form the control state of a module state during the interpretation of a
TTCN-3 module (see clause 8.3.1).

- CONTROL :=NULL; /I CONTROL will be used to refer to the control state of a module state.
NOTE 2: Thefollowing global variables ALL-ENTITY-STATES, ALL-PORT-STATES, TC-VERDICT, DONE and

KILLED form the test configuration state of a module state during the interpretation of a TTCN-3 module
(see clause 8.3.1).

- ALL-ENTITY-STATES:= NULL;

- ALL-PORT-STATES:= NULL;

- TC-VERDICT :=none;
- DONE := NULL;

- KILLED :=NULL,;

ETSI

54 ETSI ES 201 873-4 V4.4.1 (2012-04)

b) Creation and initialization of module control:

- CONTROL := NEW-ENTITY (GET-FLOW-GRAPH (<moduleld>), false);
Il A new entity state is created and initialized with the start node of
/1 the flow graph representing the behaviour of the control of the
/I module with the name <modulel d>. The Boolean parameter
/I indicates that_ module control cannot be restarted after it is
/I stopped.

- CONTROL.INIT-VAR-SCOPE(); /I New variable scope

- CONTROL.INIT-TIMER-SCOPE(); /I New timer scope

- CONTROL.VALUE-STACK.push(MARK); /I A mark is pushed onto the value stack

8.6.1.2 Phase II: Update

The update phase is related to al actions that are outside the scope of the operational semantics but influence the
interpretation of a TTCN-3 module. The update phase comprises the following actions:

a Timeprogress: All running timers are updated, i.e. the TIME-LEFT values of running timers are (possibly)
decreased, and if due to the update a timer expires, the corresponding timer bindings are updated,
i.e. TIME-LEFT isset to 0.0 and STATUSIs set to TIMEOUT.

NOTE 1. The update of timersincludes the update of al running TIMER-GUARD timers in module states.
TIMER-GUARD timers are used to guard the execution of test cases and call operations.

b) Behaviour of the SUT: Messages, remote procedure calls, replies to remote procedure calls and exceptions
(possibly) received from the SUT are put into the port queues at which the corresponding receptions shall take
place.

NOTE 2: This operational semantics makes no assumptions about time progress and the behaviour of the SUT.

8.6.1.3 Phase IlI: Selection
The selection phase consists of the following two actions:

a) Selection: Select anon-blocked entity, i.e. an entity that has not the STATUS value BLOCKED. The entity may
be CONTROL, i.e. module control, or an element in, i.e. ALL-ENTITY-STATES, atest component.

b) Storage: Storetheidentifier of the selected entity in the global variable Entity.

8.6.1.4 Phase IV: Execution
The execution phase consists of the following two actions:

a) Execution step of the selected entity: Execute the top flow graph node in the CONTROL-STACK of Entity.

b) Check termination criterion: Stop execution if module control has terminated, i.e. CONTROL isNULL.
Otherwise continue with Phase 11.

NOTE: The execution step of the selected entity can be seen as a procedure call. The check of the termination
criterion is done when the execution step terminates, i.e. returns the control.

8.6.2 Global functions

The evaluation procedure uses the global function INIT-FLOW-GRAPHS:

a) INIT-FLOW-GRAPHS s assumed to be the function that initializes the flow graph handling. The handling may
include the creation of the flow graphs and the handling of the pointers to the flow graphs and flow graph
nodes.

ETSI

55 ETSI ES 201 873-4 V4.4.1 (2012-04)

The pseudo-code used the following clauses to describe execution of flow graph nodes use the functions
CONTINUE-COMPONENT, RETURN, ***DYNAMIC-ERROR***:

b) CONTINUE-COMPONENT the actual test component continues its execution with the node lying on top of
the control stack, i.e. the control is not given back to the module evaluation procedure described in this clause.

¢) RETURN returnsthe control back to the module evaluation procedure described in this clause. The RETURN is
the last action of the "execution step of the selected entity" of the execution phase.

d) ***DYNAMIC-ERROR*** refersto the occurrence of adynamic error. The error handling procedure itself is
outside the scope of the operational semantics. If adynamic error occurs al following behaviour of the test
case is meant to be undefined. In this case resources allocated to the test case shall be cleared and the error
verdict is assigned to the test case. Control is given to the statement in the control part following the execute
statement in which the error occurred. Thisis modelled by the flow graph segment <dynamic-error>
(clause 9.18.5).

NOTE: The occurrence of adynamic error isrelated to test behaviour. A dynamic error as specified by the
operational semantics denotes a problem in the usage of TTCN-3, e.g. wrong usage or race condition.

€) APPLY-OPERATOR used as generic function for describing the eval uation of operators (e.g. +, *,/or -) in
expressions (see clause 9.18.4).

9 Flow graph segments for TTCN-3 constructs

The operational semantics represents TTCN-3 behaviour in form of flow graphs. The construction a gorithm for the
flow graphs representing behaviour is described in clause 8.2. It is based on templates for flow graphs and flow graph
segments that have to be used for the construction of concrete flow graphs for module control, test cases, atsteps,
functions and component type definitions defined in a TTCN-3 module. The definitions of the templates for the flow
graph segments can be found in this clause. They are presented in an a phabetical order and not in alogical order.

The flow graph segment definitions are provided in the form of figures. The flow graph nodes are presented on the left
side of the figures and comments associated to hodes and flow lines are shown on the right side. Descriptive comments
are presented for reference nodes and comments in form of pseudo-code are associated to basic nodes. The pseudo-code
describes how a basic node is interpreted, i.e. changes the module state. It makes use of the functions defined in clause 8
and the global variables declared and initialized in the eval uation procedure for TTCN-3 modules (see clause 8.6). An
overall view of all functions and keywords used by the pseudo-code can be found in clause 8.

9.1 Action statement

The syntactical structure of an action statementis:

action (<informal descriptions)

The flow graph segment <action-stmt> in figure 36 defines the execution of the action statement.

segment <action-stmt>

// inscription ‘nop’ means ‘no operation’
Entity.NEXT-CONTROL (true) ;
NOP e RETURN;

NOTE: The <informal description> parameter of the action statement has no meaning for the operational
semantics and is therefore not represented in the flow graph segment.

Figure 36: Flow graph segment <action-stmt>

ETSI

56 ETSI ES 201 873-4 V4.4.1 (2012-04)

9.2 Activate statement

The syntactical structure of the activate statementis:

activate(<altstep—name>([<act—par—descl>, - <act—par—descn>]))

The <altstep-name> denotes to the name of an altstep that is activated as default behaviour, and
<act-par-descr,>,..., <act-par-descr, > describethe actual parameter values of the altstep at the time of

its activation.

It is assumed that for each <act -par-desc, > the corresponding formal parameter identifier <f-par-1d,>is
known, i.e. we can extend the syntactical structure above to:

activate(<altstep—name>((<f—par—Idl>,<act—par—descl>), - (<f—par—Idn>,<act—par—descn>)))

The flow graph segment <activate-stmt> infigure 37 defines the execution of the activate statement. The
execution is structured into three steps. In the first step, a call record for the altstep <function-name> iscreated. In
the second step the values of the actual parameter are calculated and assigned to the corresponding field in the call
record. In the third step, the call record is put as first element in the DEFAULT-LIST of the entity that activates the
defauilt.

NOTE: For atsteps that are activated as default behaviour, only value parameters are allowed. In figure 37, the
handling of the value parametersis described by the flow graph segment <value-par-cal culation>, which
isdefined in clause 9.24.1.

segment
<activate-stmt>

Entity.VALUE-STACK.push (NEW-CALL-RECORD (function-name)) ;
Entity.NEXT-CONTROL (true) ;

construct-call-record

(altstep-name))7 RETURN;
* // For each pair (<f-par-Id;>, <act-parameter-desc;>) the
// value of <act-parameter-desc; is calculated and
»»»»» // assigned to the corresponding field <f-par-Id;>
<value-par-calculation> // in the call record. The call record is assumed to be
// the top element in the value stack.

Entity.DEFAULT-LIST.add (Entity.VALUE-STACK. top()) ;

// We assume that only a reference to the call record has
// been pushed onto the value stack. This reference has

// not been removed from the value stack. It is the result
// of the activate statement.

Entity.NEXT-CONTROL (true) ;

RETURN;

activate-default

Figure 37: Flow graph segment <activate-stmt>

9.2a Alive component operation

The syntactical structure of the alive component operationis:

<component -expression>.alive

ETSI

57 ETSI ES 201 873-4 V4.4.1 (2012-04)

The alive component operation checks whether a component has been created and is ready to execute or is aready
executing a behaviour function. The component to be checked isidentified by a component reference, which may be
provided in form of avariable or value returning function, i.e. is an expression. For simplicity, the keywords"al1l
component” and "any component” are considered to be special expressions.

The alive component operation distinguishes between its usage in a Boolean guard of an alt statement or blocking
call operation and all other cases. If used in a Boolean guard, the result of alive component operation isbased on
the actual snapshot. In all other casesthe alive component operation evaluates directly the module state information.

Theresult of the alive component operation is pushed onto the value stack of the entity, which called the operation.

The flow graph segment <alive-component-op> in figure 37a defines the execution of the running component
operation.

segment
<alive-component-op>

// The expression shall evaluate
. | S— // to a component reference. The
<expression> // result is pushed onto VALUE-STACK

if (Entity.STATUS == ACTIVE) {
Entity.NEXT-CONTROL (true) ;

o else { // Entity is in a snapshot
decision Entity.NEXT-CONTROL (false) ;

}

RETURN;

<alive-comp-act> <alive-comp-snap>

'

Figure 37a: Flow graph segment <alive-component-op>

ETSI

58 ETSI ES 201 873-4 V4.4.1 (2012-04)

9.2a.1 Flow graph segment <alive-comp-act>

The flow graph segment <alive-comp-act> infigure 37b describes the execution of the alive component
operation outside a snapshot, i.e. the entity isin the stalus ACTIVE.

segment

<alive-comp-acts if (Entity.VALUE-STACK.top() == 'all camponent') {

if (Entity != MTC)
DYNAMIC-ERROR // 'all component' is not allowed
1

else
if (KILLED.length() == 0) { // no entity has terminated
Entity.VALUE-STACK.push (true) ;

) else { // at least one component has terminated
alive-comp-act Entity.VALUE-STACK.push(false) ;

!
1
}
else {
if (Entity.VALUE-STACK.top() == 'any component') {

if (Entity != MIC) |
DYNAMIC-ERROR // 'any component' is not allowed
}

else
if (ALL-ENTITY-STATES.length() > 1) {
// at least one PTC is alive
Entity.VALUE-STACK.push (true) ;

}

else

}

Entity.VALUE-STACK.push (false) ;
1
}
else
if (ALL-ENTITY-STATES.member (Entity.VALUE-STACK.top())) {

// Specified component is alive
Entity.VALUE-STACK.push (true) ;

}

else
Entity.VALUE-STACK.push(false) ;
}

}
b
Entity.NEXT-CONTROL (true) ;
RETURN;

Figure 37b: Flow graph segment <alive-comp-act>

ETSI

59 ETSI ES 201 873-4 V4.4.1 (2012-04)

9.2a.2 Flow graph segment <alive-comp-snap>

The flow graph segment <alive-comp-snap> in figure 37c describes the execution of the alive component
operation during the evaluation of a snapshot, i.e. the entity isin the status SNAPSHOT.

segment
<alive-comp-snap>

alive-comp-snap

if (Entity.VALUE-STACK.top() == 'all component') {
if (Entity != MIC) |
DYNAMIC-ERROR // 'all component' is not allowed
}

else
if (Entity.SNAP-KILLED.length() == 0) {
Entity.VALUE-STACK.push (true) ;

else
Entity.VALUE-STACK.push(false) ;

else {
if (Entity.VALUE-STACK.top() == 'any component') {
if (Entity = MIC) {
DYNAMIC-ERROR // 'any component' is not allowed
}
else
if (Entity.SNAP-ALIVE.length() > 1) {
// at least one PTC was alive when the
// snapshot has been taken
Entity.VALUE-STACK.push (true) ;
}
else
Entity.VALUE-STACK.push (false) ;
}
}
}
else
if (Entity.SNAP-ALIVE.member (Entity.VALUE-STACK.tap())) {

// Component was alive when the snapshot was taken
Entity.VALUE-STACK.push (true) ;

else

// Component was not alive when the snapshot was taken
Entity.VALUE-STACK.push(true) ;

}
b
Entity.NEXT-CONTROL (true) ;
RETURN;

9.3

Figure 37c: Flow graph segment <alive-comp-snap>

Alt statement

The alt statement isthe most complicated and important statement of TTCN-3. It implements the snapshot semantics

and specifies the branching due to the reception of messages, replies, calls and exceptions, due to the occurrence of
timeouts and due to the termination of components. In addition, the evocation of the TTCN-3 default mechanism is also

related to the alt statement.

The flow graph representation of the alt statement in figure 38. The different alternatives due to the reception of
messages, replies, calls and exceptions, due to the occurrence of timeouts and due to the termination of components are
hidden in the flow graph segment <receiving-branchs.

ETSI

60 ETSI ES 201 873-4 V4.4.1 (2012-04)

segment <alt-stmt>

<take-snapshot > // A snapshot is taken

// The different alternatives
<receiving-branch> OR // are evaluated

<altstep-call-branch>
OR <else-branch>

// The default mechanism may
// be evoked.

ST

<default-evocation>

if (Entity.STATUS == ACTIVE) {
Entity.NEXT-CONTROL(true) ;

}

else
if (Entity.STATUS == BREAK)

// altstep is left via a break statement.
Enti ty.STATUS (ACTIVE) ;

A
(:::EEEEeXit Entity.NEXT-CONTROL(true) ;

false
else {

true // A new snapshot needs to be taken, the
// status of the entity is SNAPSHOT (none
// of the alternatives could be selected
// and executed) or REPEAT (due to a

// repeat statement)
Entity.NEXT-CONTROL(false) ;

RETURN;

Figure 38: Flow graph segment <alt-stmt>

ETSI

61 ETSI ES 201 873-4 V4.4.1 (2012-04)

9.3.1 Flow graph segment <take-snapshot>

The flow graph segment <take-snapshot > in figure 39 describes the procedure of taking a snapshot. The snapshot
records values of ports, timers and stopped components.

segment <take-snapshot>
// Take Snapshot

SNAP-PORTS (Entity) ; // Ports
Entity.SNAP-TIMER() ; // Timer
Entity.SNAP-ALIVE := copy(ALL-ENTITY-STATES); // ALIVE
Entity.SNAP-DONE := copy (DONE) ; // DONE

A 4 Entity.SNAP-KILLED := copy(KILLED) ; // KILLED

take-snapshot).

Entity.STATUS := SNAPSHOT; // new component status
Entity.DEFAULT-POINTER := Entity.DEFAULT-LIST.first();

Entity.NEXT-CONTROL (true) ;
RETURN;

v

Figure 39: Flow graph segment <take-snapshot>

ETSI

62 ETSI ES 201 873-4 V4.4.1 (2012-04)

9.3.2 Flow graph segment <receiving-branch>

The execution of the flow graph segment <receiving-branchs> isshown in figure 40.

segment <receiving-branchs>

// The receiving branch is only evaluated,

// if the entity is in status SNAPSHOT

if (Entity.STATUS == SNAPSHOT) {
Entity.NEXT-CONTROL (true) ;

else
Entity.NEXT-CONTROL (false) ;
}

RETURN;
// Boolean expression that
<expression> // guards a branch
Entity.NEXT-CONTROL (Entity.VALUE-STACK. top()) ;
,,,,,,,,,,, Entity.VALUE-STACK.pop() ;
RETURN;
false
true
// The operations may change the status of
<receive-op> OR // Entity, if the operation is successful.
<getcall-op> OR
<getreply-op> OR
<catch-op> OR
<timeout-op> OR
<check-op> OR — P <statement-block>
<done-component -op> true
false
4,
v

Figure 40: Flow graph segment <receiving-branch>

ETSI

63 ETSI ES 201 873-4 V4.4.1 (2012-04)

9.3.3 Flow graph segment <altstep-call-branch>

Theinvocation of an atstep within an alt statement is described by the flow graph segment
<altstep-call-branchs infigure4l.

segment
<altstep-call-branch>

// The branch is only evaluated,

// if the entity is in status SNAPSHOT

if (Entity.STATUS == SNAPSHOT) {
Entity.NEXT-CONTROL (true) ;

}

........... | else {
Entity.NEXT-CONTROL (false) ;
}

RETURN;

decision

// Boolean expression that
<expression> free // guards a branch

Entity.NEXT-CONTROL (Entity. VALUE-STACK. top()) ;
........... | Entity.VALUE-STACK.pop() ;
RETURN;

false

true

}'

// The altstep is called, the status of the
// entity may be changed inside the altstep
<altstep-call> fown // by the different alternatives in the

// altstep.

// STATUS of Entity is ACTIVE if
... // one of the alternatives in the
// altstep has been executed

if (Entity.STATUS == ACTIVE) {
true Entity.NEXT-CONTROL (true) ;
}
false else {

Entity.NEXT-CONTROL (false);

}

RETURN;

4

// Execution of optional statement
// block

<statement-blocks>

Figure 41: Flow graph segment <altstep-call-branch>

ETSI

9.3.4

64

Flow graph segment <else-branch>

ETSI ES 201 873-4 V4.4.1 (2012-04)

The execution of an else branch within an alt statement is described by the flow graph segment <else-branch>

infigure 42.

segment <else-branchs>

else-part

// The branch is only evaluated,

// if the entity is in status SNAPSHOT

if (Entity.STATUS == SNAPSHOT) ({
Entity.NEXT-CONTROL (true) ;

else {
Entity.NEXT-CONTROL (false) ;
1

RETURN;

// An else-branch is always selected, i.e.,
// status of Entity will be set of ACTIVE
Entity.STATUS := ACTIVE;

<statement-block>

// The statement block in an else branch
// is always executed.

\4

Figure 42: Flow graph segment <else-branch>

ETSI

65 ETSI ES 201 873-4 V4.4.1 (2012-04)

9.35 Flow graph segment <default-evocation>

The evocation of defaults behaviour at the end of alt statementsis described by the flow graph segment
<default-evocations> infigure43.

false

false

segment <default-evocations>

default-in

// A default is only evoked, if the

decision

call-record-handling Y.

true

// entity is in status SNAPSHOT
if (Entity.STATUS == SNAPSHOT)
Entity.NEXT-CONTROL (true) ;

............ else {
Entity.NEXT-CONTROL (false) ;
}

true RETURN;

}

A call record in DEFAULT-LIST, identified by
DEFAULT-POINTER is pushed onto the VALUE-STACK of
Entity. Afterwards DEFAULT-POINTER is updated, i.e.,
will point to the next record in DEFAULT-LIST. If
DEFAULT-POINTER is NULL, the Entity status will not
change and, thus, a new SNAPSHOT will be initiated in
<alt-stmt>

(Entity.DEFAULT-POINTER == NULL) {
Entity.NEXT-CONTROL (false) ;

else

Entity.VALUE-STACK.push(Entity.DEFAULT-POINTER) ;
Entity.DEFAULT-POINTER :=

Entity.DEFAULT-LIST.next (Entity.DEFAULT-POINTER) ;
Entity.NEXT-CONTROL (true) ;

RETURN;

// The actual default altstep is invoked

<user-def-func-calls> // or called like a user defined function.

// Jump back to the beginning of the segment
// to check if the next default behaviour has

v
default-in

// to be invoked.

;

Figure 43: Flow graph segment <default-evocation>

ETSI

66 ETSI ES 201 873-4 V4.4.1 (2012-04)

9.4 Altstep call

Asshown in figure 44, the call of an altstep is handled like a function call.

segment <altstep-calls>

. // Reference to the flow graph segment
<function-call> // describing the function call

\4

Figure 44: Flow graph segment <altstep-call>

9.5 Assignment statement

The syntactical structure of an assignment statement is:
<varId> := <expression>

The value of the expression <expression> isassigned to variable <varIds>. The execution of an assignment
statement is defined by the flow graph segment <assignment-stmt> infigure 45.

segment <assignment-stmtx>

. // The expression is evaluated and the
<éxpression> // result is pushed onto the value stack

Entity.VAR-SET(varId, Entity.VALUE-STACK.top());
Entity.VALUE-STACK.pop () ;

assignment-stmt
(varzd)) Entity.NEXT-CONTROL (true) ;

RETURN;

\4

Figure 45: Flow graph segment <assignment-stmt>

9.5a Break statements in altsteps

The syntactical structure of thebreak statement in an atstepis:

break

NOTE: Thesemanticsof abreak statement used for leaving aloop, an interleave oOr analt statementis
defined in clause 7.8 as a shorthand form for using a pair of goto-1label statements.

ETSI

67 ETSI ES 201 873-4 V4.4.1 (2012-04)

Basically, the break statement used for leaving an altstep isa return statement without return value, which also
changes the entity status to BREAK. The status BREAK prevents the re-evaluation of the alt statement in which the
atstep has been called statement has been called and a so prevents the execution of the optional statement block
following the altstep call in the alt statement. The break statement also works for atsteps called indirectly by the
default mechanism. In this case, the alt statement that invokes the default mechanism isleft. The flow graph segment
<break-altstep-stmt> shown in figure 45a defines the execution of the break statement for leaving an altstep.

segment <break-altstep-stmt>

A

Entity.STATUS(BREAK) ;
break-altstep-stmt Jemcmme] RETURN;

A

<return-without-values>

v

Figure 45a: Flow graph segment <break-altstep-stmt>

9.6 Call operation

The syntactical structure of the call operation is:

<portId>.call (<callSpec> [<blocking-info>]) [to <receiver-spec>] [<call-reception-parts>]

The optional <blocking-info> consistsof either the keyword nowait or aduration for atimeout exception. The
optional <receiver-spec> inthe to clauserefersto the receivers of the call. In case of aone-to one
communication, the <receiver-spec> addresses asingle entity (including the SUT or an entity within the SUT). In
case of multicast or broadcast communication, the <receiver-specs> specifiesaset or al test components
connected via the specified port with the calling component. The optional <call-reception-part> denotes the alternative
receptions in case of ablocking call operation.

The operational semantics distinguishes between blocking and non-blocking call operations. A call isnon-blocking
if the keyword nowait isusedinthe call operation, or if the called procedure is non-blocking, i.e. defined by using
the keyword noblock. A blocking call hasa<call-reception-parts.

The flow graph segment <call-op> in figure 46 defines the execution of acall operation. It reflects the distinction
between blocking and non-blocking calls.

segment <call-op> l

<blocking-call-op>
OR // A call operation may be blocking
<non-blocking-call-op> |77 // or non-blocking

\4

Figure 46: Flow graph segment <call-op>

For blocking and non-blocking call operations areceiver entity may be specified in form of an expression. The
possibilities are shown in figures 47 and 48.

ETSI

68

ETSI ES 201 873-4 V4.4.1 (2012-04)

segment <blocking-call-op> l

<b-call-without-durations>
OR
<b-call-with-durations>

// A blocking call may or may not
// be supervised by TIMER-GUARD

\4

Figure 47: Flow graph segment <blocking-call-op>

segment <non-blocking-call-ops>
A 4
<nb-call-with-one-receiver> OR // A non-blocking call may address one,
<nb-call-with-multiple-receivers> OR // multiple (multicast and broadcast) or
<nb-call-without-receivers> // no receiver entities.
v

Figure 48: Flow graph segment <non-blocking-call-op>

ETSI

69

ETSI ES 201 873-4 V4.4.1 (2012-04)

9.6.1 Flow graph segment <nb-call-with-one-receiver>

The flow graph segment <nb-call-with-one-receivers infigure 49 defines the execution of a non-blocking

call operation where one receiver is specified in form of an expression.

segment <nb-call-with-one-receivers

// The expression shall evaluate
// to a component reference or
// address value

<expression>

nb-call-with-one-receiver
(portId, callSpec)

let {

var remotePort :=

if (remotePort == NULL) {

}

if (remotePort == SYSTEM) {

1
else { // sending of call

}

} // end of scope of receiver and remotePort

Entity.NEXT-CONTROL (true) ;
RETURN;

var receiver := Entity.VALUE-STACK.top();

GET-REMOTE-PORT (Entity, Entity.portId.COMP-PORT-NAME, receiver) ;
DYNAMIC-ERROR; // Remote port cannot be found

// Port is mapped onto a port of the test system
// reception of the reply by the SUT is outside
// the scope of the operational semantics

remotePort.enqueue (CONSTRUCT-ITEM(Entity, call, callSpec)) ;

Entity.VALUE-STACK.pop () ; // clean value stack

Figure 49: Flow graph segment <nb-call-with-one-receiver>

9.6.1a Flow graph segment <nb-call-with-multiple-receivers>

The flow graph segment <nb-call-with-multiple-receiverss infigure 49adefinesthe execution of a
non-blocking call operation where multiple receivers are addressed. In case of broadcast communication the keyword
all component isused asreceiver specification. In case of multicast communication alist of expressionsis

provided which shall evaluate to component references or address values.

The component references or address values of the addressed entities (or the keyword all component) are pushed
onto the value stack of the calling entity. The number of references or address values stored in the value stack is
considered to be known, i.e. it is the parameter number of the basic flow graph node
nb-call-with-multiple-receivers infigure49a The number parameter is1in case of broadcast
communication, i.e. thekeyword al1l component istop element in the value stack.

ETSI

70 ETSI ES 201 873-4 V4.4.1 (2012-04)

segment <nb-call-with-multiple-receiverss>

// Each expression shall evaluate
// to a component reference or
// address value

nb-call-with-multiple-receivers
(portId, callSpec, number)

let { //

var i; // loop counter variable

var connection; // variable for connections in port states

var receiver; // variable for receiver component references or
// receiver address values

var localPort, remotePort; // variables for port references

localPort := Entity.portId.COMP-PORT-NAME; // local port

if (Entity.VALUE-STACK.top() == all component) {
connection := localPort.CONNECTIONS-LIST.next (connection) ;
while (connection != NULL)
remotePort := connection.REMOTE-PORT-NAME;
if (remotePort == SYSTEM) ({
// Port is mapped onto a port of the test system
// reception of the reply by the SUT is outside
// the scope of the operational semantics

else { // sending of call
remotePort .engueue (CONSTRUCT-ITEM (Entity, call, callSpec));
}

connection := localPort.CONNECTIONS-LIST.next (connection) ;
}
1
else {
for (i == 1; i <= number; i := i+1) {
receiver := Entity.VALUE-STACK.top() ;
Entity.VALUE-STACK.pop() ; // clean value stack
remotePort := GET-REMOTE-PORT(Entity, localPort, receiver);
if (remotePort == NULL) {

*%**DYNAMIC-ERROR***; // Remote port cannot be found
}
if (remotePort == SYSTEM) ({

// Port is mapped onto a port of the test system

// reception of the reply by the SUT is outside

// the scope of the operational semantics

else { // sending of call
remotePort . enqueue (CONSTRUCT-ITEM (Entity, call, callSpec));
}

}

} // end of local scope

Entity.NEXT-CONTROL (true) ;
RETURN;

Figure 49a: Flow graph segment <nb-call-with-multiple-receivers>

ETSI

71

ETSI ES 201 873-4 V4.4.1 (2012-04)

9.6.2 Flow graph segment <nb-call-without-receiver>

The flow graph segment <nb-call-without-receivers infigure 50 defines the execution of a non-blocking

call operation without a to-clause.

segment <nb-call-without-receiver-op>

nb-call-without-receiver-op
(portId, callSpec)

let {
var remotePort :=

if (remotePort == NULL) ({

}

if (remotePort == SYSTEM) {

else { // sending of call

GET-REMOTE-PORT (Entity, Entity.portId.COMP-PORT-NAME, NONE) ;

DYNAMIC-ERROR; // Remote port cannot be found

// Port is mapped onto a port of the test system
// reception of the reply by the SUT is outside
// the scope of the operational semantics

remotePort.enqueue (CONSTRUCT-ITEM(Entity, call, callSpec));

}

} // end of scope of remotePort

Entity.NEXT-CONTROL (true) ;
RETURN;

Figure 50: Flow graph segment <nb-call-without-receiver>

9.6.3 Flow graph segment <b-call-without-duration>

Blocking calls are modelled by a non-blocking call followed by the body of the call, which handles the replies and
exceptions. The flow graph segment <b-call-without-durations> shown in figure 51 describesthe execution

of ablocking call without a given duration as time guard.

segment <b-call-without-durations

v

<nb-call-with-one-receiver> OR

<nb-call-without-receivers>

<nb-call-with-multiple-receivers> OR

// Call of remote procedure

A

<call-reception-parts>

// Handling of replies and
// exceptions of the called
// procedure.

Figure 51: Flow graph segment <b-call-without-duration>

ETSI

9.6.4

The flow graph segment <b-call-with-duration> (seefigure 52) describes the execution of a blocking call with

72

ETSI ES 201 873-4 V4.4.1 (2012-04)

Flow graph segment <b-call-with-duration>

aduration as time guard.

segment <b-call-with-durations>

// The expression shall evaluate

set-timer-guard

\ 4

Entity.VALUE-STACK. top() ;
Entity.VALUE-STACK.pop () ;

Entity.NEXT-CONTROL (true) ;
RETURN;

v // to a float value which defines
R, // the duration of the guarding
<expressions /7 timer.
Entity.TIMER-GUARD.STATUS := IDLE;
Entity.TIMER—GUARD.ACT—DURATION =
\ 4

<nb-call-with-one-receiver> OR
<nb-call-with-multiple-receivers> OR
<nb-call-without-receivers>

..... // Call of remote procedure

A 4

start-timer-guard

A 4

Entity.TIMER-GUARD.STATUS := RUNNING;

Entity.VALUE-STACK.pop () ;

Entity.NEXT-CONTROL (true) ;
RETURN;

<call-reception-parts>

// Handling of replies and
// exceptions of the called
// procedure.

v

Figure 52: Flow graph segment <b-call-with-duration>

ETSI

73

9.6.5

Flow graph segment <call-reception-part>

ETSI ES 201 873-4 V4.4.1 (2012-04)

The flow graph segment <call-reception-part> (seefigure 53) describes the handling of replies, exceptions

and the timeout exception of a blocking call operation.

segment <call-reception-parts>

B
»

<take-snapshot>

// A snapshot is taken

H

<receiving-branch> OR
<catch-timeout-exception>

// Branches with getcall and catch

// operations related to the call and
// a timeout exception (if the call is
// guarded by a duration) are handled
// by this node

A 4

<:EZEEE}—exit

true

false

if (
Entity.STATUS == ACTIVE) {
Entity.NEXT-CONTROL (true) ;
// To assure a defined state of Entity
Entity.TIMER-GUARD.STATUS := IDLE;
else { // A new snapshot needs to be taken, the
// status of the entity is SNAPSHOT (none
// of the alternatives could be selected
// and executed)
Entity.NEXT-CONTROL (false) ;
!
RETURN;

v

Figure 53: Flow graph segment <call-reception-part>

ETSI

74 ETSI ES 201 873-4 V4.4.1 (2012-04)

9.6.6 Flow graph segment <catch-timeout-exception>

The flow graph segment <catch-timeout-exception> (seefigure 54) isfor the handling of atimeout exception

of ablocking call operation that is guarded by a duration.

segment <catch-timeout-exceptions>

v if (Entity.TIMER-GUARD.STATUS == TIMEOUT) {
Entity.NEXT-CONTROL (true) ;
check-guard Veww // To assure a defined state of Entity

Entity.STATUS := ACTIVE;
false
true else { // continue evaluation

Entity.NEXT-CONTROL (false) ;
1

RETURN;

A

// To be executed, if the
<statement-block> // timeout exception occured

;

Figure 54: Flow graph segment <catch-timeout-exception>

9.7 Catch operation

The syntactical structure of the catch operationis:

<portIds>.catch (<matchingSpec>) [from <component expressions>] -> [<assignmentParts]

Apart from the catch keyword this syntactical structure isidentical to the syntactical structure of the receive
operation. Therefore, the operational semantics handles the catch operation in the same manner asthe receive
operation. Thisis aso shown in the flow graph segment <catch-op> (figure 55), which defines the execution of a
catch operation. The figure refersto flow graph segments related to the receive operation (see clause 9.37).

segment <catch-op> l

<receive-with-senders>

OR // Distinction due to the optional
<receive-without-sender> [// from-clause

\4

Figure 55: Flow graph segment <catch-op>

ETSI

75 ETSI ES 201 873-4 V4.4.1 (2012-04)

9.8 Check operation

The syntactical structure of the check operation is:

<portId>.check(receive|getcall|catch|getreply (<matchingSpecs)
[from <component-expressions>]) [-> <assignmentParts>]

The optional <component -expression> inthe £rom clause refersto the sender entity. It may be provided in
form of a variable value or the return value of afunction, i.e. it is assumed to be an expression. The optional
<assignmentPart> denotesthe assignment of received information if the received information matches to the
matching specification <matchingSpec> and to the (optional) £rom clause.

The operational semantics handles the operations receive, getcall, catch and getreply inthe same manner,
i.e. they are described by referencing the same flow graph segments <receive-with-senders and
<receive-without-senders. The check operation also handles the different operationsin the same manner.
Thus the flow graph segment <check-op> in figure 56, which defines the execution of the check operation, also
references only two flow graph segments. The only difference to the flow graph segments
<receive-with-sender> and <receive-without-sender> isthat the received items are not deleted after
the match.

segment <check-op> i

<check-with-sender>
OR // Distinction due to the optional
<check-without-sender> |77 // from clause

v

Figure 56: Flow graph segment <check-op>

ETSI

9.8.1

76 ETSI ES 201 873-4 V4.4.1 (2012-04)

Flow graph segment <check-with-sender>

The flow graph segment <check-with-senders infigure 57 defines the execution of a check operation where
the sender entity is specified in form of an expression.

segment v
<check-with-senders>

// The Expression shall evaluate
) // to a component reference or
<expression> // address value. The result is

// pushed onto the VALUE-STACK.

let { // local scope for portRef and sender
var portRef := NULL;

var sender := Entity.VALUE-STACK.top() ; // Sender
Entity.VALUE-STACK.pop() ; // Clean value stack
if (portID == “any port”) ({
portRef := ALL-PORT-STATES.random(MATCH-ITEM(SNAP-VALUE,matchingSpec, sender)
&& OWNER == Entity);
if (portRef == NULL) { // no 'matching' port found
Entity.NEXT-CONTROL (false) ;
RETURN;
}
}
else
portRef := GET-PORT(Entity, Entity.portId.COMP-PORT-NAME) // Specified port
}
// MATCHING
if (PortRef.first() == NULL) { // Port queue is empty, no match
Entity.NEXT-CONTROL (false) ;
RETURN;
}
else {

if (MATCH-ITEM(portRef.SNAP-VALUE, matchingSpec, sender)) {
// The message in the gqueue matches
Entity.VALUE-STACK.push (portRef) ; // Saving port reference
Entity.STATUS := ACTIVE; // successful match, Entity status is changed
// from SNAPSHOT to ACTIVE

Entity.NEXT-CONTROL (true) ;

else // The top item in the queue does not match
Entity.NEXT-CONTROL (false) ;
1

RETURN;

}

} // End of scope of portRef and sender

check-with-sender

(portId, matchingSpec)
————””/<<i\} true
// optional value

*(1) // assignemt

<receilve-assignment>

v Entity.VALUE-STACK.pop () ;
Entity.NEXT-CONTROL (true) ;
clean-value-stack = D\ RETURN;
false true
v v

Figure 57: Flow graph segment <check-with-sender>

ETSI

77 ETSI ES 201 873-4 V4.4.1 (2012-04)

9.8.2 Flow graph segment <check-without-sender>

The flow graph segment <check-without - sender> infigure 58 defines the execution of a check operation

without a £rom clause.

segment <check-without-senders>

let { // local scope
var portRef := NULL;
if (portID == “any port”) ({
portRef := ALL-PORT-STATES.random(MATCH-ITEM(SNAP-VALUE, matchingSpec, NONE)
&& OWNER == Entity);
if (portRef == NULL) { // no 'matching' port found
Entity.NEXT-CONTROL (false) ;
RETURN;
1
1
else {
portRef := GET-PORT(Entity, Entity.portId.COMP-PORT-NAME) // Specified port
// MATCHING
if (PortRef.first() == NULL) { // Port gqueue is empty, no match
Entity.NEXT-CONTROL (false) ;
RETURN;
1
else
if (MATCH-ITEM(portRef.SNAP-VALUE, matchingSpec, NONE)) ({
// The message in the queue matches
Entity.VALUE-STACK.push (portRef) ; // Saving port reference
Entity.STATUS := ACTIVE; // successful match, Entity status is changed
// from SNAPSHOT to ACTIVE
Entity.NEXT-CONTROL (true) ;
else { // The first item in the queue does not match
Entity.NEXT-CONTROL (false) ;
RETURN;
1
} // End of scope

check-without-sender

(portId, matchingSpec)
____———”’/<<<\j true
// optional value

* (1) // assignemt
<receilve-assignment>

i Entity.VALUE-STACK.pop () ;

A
Entity.NEXT-CONTROL (true) ;
clean-value-stack | RETURN ;

false true
N

Figure 58: Flow graph segment <check-without-sender>

ETSI

78 ETSI ES 201 873-4 V4.4.1 (2012-04)

9.8a Checkstate port operation

The syntactical structure of the checkstate port operation is:

<portId>.checkstate (<charstring-expressions)

The checkstate port operation allows to examine the state of a port. If aport isin the state specified by the
charstring parameter, the checkstate operation returns the Boolean value true. If the port isnot in the
specified state, the checkstate operation returns the Boolean value false. Caling the checkstate operation
with an invalid argument leads to an error. For simplicity, the keywords"all port" and"any port" are
considered to be special values of <portld>.

Theresult of the checkstate port operation is pushed onto the value stack of the entity, which called the operation.

The flow graph segment <checkstate-port-op> in figure 58a defines the execution of the running component
operation.

segment
<checkstate-port-op>

// The expression shall evaluate

D // to a charstring value. The
<expression> // result is pushed onto VALUE-STACK

let { //local scope
var portState := Entity.VALUE-STACK.top() ;

Entity.Value-STACK.push (portId) ;

kind-of-state }-- if (portState == “Started”
(portId)

or portState == “Halted”
or portState == “Stopped”) {
Entity.NEXT-CONTROL (true) ;
}
elseif (portState == “Connected”
or portState == “Mapped”
or portState == “Linked”) ({

Entity.NEXT-CONTROL (false);

}

else
DYNAMIC-ERROR // invalid state

} // end local scope
RETURN;

<check-port-status> <check-port-connections>

'

Figure 58a: Flow graph segment <checkstate-port-op>

ETSI

79 ETSI ES 201 873-4 V4.4.1 (2012-04)

9.8a.1 Flow graph segment <check-port-status>

The flow graph segment <check-port-status> infigure 58b describes the execution of the checkstate
component operation by checking for the STATUS field in port states (cf. clause 8.3.3).

segment

<check-port-status> let { // local scope
var portId; // for storing the portId
var checkstate-par; // checkstate parameter to be checked for
var checkState; // port state to be checked for
var result; // Boolean for intermediate results

\ var port;
/—F portId := Entity.VALUE-STACK.top() ;
check-port-status Entity.VALUE-STACK.pop() ;

\ checkstate-par := Entity.VALUE-STACK.top() ;

Entity.VALUE-STACK.pop() ;
if (checkstate-par == “Started”) checkState := STARTED;
if (checkstate-par == “Halted”) checkState := HALTED;
if (checkstate-par == “Stopped”) checkState := STOPPED;
if (Entity.PORT-REF == NULL) { // Entity has no ports
result := false;
else if (portId == 'all port') {
port := ALL-PORT-STATES.first();
result := true;
while (port != NULL and result == true) {
if (port.OWNER == Entity) {
if (port.STATUS != checkState) result := false;
1
port := ALL-PORT-STATES.next () ;
}
else if (portId == 'any port') {
port := ALL-PORT-STATES.first();
result := false;
while (port != NULL and result == false) {
if (port.OWNER == Entity) {
if (port.STATUS == checkState) result := true;
port := ALL-PORT-STATES.next () ;
}
else
port := Entity.portId.COMP-PORT-NAME;
if (port == NULL)
* % *DYNAMIC-ERROR* ** // port cannot be retrieved
}
else{
if (port.STATUS == checkState) result := true;
if (port.STATUS != checkState) result := false
}
}
Entity.VALUE-STACK.push (result);
1
Entity .NEXT-CONTROL (true);
RETURN;
v

Figure 58b: Flow graph segment <check-port-status>

9.8a.2 Flow graph segment <check-port-connection>

The flow graph segment <check-port-connections infigure 58c describes the execution of the checkstate
component operation by investigating the CONNECTIONS-LIST in port states (cf. clause 8.3.3).

ETSI

80 ETSI ES 201 873-4 V4.4.1 (2012-04)

segment
<check-port-connection>
check-port-connection

let { // local scope

var portId; // for storing the portId

var checkstate-par; // checkstate parameter to be checked for
var result; // Boolean for intermediate results

var isNotLinked := false; // Boolean for intermediate results
var isMapped := false; // Boolean for intermediate results
var isConnected := false; // Boolean for intermediate results
var singleport := false; // Boolean for intermediate results
var port;

portId := Entity.VALUE-STACK.top() ;
Entity.VALUE-STACK.pop() ;

checkstate-par := Entity.VALUE-STACK. top() ;
Entity.VALUE-STACK.pop() ;

if (portId == 'any port' or portId == 'all port') {
singleport := false;
port := ALL-PORT-STATES.first() ;
else {
singleport := true;
port := Entity.portId.COMP-PORT-NAME;
while (port != NULL) {

if (port.OWNER == Entity) {
if (port.CONNECTIONS-LIST == NULL) {
isNotLinked := true; // unlinked port
!

if (port.CONNECTIONS-LIST.length() == 1) {
if (GET-REMOTE-PORT(Entity,port,NONE) == SYSTEM) {
isMapped := true; // mapped port

else {
isConnected := true; // comnected port

else { // more than one connection

isConnected := true; // comnected port
}

if (singleport == false) port := ALL-PORT-STATES.next() ;

if (singleport == true) port := NULL;
1
if (portId == 'any port') {

if (checkstate-par == "Connected") result := isconnected;

if (checkstate-par == "Mapped") result := ismapped;

if (checkstate-par == "Linked") result := (ismapped or iscomnected) ;

else { // portId is a single port or 'all port'

if (checkstate-par == "Connected") ({

result := (isconnected and not (ismapped or isNotLinked));
else if (checkstate-par == "Mapped") ({

result := (ismapped and not (iscomnected or isNotLinked));
else { // checkstate-par == "Linked"

result := (ismapped or iscomnected) and not (isNotLinked);

}

Entity.VALUE-STACK. push(result) ;

Entity.NEXT-CONTROL (true) ;
RETURN;

Figure 58c: Flow graph segment <check-port-connection>

ETSI

9.9 Clear port operation

The syntactical structure of the c1lear port operation is:

<portId>.clear

81 ETSI ES 201 873-4 V4.4.1 (2012-04)

The flow graph segment <clear-port-op> in figure 59 defines the execution of the c1ear port operation.

segment <clear-port-op>

\ 4

let { // Begin of local scope
var portRef := NULL

var portState := NULL;
clear-port-op Va
(portId) if (portId == “all port”) {
portState := ALL-PORT-STATES.first();
while (portState != NULL) ({
if (portState.OWNER == Entity) ({

portState.VALUE-QUEUE.clear() ;

}

portState :=
ALL-PORT-STATES.next (portState) ;

}

else
portRef := Entity.portId.COMP-PORT-NAME;

GET-PORT (Entity, portRef) .clear();
} // End of socpe

Entity.NEXT-CONTROL (true) ;

RETURN;

v

Figure 59: Flow graph segment <clear-port-op>

9.10

The syntactical structure of the connect operationis:

Connect operation

connect (<component -expression,>:<portIdl>, <component-expression,>:<portId2s>)

Theidentifiers <portIdi1> and <portId2> are considered to be port identifiers of the corresponding test
components. The components to which the ports belong are referenced by means of the component references
<component -expression, > and <component -expression,>. Thereferences may be stored in variables or

isreturned by afunction, i.e. they are expressions, which evaluate to component references. The value stack is used for

storing the component references.

The execution of the connect operation is defined by the flow graph segment <connect - op> shown in figure 60.
In the flow graph description the first expression to be evaluated refersto <component -expression, > andthe

second expressionto <component -expression,>, i.e. the <component -expression,> isontop of the

value stack when the connect -op nodeis executed.

ETSI

82 ETSI ES 201 873-4 V4.4.1 (2012-04)

segment <connect-op>
let { // begin of a local scope
\ 4 var portOne, portTwo; // voriables for ports
<expressions var comp2 := Entity.VALUE-STACK.top();
Entity.VALUE-STACK.pop () ;
var compl := Entity.VALUE-STACK.top();
Entity.VALUE-STACK.pop () ;
v if (compl == Entity) {
portOne := compl.portIdl.COMP-PORT-NAME;
<expressions>
else
portOne := portIdl;
}
\ 4 if (comp2 == Entity) {

connect-op portTwo := comp2.portId2.COMP-PORT-NAME;
(portIdl, portId2)

else
portTwo := portId2;

ADD-CON (compl, portOne, comp2, portTwo)
ADD-CON (comp2, portTwo, compl, portOne)
} // end of local scope

7
7

Entity.NEXT-CONTROL (true) ;
RETURN;

Figure 60: Flow graph segment <connect-op>

9.11 Constant definition

The syntactical structure of a constant definitioniis:

const <constType> <constId> := <constType-expressions>
The value of a constant is considered to be an expression that evaluates to a val ue of the type of the constant.

NOTE: Global constants are replaced by their valuesin a pre-processing step before this semanticsis applied
(seeclause 9.2). Local constants are treated like variable declarations with initialization. The correct
usage of constants, i.e. constants should never occur on the left side of an assignment, should be checked
during the static semantics analysis of a TTCN-3 module.

The flow graph segment <constant-definition> in figure 61 defines the execution of a constant declaration where the
value of the constant is provided in form of an expression.

ETSI

83 ETSI ES 201 873-4 V4.4.1 (2012-04)

segment <constant-definitions>
// The expression shall evaluate
. // to a value of the type of the
<expression> // constant that is defined.

// NOTE: A constant definition is treated like a
// variable with inititialisation wvalue

Entity.INIT-VAR(constId, Entity.VALUE-STACK.top());
Entity.VALUE-STACK.pop () ;

var-declaration-init
(constId)

Entity.NEXT-CONTROL (true) ;
RETURN;

Figure 61: Flow graph segment <constant-definition>

9.12 Create operation

The syntactical structure of the create operationis:

<componentTypelId>.create [alive]

A present alive clauseindicates that the created component can be restarted after it has been stopped. Presence and
absence of the alive clause is handled as a Boolean flag in the operational semantics (see alive parameter of the basic
flow graph node create-op in figure 62).

The flow graph segment <create-op> in figure 62 defines the execution of the create operation.

ETSI

84 ETSI ES 201 873-4 V4.4.1 (2012-04)

segment <create-op>

create-op
(componentTypeId, alive))-------- :

let { // Local scope
var newEntity := NEW-ENTITY (componentTypeID, alive) ;
// Creation of the entity state for the
// new entity.

// The reference to the new entity is pushed onto the value stack of the
// ‘father' entity.

Entity.VALUE-STACK.push (newEntity) ;
// The identifier of the 'father' entity is pushed onto the value stack of the
// new entity. The identifier is needed to restore the status of the 'father'
// entity after completion of the entity creation. The 'father' entity is
// blocked until all ports, variables, timers specified in the component type
// definition are instantiated. This instantiation is done by executing the
// flow graph that represents 'componentTypeID' by the new entity.
newEntity.VALUE-STACK.push (Entity) ;
// The new entity is put into the module state
ALL-ENTITY-STATES . append (newEntity) ;

} // End local scope

// The actual status of the 'father' entity is saved and the 'father' entity goes
// into a blocking state. Note the restoration of the status of the father entity
// 1s described in flow graph segment <finalize-component-inits.

Entity.VALUE-STACK.push (Entity.STATUS); // Saving the actual status
Entity.STATUS := BLOCKED;

Entity.NEXT-CONTROL (true) ; // Return of control
RETURN;

Figure 62: Flow graph segment <create-op>

9.13 Deactivate statement

The syntactical structure of adeactivate Statementis.
deactivate [(<default-expressions>)]

The deactivate statement specifies the deactivation of one or all active defaults of the entity that executes the
deactivate statement. If one default shall be deactivated, the optional <default-expressions> shal evauate
to a default reference which identifies the default to be deactivated. The call of adeactivate statement without
<default-expression> deactivatesal active defaults.

The execution of adeactivate statement is defined by the flow graph segment <deactivate-stmt>in
figure 63a.

ETSI

85 ETSI ES 201 873-4 V4.4.1 (2012-04)

segment <deactivate-stmt>

y

<deactivate-one-defaults>
OR // A deactivate statement deactivates

<deactivate-all-defaults> // one or all active defaults

v

Figure 63a: Flow graph segment <deactivate-stmt>

9.13.1 Flow graph segment <deactivate-one-default>

The flow graph segment <deactivate-one-defaults infigure 63b specifies the deactivation of one active
default. The value of the expression <default-expressions> shal evaluate to adefault reference. The expression
may be provided in form of avariable value or value returning function. The deactivate statement removesthe
specified default from the DEFAULT-LIST of the entity that executesthe deactivate statement.

segment
<deactivate-one-defaults>

. // The expression shall evaluate to a
<expression> // default reference, which is pushed
// pushed onto the value stack.

Entity.DEFAULT-LIST.delete(Entity.VALUE-STACK.top()) ;
Entity.VALUE-STACK.pop(); // clean value stack

deactivate-one-default) Entity.NEXT-CONTROL (true) ;
RETURN;

v

Figure 63b: Flow graph segment <deactivate-one-default>

9.13.2 Flow graph segment <deactivate-all-defaults>

The flow graph segment <deactivate-all-defaults> in figure 63c specifies the deactivation of all active defaults. The
deactivate statement clears the DEFAULT-LIST of the entity that executes the deactivate statement.

segment
<deactivate-all-defaultss>

deactivate-all-defaults)= Entity.DEFAULT-LIST := NULL;
RETURN;

v

Figure 63c: Flow graph segment <deactivate-all-defaults>

ETSI

86 ETSI ES 201 873-4 V4.4.1 (2012-04)

9.14 Disconnect operation

The syntactical structure of the disconnect operationis:

disconnect (<component -expression,>:<portIdl> [, <component-expression,>:<portId2>])

<component -expression,>:<portId2>)

Theidentifiers <portIdl> and <portId2> are considered to be port identifiers of the corresponding test
components. The components to which the ports belong are referenced by means of the component references
<component -expression, > and <component -expression,>. The references may be stored in variables or

are returned by functions, i.e. they are expressions, which evaluate to component references. The value stack is used for
storing the component references.

The disconnect operation can be used with one parameter pair and with two parameters pairs. The usage of the
disconnect operation with one parameter pair may disconnect connections for one component or, if executed by the
MTC for al components. The usage of the di sconnect operation with two parameter pairs alows to disconnect
specific connections.

Both usages are distinguished in the flow graph segment <disconnect -op> shown in figure 64, which defines the
execution of the di sconnect operation.

segment <disconnect-op>

A 4

<disconnect-one-par-pair> // Distinction due to the usage of
OR // disconnect with one parameter pair
<disconnect-two-par pairss> |77 // and its usage with two parameter
// pairs.

v

Figure 64: Flow graph segment <disconnect-op>

9.14.1 Flow graph segment <disconnect-one-par-pair>

The flow graph segment <disconnect-one-par-pair> shown in figure 64a defines the execution of the disconnect
operation with one parameter pair. In the flow graph segment three cases are distinguished:

1) themtc disconnectsall connections of all components;
2) all connections of one component are disconnected; and

3) all connections of one port of one component are disconnected. In the flow graph segment the expression to be
evaluated refersto <component -expression;> (see syntactical structure of the disconnect

operation in clause 9.14).

ETSI

87

ETSI ES 201 873-4 V4.4.1 (2012-04)

segment
<disconnect-one-par-pairs>

<expression>

disconnect-one
(portId)

true
false

<disconnect-alls>

decision

true
false

<disconnect -comp>

A

/7

The Expression shall evaluate

<disconnect-ports>

v

// to a component reference. The
// result is pushed onto VALUE-STACK
if (Entity.VALUE-STACK.top() == “all component”)
if ((Entity != MTC) OR
(Entity == MTC && portId != “all port”)) {
** *DYNAMIC-ERROR***
else
Entity.VALUE-STACK.pop () ;
Entity.NEXT-CONTROL (true) ;
}
else {
Entity.VALUE-STACK.push (portId) ;
Entity.NEXT-CONTROL (false) ;
}
RETURN;
if (Entity.VALUE-STACK.top() == “all port”) ({
Entity.VALUE-STACK.pop () ;
Entity.NEXT-CONTROL (true) ;
}
else
Entity.NEXT-CONTROL (false) ;
}
RETURN ;

.

Figure 64a: Flow graph segment <disconnect-one-par-pair>

ETSI

88 ETSI ES 201 873-4 V4.4.1 (2012-04)

9.14.2 Flow graph segment <disconnect-all>
The flow segment <disconnect-all> definesthe disconnection of al components at all connected ports.

segment <disconnect-alls

disconnect-all

let { // local scope
ALL-PORT-STATES.first () ;

var port :=
var connection;

(port != NULL) ({

while
connection := port.CONNECTIONS.first();
while (connection != NULL) ({
if (connection.REMOTE-ENTITY == system) {
connection := NULL; // mapped port
else {
port.CONNECTIONS.delete(connection) ;
connection := port.CONNECTIONS.first();
}
}
port := ALL-PORT-STATES.next (port) ;

} // End of local scope

Entity.NEXT-CONTROL (true) ;
RETURN;

Figure 64b: Flow graph segment <disconnect-all>

ETSI

89

9.14.3 Flow graph segment <disconnect-comp>

ETSI ES 201 873-4 V4.4.1 (2012-04)

The flow segment <disconnect -comp> defines the disconnection of all ports of a specified component.

segment <disconnect-comp>

disconnect-comp

let { // local scope
Entity.VALUE-STACK. top() ;

var comp :=
var connection;
var port := ALL-PORT-STATES.first();

while (port != NULL) {

:= port.CONNECTIONS. first() ;

connection :=

connection
while (connection != NULL) {
if (connection.REMOTE-ENTITY == system) ({
connection := port.CONNECTIONS.next (connection) ;
1
else if (connection.REMOTE-ENTITY == comp

or (port.OWNER == comp)

port.CONNECTIONS.delete (connection) ;
= port.CONNECTIONS.first() ;

{

else {

port.CONNECTIONS.next (connection) ;

connection :=
1
1

port := ALL-PORT-STATES.next (port) ;

}

Entity.VALUE-STACK.pop () ;
} // End of local scope

Entity.NEXT-CONTROL (true) ;
RETURN;

// clear value stack

Figure 64c: Flow graph segment <disconnect-comp>

ETSI

90

9.14.4 Flow graph segment <disconnect-port>

The flow segment <disconnect -port> defines the disconnection of a specified port.

ETSI ES 201 873-4 V4.4.1 (2012-04)

segment <disconnect-ports>

disconnect-port

let { // local scope
var portId, rPortId;
var comp, rComp;
var port;
portId := Entity.VALUE-STACK.top() ;

Entity.VALUE-STACK.pop () ;

comp := Entity.VALUE-STACK.top() ;
Entity.VALUE-STACK.pop () ;

port GET-PORT (comp, portId) ;

var connection := port.CONNECTIONS.first();
while (connection != NULL) {
if (connection.REMOTE-ENTITY == SYSTEM) (
***DYNAMIC-ERROR** *
}

else {
rComp :

connection.REMOTE-ENTITY;

rPortId connection.REMOTE-PORT-NAME;
DEL-CON(comp, portId, rComp, rPortId) ;
DEL-CON(rComp, rPortId, comp, portId);
connection := port.CONNECTIONS.first();

}

} // End of local scope

Entity.NEXT-CONTROL (true) ;
RETURN;

// port is not a connected port

Figure 64d: Flow graph segment <disconnect-port>

9.14.5 Flow graph segment <disconnect-two-par-pairs>

The flow graph segment <disconnect-two-par-pairs> shown in figure 64e defines the execution of the disconnect
operation with two parameter pairs which disconnects specific connections. In the flow graph segment the first
expression to be evaluated refersto <component -expression,> (see syntactical structure of the

disconnect operation in clause 9.14) and the second expressionto <component -expression,>, i.e. the

<component-expression,>

ison top of the value stack when the disconnect-two nodeis executed.

ETSI

91

ETSI ES 201 873-4 V4.4.1 (2012-04)

segment

<disconnect-two-par-pairs>

let { //

<expressions> else {

}

else {

}

disconnect-two
(portIdl,portId2)

RETURN;

begin of a local scope

var portOne, portTwo; // voriables for ports

\ var comp2 := Entity.VALUE-STACK.top();
i Entity. VALUE-STACK.pop () ;
<&Xpression> var compl := Entity.VALUE-STACK.top();
Entity. VALUE-STACK.pop () ;
if (compl == SYSTEM) ({
Y * **DYNAMIC-ERROR* * * // mapped port

portOne := compl.portIdl.COMP-PORT-NAME;

if (comp2 == SYSTEM) ({
***DYNAMIC-ERROR* * *

// mapped port

portTwo := comp2.portId2.COMP-PORT-NAME;
DEL-CON(compl, portOne, comp2, portTwo) ;
DEL-CON (comp2, portTwo, compl, portOne) ;
} // end of local scope

Entity.NEXT-CONTROL(true) ;

9.15

v

Figure 64e: Flow graph segment

Do-while statement

The syntactical structure of the do-while statement is:

do <statement-blocks>
while (<boolean-expressions)

The execution of a do-while statement is defined by the flow graph segment <do-while-stmt> shownin

figure 65.

<disconnect-two-par-pairs>

segment <do-while-stmt>

true

) 4

<statement-blocks>

>

<expressions>

// The expression shall evaluate to
// a Boolean value.

y

A

false

if (Entity.VALUE-STACK.top()) ({
Entity.NEXT-CONTROL (true) ;

else {
Entity.NEXT-CONTROL (false) ;
}

Entity.VALUE-STACK.pop() ;

RETURN;

v

Figure 65: Flow graph segment <do-while-stmt>

ETSI

92 ETSI ES 201 873-4 V4.4.1 (2012-04)

9.16 Done component operation

The syntactical structure of the done component operation is:

<component -expressions.done

The done component operation checks whether a component is running or has stopped. Depending on whether a
checked component is running or has stopped the done operation decides how the flow of control continues. Using a
component reference identifies the component to be checked. The reference may be stored in a variable or be returned
by afunction, i.e. it is an expression. For simplicity, the keywords"all component" and"any component" are
considered to be special expressions.

The flow graph segment <done-op> in figure 66 defines the execution of the done component operation.

ETSI

93 ETSI ES 201 873-4 V4.4.1 (2012-04)

segment <done-op>

A // The Expression shall evaluate
// to a component reference. The
// result is pushed onto VALUE-STACK

<expression>

let { // local scope

var aliveNr := Entity.SNAP-ALIVE.length() ;

var doneNr := Entity.SNAP-DONE.length() ;

var killedNr := Entity.SNAP-KILLED.length() ;

var nonWaitingNr := aliveNr - doneNr - killedNr;
done-component-op - // nonWaitingNr is the numnber of entities which are
// alive and are executing a behaviour or neither have
// stopped and nor have terminated.

if (Entity.VALUE-STACK.top() == 'all component') {
if (Entity != MTC)
*%**DYNAMIC-ERROR*** // 'all component' is not allowed
1

else
if (nonWaitingNr == 1) { // MIC is the Entity in the
// test configuration
Entity.NEXT-CONTROL (true) ;
Entity.STATUS := ACTIVE; // DONE is successful
else
Entity.NEXT-CONTROL (false) ;
1
1
else
if (Entity.VALUE-STACK.top() == 'any component') {

if (Entity != MTQ)
DYNAMIC-ERROR // 'any component' not allowed
1

else
if (domeNr > 0) {
Entity.NEXT-CONTROL(true) ;
Entity.STATUS := ACTIVE; // DONE is successful

else {
Entity.NEXT-CONTROL(false) ;
}

}
}

else
if (Entity.SNAP-DONE.member(Entity.VALUE-STACK.top())) {
Entity.NEXT-CONTROL (true) ;
Entity.STATUS := ACTIVE; // DONE is successful
else

Entity.NEXT-CONTROL (false) ;

}
}

} // end of local scope

Entity.VALUE-STACK.pop(); // clean value stack
RETURN;

Figure 66: Flow graph segment <done-op>

ETSI

94 ETSI ES 201 873-4 V4.4.1 (2012-04)

9.17 Execute statement

The syntactical structure of the execute statement is:

execute(<testCaseId>([<act—parl>, - <act—parn>)]) [, <float-expressions>])

The execute statement describes the execution of atest case <testCaseId> withthe (optional) actual parameters
<act-par;>, .. , <act-par,>.Optionally the execute statement may be guarded by a duration provided in form

of an expression that evaluatesto a £1loat. If within the specified duration the test case does not return averdict, a
timeout exception occurs, the test case is stopped and an error verdict is returned.

NOTE: The operational semantics models the stopping of the test case by a stop of the MTC. In redlity, other
mechanisms may be more appropriate.

If no timeout exception occurs, the MTC is created, the control instance (representing the control part of the TTCN-3
module) is blocked until the test case terminates, and for the further test case execution the flow of control is given to
the MTC. The flow of control is given back to the control instance when the MTC terminates.

The flow graph segment <execute-stmt> infigure 67 defines the execution of an execute statement.

segment <execute-stmt> l
<execute-without-timeouts>
OR |] // An execute statement may or may
<execute-timeout> // not be guarded by a timeout

Figure 67: Flow graph segment <execute-stmt>

ETSI

95 ETSI ES 201 873-4 V4.4.1 (2012-04)

9.17.1 Flow graph segment <execute-without-timeout>

The execution of atest case starts with the creation of themtec. Then the mtc is started with the behaviour defined in the
test case definition. Afterwards, the module control waits until the test case terminates. The creation and the start of the
MTC can be described by using create and start statements:

var mtcType MyMTC := mtcType.create;
MyMTC.start (TestCaseName (P1..Pn)) ;

The flow graph segment <execute-without-timeout > in figure 68 definesthe execution of an execute
statement without the occurrence of atimeout exception by using the flow graph segments of the operations create
andthe start.

segment <execute-without-timeouts> l

// Creation of the MTC

<create-op>

MTC := Entity.VALUE-STACK.top() ;
TC-VERDICT := none;
DONE := NULL;

init-test-case-state Entity.NEXT-CONTROL (true) ;
RETURN;

<start-component-op> // Start of MTC
Entity.STATUS := BLOCKED;

// MTC will set status to ACTIVE
// before it terminates
wait-for-termination Entity.NEXT-CONTROL (true) ;
RETURN;

v

Figure 68: Flow graph segment <execute-without-timeout>

ETSI

96 ETSI ES 201 873-4 V4.4.1 (2012-04)

9.17.2 Flow graph segment <execute-timeout>

The flow graph segment <execute-timeout > in figure 69 defines the execution of an execute statement that is
guarded by atimeout value. The flow graph segment also models the creation and start of the MTC by acreate and a
start operation. In addition, TIMER-GUARD guards the termination.

segment <execute -timeout>

A 4 // The Expression shall evaluate to a
) // a float value. This value defines
<expression> // the duration of TIMER-GUARD

Entity.TIMER-GUARD.STATUS := IDLE;
Entity.TIMER-GUARD.ACT-DURATION :=
........... Entity.VALUE-STACK.top() ;
Entity.VALUE-STACK.pop () ;

set-timer-guard

Entity.NEXT-CONTROL (true) ;
h 4 RETURN;

<create-op>

// Creation of the MTC

MTC := Entity.VALUE-STACK.top() ;
init-test-case-state Y TC-VERDICT := none;
DONE := NULL;

Entity.NEXT-CONTROL (true) ;
v RETURN;

<start-component-op>

// Start of MTC

Entity.STATUS := SNAPSHOT;
----------- // MTC will set status to ACTIVE
// before it terminates

prepare-wait

Entity.TIMER-GUARD.STATUS := RUNNING;
Entity.NEXT-CONTROL (true) ;

RETURN;

if (Entity.STATUS == SNAPSHOT and
Entity.TIMER-GUARD.STATUS != TIMEOUT) {

// Control waits
----------- Entity.NEXT-CONTROL (true) ;
1
else { // Test case terminated or
// timer guard timed out
Entity.NEXT-CONTROL (true) ;

active-waiting

}

RETURN;
stop-or-timeout
if (Entity.STATUS != SNAPSHOT) {
true false // normal termination
Entity.TIMER-GUARD.STATUS := IDLE;
i Entity.NEXT-CONTROL (true) ;
<dynamic-errors> else { // guarding timer timed out
/* Stop test case */ Entity.NEXT-CONTROL (false) ;
1
RETURN;

;

Figure 69: Flow graph segment <execute-timeout>

ETSI

97 ETSI ES 201 873-4 V4.4.1 (2012-04)

9.17.3 Flow graph segment <dynamic-error>

In case of adynamic error the flow graph segment <dynamic-errors> isinvoked by the test system. In addition, the
flow graph segment <dynamic-errors> isaso used for describing the behaviour of the test case stop operation
(clause 9.53a). All resources allocated to the test case are cleared and the error verdict is assigned to the test case.
Controal is given to the statement in the control part following the execute statement in which the error occurred.

The flow graph segment <dynamic-errors isinvoked by the module control in case that atest case does not

terminate within the specified time limit (clause 9.17.2).

segment <dynamic-errors

\

dynamic-error Y-

// Reset of configuration

ALL-ENTITY-STATES := NULL;
ALL-PORT-STATES := NULL;
MTC := NULL;

TC-VERDICT := error;

DONE := NULL;

KILLED := NULL;

state

// Update of the entity state of module control

Control .TIMER-GUARD.STATUS := IDLE;
Control .STATUS := ACTIVE;

// Push error verdict

(result of test case execution

// the stack of module control

Control .VALUE-STACK.push (error) ;

Entity.NEXT-CONTROL (true) ;
RETURN;

onto

9.18

Figure 69a: Flow graph segment <dynamic-error>

Expression

a) theexpressionisaliteral value (or aconstant);

b) theexpressionisavariable;

For the handling of expressions, the following four cases have to be distinguished:

c) theexpressionisan operator applied to one or more operands;

d) theexpressionisafunction or operation call.

The syntactical structure of an expressionis:

<lit-vals | <var-val> | <func-op-call> | <operand-appls>

where:

<lit-val>

<var-val>

denotes aliteral value;

denotes avariable value;

ETSI

98 ETSI ES 201 873-4 V4.4.1 (2012-04)

<func-op-call> denotes a function or operation call;
<operator-appls> denotesthe application of arithmetic operatorslike +, -, not, €etc.

The execution of an expression is defined by the flow graph segment <expression> shown in figure 70.

segment <expressions> ¢
<lit-value>
OR // The four alternatives
<var-value> // describe the four
OR // possibilities for
<func-op-calls> // expressions as
OR // described in this
<operator-appls> // section.
v

Figure 70: Flow graph segment <expression>

9.18.1 Flow graph segment <lit-value>

The flow graph segment <1it-values infigure 71 pushes aliteral value onto the value stack of an entity.

segment <lit-value> Entity.VALUE-STACK.push (value) ;

lit-value

(value)) Entity.NEXT-CONTROL (true) ;

RETURN;

v

Figure 71: Flow graph segment <lit-value>

9.18.2 Flow graph segment <var-value>

The flow graph segment <var-values infigure 72 pushes the value of avariable onto the value stack of an entity.

segment <var-value> Entity.VALUE-STACK.push(Entity.var-name.VALUE) ;

var-value

,,,,,,,,,,,,,,,,,, Entity.NEXT-CONTROL (true) ;
(var-name) -

RETURN;

v

Figure 72: Flow graph segment <var-value>

ETSI

99 ETSI ES 201 873-4 V4.4.1 (2012-04)

9.18.3 Flow graph segment <func-op-call>

The flow graph segment <func-op-calls> infigure 73 refersto calls of functions and operations, which return a
value that is pushed onto the value stack of an entity. All these calls are considered to be expressions.

segment <func-op-call>

v

<activate-stmt> OR <create-op> OR
<function-call> OR <mtc-op> OR
<read-timer-op> OR <running-timer-op> OR

<verdict.get-op> OR <execute-stmtx>

<running-component-op> OR
<self-op> OR <system-op> OR

v

Figure 73: Flow graph segment <func-op-call>

9.18.4 Flow graph segment <operator-appl>

The flow graph representation in figure 74 directly refers to the assumption that reverse polish notation is used to
evaluate operator expressions. The operands of the operator are calculated and pushed onto the eval uation stack. For the
application of the operator, the operands are popped from the evaluation stack and the operator is applied. The result of
the operator application is finally pushed onto the evaluation stack. Both, the popping of operands and the pushing the
result are considered to be part of the operator application (Entity.APPLY-OPERATOR (operator) statementin
figure 74), i.e. are not modelled by the operational semantics.

segment <operator-appl> i
// For an n-nary operator,
// n operands in form of
* // evaluated expressions have
// to be pushed onto the
<expressions // value stack

operator-appl Entity.NEXT-CONTROL (true) ;
(operator) RETURN:

Entity.APPLY-OPERATOR (operator) ;

v

Figure 74: Flow graph segment <operator-appl>

ETSI

100 ETSI ES 201 873-4 V4.4.1 (2012-04)

9.19 Flow graph segment <finalize-component-init>

The flow graph segment <finalize-component-init> ispart of the flow graph representing the behaviour of a
component type definition. Its execution is defined in figure 75.

segment
<finalise-component-inits>

finalise-component-init

// The status of the father entity is restored. The identifier of the 'father'
// entity is deleted from the VALUE-STACK.

Entity.VALUE-STACK.top() .STATUS := Entity.VALUE-STACK.top() .VALUE-STACK.top() ;
Entity.VALUE-STACK. top() . VALUE-STACK.pop () ;
Entity.VALUE-STACK.pop () ;

// A mark is pushed on the value stack, the entity goes into a blocking state,
// 1i.e.,waits for being started) and control is given back to the module
// evaluation procedure

Entity.VALUE-STACK.push (MARK) ;
Entity.STATUS := BLOCKED;
Entity.NEXT-CONTROL (true) ;
RETURN;

Figure 75: Flow graph segment <finalize-component-init>

9.20 Flow graph segment <init-component-scope>

The flow graph segment <init-component - scope> ispart of the flow graph representing the behaviour of a
component type definition. Its execution is defined in figure 76.

segment <init-component-scopes>

// New scopes for variables, timers
// and ports are created
Entity.INIT-VAR-SCOPE() ;

----------------- Entity.INIT-TIMER-SCOPE() ;
Entity.INIT-PORT-SCOPE() ;

init-component-scope

Entity.NEXT-CONTROL (true) ;
RETURN;

Figure 76: Flow graph segment <init-component-scope>

ETSI

101

ETSI ES 201 873-4 V4.4.1 (2012-04)

9.20a Flow graph segment <init-scope-with-runs-on>

The flow graph segment <init-scope-with-runs-on> ispart of the flow graph representing the behaviour of
function and altstep definitions. It creates new scopes for variables, timers and ports, which include the names and
values declared in the component type definition referred to in the runs on-clause. The execution of the flow graph

segment is defined in figure 76a.

segment <init-scope-with-runs-ons>

}

let {

var
var
var

Entity.
Entity.
Entity.
Entity.
Entity.
Entity.
Entity.

// local scope
actVarScope :=
actTimerScope :=
actPORTScope :=
INIT-VAR-SCOPE() ;
DATA-STATE. first (

copy (Entity.DATA-STATE. first()) ;
copy(Entity.TIMER-STATE.first()) ;
copy (Entity.PORT-REF.first());

.add (actVarScope) ;

)
INIT-TIMER-SCOPE() ;
DATA-TIMER. first ()

.add (actTimerScope) ;

INIT-PORT-SCOPE() ;

PORT-REF.first () .add(actPortScope)
VALUE-STACK. push (MARK) ;

Entity.NEXT-CONTROL (true) ;
RETURN;

Figure 76a: Flow graph segment <init-scope-with-runs-on>

9.20b Flow graph segment <init-scope-without-runs-on>

The flow graph segment <init-scope-without-runs-ons> ispart of the flow graph representing the behaviour
of function and altstep definitions. It creates new empty scopes for variables, timers and ports. Functions and altsteps
without runs on-clause do not know the names and values declared in the component type definition of the invoking
component. The execution of the flow graph segment is defined in figure 76b.

segment <init-scope-without-runs-on>

Entity.INIT-VAR-SCOPE() ;
Entity.INIT-TIMER-SCOPE() ;
Entity.INIT-PORT-SCOPE() ;
Entity.VALUE-STACK.push (MARK) ;

Entity.NEXT-CONTROL (true) ;
RETURN;

v

Figure 76b: Flow graph segment <init-scope-without-runs-on>

ETSI

102 ETSI ES 201 873-4 V4.4.1 (2012-04)

9.21 Flow graph segment <parameter-handling>

The flow graph-segment <parameter-handling> isused in the beginning of flow graphs representing test cases,
atsteps and functions. It initializes a new scope and creates variables and timers for the handling of parameters. The
flow graph-segment <parameter-handlings> assumes that the call record of the called test case, altstep or function
isthe top of the value stack.

The execution of flow graph-segment <parameter-handlings isshown infigure 77.

segment
<parameter-handling> Entity.INIT-CALL-RECORD(VALUE-STACK.top());

// parameters are initialized
Entity.VALUE-STACK.pop(); // removal of call record
v Entity.VALUE-STACK.push(MARK) ; // for scope

Entity.NEXT-CONTROL (true) ;

parameter-handling).
RETURN;

v

Figure 77: Flow graph segment <parameter-handling>

9.22 Flow graph segment <statement-block>

The syntactical structure of a statement block is:

{ <statement,>; .. ; <statement > }

A statement block is a scope unit. When entering a scope unit, new scopes for variables, timers and the value stack have
to beinitialized. When leaving a scope unit, all variables, timers and stack values of this scope have to be destroyed.

NOTE 1: A Statement block can be embedded in another statement blocks or can occur as body of functions,
altsteps, test cases and module control, and within compound statements, e.g. alt, if-else or
do-while.

NOTE 2: Receiving operations and altstep calls cannot appear in statement blocks, they are embedded in alt
statements or call operations.

NOTE 3: The operational semantics also handles operations and declarations like statements, i.e. they are allowed
in statement blocks.

NOTE 4: Some TTCN-3 functions, like e.g. system or sel£, are considered to be expressions, which are not
useful as stand-alone statements in statement blocks. Their flow graph representations are not listed in
figure 78.

The flow graph segment <statement-block> in figure 78 defines the execution of a statement block.

ETSI

103

ETSI ES 201 873-4 V4.4.1 (2012-04)

segment <statement-block>

let {

// local scope
var actVarScope :=
var actTimerScope :=
Entity.INIT-VAR-SCOPE() ;
Entity.DATA-STATE. first

copy (Entity.DATA-STATE.first());
copy (Entity.TIMER-STATE. first()) ;

add (actVarScope) ;

Entity.INIT-TIMER-SCOPE

) . add
).

7

Entity.DATA-TIMER.first

) .add(actTimerScope) ;

Entity.VALUE-STACK.push

MARK) ;

enter-scope-unit }

RETURN;

Entity.NEXT-CONTROL (true) ;

<constant-definition> OR
<timer-declaration> OR
<variable-declaration>

-

// List of flow graph segments
// representing defintions

-

<action-stmt> OR <activate-stmt> OR <alt-stmt>
OR <assignment-stmt> OR <call-op> OR
<clear-port-op> OR <connect-op> OR <create-op>
OR <deactivate-stmt> OR <disconnect-op> OR
<do-while-stmt> OR <execute-stmt> OR <for-stmts>
OR <function-call> OR <getverdict-op> OR
<goto-stmt> OR <if-else-stmt> OR
<kill-component-op> OR <kill-exec-stmt> OR
<label-stmt> OR <log-stmt> OR <map-op> OR
<raise-op> OR <repeat-stmt> OR <reply-op> OR
<return-stmt> OR <send-op> OR <setverdict-op>
OR <start-component-op> OR <start-port-op> OR
<start-timer-op> OR <stop-component-op> OR
<stop-exec-stmt> OR <stop-port-op> OR
<stop-timer-op> OR <unmap-op> OR <while-stmt>
OR <statement-blocks>

// and declarations.

// List of flow graph segments
// representing all possible

exit-scope-unit

// statements and operations

Entity.DEL-VAR-SCOPE() ;
Entity.DEL-TIMER-SCOPE() ;
Entity.VALUE-STACK.clear-until (MARK) ;

Entity.NEXT-CONTROL (true) ;
RETURN;

Figure 78: Flow graph segment <statement-block>

9.23

The syntactical structure of the for-statement is

For statement

for (<assignments|<variable-declaration>, <boolean expression>, <assignments>) <statement-blocks>

Theinitialization of the index variable and the corresponding manipulation of the index variable are considered to be
assignmentsto the index variable. It is also alowed to declare and initialize the index variable directly in the for
statement. The <boolean-expression> describes the termination criterion of the loop specified by the
for-statement andthe<statement-block> describes the loop body.

ETSI

104

ETSI ES 201 873-4 V4.4.1 (2012-04)

The execution of the for statement is defined by the flow graph segment <for-stmt> shown in figure 79. The initia
<assignment > or aternative variable declaration with assignment <var-declaration-init>

(see clause 9.57.1) describes the initialization of the index variable. The <assignments inthe true branch of the
decision node describesthe manipulation of the index variable. The for statement is a scope unit for a newly
declared index variable, thisis modelled by means of the nodes enter-var-scope and exit-var-scope.

segment <for-stmt> v

y

enter-var-scope

OR

<assignment>

<var-declaration-inits>

Entity.INIT-VAR-SCOPE() ;
Entity.VALUE-STACK.push (MARK) ;

Entity.NEXT-CONTROL (true) ;
RETURN;

‘

// The index variable is only
// initialised (<assignments)

// or declared and initialised
// (<var-declaration-inits>)

<statement-block>

A 4

<expressions>
if (Entity.VALUE-STACK.top()== true) ({
Entity.NEXT-CONTROL (true) ;
else
Entity.NEXT-CONTROL (false) ;
decision = N }
true Entity.VALUE-STACK.pop () ;
RETURN;
v false

Entity.DEL-VAR-SCOPE() ;

) Entity.VALUE-STACK.clear-until (MARK) ;
<assignment>
A 4 Entity.NEXT-CONTROL (true) ;
RETURN
exit-var-scope)
v
Figure 79: Flow graph segment <for-stmt>
9.24 Function call

The syntactical structure of afunction call is:

<function-name>([<act-par-desc,>, ..

, <act-par-desc >])

The <function-name> denotes to the name of afunction and <act-par-descr,>, ..., <act-par-descr >
describe the description of the actual parameter values of the function call.

NOTE 1: A function call and an atstep call are handled in the same manner. Therefore, the altstep call

(see clause 9.4) refersto this clause.

ETSI

105 ETSI ES 201 873-4 V4.4.1 (2012-04)

It is assumed thet for each <act -par-desc, > the corresponding formal parameter identifier <f -par-Id,>is
known, i.e. we can extend the syntactical structure above to:

<function—name>((<f—par—Idl>,<act—par—descl>), - (<f—par—Idn>,<act—par—descn>)

The flow graph segment <function-call> in figure 80 defines the execution of a function call. The execution is
structured into three steps. In the first step a call record for the function <function-name> iscreated. Inthe second
step the values of the actual parameter are calculated and assigned to the corresponding field in the call record. In the
third step, two situations have to be distinguished: the called function is a user-defined function
(c<user-def-func-calls),i.e thereexistsaflow graph representation for the function, or the called functionisa
pre-defined or external function (<predef-ext-func-calls>). Incase of auser-defined function call, the control is
given to the called function. In case of a pre-defined or external function, it is assumed that the call record can be used
to execute the function in one step. The correct handling of reference parameters and return value (has to be pushed

onto the value stack) isin the responsibility of the called function, i.e. is outside the scope of this operational semantics.

NOTE 2: If the function call models an atstep call, only the <user-def - func-call> branch will be chosen,
because there exists a flow graph representation of the called altstep.

NOTE 3: The<function calls> segmentisalso used to describe the start of the MTC in an execute
statement. In this case, acall record for the test case is constructed and only the
<user-def-func-call> branch will be chosen.

segment
<function call>

Entity.VALUE-STACK.push (NEW-CALL-RECORD (function-name)) ;
construct-call-record Entity.NEXT-CONTROL (true) ;
(function-name) RETURN;

* // For each pair (<f-par-Id;>, <act-parameter-desc;>) the
// value of <act-parameter-desc; is calculated and
..| // assigned to the corresponding field <f-par-Id;>
<value-par-calculation> // in the call record. The call record is assumed to be

// the top element in the value stack.

v

*
| // Retrieves the locations for variables and timers
..| // used as reference parameters and declared names of
<ref-var-par-calc> OR // port parameters

<ref-timer-par-calc> OR
<ref-port-par-calc>

A 4

<predef-ext-func-call>
OR | // The called function may either be an external or
<user-def-func-call> // predefined function, or a user-defined function.

Figure 80: Flow graph segment <function-call>

ETSI

106 ETSI ES 201 873-4 V4.4.1 (2012-04)

9.24.1 Flow graph segment <value-par-calculation>

The flow graph-segment <value-par-calculations> isused to calculate actual parameter values and to assign
them to the corresponding fields in call records for functions, atsteps and test cases.

It is assumed that a call record is the top element of the value stack and that a pair of:

(<f-par-Id;>, <act-parameter-desc;>)

hasto be handled. <act -parameter-desc,> that hasto be evaluated and <f -par-1Id;> istheidentifier of a
formal parameter that has a corresponding field in the call record in the value stack.

The execution of flow graph-segment <value-par-calculations> isshownin figure 81.

segment
<value-par-calculation>

// The expression represents <act-parameter-desc;>
// The result of the evaluation of the expression
// is pushed onto the value stack.

<expression>

let { // scope unit for parVal
var parVal = Entity.VALUE-STACK.top() ;
// parVal is a local variable that
// stores the value of the expression

parameter-assignment
(f-par-Id) Entity.VALUE-STACK.pop () ;

// Removal of expression value.

// Afterwards the call record is

// again top of the value stack

Entity.VALUE-STACK.top() .f-par-Id := parVal;
// Value assignment to call record
} // end of scope for parvVal

Entity.NEXT-CONTROL (true) ;
RETURN;

\4

Figure 81: Flow graph segment <value-par-calculation>

9.24.2 Flow graph segment <ref-par-var-calc>

The flow graph-segment <ref -par-var-calcs> isused to retrieve the locations of variables used as actual
reference parameters and to assign them to the corresponding fields in call records for functions, atsteps and test cases.

It is assumed that a call record is the top element of the value stack and that a pair of:

(<f-par-Id;>, <act-par,>)

hasto be handled. <act-par;> is the actual parameter for which thelocation hasto be retrieved and
<f-par-Id;> istheidentifier of aformal parameter that has a corresponding field in the call record in the value
stack.

ETSI

107 ETSI ES 201 873-4 V4.4.1 (2012-04)

The execution of flow graph-segment <ref -par-var-calc> isshown in figure 82.

segment
<ref-par-var-calc>

\ 4 // Value assignment to call record
Entity.VALUE-STACK.top() .f-par-Id :=
Entity.GET-VAR-LOCATION (act-par) ;

parameter-assignment
(f-par-Id, act-par)

Entity.NEXT-CONTROL (true) ;
RETURN;

Figure 82: Flow graph segment <ref-par-var-calc>

9.24.3 Flow graph segment <ref-par-timer-calc>

The flow graph-segment <ref -par-timer-calc> isused to retrieve the locations of timers used as actual
reference parameters and to assign them to the corresponding fields in call records for functions, altsteps and test cases.

It isassumed that a call record is the top element of the value stack and that a pair of:

(<f-par-Id;>, <act-par,>)

hasto be handled. <act-par;> is the actual parameter for whichthelocation hasto beretrieved and
<f-par-Id;> istheidentifier of aformal parameter that has a corresponding field in the call record in the value
stack.

The execution of flow graph-segment <ref -par-timer-calc> isshown infigure 83.

segment
<ref-par-timer-calc>
// Value assignment to call record

v Entity.VALUE-STACK.top() .f-par-Id :=
Entity.GET-TIMER-LOCATION (act-par) ;

parameter-assignment
(f-par-Id, act-par)

Entity.NEXT-CONTROL (true) ;
RETURN;

Figure 83: Flow graph segment <ref-par-timer-calc>

9.24.3a Flow graph segment <ref-par-port-calc>

The flow graph-segment <ref -par-port-calcs isused to retrieve the names of ports used as in the component
type definitions for the declaration of the port and to assign them to the corresponding fieldsin call records for
functions and altsteps.

ETSI

108 ETSI ES 201 873-4 V4.4.1 (2012-04)

It isassumed that a call record is the top element of the value stack and that a pair of:

(<f-par-Id,>, <act-par,>)

hasto be handled. <act-par,> istheactual parameter for which the location hasto be retrieved and
<f-par-1Id;> istheidentifier of aformal parameter that has a corresponding field in the call record in the value
stack.

The execution of flow graph-segment <ref -par-timer-calc> isshownin figure 83a

segment
<ref-par-port-calc>
// Value assignment to call record

\ 4 Entity.VALUE-STACK.top() .f-par-Id :=
Entity.act-par.COMP-PORT-NAME;

parameter-assignment
(f-par-Id, act-par)

Entity.NEXT-CONTROL (true) ;
RETURN;

Figure 83a: Flow graph segment <ref-par-port-calc>

9.24.4 Flow graph segment <user-def-func-call>

The flow graph-segment <user-def - func-calls (figure 84) describesthe transfer of control to a called
user-defined function.

segment <user-def-func-call>

// Storage of return address
Entity.NEXT-CONTROL (true) ;

// Control is transferred to called function
Entity.CONTROL-STACK.push (GET-FLOW-GRAPH (function-name)) ;

user-def-func-call
(function-name)

RETURN;

Figure 84: Flow graph segment <user-def-func-call>

ETSI

109 ETSI ES 201 873-4 V4.4.1 (2012-04)

9.24.5 Flow graph segment <predef-ext-func-call>

The flow graph-segment <predef -ext-func-call> (figure 85) describes the call of apre-defined or external
function.

segment <predef-ext-func-calls>

let { // scope for argument variable
var argument := Entity.VALUE-STACK.top() ;
Entity.VALUE-STACK.pop(); // removal of call record
// Application of function-name

»»»» function-name (argument) ;

} // end of scope for argument

Entity.NEXT-CONTROL (true) ;

RETURN;

<predef-ext-func-calls>
(function-name)

Figure 85: Flow graph segment <predef-ext-func-call>

9.25 Getcall operation

The syntactical structure of the getcall operation is:

<portId>.getcall (<matchingSpec>) [from <component expressions>] -> [<assignmentParts]

Apart from the getcall keyword this syntactical structure isidentical to the syntactical structure of the receive
operation. Therefore, the operational semantics handles the getcall operation in the same manner asthe receive
operation. Thisis aso shown in the flow graph segment <getcall-op> (see figure 86), which defines the execution
of agetcall operation. The figure refersto flow graph segments related to the receive operation (see clause 9.37).

segment <getcall-op> i
<receive-with-sender>
OR | // Distinction due to the optional
<receive-without-sender> // from-clause
v

Figure 86: Flow graph segment <getcall-op>

9.26 Getreply operation

The syntactical structure of the getreply operation is:

<portId>.getreply (<matchingSpecs>) [from <component-expression>] [-> <assignmentParts>]

Apart from the getreply keyword this syntactical structure isidentical to the syntactical structure of the receive
operation. Therefore, the operational semantics handles the getreply operation in the same manner asthe receive
operation. Thisis aso shown in the flow graph segment <getreply-op> (seefigure 87), which defines the
execution of agetreply operation. The figure refers to flow graph segments related to the receive operation

(see clause 9.37).

ETSI

110 ETSI ES 201 873-4 V4.4.1 (2012-04)

segment <getreply-op> l
<receive-with-sender>
OR // Distinction due to the optional
<receive-without-sender> [// from clause
v

Figure 87: Flow graph segment <getreply-op>

9.27 Getverdict operation

The syntactical structure of the getverdict operationis:

getverdict

The flow graph segment <getverdict-op> infigure 88 defines the execution of the getverdict operation.

segment <getverdict-op>
// E-VERDICT is pushed onto VALUE-STACK

Entity.VALUE-STACK.push (Entity.E-VERDICT) ;
getverdict-op Entity.NEXT-CONTROL (true) ;
RETURN;

\4

Figure 88: Flow graph segment <getverdict-op>

9.28 Goto statement

The syntactical structure of the goto statement is:
goto <labelId>

The flow graph segment <goto-stmt > in figure 89 defines the execution of the goto statement.

segment <goto-stmt>
// ‘nop’ means ‘no operation’
Entity.NEXT-CONTROL (true) ;
jsTo) JN BO— RETURN;

<labelIds>

Figure 89: Flow graph segment <goto-stmt>

NOTE: The <labelld> parameter of the goto statement indicates the transfer of control to the place at which a
label <IlabelId> isdefined (see aso clause 9.30).

ETSI

9.28a Halt port operation

The syntactical structure of thehalt port operation is:

<portId>.halt

111

ETSI ES 201 873-4 V4.4.1 (2012-04)

The flow graph segment <halt-port-op> infigure 89a defines the execution of the halt port operation.

segment <halt-port-op>
let { // Begin of local scope
var portRef := NULL
. var portState := NULL;
if (portId == “all port”) {
halt-port-op oo portState := ALL-PORT-STATES. first();
(portld) while (portState != NULL) |
if (portState.OWNER == Entity) {
portState.STATUS := HALTED;
portState. enqueue (HALT-MARKER) ;
portState :=
ALL-PORT-STATES .next (portState) ;
else
portRef := Entity.portId.COMP-PORT-NAME;
GET-PORT (Entity, portRef).STATUS := HALTED;
GET-PORT (Entity, portRef) .engueue (HALT-MARKER) ;
} // End of socpe
Entity.NEXT-CONTROL (true) ;
RETURN;
v

Figure 89a: Flow graph segment <halt-port-op>

NOTE:

The HALT-MARKER that is put by ahalt operation into the port queue is removed by the SNAP-PORTS
function (see clause 8.3.3.2) when the marker is reached, i.e. all messages preceding the marker have

been processed. The SNAP-PORTS function is called when taking a snapshot.

9.29 If-else statement

The syntactical structure of the 1 f-else statement is.

if (<boolean-expression>) <statement-block, >

[else <statement-block,>]

The else part of the i £-else statement isoptional.

The flow graph segment <if -else-stmt> infigure 90 defines the execution of the i £ -else statement.

ETSI

112 ETSI ES 201 873-4 V4.4.1 (2012-04)

segment <if-with-else-branch>

\ 4

<expressions>
if (Entity.VALUE-STACK.top()) {
Entity.NEXT-CONTROL (true) ;
1
else
A 4 Entity.NEXT-CONTROL (false) ;
. }
R decision N . Entity.VALUE-STACK.pop () ;
RETURN;
true false
A

<statement-block>

* (1) "
// Optional else part

<statement-block> N

!

Figure 90: Flow graph segment <if-else-stmt>

9.29a Kill component operation

The syntactical structure of thekill component statement is:

<component-expression>.kill

The kill component operation stops the specified component and removes it from the test system. All test
components will be stopped and removed from the test system, i.e. the test case terminates, if the MTC iskilled
(e.g.mtc.kill) or killsitself (e.g. sel£.kill). The MTC may kill al parallel test components by usingtheall
keyword, i.e. all component.kill.

A component to be killed is identified by a component reference provided as expression, e.g. avalue or value returning
function. For simplicity, the keyword "all component" isconsidered to be special values of
<component -expressions>. The operationsmtc and self are evaluated according to clauses 9.33 and 9.43.

The flow graph segment <ki11-component -op> in figure 90a defines the execution of the ki1l component
operation.

ETSI

113 ETSI ES 201 873-4 V4.4.1 (2012-04)

segment <kill-component-ops>

// The Expression shall evaluate
v // to a component reference. The
D // result is pushed onto VALUE-STACK
<expression>
if (Entity.VALUE-STACK.top() == 'all component')
Entity.VALUE-STACK.pop(); // clean value stack
if (Entity != MTC) {
v ***DYNAMIC-ERROR*** // 'all' not allowed
}
decision =)eeeed else {
Entity.NEXT-CONTROL (true) ;
true {
false
else {
Entity.NEXT-CONTROL (false) ;
<kill-all-comp>
RETURN;
v if (Entity.VALUE-STACK.top() == MTC) {
Entity.VALUE-STACK.pop(); // clean value stack
decision = | Entity.NEXT-CONTROL (true) ;
else {
Entity.NEXT-CONTROL (false) ;
}
RETURN;
<kill-mte>
if (ALL-ENTITY-STATES.member (Entity.VALUE-STACK.top())) {
Entity.NEXT-CONTROL (true) ;
1
else
if (KILLED.member (Entity.VALUE-STACK.top())){
prepare-kill // NULL operation, component already terminated
false Entity.VALUE-STACK.pop(); // clean value stack
Entity.NEXT-CONTROL (false) ;
true }
else {
<kill-component> // component id has not been allocated
DYNAMIC-ERROR
{
RETURN;
I

Figure 90a: Flow graph segment <kill-component-op>

ETSI

114 ETSI ES 201 873-4 V4.4.1 (2012-04)

9.29a.1 Flow graph segment <kill-mtc>

The <kill-mtc> flow graph segment in figure 90b describes the killing of the MTC. The effect is that the test case
terminates, i.e. the fina verdict is calculated and pushed onto the value stack of module control, all resources are
released, the KILLED and DONE lists of the module state are emptied and all test components including the MTC are

removed from the test system.

segment <kill-mtc>

kill-mtc

let { // local scope for variables

var myEntity := ALL-ENTITY-STATES.first();

// Update test case verdict and deletion of components

}

// TC-VERDICT is the result of the execute operation
CONTROL .VALUE-STACK. push (TC-VERDICT) ;

// Update of test case reference parameters
UPDATE-REMOTE-LOCATIONS(MTC, CONTROL);

// Deletion of test components, release of resources,

ALL-ENTITY-STATES := NULL; // Deletion of Entity stat
ALL-PORT-STATES := NULL;

DONE := NULL;

KILLED := NULL;

TC-VERDICT := none;

MTC := NULL; // Deletion of the last reference to t

CONTROL.STATUS := ACTIVE; // Control continues
} // End of local scope
RETURN;

while (myEntity != NULL) {
if (myEntitiy.E-VERDICT == fail or TC-VERDICT == fail)
TC-VERDICT := fail;
}
else {
if (myEntity.E-VERDICT == inconc or TC-VERDICT
TC-VERDICT := inconc;
}
else
if (myEntity.E-VERDICT == pass or TC-VERDI
TC-VERDICT := pass;
}
myEntity := ALL-ENTITY-STATES.next (myEntity) ;

{

== inconc)

CT == pass) {

clearing lists
es

he MTC

Figure 90b: Flow graph segment <kill-mtc-op>

ETSI

115 ETSI ES 201 873-4 V4.4.1 (2012-04)

9.29a.2 Flow graph segment <kill-component>

The <kill-component> flow graph segment in figure 90c describes the stopping of a parallel test component

(i.e. not the MTC or module control) and its removal from the test system. The effect is that the test case verdict
TC-VERDICT and the lists of stopped and killed test components (DONE, and KILLED) are updated and that the
component is deleted from the module state. The <kill-component > flow graph assumesthat the identifier of the
component to be stopped is on top of the value stack of the component that executes the segment.

segment <kill-components>

kill-component

let { // local scope for variable myEntity
var myEntity := Entity.VALUE-STACK.top();

// for test continuation, if kill is executed by another component
if (Entity != myEntity()) {
Entity.VALUE-STACK.pop() ; // clean value stack

Entity.NEXT-CONTROL (true) ;

}

// Update test case verdict

if (myEntitiy.E-VERDICT == fail or TC-VERDICT == fail) ({
TC-VERDICT := fail;
}
else
if (myEntity.E-VERDICT == inconc or TC-VERDICT == inconc)
TC-VERDICT := inconc;
}
else {

if (myEntity.E-VERDICT == pass or TC-VERDICT == pass) {
TC-VERDICT := pass;

}

// Deletion of test component

DONE. append (myEntity) ; // Update of DONE
KILLED. append (myEntity) ; // Update of KILLED
DEL-ENTITY (myEntity) ; // Deletion of entity

} // End of local scope
RETURN;

Figure 90c: Flow graph segment <kill-component>

ETSI

116

9.29a.3 Flow graph segment <kill-all-comp>

ETSI ES 201 873-4 V4.4.1 (2012-04)

The <kill-all-comp> flow graph segment in figure 90d describes the termination of all parallel test components of

atest case

segment <kill-all-comp>

A 4

kill-all-comp)

let { // local scope for variable myEntity
var myEntity := ALL-ENTITY-STATES.next (MTC) ;

// Update test case verdict
while (myEntity != NULL) {

TC-VERDICT := pass;

}
}

if (myEntitiy.E-VERDICT == fail or TC-VERDICT == fail) {
TC-VERDICT := fail;
}
else
if (myEntity.E-VERDICT == inconc or TC-VERDICT == inconc) {
TC-VERDICT := inconc;
}
else {

if (myEntity.E-VERDICT == pass or TC-VERDICT == pass) ({

myEntity := ALL-ENTITY-STATES.next (myEntity) ;

}

// Deletion of test components

while (myEntity != NULL) {
DONE. append (myEntity) ;
KILLED. append (myEntity) ;
DEL-ENTITY (myEntity) ;

myEntity := ALL-ENTITY-STATES.next (MIC) ;

myEntity := ALL-ENTITY-STATES.next (MTC); // Next component to delete

} // End of local scope

Entity.NEXT-CONTROL (true) ;
RETURN;

// Update of DONE
// Update of KILLED
// Deletion of entity

Figure 90d: Flow graph segment <stop-all-comp>

9.29b Kill execution statement

The syntactical structure of thekill execution statement is:

kill

The effect of the ki1l execution statement depends on the entity that executesthe kill execution statement:

a) Ifkill isperformed by the module control, the test campaign ends, i.e. all test components and the module

control disappear from the module state.

b) Ifthekill isexecuted by the MTC, all parallel test components and the MTC stop execution. The global test
case verdict is updated and pushed onto the value stack of the module control. Finally, control is given back to

the module control and the MTC terminates.

c) Ifthekill isexecuted by atest component, the global test case verdict TC-VERDICT and the global DONE
and KILLED lists are updated. Then the component disappears from the module.

ETSI

117

ETSI ES 201 873-4 V4.4.1 (2012-04)

The flow graph segment <kill-exec-stmt> in figure 90e describes the execution of the kill statement.

segment <kill-exec-stmts>

true

<kill-controls

true

<kill-mtc>

A

decision

false

decision

if
}
else

Entity.NEXT-CONTROL (false);
}

RETURN;

(Entity == CONTROL {
Entity .NEXT-CONTROL (true) ;

if (Entity == MTC) {
Entity.NEXT-CONTROL (true) ;

else
Entity.VALUE-STACK.push(Entity);
Entity.NEXT-CONTROL (false);

}

RETURN;

<kill-component >

Figure 90e: Flow graph segment <kill-exec-stmt>

9.29b.1 Flow graph segment <kill-control>

The <kill-controls flow graph segment in figure 90f describes the stopping of module control. The effect isthat
CONTROL isset to NULL, i.e. the termination condition of the module evaluation procedure (see clause 8.6) is fulfilled.

segment <kill-controls

kill-control

\

CONTROL :=
RETURN;

NULL;

A\

Figure 90f: Flow graph segment <kill-control>

ETSI

118 ETSI ES 201 873-4 V4.4.1 (2012-04)

9.29c¢ Killed component operation

The syntactical structure of the killed component operation is:

<component -expression>.killed

Thekilled component operation checks whether a component is alive or has been removed from the test system.
Depending on whether a checked component is alive or has been removed from the test system, the killed operation
decides how the flow of control continues. Using a component reference identifies the component to be checked. The
reference may be stored in avariable or be returned by a function, i.e. it is an expression. For simplicity, the keywords
"all component" and"any component" areconsidered to be special expressions.

The flow graph segment <killed-op> infigure 90g defines the execution of the killed component operation.

segment <killed-op>

// The Expression shall evaluate
// to a component reference. The
// result is pushed onto VALUE-STACK

<expression>

if (Entity.VALUE-STACK.top() == 'all component') {
if (Entity != MTC)
DYNAMIC-ERROR // 'all component' is not allowed
1

else
killed-component-op) ii (Entity.SNAP-ALIVE.lenght () == 1) { // MIC is alive
Entity.NEXT-CONTROL (true) ;
Entity.STATUS := ACTIVE; // KILLED is successful
else {
Entity.NEXT-CONTROL (false) ;
!
!
!
else {
if (Entity.VALUE-STACK.top() == 'any component') {

if (Entity != MTC) ({
DYNAMIC-ERROR // 'any component' is not allowed
}

else {
if (Entity.SNAP-KILLED.length() > 0) {
Entity.NEXT-CONTROL (true) ;
Entity.STATUS := ACTIVE; // KILLED is successful

else {
Entity.NEXT-CONTROL (false) ;
1

}
}

else {
if (Entity.SNAP-DONE.member (Entity.VALUE-STACK.top())) {
Entity.NEXT-CONTROL (true) ;
Entity.STATUS := ACTIVE; // KILLED is successful
else {
Entity.NEXT-CONTROL (false) ;
}
}
}
Entity.VALUE-STACK.pop(); // clean value stack
RETURN;

l true l false

Figure 90g: Flow graph segment <killed-op>

ETSI

119 ETSI ES 201 873-4 V4.4.1 (2012-04)

9.30 Label statement

The syntactical structure of the label statement is:

label <labelId>
The flow graph segment <1abel-stmt> in figure 91 defines the execution of the Label statement.

NOTE: The<labelId> parameter of thelabel statement indicates the possibility that alabel can be the target
for ajump by means of agoto statement (see also clause 9.28).

segment <label-stmt>

<labelIds> >‘

// ‘nop’ means ‘no operation’
Entity.NEXT-CONTROL (true) ;
nop Ve RETURN;

\ 4

Figure 91: Flow graph segment <label-stmt>

9.31 Log statement

The syntactical structure of the Log statement is:

log (<informal-descriptions)
The flow graph segment <1og-stmt> infigure 92 defines the execution of the 1og statement.

NOTE: The<informal descriptions> parameter of the log statement has no meaning for the operational
semantics and is therefore not represented in the flow graph segment.

segment <log-stmt>

// inscription ‘nop’ means ‘no operation’
Entity.NEXT-CONTROL (true) ;
RETURN;

Figure 92: Flow graph segment <log-stmt>

ETSI

120 ETSI ES 201 873-4 V4.4.1 (2012-04)

9.32 Map operation

The syntactical structure of themap operationis:

map (<component -expressions>:<portIdl>, system:<portId2s)

Theidentifiers <portIdl> and <portId2> are considered to be port identifiers of the corresponding test component
and test system interface. The component to which the <portld1> belongsis referenced by means of the component
reference <component -expressions>. The reference may be stored in variables or is returned by afunction, i.e. it
is an expression, which evaluates to a component reference. The value stack is used for storing the component
reference.

NOTE: Themap operation does not care whether the sy stem:<portld> statement appears asfirst or as second
parameter. For simplicity, it is assumed that it is aways the second parameter.

The execution of themap operation is defined by the flow graph segment <map - op> shown in figure 93.

segment <map-op>
let { // begin of a local scope
A 4 var portRef;
var compl := Entity.VALUE-STACK.top() ;
Entity.VALUE-STACK.pop () ;
if (compl == Entity) ({

portRef := Entity.portIdl.COMP-PORT-NAME;
1

A\ 4
else
map-op portRef := portIdl;
(portIdl, portId2) e

<expressions>

ADD-CON(compl, portRef, system, portId2);
} // end of local scope

Entity.NEXT-CONTROL (true) ;
RETURN;

Figure 93: Flow graph segment <map-op>

9.33 Mtc operation

The syntactical structure of themtc operationis:

mtc

The flow graph segment <mt ¢ -op> in figure 94 defines the execution of themtc operation.

segment <mtc-op>

Entity.VALUE-STACK.push (MTC) ;
juiiofeRlo) SN DS — Entity.NEXT-CONTROL (true) ;
RETURN;

v

Figure 94: Flow graph segment <mtc-op>

ETSI

121 ETSI ES 201 873-4 V4.4.1 (2012-04)

9.34 Port declaration

The syntactical structure of a port declaration is:
<portType> <portName>

Port declarations can be found in component type definitions. The effect of a port declaration is the creation of a new
port when a new component of the corresponding typeis created. Furthermore, a port reference is created in the actual
scope of the test component. In the newly created port reference, the values PORT-NAME and COMP-PORT-NAME are
equal. The flow graph segment <port-declarations infigure 95 defines the execution of a port declaration.

segment <port-declarations>

// A new port state and a port reference
// are created

port-declaration

(portName)) ALL-PORT-STATES. append (NEW-PORT (Entity, portName) ;

Entity.INIT-PORT(portName, portName) ;

Entity.NEXT-CONTROL (true) ;
RETURN;

v

Figure 95: Flow graph segment <port-declaration>

9.35 Raise operation

The syntactical structure of the raise operationis:

<portId>.raise (<exceptSpec>) [to < receiver-specs>]

The optional <receiver-spec> inthe to clause refersto the receivers of the exception. In case of a one-to one
communication, the <receiver-spec> addresses asingle entity (including the SUT or an entity within the SUT). In
case of multicast or broadcast communication, the <receiver-specs> specifiesaset or al test components
connected via the specified port with the calling component.

The flow graph segment <raise-op> infigure 96 defines the execution of a raise operation.

segment <raise-op>

A 4

<raise-with-one-receiver-op> OR // A raise operation may adress one,
<raise-with-multiple-receivers-op> OR // multiple (multicast and broadcast)
<raise-without-receiver-op> // or no receiver entities.

v

Figure 96: Flow graph segment <raise-op>

ETSI

122

ETSI ES 201 873-4 V4.4.1 (2012-04)

9.35.1 Flow graph segment <raise-with-one-receiver-op>

The flow graph segment <raise-with-one-receiver-op> infigure 97 defines the execution of araise

operation where the receiver is specified in form of an expression.

segment <raise-with-one-receiver-op>

// to a component reference or
// address value.

<expressions>

// The expression shall evaluate

raise-with-one-receiver-op

(portId, exceptSpec) — SJemmms .

else { // sending of exception

} // end of scope of receiver and remotePort

Entity.NEXT-CONTROL (true) ;
RETURN;

let {
var receiver := Entity.VALUE-STACK.top() ;
var portRef := Entity.portId.COMP-PORT-NAME;
var remotePort := GET-REMOTE-PORT(Entity, portref, receiver);
if (remotePort == NULL) {
DYNAMIC-ERROR; // Remote port cannot be found
1
if (remotePort == SYSTEM) ({

// Port is mapped onto a port of the test system
// reception of the reply by the SUT is outside
// the scope of the operational semantics

remotePort.enqueue (CONSTRUCT-ITEM(Entity, raise, exceptSpec));

Entity.VALUE-STACK.pop() ; // clean value stack

Figure 97: Flow graph segment <raise-with-one-receiver-op>

9.35.1a Flow graph segment <raise-with-multiple-receivers-op>

The flow graph segment <raise-with-multiple-receivers-op> infigure 97adefinesthe execution of a
raise operation where multiple receivers are addressed. In case of broadcast communication the keyword all
component isused as receiver specification. In case of multicast communication alist of expressionsis provided

which shall evaluate to component references or address values.

The component references or address values of the addressed entities (or the keyword all component) are pushed
onto the value stack of the calling entity. The number of references stored in the value stack is considered to be known,
i.e. it isthe parameter number of the basic flow graph node raise-with-multiple-receivers-opin

figure 97a. The number parameter is 1 in case of broadcast communication, i.e. the keyword all component istop

element in the value stack.

ETSI

123 ETSI ES 201 873-4 V4.4.1 (2012-04)

segment <raise-with-multiple-receivers-op>

4 (number) // Each expression shall evaluate
// to a component reference or
""""" // an address value.

<expression>

raise-with-multiple-receivers-op
(portId, exceptSpec, number)

let { //
var i; // loop counter variable
var connection; // variable for connections in port states
var receiver; // variable for receiver component references
var localPort, remotePort; [/ variables for port references
localPort := Entity.portId.COMP-PORT-NAME; // local port
if (Entity.VALUE-STACK.top() == all component) ({
connection := localPort.CONNECTIONS-LIST.next (connection) ;
while (connection != NULL) ({
remotePort := connection.REMOTE-PORT-NAME;
if (remotePort == SYSTEM) ({
// Port is mapped onto a port of the test system
// reception of the reply by the SUT is outside
// the scope of the operational semantics
else { // sending of call
remotePort . enqueue (CONSTRUCT-ITEM(Entity, raise, exceptSpec)) ;
}
connection := localPort.CONNECTIONS-LIST.next (connection) ;
}
else {
for (i == 1; i <= number; i := i+1) {
receiver := Entity.VALUE-STACK.top() ;
Entity.VALUE-STACK.pop () ; // clean value stack
remotePort := GET—REM6TE—PORT(Entity, localPort, receiver) ;
if (remotePort == NULL) {

DYNAMIC-ERROR; // Remote port cannot be found
if (remotePort == SYSTEM) {

// Port is mapped onto a port of the test system

// reception of the reply by the SUT is outside

// the scope of the operational semantics

else { // sending of call
remotePort.enqueue (CONSTRUCT-ITEM(Entity, raise, exceptSpec));
}

}

} // end of local scope

Entity.NEXT-CONTROL (true) ;
RETURN;

Figure 97a: Flow graph segment <raise-with-multiple-receivers-op>

ETSI

124 ETSI ES 201 873-4 V4.4.1 (2012-04)

9.35.2 Flow graph segment <raise-without-receiver-op>

The flow graph segment <raise-without-receiver-op> infigure 98 defines the execution of araise operation
without to-clause.

segment <raise-without-receiver-op>

raise-without-receiver-op
(portId, exceptSpec)

let {
var portRef := Entity.portId.COMP-PORT-NAME;
var remotePort := GET-REMOTE-PORT(Entity, portRef, NONE) ;
if (remotePort == NULL)
DYNAMIC-ERROR; // Remote port cannot be found
1
if (remotePort == SYSTEM)

// Port is mapped onto a port of the test system
// reception of the reply by the SUT is outside
// the scope of the operational semantics

else { // sending of exception
remotePort . enqueue (CONSTRUCT-ITEM (Entity, raise, exceptSpec)) ;

} // end of scope of remotePort

Entity.NEXT-CONTROL (true) ;
RETURN;

Figure 98: Flow graph segment <raise-without-receiver-op>

ETSI

125 ETSI ES 201 873-4 V4.4.1 (2012-04)

9.36 Read timer operation

The syntactical structure of the read timer operation is:

<timerIds>.read
The flow graph segment <read-timer-op> in figure 99 defines the execution of the read timer operation.

The read timer operation distinguishes between its usage in a Boolean guard of an alt statement or blocking call
operation and al other cases. If used in a Boolean guard, the result of the read timer operation is based on the actual
snapshot, i.e. the INAP-STATUS and SNAP-VAL UE entries of the timer binding, in all other cases, the STATUS
ACT-DURATION and TIME-LEFT entries of the timer binding determine the result of the operation.

segment <read-timer-op>

read-timer-op
(timerId)

let { // local scope for variable myValue

var float myValue;

if (Entity.STATUS == SNAPSHOT) {
if (Entity.timerId.SNAP-STATUS == RUNNING) {
myValue := Entity.timerId.SNAP-VALUE;
}
else {
myValue := 0.0;
}
}
else {
if (Entity.timerId.STATUS == RUNNING) {
myValue := Entity.timerId.ACT-DURATION - Entity.timerId.TIME-LEFT;
}
else {
myValue := 0.0;

}
}

Entity.VALUE-STACK.push (myValue) ;

} // end local scope

Entity.NEXT-CONTROL (true) ;
RETURN;

Figure 99: Flow graph segment <read-timer-op>

ETSI

126 ETSI ES 201 873-4 V4.4.1 (2012-04)

9.37 Receive operation

The syntactical structure of the receive operationis:

<portIds>.receive (<matchingSpec>) [from <component-expression>] [-> <assignmentParts>]

The optiona <component -expressions> inthe £rom clause refersto the sender entity. It may be provided in
form of a variable value or the return value of afunction, i.e. it is assumed to be an expression. The optional
<assignmentPart> denotesthe assignment of received information if the received message matches to the
matching specification <matchingSpec> and to the (optional) £rom clause.

The flow graph segment <receive-op> infigure 100 defines the execution of areceive operation.

segment <receive-op> i

<receive-with-sender>

OR // Distinction due to the optional
<receive-without-sender> [// from clause

v

Figure 100: Flow graph segment <receive-op>

ETSI

127

ETSI ES 201 873-4 V4.4.1 (2012-04)

9.37.1 Flow graph segment <receive-with-sender>

The flow graph segment <receive-with-sender> infigure 101 defines the execution of areceive operation

where the sender is specified in form of an expression.

segment
<receive-with-sender>

A 4

// The Expression shall evaluate

. // to a component reference or an
<expressions>

// address value. The result is
// pushed onto the VALUE-STACK.

let { // local scope for portRef and sender

var portRef := NULL;
var sender := Entity.VALUE-STACK.top(); // Sender
Entity.VALUE-STACK.pop() ; // Clean value stack
if (portID == “any port”) ({
portRef := ALL-PORT-STATES.random(MATCH-ITEM(SNAP-VALUE,matchingSpec, sender)
&& OWNER == Entity);
if (portRef == NULL) { // no 'matching' port found
Entity.NEXT-CONTROL (false) ;
RETURN;
1
else {
portRef := GET-PORT(Entity, Entity.portId.COMP-PORT-NAME); // Specified port
1
// MATCHING
if (PortRef.first() == NULL) { // Port queue is empty, no match
Entity.NEXT-CONTROL (false) ;
RETURN;
else

if (MATCH-ITEM(portRef.SNAP-VALUE, matchingSpec, sender)) {
// The message in the queue matches
Entity.VALUE-STACK.push(portRef) ; // Saving port reference
Entity.STATUS := ACTIVE; // successful match, Entity status is changed
// from SNAPSHOT to ACTIVE

Entity.NEXT-CONTROL (true) ;

}

else { // The top item in the queue does not match
Entity.NEXT-CONTROL (false) ;
1

RETURN;

}

} // End of scope of portRef and sender

receive-with-sender

(portId, matchingSpec)
true

' // optional value
*(1) // assignemt

<recelve-assignment>

// Removal of received item from port
A 4 Entity.VALUE-STACK. top() .dequeue() ;
remove-from-port Entity.VALUE-STACK.pop() ;
........... Entity.NEXT-CONTROL (true) ;
RETURN;
false true
v v

Figure 101: Flow graph segment <receive-with-sender>

ETSI

128 ETSI ES 201 873-4 V4.4.1 (2012-04)

9.37.2 Flow graph segment <receive-without-sender>

The flow graph segment <receive-without -senders infigure 102 defines the execution of areceive
operation without a £rom clause.

segment <receive-without-senders>

let { // local scope
var portRef := NULL;

if (portID == “any port”) ({
portRef := ALL-PORT-STATES.random(MATCH-ITEM(SNAP-VALUE, matchingSpec, NONE)
&& OWNER == Entity);
if (portRef == NULL) { // no 'matching' port found
Entity.NEXT-CONTROL (false) ;
RETURN;
}
1
else {
portRef := GET-PORT(Entity, Entity.portId.COMP-PORT-NAME); // Specified port
1
// MATCHING
if (PortRef.first() == NULL) { // Port queue is empty, no match
Entity.NEXT-CONTROL (false) ;
RETURN;
}
else

if (MATCH-ITEM(portRef.SNAP-VALUE, matchingSpec, NONE)) {
// The message in the queue matches
Entity.VALUE-STACK.push (portRef) ; // Saving port reference

// from SNAPSHOT to ACTIVE
Entity.NEXT-CONTROL (true) ;

else { // The first item in the queue does not match
Entity.NEXT-CONTROL (false) ;
1

RETURN;

}

} // End of scope

Entity.STATUS := ACTIVE; // successful match, Entity status is changed

receive-without-sender

(portID, matchingSpec)
____———”’/<<<\j true
// optional value

*(1) // assignemt

<receilve-assignment>

// Removal of received item from port

v Entity.VALUE-STACK. top() .dequeue () ;
remove-from-port Entity.VALUE-STACK.pop () ;
Entity.NEXT-CONTROL (true) ;
RETURN;

false true
N

<«
<
<

Figure 102: Flow graph segment <receive-without-sender>

ETSI

129 ETSI ES 201 873-4 V4.4.1 (2012-04)

9.37.3 Flow graph segment <receive-assignment>

The flow graph segment <receive-assignment> infigure 103 definestheretrieval of information from received
messages and their assignment to variables.

segment <receive-assignments>

RETRIEVE-INFO(Entity.VALUE-STACK.top() .first(), assignmentPart, Entity);

Entity.NEXT-CONTROL (true) ;
RETURN;

receive-assignment
(assignmentPart)

Figure 103: Flow graph segment <receive-assighment>

9.38 Repeat statement

The syntactical structure of the repeat statement is:
repeat

Basically, the repeat statement isareturn statement without return value, which also changes the entity status to
REPEAT. The status REPEAT will force the re-evaluation of the alt statement in which the repeat statement has been
executed. The flow graph segment <repeat - stmt > shown in figure 104 defines the execution of the repeat
Statement.

segment <repeat-stmt>

Entity.STATUS (REPEAT) ;
repeat-stmt = e RETURN;

<return-without-value>

v

Figure 104: Flow graph segment <repeat-stmt>

ETSI

130 ETSI ES 201 873-4 V4.4.1 (2012-04)

9.39 Reply operation

The syntactical structure of the reply operation is:

<portIds>.reply (<replySpec>) [to <receiver-specs>]

The optiona <receiver-specs> inthe to clauserefersto the receivers of thereply. In case of a one-to one
communication, the <receiver-spec> addresses asingle entity (including the SUT or an entity within the SUT). In
case of multicast or broadcast communication, the <receiver-spec> specifiesaset or al test components or
entitiesin the SUT connected via the specified port with the calling component.

The flow graph segment <reply-op> infigure 105 defines the execution of a reply operation.

segment <reply-op>
A 4

<reply-with-one-receiver-op> OR // A reply operation may adress one,
<reply-with-multiple-receivers-op> OR // multiple (multicast and broadcast)
<reply-without-receiver-op> // or no receiver entities.

v

Figure 105: Flow graph segment <reply-op>

ETSI

131 ETSI ES 201 873-4 V4.4.1 (2012-04)

9.39.1 Flow graph segment <reply-with-one-receiver-op>

The flow graph segment <reply-with-one-receiver-op> infigure 106 definesthe execution of areply
operation where the receiver is specified in form of an expression.

segment <reply-with-one-receiver-op>

// The expression shall evaluate
// to a component reference or an

<expression> | // address value.

reply-with-one-receiver-op
(portId, replySpec)

let
var receiver := Entity.VALUE-STACK.top() ;
var portRef := Entity.portId.COMP-PORT-NAME;
var remotePort := GET-REMOTE-PORT(Entity, portRef, receiver);
if (remotePort == NULL) {
DYNAMIC-ERROR; // Remote port cannot be found
if (remotePort == SYSTEM) ({

// Port is mapped onto a port of the test system
// reception of the reply by the SUT is outside
// the scope of the operational semantics

else { // sending of reply
remotePort .enqueue (CONSTRUCT-ITEM (Entity, reply, replySpec));

} // end of scope of receiver and remotePort
Entity.VALUE-STACK.pop() ; // clean value stack

Entity.NEXT-CONTROL (true) ;
RETURN;

\ 4

Figure 106: Flow graph segment <reply-with-one-receiver-op>

9.39.1a Flow graph segment <reply-with-multiple-receivers-op>

The flow graph segment <reply-with-multiple-receivers-ops> infigure 106a definesthe execution of a
reply operation where multiple receivers are addressed. In case of broadcast communication the keyword a1l
component isused as receiver specification. In case of multicast communication alist of expressionsis provided
which shall evaluate to component references or address values.

The component references or address values of the addressed entities (or the keyword all component) are pushed
onto the value stack of the calling entity. The number of component references or address values stored in the value
stack is considered to be known, i.e. it is the parameter number of the basic flow graph node
reply-with-multiple-receivers-op infigure 106a The number parameter is 1 in case of broadcast
communication, i.e. the keyword all component istop element in the value stack.

ETSI

132 ETSI ES 201 873-4 V4.4.1 (2012-04)

segment <reply-with-multiple-receivers-op>

// Each expression shall evaluate
// to a component reference or an
// address value.

reply-with-multiple-receivers-op
(portId, replySpec, number)

let { //
var i; // loop counter variable
var connection; // variable for connections in port states
var receiver; // variable for receiver component references or
// address values
var localPort, remotePort; // variables for port references
localPort := Entity.portId.COMP-PORT-NAME; // local port

if (Entity.VALUE-STACK.top() == all component) {
connection := localPort.CONNECTIONS-LIST.next (connection) ;
while (connection != NULL) {
remotePort := connection.REMOTE-PORT-NAME;
if (remotePort == SYSTEM)
// Port is mapped onto a port of the test system
// reception of the reply by the SUT is outside
// the scope of the operational semantics

else { // sending of call
remotePort .engueue (CONSTRUCT-ITEM(Entity, reply, replySpec)) ;
}

connection := localPort.CONNECTIONS-LIST.next (connection) ;

1

else {

for (i == 1; i <= number; i := i+1) {
receiver := Entity.VALUE-STACK.top();
Entity.VALUE-STACK.pop () ; // clean value stack
remotePort := GET-REMOTE-PORT(Entity, localPort, receiver);
if (remotePort == NULL) ({

DYNAMIC-ERROR; // Remote port cannot be found
1
if (remotePort == SYSTEM)

// Port is mapped onto a port of the test system

// reception of the reply by the SUT is outside

// the scope of the operational semantics

else { // sending of call
remotePort .engueue (CONSTRUCT-ITEM(Entity, reply, replySpec)) ;
}

}

} // end of local scope

Entity.NEXT-CONTROL (true) ;
RETURN;

Figure 106a: Flow graph segment <reply-with-multiple-receivers-op>

ETSI

133 ETSI ES 201 873-4 V4.4.1 (2012-04)

9.39.2 Flow graph segment <reply-without-receiver-op>

The flow graph segment <reply-without-receiver-op> infigure 107 defines the execution of areply
operation without to-clause.

segment <reply-
-receiver-op>

reply-without-receiver-op
(portId, replySpec)

let {
var portRef := Entity.portId.COMP-PORT-NAME;
var remotePort := GET-REMOTE-PORT(Entity, portRef, NONE) ;

if (remotePort == NULL)
DYNAMIC-ERROR; // Remote port cannot be found
!

if (remotePort == SYSTEM)
// Port is mapped onto a port of the test system
// reception of the reply by the SUT is outside
// the scope of the operational semantics

else { // sending of reply
remotePort . enqueue (CONSTRUCT-ITEM (Entity, reply, replySpec)) ;

} // end of scope of remotePort

Entity.NEXT-CONTROL (true) ;
RETURN;

Figure 107: Flow graph segment <reply-without-receiver-op>

9.40 Return statement

The syntactical structure of the return statement is:

return [<expression>]

The optional <expressions> describesapossible return value of afunction. The execution of areturn statement
means that the control leaves the actual scope unit, i.e. variables and timers only known in this scope have to be deleted
and the value stack hasto be updated. A return statement has the effect of a stop component operation, if it isthe
last statement in a behaviour description.

NOTE: Test cases and module control will always end with a stop component operation. Thisis dueto their
flow graph representation (see clause 8.2). Only other test components may terminate with areturn
statement.

ETSI

134 ETSI ES 201 873-4 V4.4.1 (2012-04)

The flow graph segment <return-stmt > in figure 108 defines the execution of a return statement.

segment <retun-stmt> l
<return-with-value>
OR // A return statement may or may
<return-without-value> // not return a value

Figure 108: Flow graph segment <return-stmt>

ETSI

135 ETSI ES 201 873-4 V4.4.1 (2012-04)

9.40.1 Flow graph segment <return-with-value>

The flow graph segment <return-with-value> infigure 109 definesthe execution of a return that returnsa
value specified in form of an expression.

segment <return-with-values

// The expression shall evaluates

<expression> // to the return value
let {
v var return-value := Entity.VALUE-STACK.top();

return-with-value
............................. Entity.DEL-VAR-SCOPE() ;

Entity.DEL-TIMER-SCOPE() ;

Entity.DEL-PORT-SCOPE() ;

Entity.VALUE-STACK.clear-until (MARK) ;

Entity.VALUE-STACK.push(return-value) ;
} // end of scope of return-value

Entity.CONTROL-STACK.pop () ; // return address
// is lying on the control stack

if (Entity.CONTROL-STACK.top() == NULL) {
// return is stop or kill
Entity.VALUE-STACK.push(Entity) ;
Entity.NEXT-CONTROL (false) ;

true

}

RETURN;

if (Entity.VALUE-STACK.top().KEEP-ALIVE == true)) ({
Entity.NEXT-CONTROL (true) ;
1

else
Entity.NEXT-CONTROL (false) ;
...........) s e

RETURN;

trtx false
4

<stop-alive-components> <kill-components>
) 4 *
gl
o

Figure 109: Flow graph segment <return-with-value>

decision

A

ETSI

136 ETSI ES 201 873-4 V4.4.1 (2012-04)

9.40.2 Flow graph segment <return-without-value>

The flow graph segment <return-without-values infigure 110 defines the execution of areturn statement

that returns no value.

segment <return-without-values

<expression>

// The expression shall evaluates
// to the return value

return-without-value

true

let {

}

Entity.CONTROL-STACK.pop () ;

if

}

RETURN;

var return-value Entity.VALUE-STACK. top() ;
Entity.DEL-VAR-SCOPE() ;
Entity.DEL-TIMER-SCOPE() ;
Entity.DEL-PORT-SCOPE() ;
Entity.VALUE-STACK.clear-until (MARK) ;

// end of scope of return-value

// return address
// is lying on the control stack

(Entity.CONTROL-STACK.top() == NULL)

// return is stop or kill
Entity.VALUE-STACK.push(Entity) ;
Entity.NEXT-CONTROL (false) ;

decision

{

if (Entity.VALUE-STACK.top().KEEP-ALIVE == true))
Entity.NEXT-CONTROL (true) ;
1

else
Entity.NEXT-CONTROL (false) ;
1

RETURN;

true

false

y

A

<stop-alive-component>

<kill-components>

Figure 110: Flow graph segment <return-without-value>

ETSI

137 ETSI ES 201 873-4 V4.4.1 (2012-04)

9.41 Running component operation

The syntactical structure of the running component operation is:
<component -expressions>.running

The running component operation checks whether a component is running or has either stopped or terminated and
been removed from the test system. The component to be checked isidentified by a component reference, which may be
provided in form of avariable or value returning function, i.e. is an expression. For simplicity, the keywords "all
component” and"any component" are considered to be special expressions.

The running component operation distinguishes between its usage in a Boolean guard of an alt statement or
blocking cal1l operation and all other cases. If used in a Boolean guard, the result of running component operation
is based on the actual snapshot. In all other cases evaluates directly the state information.

Theresult of the running component operation is pushed onto the value stack of the entity, which called the
operation.

The flow graph segment <running-component-op> in figure 111 defines the execution of the running component
operation.

segment ¢
<running-component-op>

// The expression shall evaluate
. // to a component reference. The
<expression> // result is pushed onto VALUE-STACK

if (Entity.STATUS == ACTIVE) {
Entity.NEXT-CONTROL (true) ;

else { // Entity is in a snapshot
Entity.NEXT-CONTROL (false) ;

RETURN;

<running-comp-act> <running-comp-snap>

v

Figure 111: Flow graph segment <running-component-op>

ETSI

138 ETSI ES 201 873-4 V4.4.1 (2012-04)

9.41.1 Flow graph segment <running-comp-act>
The flow graph segment <running-comp-act> infigure 112 describes the execution of the running component
operation outside a snapshot, i.e. the component isin the status ACTIVE.

segment

<running-comp-acts> let { // local scope
var comp;

var decision;

// for storing a component reference
// Boolean

if (Entity.VALUE-STACK.top() == 'all component') {

if (Entity != MTC) {
A 4 ***DYNAMIC-ERROR*** //

1
///;;;;;;;jcomp—act else {
\\\\\\\~—__ ----- if (DONE.length() == 0) { // all components are running

is not allowed

'all component'

Entity.VALUE-STACK.push(true) ;

}
else { // at least one component has been stopped
Entity.VALUE-STACK.push (false) ;

}
}
}
else
if (Entity.VALUE-STACK.top() ==

if (Entity != MTC) {
DYNAMIC-ERROR // 'any component' not allowed

'any component') {

else {

comp := ALL-ENTITY-STATES.next (MTC) ;
while (comp != NULL and decision == false) {
if (comp.STATUS == ACTIVE) ({

decision := true;

comp :=

ALL-ENTITY-STATES.next (comp) ;

}

Entity.VALUE-STACK.push(decision) ;

}

else
if (ALL-ENTITY-STATES.member (Entity.VALUE-STACK.top()))

// Specified component is alive
Entity.VALUE-STACK.push (true) ;

{

else
Entity.VALUE-STACK.push (false) ;
}

Entity.NEXT-CONTROL (true) ;
RETURN;

Figure 112: Flow graph segment <running-comp-act>

ETSI

139 ETSI ES 201 873-4 V4.4.1 (2012-04)

9.41.2 Flow graph segment <running-comp-snap>

The flow graph segment <running-comp-snap> in figure 113 describes the execution of the running component
operation during the evaluation of a snapshot, i.e. the component isin the status SNAPSHOT.

segment
let { // local scope

<running-comp-snap> _
var comp; // for storing a component reference

var decision; // Boolean
if (Entity.VALUE-STACK.top() == 'all component') {
if (Entity != MTC) {
v ***DYNAMIC-ERROR*** // 'all component' is not allowed

""" if (Entity.SNAP-DONE.length ()
Entity.VALUE-STACK.push (true) ;

!
///;:;;:;;j;omp—snap else {
\ h O) {

else { // at least one component has been stopped
Entity.VALUE-STACK.push (false) ;

}
}
}

else
if (Entity.VALUE-STACK.top() == 'any component') {
if (Entity != MTC) {
DYNAMIC-ERROR // 'any component' not allowed
else {
comp := Entity.SNAP-ALIVE.next (MTC) ;
while (comp != NULL and decision == false) {
if (comp.STATUS == ACTIVE) ({
decision := true;
}
comp := ALL-ENTITY-STATES.next (comp) ;
1
Entity.VALUE-STACK.push(decision) ;
}
else
if (Entity.SNAP-ALIVE.member (Entity.VALUE-STACK.top())) ({
// Specified component is alive
Entity.VALUE-STACK.push (true) ;
else

Entity.VALUE-STACK.push (false) ;

1
1
!
Entity.NEXT-CONTROL (true) ;
RETURN;

Figure 113: Flow graph segment <running-comp-snap>

ETSI

140 ETSI ES 201 873-4 V4.4.1 (2012-04)

9.42 Running timer operation

The syntactical structure of the running timer operation is:
<timerId>.running

The flow graph segment <running-timer-op> infigure 114 defines the execution of the running timer
operation.

The running timer operation distinguishes between its usage in a Boolean guard of an alt statement or blocking
call operation and all other cases. If used in aBoolean guard, the result of running timer operation is based on the
actual snapshot, i.e. the SNAP-STATUS entry of the timer binding, in al other cases, the STATUS entry of the timer
binding determines the result of the operation.

The any keyword is handled as a special value of timerId.

segment <running-timer-ops>

running-timer-op
(timerId)

let { // local scope for variables myStatus and myTimerList

var myStatus; // for storing status values of timers
var myTimerList; // for storing a list of timer Bindings

if (timerId == “any timer”) {
myTimerList := Entity.TIMER-STATE.first();
timerId := NULL;
if (Entity.STATUS) == SNAPSHOT) ({
while (myTimerList != NULL && timerId == NULL) {
timerId := myTimerList.random(SNAP-STATUS == RUNNING) ;
myTimerList := Entity.TIMER-STATE.next (myTimerList) ;

{

else
while (myTimerList != NULL && timerId == NULL) {
timerId := myTimerList.random(STATUS == RUNNING) ;
myTimerList := Entity.TIMER-STATE.next (myTimerList) ;

}

if (timerId != NULL) {
myStatus := Entity.timerId.STATUS;
if (Entity.STATUS == SNAPSHOT) {
myStatus := Entity.timerId.SNAP-STATUS;
}

if (myStatus == RUNNING) {
Entity.VALUE-STACK.push (true) ;

else
Entity.VALUE-STACK.push (false) ;
}

else {
Entity.VALUE-STACK.push(false) ;

} // end local scope

Entity.NEXT-CONTROL (true) ;
RETURN;

Figure 114: Flow graph segment <running-timer-op>

ETSI

141 ETSI ES 201 873-4 V4.4.1 (2012-04)

9.43 Self operation

The syntactical structure of the sel £ operationis:

self

The flow graph segment <self -op> infigure 115 defines the execution of the sel £ operation.

segment <self-op>

Entity.VALUE-STACK.push(Entity) ;
self-op Ve Entity.NEXT-CONTROL (true) ;
RETURN;

Figure 115: Flow graph segment <self-op>

9.44 Send operation

The syntactical structure of the send operation is:

<portId>.send (<send-spec>) [to <receiver-spec>]

The optional <receiver-spec> inthe to clauserefersto the receivers of the message. In case of aone-to one
communication, the <receiver-spec> addresses asingle entity (including the SUT or an entity within the SUT). In
case of multicast or broadcast communication, the <receiver-spec> specifiesaset or all test components or
entitiesin the SUT connected via the specified port with the calling component.

The flow graph segment <send-op> in figure 116 defines the execution of a send operation.

segment <send-op>

A 4

<send-with-one-receiver-op> OR
<send-with-multiple-receivers-op> OR // A send operation may address one,
<send-without-receiver-op> // multiple (multicast and broadcast)

// or no receiver entities.

Figure 116: Flow graph segment <send-op>

ETSI

142

ETSI ES 201 873-4 V4.4.1 (2012-04)

9.44.1 Flow graph segment <send-with-one-receiver-op>

The flow graph segment <send-with-one-receiver-op> infigure 117 defines the execution of a send

operation where the receiver is specified in form of an expression.

segment <send-with-one-receiver-op>

<expression>

// The expression shall evaluate
// to a component reference or
// an address value.

send-with-one-receiver-op
(portId, sendSpec)

let {
var receiver := Entity.VALUE-STACK.top();
var portRef := Entity.portId.COMP-PORT-NAME;
var remotePort := GET-REMOTE-PORT(Entity, portRef, receiver);
if (remotePort == NULL) {
DYNAMIC-ERROR; // Remote port cannot be found
if (remotePort == SYSTEM) ({

// Port is mapped onto a port of the test system
// reception of the reply by the SUT is outside
// the scope of the operational semantics

else { // sending of message
remotePort.enqueue (CONSTRUCT-ITEM(Entity, send, sendSpec)) ;

} // end of scope of receiver and remotePort

// clean value stack

Entity.VALUE-STACK.pop () ;

Entity.NEXT-CONTROL (true) ;
RETURN;

Figure 117: Flow graph segment <send-with-one-receiver-op>

9.44.1a Flow graph segment <send-with-multiple-receivers-op>

The flow graph segment <send-with-multiple-receivers-ops> infigure 117adefinesthe execution of a
send operation where multiple receivers are addressed. In case of broadcast communication the keyword all
component isused as receiver specification. In case of multicast communication alist of expressionsis provided

which shall evaluate to component references or address values.

The component references or address values of the addressed entities (or the keyword all component) are pushed
onto the value stack of the calling entity. The number of references stored in the value stack is considered to be known,
i.e. it isthe parameter number of the basic flow graph node send-with-multiple-receivers-opin

figure 117a. The number parameter is 1 in case of broadcast communication, i.e. the keyword all component is

top element in the val ue stack.

ETSI

143 ETSI ES 201 873-4 V4.4.1 (2012-04)

segment <send-with-multiple-receivers-op>

// Each expression shall evaluate
// to a component reference or an
// address value.

send-with-multiple-receivers-op
(portId, sendSpec, number)

let { //
var i; // loop counter variable
var connection; // variable for connections in port states

var receiver; // variable for receiver component references
// or receiver address values
var localPort, remotePort; // variables for port references
localPort := Entity.portId.COMP-PORT-NAME; // local port
if (Entity.VALUE-STACK.top() == all component) {
connection := localPort.CONNECTIONS-LIST.next (connection) ;
while (connection != NULL) {
remotePort := connection.REMOTE-PORT-NAME;
if (remotePort == SYSTEM) ({

// Port is mapped onto a port of the test system
// reception of the reply by the SUT is outside
// the scope of the operational semantics

else { // sending of call
remotePort . enqueue (CONSTRUCT-ITEM(Entity, send, sendSpec)) ;

connection := localPort.CONNECTIONS-LIST.next (connection) ;

}

else

for (i == 1; i <= number; i := i+1) {
receiver := Entity.VALUE-STACK.top();
Entity.VALUE-STACK.pop() ; // clean value stack
remotePort := GET-REMOTE-PORT(Entity, localPort, receiver);
if (remotePort == NULL) ({

DYNAMIC-ERROR; // Remote port cannot be found
if (remotePort == SYSTEM) ({

// Port is mapped onto a port of the test system

// reception of the reply by the SUT is outside

// the scope of the operational semantics

else { // sending of call
remotePort.enqueue (CONSTRUCT-ITEM(Entity, send, sendSpec)) ;

}

} // end of local scope

Entity.NEXT-CONTROL (true) ;
RETURN;

Figure 117a: Flow graph segment <send-with-multiple-receivers-op>

ETSI

144 ETSI ES 201 873-4 V4.4.1 (2012-04)

9.44.2 Flow graph segment <send-without-receiver-op>

The flow graph segment <send-without-receiver-op> infigure 118 defines the execution of a send
operation without to-clause.

segment <send-without-receiver-op>

send-without-receiver-op
(portId, sendSpec)

let {
var portRef := Entity.portId.COMP-PORT-NAME;
var remotePort := GET-REMOTE-PORT(Entity, portRef, NONE) ;
if (remotePort == NULL)
DYNAMIC-ERROR; // Remote port cannot be found
1
if (remotePort == SYSTEM)

// Port is mapped onto a port of the test system
// reception of the reply by the SUT is outside
// the scope of the operational semantics

else { // sending of message
remotePort . enqueue (CONSTRUCT-ITEM (Entity, send, sendSpec)) ;

} // end of scope of remotePort

Entity.NEXT-CONTROL (true) ;
RETURN;

Figure 118: Flow graph segment <send-without-receiver-op>

9.45 Setverdict operation

The syntactical structure of the setverdict operationis:

setverdict (<verdicttype-expression> [, <verdict-reasons])

The <verdicttype-expressions parameter of the setverdict operation isan expression that shall evaluate
toavalue of typeverdicttype, i.€. none, pass, inconc or £ail. The expression is evaluated before the
setverdict operationisapplied.

The second optional parameter allows specifying areason for setting a verdict. This reason does not contribute to the
test behaviour and is therefore not considered in the operational semantics.

The flow graph segment <setverdict-op> infigure 119 defines the execution of the setverdict operation.

ETSI

145 ETSI ES 201 873-4 V4.4.1 (2012-04)

segment <setverdict-op>

A // The expression shall evaluate to a value
// of type verdicttype.
<expression> // The result of the evaluation is pushed
// onto the VALUE-STACK of Entity

if (Entity.E-VERDICT == fail or
A 4 Entity.VALUE-STACK.top() == fail) {
! Entity.E-VERDICT := fail;
setverdict-op \ | } —
else
if (Entity.VALUE-STACK.top() == inconc or
Entity.E-VERDICT == inconc) {
Entity.E-VERDICT := inconc;
}
else
if (Entity.VALUE-STACK.top() == pass or

Entity.E-VERDICT == pass)
Entity.E-VERDICT := pass;

}
1
Entity.VALUE-STACK.pop() // clear VALUE-STACK

Entity.NEXT-CONTROL (true) ;
RETURN;

Figure 119: Flow graph segment <setverdict-op>

9.46 Start component operation

The syntactical structure of the start component operation is:

<component-expression>.start (<function-name>(<act-par-desc,>,.., <act-par-desc >)

The start component operation starts a component. Using a component reference identifies the component to be
started. The reference may be stored in avariable or be returned by afunction, i.e. it isan expression that evaluatesto a
component reference.

The <function-name> denotesto the name of the function that defines the behaviour of the new component and
<act-par-descr,>, ..., <act-par-descr > provide the description of the actual parameter values of

<function-name>. The descriptions of the actual parameters are provided in form of expressions that have to be
evaluated before the call can be executed. The handling of formal and actual value parametersis similar to their
handling in function calls (see clause 9.24).

The flow graph segment <start-component-op> in figure 120 defines the execution of the start component operation.
The start component operation is executed in four steps. In thefirst step acall record is created. In the second step the
actual parameter values are calculated. In the third step the reference of the component to be started is retrieved, and, in
the fourth step, control and call record are given to the new component.

NOTE: The flow graph segment in figure 120 includes the handling of reference parameters
(<ref-var-par-calc>). Reference parameters are needed to explain reference parameters of test
cases. The operational semantics assumes that these parameters are handled by the MTC.

ETSI

146

segment <start-component-op>

A 4
Entity.VALUE-STACK.push (NEW-CALL-RECORD (function-name)) ;
construct-call-record) | Entity.NEXT-CONTROL (true) ;
(function-name) RETURN;
* // For each pair (<f-par-Idis>, <act-parameter-desci>) the
// value of <act-parameter-desci is calculated and
// assigned to the corresponding field <f-par-Idis>
<value-par-calculation> // in the call record. The call record is assumed to be
// the top element in the value stack.
* // This flow graph segment is also used to explain
// the execute statemnt. Test cases are allowed to have
// reference parameters. The operational semantics
<ref-var-par-calc> // assumes that these parameters are owned (and updated)
// by the MTC.
A 4
. // The expression shall evaluate to a component reference.
<expression> | | // It refers to the component to be started
A 4

control-trans-to-component
(function-name)

let

{

var toBeStarted := Entity.VALUE-STACK.top() ;
// toBeStarted is a local variable that stores the
// identifier of the component to be started

Entity.VALUE-STACK.pop () ;
// Removal of component reference. Afterwards the
// call record is on top of the value stack

toBeStarted. VALUE-STACK.push (Entity.VALUE-STACK. top() ;
// Call record is transferred to toBeStarted.

Entity.VALUE-STACK.pop () ;
// Removal of the call record from the value stack
// of the starting component (= Entity).

toBeStarted. CONTROL-STACK.push (GET-FLOW-GRAPH (function-name)) ;
// Control stack of toBeStarted is set to
// the start node of its behaviour.

toBeStarted.STATUS := ACTIVE;
// Control is given to toBeStarted

if

}

(DONE . member (toBeStarted))
DONE.delete(toBeStarted) ;

{ // Update DONE list

} // end of scope for variable toBeStarted

Entity.NEXT-CONTROL (true) ;

Figure 120: Flow graph segment <start-component-op>

ETSI

ETSI ES 201 873-4 V4.4.1 (2012-04)

147 ETSI ES 201 873-4 V4.4.1 (2012-04)

9.47 Start port operation

The syntactical structure of the start port operation is:

<portIds>.start

The flow graph segment <start-port-op> in figure 121 defines the execution of the start port operation.

segment <start-port-op>
let { // Begin of local scope

v var portRef := NULL
var portState := NULL;
start-port-op Ve
(portId) if (portId == “all port”) {
portState := ALL-PORT-STATES.first();
while (portState != NULL) ({
if (portState.OWNER == Entity) {
portState.VALUE-QUEUE.clear() ;
portState.STATUS := STARTED
}
portState :=

ALL-PORT-STATES.next (portState) ;

}

else {
portRef := Entity.portId.COMP-PORT-NAME;
GET-PORT (Entity, portRef) .clear();
GET-PORT (Entity, portRef).STATUS := STARTED;

} // End of socpe

Entity.NEXT-CONTROL (true) ;
RETURN;

v

Figure 121: Flow graph segment <start-port-op>

9.48 Start timer operation

The syntactical structure of the start timer operationis:
<timerIds>.start [(<float-expressions)]

The optional <float-expression> parameter of the timer start operation denotes the actual duration of the timer. If it is
not provided, the default duration will be used by the start operation. The expression that shall evaluate to a value of
type £loat. If provided, the expression shall be evaluated before the start operation is applied. The result of the
evaluation is pushed onto the VALUE-STACK of Entity.

The flow graph segment <start-timer-op> infigure 122 defines the execution of the start timer operation.

segment <start-timer-op>

A
<start-timer-op-defaults
OR // A timer can be started with

<start-timer-op-durations // a default duration, or with
// a given duration.

v

Figure 122: Flow graph segment <start-timer-op>

ETSI

148 ETSI ES 201 873-4 V4.4.1 (2012-04)

9.48.1 Flow graph segment <start-timer-op-default>

The flow graph segment <start-timer-op-defaults infigure 123 defines the execution of the start timer
operation with the default value.

segment <start-timer-op-defaults>

start-timer-op-default
(timerId)

// The timer reference <timerId> is copied into the node
// attribute‘timerId’

if (Entity.timerId.DEF-DURATION == NONE) {
***DYNAMIC-ERROR* * * // Timer has no default duration
}

else
Entity.TIMER-SET (timerId, ACT-DURATION, Entity.timerId.DEF-DURATION) ;
Entity.TIMER-SET (timexrId, TIME-LEFT, Entity.timerId.DEF-DURATION) ;
Entity.TIMER-SET (timerId, STATUS, RUNNING) ;

}

Entity.NEXT-CONTROL (true) ;
RETURN;

Figure 123: Flow graph segment <start-timer-op-default>

ETSI

149 ETSI ES 201 873-4 V4.4.1 (2012-04)

9.48.2 Flow graph segment <start-timer-op-duration>

The flow graph segment <start-timer-op-durations infigure 124 defines the execution of the start timer
operation with a provided duration.

segment <start-timer-op-durations

. // The expression shall evaluate
<expressions> // to a float. The result is pushed
// onto VALUE-STACK.

start-timer-op-duration
(timerId)

// The timer reference <timerId> is copied into the node
// attribute ‘timerId’

Entity.TIMER-SET(timerId, ACT-DURATION, Entity.VALUE-STACK.top());
Entity.TIMER-SET(timerId, TIME-LEFT, Entity.VALUE-STACK.top());
Entity.TIMER-SET(timerId, STATUS, RUNNING) ;

Entity.VALUE-STACK.pop() ; // clean VALUE-STACK

Entity.NEXT-CONTROL (true) ;
RETURN;

Figure 124: Flow graph segment <start-timer-op-duration>

9.49 Stop component operation

The syntactical structure of the stop component statement is:

<component -expressions.stop

The stop component operation stops the specified component. All test components will be stopped, i.e. the test case
terminates, if the MTC is stopped (e.g. mtc . stop) or stopsitself (e.g. self. stop). The MTC may stop al parallel
test components by using the all keyword, i.e. all component.stop.

Stopped components created with an alive clause in the create operation are not removed from the test system.
They can be restarted by using a start statement. Variables, ports, constants and timers owned by such a component,
i.e. declared and defined in the corresponding component type definition, keep their status. A stop operation for a
component created without an alive clauseis semantically equivalent to akill operation. The component is
removed from the test system.

A component to be stopped isidentified by a component reference provided as expression, e.g. avalue or value
returning function. For simplicity, the keyword "all component" isconsidered to be specia values of
<component -expressions>. The operationsmtc and sel f are evaluated according to clauses 9.33 and 9.43.

The flow graph segment <stop-component -op> in figure 125 defines the execution of the stop component
operation.

ETSI

150 ETSI ES 201 873-4 V4.4.1 (2012-04)

segment <stop-component-op>

// The Expression shall evaluate
// to a component reference. The
..... // result is pushed onto VALUE-STACK

\ 4

<expression>

if (Entity.VALUE-STACK.top() == 'all component') {
Entity.VALUE-STACK.pop(); // clean value stack
if (Entity != MTC) {

v ***DYNAMIC-ERROR*** // 'all' not allowed

1

decision =) else {

Entity.NEXT-CONTROL (true) ;

true {

false }

else {
Entity.NEXT-CONTROL (false) ;

<stop-all-comp> }
RETURN;

v if (Entity.VALUE-STACK.top() == MTC) {
Entity.VALUE-STACK.pop(); // clean value stack

decision =) Entity.NEXT-CONTROL (true) ;

}

else {
Entity.NEXT-CONTROL (false) ;
}

RETURN;

<kill-mtc>

if (ALL-ENTITY-STATES.member (Entity.VALUE-STACK.top())) {
Entity.NEXT-CONTROL (true) ;
}

else {

if (DONE.member (Entity.VALUE-STACK.top())) {
prepare-stop) // NULL operation, component already stopped
false // or killed.
Entity.VALUE-STACK.pop(); // clean value stack

true Entity.NEXT-CONTROL (false) ;

}

else {
// component id has not been allocated
DYNAMIC-ERROR

{

RETURN;

if (Entity.VALUE—STACK.EQB().KEEP—ALIVE == true)) {
Entity.NEXT-CONTROL (true); // Component is not
// removed from the

// test system

else {
Entity.NEXT-CONTROL(false); // Component is killed

decision = Ve RETURN;

true

A 4
<stop-alive-component>

<kill-component>

A

'

Figure 125: Flow graph segment <stop-component-op>

ETSI

151 ETSI ES 201 873-4 V4.4.1 (2012-04)

9.49.1 Void

9.49.2 Flow graph segment <stop-alive-component>

The <stop-alive-component > flow graph segment in figure 126 describes the stopping of a parallel test
component, i.e. not the MTC or module control, which has been created with an alive clause. The effect isthat the
test case verdict TC-VERDICT and the list of terminated test components (DONE) are updated and that the component
changesits statusto BLOCKED. The <stop-alive-component> flow graph assumes that the identifier of the
component to be stopped is on top of the value stack of the component that executes the segment.

segment
<stop-alive-component>

stop-alive-component

let { // local scope

var myEntity := Entity.VALUE-STACK.top();

var compVarScope := copy(myEntity.DATA-STATE.first());
var compTimerScope := copy(myEntity.TIMER-STATE.first());
var compPortScope := copy(myEntity.PORT-REF.first());

// for test continuation, if stop is executed by another component
if (Entity != myEntity()) {
Entity.VALUE-STACK.pop () ; // clean value stack
Entity.NEXT-CONTROL (true) ;

}

// Update test case verdict

if (myEntitiy.E-VERDICT == fail or TC-VERDICT == fail) ({
TC-VERDICT := fail;

1

else {
if (myEntity.E-VERDICT == inconc or TC-VERDICT == inconc) {
TC-VERDICT := inconc;
else {

if (myEntity.E-VERDICT == pass or TC-VERDICT == pass) {
TC-VERDICT := pass;

}

// Update of DONE
DONE. append (myEntity) ; // Update of DONE

// Update of component state
myEntity.STATUS := BLOCKED;
myEntity.CONTROL-STACK := NULL;
myEntity.DEFAULT-LIST := NULL;
myEntity.VALUE-STACK := NULL;
myEntity.VALUE-STACK.push (MARK) ; // for component scope
myEntity.TIMER-GUARD.STATUS := IDLE;
myEntity.DATA-STATE := NULL
myEntity.DATA-STATE. add (compVarScope) ;
myEntity.TIMER-STATE := NULL;
myEntity.TIMER-STATE.add(compTimerScope) ;
myEntity.PORT-REF := NULL
myEntity.PORT-REF.add (compPortScope) ;

myEntity.SNAP-ALIVE := NULL;
myEntity.SNAP-DONE := NULL;
myEntity.SNAP-KILLED := NULL;

} // End of local scope
RETURN;

Figure 126: Flow graph segment <stop-alive-component>

ETSI

9.49.3

152 ETSI ES 201 873-4 V4.4.1 (2012-04)

Flow graph segment <stop-all-comp>

The <stop-all-comp> flow graph segment in figure 127 describes the stopping of all parallel test components of a

test case

segment

<stop-all-comp> let { // local scope

v var myEntity := ALL-ENTITY-STATES.next (MTC) ;

prepare-stop e Entity.VALUE-STACK.push (MARK)

while (myEntity != NULL) {
Entity.VALUE-STACK.push(myEntity) ;
myEntity := ALL-ENTITY-STATES.next (myEntity) ;

} // End of local scope

Entity.NEXT-CONTROL (true) ;
RETURN;

if (Entity.VALUE-STACK.top().KEEP-ALIVE == true) {
Entity.NEXT-CONTROL (true) ;
1

else
Entity.NEXT-CONTROL (false) ;
1

Stop-0r-kKill Yo RETURN;

<
l

true

A 4

<stop-alive-component> <kill-components>

false

if (Entity.VALUE-STACK.top() == MARK) {
Entity.VALUE-STACK.pop() ; // clean stack
Entity.NEXT-CONTROL (true); // end of loop

\

stop-or-kill

true else
Entity.NEXT-CONTROL (false) ;
}

RETURN;

Figure 127: Flow graph segment <stop-all-comp>

ETSI

9.50

153

Stop execution statement

The syntactical structure of the stop execution statement is:

stop

ETSI ES 201 873-4 V4.4.1 (2012-04)

The effect of the stop execution statement depends on the entity that executes the stop execution statement:

a) If stop isperformed by the module control, the test campaign ends, i.e. all test components and the module
control disappear from the module state. Thisis semantically similar to the execution of akill statement by

the module control.

b)

kill statement by the MTC.

c) If the stop isexecuted by atest component, the global test case verdict TC-VERDICT and the global DONE
list are updated. If the test component is created with an aive clause. The status of the component is set to

If the stop is executed by the MTC, the test case ends. All paralel test components and the MTC stop and are
removed from the test system. The global test case verdict is updated and pushed onto the value stack of the
module control. Control is given back to the module control. Thisis semantically similar to the execution of a

BLOCKED and it may be started again. Otherwise the component is removed from the test system.

The flow graph segment <stop-exec-stmt> infigure 128 describes the execution of the stop statement.

segment <stop-exec-stmt>

true

A

decision

false

<kill-controls

true

decision

<kill-mtc>

if (Entity == CONTROL) {

Entity .NEXT-CONTROL (true) ;

else
Entity .NEXT-CONTROL (false);

RETURN;

if (Entity == MTC) {
Entity.NEXT-CONTROL (true) ;

else
Entity.NEXT-CONTROL (false);
}

RETURN;

Entity.VALUE-STACK.push (Entity) ;
if (Entity.KEEP-ALIVE == true) (

Entity .NEXT-CONTROL (true) ;

else
Entity .NEXT-CONTROL (false);

RE'TURN;

<kill-component>

<stop-alive-components>

>’

!

Figure 128: Flow graph segment <stop-exec-stmt>

ETSI

154 ETSI ES 201 873-4 V4.4.1 (2012-04)

9.51 Stop port operation
The syntactical structure of the stop port operation is:

<portId>.stop
The flow graph segment <stop-port-op> infigure 129 defines the execution of the stop port operation.

segment <stop-port-op>
v let { // Begin of local scope
var portRef := NULL
var portState := NULL;
stop-port-op VY.
(portId) if (portId == “all port”) ({
portState := ALL-PORT-STATES.first();
while (portState != NULL) ({
if (portState.OWNER == Entity) {
portState.STATUS := STOPPED
}
portState :=
ALL-PORT-STATES.next (portState) ;
1
else
Entity.portId.COMP-PORT-NAME;

portRef :=
GET-PORT (Entity, portRef) .STATUS

} // End of socpe

:= STOPPED;

Entity.NEXT-CONTROL (true) ;
RETURN;

v

Figure 129: Flow graph segment <stop-port-op>

ETSI

155 ETSI ES 201 873-4 V4.4.1 (2012-04)

9.52 Stop timer operation

The syntactical structure of the stop timer operation is:
<timerId>.stop

The flow graph segment <stop-timer-op> infigure 130 defines the execution of the stop timer operation.

The all keyword is handled as a special value of t imerId.

segment <stop-timer-op>

A 4 // The timer reference <timerId> is copied
// into the node attribute ‘timerId’
stop-timer-op = Y}
(timerId) if (timerId == ‘all timer’)

Entity.TIMER-STATE. change.change (TIMER-SET(, STATUS, IDLE)) ;
Entity.TIMER-STATE.change.change (TIMER-SET(, ACT-DURATION, 0.0);
Entity.TIMER-STATE.change.change (TIMER-SET(, TIME-LEFT, 0.0);

// Note, the first parameter of the TIMER-SET function is

// ommitted, because it is applied to all timers in the

// actual scope unit.

}

else {
Entity.TIMER-SET(timerId, STATUS, IDLE);
Entity.TIMER-SET(timerId, ACT-DURATION, 0.0);
Entity.TIMER-SET(timerId, TIME-LEFT, 0.0);

}

Entity.NEXT-CONTROL (true) ;
RETURN;

Figure 130: Flow graph segment <stop-timer-op>

9.53 System operation

The syntactical structure of the system operationis:
system

The flow graph segment <system-op> infigure 131 defines the execution of the system operation.

segment <system-op>

Entity.VALUE-STACK.push(system) ;
Entity.NEXT-CONTROL (true) ;
RETURN;

system-op

v

Figure 131: Flow graph segment <system-op>

ETSI

156 ETSI ES 201 873-4 V4.4.1 (2012-04)

9.53a Test case stop operation

The syntactical structure of the test case stop operationis:

testcase.stop (<informal-descriptions)

The behaviour of the test case stop operation is identical to the execution of alog statement (clause 9.31) followed by a
dynamic error (clause 9.17.3). Flow graph segment <test -case-stop-op> in figure 131a defines the execution of
the test case stop operation.

segment <test-case-stop-op>

A

<log-stmt>

A

<dynamic-errors>

Figure 131a: Flow graph segment <test-case-stop-op>

9.54 Timer declaration

The syntactical structure of atimer declarationis:

timer <timerIds> [:= <float-expressions>]

The effect of atimer declaration is the creation of anew timer binding. The declaration of a default duration is optional.
The default value is considered to be an expression that evaluates to a value of the type £loat.

The flow graph segment <t imer-declarations infigure 132 defines the execution of atimer declaration.

segment <timer-declarations> ¢
<timer-decl-defaults>
OR // A timer may be declared with
<timer-decl-no-def> // or without a default duration

i

Figure 132: Flow graph segment <timer-declaration>

ETSI

157 ETSI ES 201 873-4 V4.4.1 (2012-04)

9.54.1 Flow graph segment <timer-decl-default>

The flow graph segment <t imer-decl-default> infigure 133 defines the execution of atimer declaration where
adefault duration in form of an expression is provided.

segment <timer-decl-defaults>

v

<expression>

// The expression shall evaluate
// to a value of type float

Entity.INIT-TIMER (timerId, Entity.VALUE-STACK.top()) ;

Entity.VALUE-STACK.pop () ; // clean VALUE-STACK
timer-decl-default
(timerId) Entity.NEXT-CONTROL (true) ;
RETURN;

Figure 133: Flow graph segment <timer-decl-default>

9.54.2 Flow graph segment <timer-decl-no-def>

The flow graph segment <t imer-decl-no-def > infigure 134 defines the execution of atimer declaration where
no default duration is provided, i.e. the default duration of the timer is undefined.

segment <timer-decl-no-defs>

Entity.INIT-TIMER(timerId, NONE) ;

timer-decl-no-def Entity.NEXT-CONTROL (true) ;
(timerId) RETURN;

\ 4

Figure 134: Flow graph segment <timer-decl-no-def>

ETSI

9.55

158 ETSI ES 201 873-4 V4.4.1 (2012-04)

Timeout timer operation

The syntactical structure of the timeout timer operation is:

<timerIds>.timeout

The flow graph segment <t imeout -

operation.

timer-op> infigure 135 defines the execution of the timeout timer

segment <timeout-timer-op>
A 4
timeout-timer-0p Yo
(timerId)
// The timer reference <timerIds> is copied
// into the node attribute ‘timerId’
let { // local scope for variable myTimerList
var myTimerList; // to store a list of timer Bindings
if (timerId == ‘any timer’) ({
myTimerList := Entity.TIMER-STATE.first();
timerId := NULL;
while (myTimerList != NULL && timerId == NULL)
timerId := myTimerList.random(SNAP-STATUS == TIMEOUT) ;
myTimerList := Entity.TIMER-STATE.next (myTimerList) ;
{
}
if (timerId != NULL && Entity.timerId.SNAP-STATUS == TIMEOUT) {
Entity.TIMER-SET(timerId, STATUS, IDLE);
Entity.TIMER-SET (timerId, ACT-DURATION, 0.0);
Entity.TIMER-SET(timerId, TIME-LEFT, 0.0);
Entity.STATUS := ACTIVE;
Entity.NEXT-CONTROL (true) ;
true false }
else
Entity.NEXT-CONTROL (false) ;
} // end of local scope
RETURN;
J' v

NOTE 1: A timeout operation is embedded in an alt statement. Its evaluation is based on the actual snapshot,
i.e. the decision is based on the SNAP-STATUS entry in the timer binding. If the timeout operation is
successful, i.e. SNAP-STATUS == TIMEOUT, the timer is set into an IDLE state and the component state
changes from SNAPSHOT to ACTIVE.

NOTE 2:

When the timeout evaluates to true or false, either execution continues with the statement that

follows the timeout operation (true branch), or the next alternative in the alt statement has to be
checked (£alse branch).

NOTE 3: The any keyword is treated like as special value of timerld.

Figure 135: Flow graph segment <timeout-timer-op>

ETSI

159 ETSI ES 201 873-4 V4.4.1 (2012-04)

9.56 Unmap operation

The syntactical structure of the unmap operation is:

unmap (<component expressions:<portIdls> [,system:<portId2>])

Theidentifiers <portIdl> and <portId2> are considered to be port identifiers of the corresponding test component
and test system interface. The components to which the <portld1> belongsis referenced by means of the component
reference <component -expressions. The reference may be stored in variables or is returned by afunction, i.e. it
is an expression, which evaluates to a component reference. The value stack is used for storing the component

reference.

The unmap operation can be used with one parameter pair and with two parameters pairs. The usage of the unmap
operation with one parameter pair may unmap port mappings for one component or, if executed by the MTC for all
components. The usage of the unmap operation with two parameter pairs allows to unmap one specific mapped port.

The operational semantics does not model the portsin the abstract test system interface. Therefore, only the parameter
pair that identifies the component (or components, if the all component keyword is used) and the corresponding port (or
ports, if the al port keyword is used) has to be considered here.

In the flow graph segment three cases are distinguished:
1) themtec unmaps al mapped ports of all components;
2) al mapped ports of one component are unmapped; and

3) one port of one component is unmapped.

ETSI

160 ETSI ES 201 873-4 V4.4.1 (2012-04)

The execution of the unmap operation is defined by the flow graph segment <unmap - op> shown in figure 136.

segment
<unmap - op> // The Expression shall evaluate
A // to a component reference. The
// result is pushed onto VALUE-STACK

<expression>
if (Entity.VALUE-STACK.top() == “all component”) ({
if ((Entity != MITC) OR
(Entity == MTC && portId != “all port”)) ({

** *DYNAMIC-ERROR***

A

unmap-decision else {
(portTd) Fee Entity.VALUE-STACK.pop () ;

Entity.NEXT-CONTROL (true) ;

true }
false }
else {
Entity.VALUE-STACK.push (portId) ;
<unmap-alls> Entity.NEXT-CONTROL (false) ;
}
RETURN;
N
if (Entity.VALUE-STACK.top() != “all port”) ({
decision = Jeew Entity.VALUE-STACK.pop () ;
Entity.NEXT-CONTROL (true) ;
true }
false else
Entity.NEXT-CONTROL (false) ;
}
<unmap - comp > RETURN;

A

<unmap-port>

v

v

Figure 136: Flow graph segment <unmap-op>

ETSI

161 ETSI ES 201 873-4 V4.4.1 (2012-04)

9.56.1 Flow graph segment <unmap-all>

The flow segment <unmap-all> definesthe unmapping of al components at all mapped ports.

segment <unmap-all>

unmap-all = e

let { // local scope

var port := ALL-PORT-STATES.first();

var connection;

while (port != NULL) {
connection := port.CONNECTIONS.first();

while (connection != NULL) {
if (connection.REMOTE-ENTITY == system) ({

port.CONNECTIONS.delete (connection) ;

connection := port.CONNECTIONS.first() ;

else {
connection := NULL; // connected port

port := ALL-PORT-STATES.next (port)

} // End of local scope

Entity.NEXT-CONTROL (true) ;
RETURN;

Figure 136a: Flow graph segment <unmap-all>

ETSI

162 ETSI ES 201 873-4 V4.4.1 (2012-04)

9.56.2 Flow graph segment <unmap-comp>
The flow segment <unmap - comp> defines the unmapping of all mapped ports of a specified component.

segment <unmap-comp>

unmap - comp

let { // local scope
Entity.VALUE-STACK. top() ;

var comp :=
var connection;
var port := ALL-PORT-STATES.first();
while (port != NULL) {
if (port.OWNER == comp) // port of comp
connection := port.CONNECTIONS.first() ;
if (connection.REMOTE-ENTITY == system) { // mapped port of comp
port.CONNECTIONS.delete (connection) ;
1
}
port := ALL-PORT-STATES.next (port) ;

// clear value stack

}

Entity.VALUE-STACK.pop () ;
} // End of local scope

Entity.NEXT-CONTROL (true) ;
RETURN;

Figure 136b: Flow graph segment <unmap-comp>

ETSI

163

9.56.3 Flow graph segment <unmap-port>

ETSI ES 201 873-4 V4.4.1 (2012-04)

The flow segment <unmap-port > defines the unmap operation for a specific mapped port.

segment <unmap-port>

unmap-port

let { // local scope

var portId;

var comp;

var port;

var connection;

portId := Entity.VALUE-STACK.top() ;

Entity.VALUE-STACK.pop () ;
comp := Entity.VALUE-STACK.top() ;
Entity.VALUE-STACK.pop () ;

port := GET-PORT(comp, portlId);
connection := port.CONNECTIONS.first() ;
if (connection.REMOTE-ENTITY != SYSTEM) {

** *DYNAMIC-ERROR***

else if (connection != NULL) {
port.CONNECTIONS.delete (connection) ;

} // End of local scope

Entity.NEXT-CONTROL (true) ;
RETURN;

// port is not a mapped port

else {) // do nothing, port is neither connected nor mapped

Figure 136¢: Flow graph segment <unmap-port>

9.57

The syntactical structure of avariable declaration is:

Variable declaration

var <varType> <varId> [:= <varType-expressions]

The initialization of avariable by providing an initial value (in form of an expression) isoptional. Theinitial valueis

considered to be an expression that evaluates to a value of the type of the variable.

ETSI

164

The flow graph segment <variable-declaration> infigure 137 defines the execution of the declaration of a

variable.

ETSI ES 201 873-4 V4.4.1 (2012-04)

segment <variable-declarations> v

<var-declaration-init>
OR
<var-declaration-undef>

// A variable may be declared with
// or without initial wvalue

Figure 137: Flow graph segment <variable-declaration>

9.57.1 Flow graph segment <var-declaration-init>

The flow graph segment <var-declaration-init> infigure 138 defines the execution of avariable declaration

where aninitial value in form of an expression is provided.

segment <var-declaration-inits

v

<expression>

// The expression shall evaluate
// to a value of the type of the
// variable that is declared.

Entity.INIT-VAR(varId, Entity.VALUE-STACK.top());

Entity.VALUE-STACK.pop () ; // clean VALUE-STACK;
var-declaration-init
(varId) Entity.NEXT-CONTROL (true) ;
RETURN;

Figure 138: Flow graph segment <var-declaration-init>

ETSI

165 ETSI ES 201 873-4 V4.4.1 (2012-04)

9.57.2 Flow graph segment <var-declaration-undef>

The flow graph segment <var-declaration-undef> in figure 139 defines the execution of a variable declaration where no
initial valueis provided, i.e. the value of the variable is undefined.

segment <var-declaration-undefs>

Entity.INIT-VAR(varId, NONE) ;

var-declaration-undef Entity.NEXT-CONTROL (true) ;
(varId) RETURN;

\4

Figure 139: Flow graph segment < var-declaration-undef >

9.58 While statement

The syntactical structure of thewhile statement is:

while (<boolean-expressions) <statement-block>

The execution of awhile statement is defined by the flow graph segment <while-stmt> shown in figure 140.

segment <while-stmt>

// The expression shall evaluate to
<expressions> // a Boolean value.

if (Entity.VALUE-STACK.top() == true)

,,,,,,,,,,,,, {

decision
Entity.NEXT-CONTROL (true) ;
true else {

Entity.NEXT-CONTROL (true) ;
}

Entity.VALUE-STACK.pop () ;
RETURN;

<statement-block>

\ 4

Figure 140: Flow graph segment <while-stmt>

ETSI

166 ETSI ES 201 873-4 V4.4.1 (2012-04)

10 Lists of operational semantic components

10.1

Functions and states

Name Description Clause
ACT-DURATION Duration with which an active timer has been started 8.3.24
add List operation: adds an item as first element to a list 8.3.1a.1
ADD-CON Adds a connection to a port state 8.3.3.2
ALL-ENTITY-STATES |Component states in module state 8.3.1
ALL-PORT-STATES Port states in module state 8.3.1
append List operation: appends an item as last element to a list 8.3.1a.1
APPLY-OPERATOR Application of operators like +, - or / 8.6.2
change List operation: changes all elements of a list 8.3.1a.1
clear Stack operation "clear": clears a stack 8.3.2.1
clear Queue operation "clear": removes all elements from a queue 8.3.3.2
clear-until Stack operation "clear-until": pops items until a specific item is top element 8.3.2.1

in the stack
CONNECTIONS-LIST List of connections of a port 8.3.3
CONSTRUCT-ITEM Constructs an item to be sent 8.4.4
CONTINUE- The actual component continues its execution 8.6.2
COMPONENT
CONTROL-STACK Stack of flow graph nodes denoting the actual control state of an entity 8.3.2
DATA-STATE Data state in an entity state 8.3.2
DEF-DURATION Default Duration of a timer 8.3.24
DEFAULT-LIST List of active defaults in an entity state 8.3.2
DEFAULT-POINTER Points to the actual default during the default evaluation. 8.3.2
DEL-CON Deletes a connection from a port state 8.3.3.2
DEL-ENTITY Deletes an entity from a module state 8.3.4
DEL-TIMER-SCOPE Deletes a timer scope 8.3.25
DEL-VAR-SCOPE Deletes a variable scope 8.3.2.3
delete List operation: deletes an item from a list 8.3.1a.1
dequeue Queue operation: deletes the first element from a queue 8.3.3.2
DONE Identifiers of terminated test components (part of module state) 8.3.1
E-VERDICT Local test verdict of a test component 8.3.2
enqueue Queue operation: puts an item as last element into a queue 8.3.3.2
first Queue operation "first": returns the first element of a queue 8.3.3.2
first List operation: returns the first element of a list 8.3.1a.1
GET-FLOW-GRAPH Retrieves the start node of a flow graph 8.2.7
GET-PORT Retrieves a port reference 8.3.3.2
GET-REMOTE-PORT Retrieves the reference of a remote port 8.3.3.2
GET-TIMER-LOC Retrieves location of a timer 8.3.25
GET-UNIQUE-ID Returns a new unigue identifier when it is called 8.6.2
GET-VAR-LOC Retrieves location of a variable 8.3.2.3
INIT-CALL-RECORD Initializes variables for parameters for procedure-based communication in 8.5.1

the actual scope unit of the test component
INIT-FLOW-GRAPHS Initializes the flow graph handling 8.6.2
INIT-TIMER Creates a new timer binding 8.3.25
INIT-TIMER-LOC Creates a new timer binding with an existing location 8.3.25
INIT-TIMER-SCOPE Initializes a new timer scope 8.3.25
INIT-VAR Creates a new variable binding 8.3.2.3
INIT-VAR-LOC Creates a new variable binding with an existing location 8.3.2.3
INIT-VAR-SCOPE Initializes a new variable scope 8.3.2.3
length List operation: returns the length of a list 8.3.1a.1
M-CONTROL Identifier of module control in module state 8.3.1
MATCH-ITEM Checks if a received message, call, reply or exception matches with a 8.4.5

receiving operation
member List operation: checks if an item is element of a list 8.3.1a.1
MTC Reference to MTC in module state 8.3.1
NEW-CALL-RECORD |Creates a call record for a function call 8.5.1
NEW-ENTITY Creates a new entity state 8.3.2.1
NEW-PORT Creates a new port 8.3.3.2
NEXT Retrieves the successor node of a given node in a flow graph 8.1.6
next List operation: returns next element in a list 8.3.1a.1

ETSI

167 ETSI ES 201 873-4 V4.4.1 (2012-04)
Name Description Clause
NEXT-CONTROL Pops the top flow graph node from the control stack and pushes the next 8.3.2.1
flow graph node onto the control stack.
OWNER Owner of a port 8.3.3
pop Stack operation "pop": pops an item from a stack 8.3.2.1
PORT-NAME Name of a port 8.3.3
push Stack operation "push": pushes an item onto a stack 8.3.2.1
random List operation: returns randomly an element of a list 8.3.1a.1
REMOTE-ENTITY Remote entity in a connection in a port state 8.3.3.1
REMOTE-PORT-NAME |Name of a port in a connection in a port state 8.3.3.1
RETRIEVE-INFO Retrieves information from a received message, call, reply or exception 8.4.6
RETURN Returns the control to the module evaluation procedure 8.6.2
SNAP-DONE List of terminated test components at the time when a snapshot is taken 8.3.2
SNAP-PORTS Provides the snapshot functionality, i.e. updates the SNAP-VALUE 8.3.3.2
SNAP-STATUS Snapshot status of a timer 8.3.24
SNAP-TIMER Provides the snapshot functionality and updates SNAP-VALUE and SNAP- 8.3.2.5
STATUS
SNAP-VALUE Snapshot value of a timer 8.3.24
SNAP-VALUE For snapshot semantics, updated when a snapshot is taken 8.3.3
STATUS Status (ACTIVE, BREAK, SNAPSHOT, REPEAT or BLOCKED) of module 8.3.2
control or a test component
STATUS Status (IDLE, RUNNING or TIMEOUT) of a timer 8.3.2.4
STATUS Status (STARTED, HALTED or STOPPED) of a port 8.3.3
TC-VERDICT Test case verdict in module state 8.3.1
TIME-LEFT Time a running timer has left to run before it times out 8.3.24
TIMER-GUARD Timer that guards execute statements and call operations 8.3.2
TIMER-NAME Name of a timer 8.3.24
TIMER-SET Setting values of a timer 8.3.25
TIMER-STATE Timer state in an entity state 8.3.2
top Stack operation "top": returns the top item from a stack 8.3.2.1
UPDATE-REMOTE- Updates timers and variables with the same location in different entities to 8.34
REFERENCES the same value
VALUE Value of a variable. 8.3.2.2
VALUE-QUEUE Port queue 8.3.3
VALUE-STACK Stack of values for the storage of results of expressions, operands, 8.3.2
operations and functions
VAR-NAME Name of a variable 8.3.2.2
VAR-SET Setting the value of a variable 8.3.2.3
DYNAMIC-ERROR* |Describes the occurrence of a dynamic error 8.6.2
<identifier> Unigue identifier of a test component 8.3.2
<location> Supports scope units, reference and timer parameters. Represents a 8.3.2.2,8.3.24
storage location for timers and variables
10.2 Special keywords
Keyword Description Clause
ACTIVE STATUS of an entity state 8.3.2
BLOCKED STATUS of an entity state 8.3.2
BREAK STATUS of an entity state 8.3.2
HALTED STATUS of a port 8.3.3
HALT-MARKER Used as marker in a port queue 8.3.3,9.28a
IDLE STATUS of a timer state 8.3.24
MARK Used as mark for VALUE-STACK 8.3.2
NONE Used to describe an undefined value 8.3.2.3,8.3.2.5,8.3.3.2
NULL Symbolic value for pointer and pointer-like types to indicate that nothing 8.3.1a.1, 8.3.2.1, 8.3.3,
is addressed 8.3.3.2,86.1.1
REPEAT STATUS of an entity state 8.3.2
RUNNING STATUS of a timer state 8.3.24
SNAPSHOT, STATUS of an entity state 8.3.2
STARTED STATUS of a port 8.3.3
STOPPED STATUS of a port 8.3.3
TIMEOUT STATUS of a timer state 8.3.24

ETSI

10.3

168

ETSI ES 201 873-4 V4.4.1 (2012-04)

Flow graphs of TTCN-3 behaviour descriptions

Reference
Figure Clause

Module control 18 8.2.2

Test cases 19 8.2.3

Functions 20 8.2.4

Altsteps 21 8.2.5

Component type definitions 22 8.2.6
10.4 Flow graph segments

Identifier Related TTCN-3 construct Reference
Figure Clause

<action-stmt> action statement 36 9.1
<activate-stmt> activate statement 37 9.2
<alive-component-op> alive component operation 37a 9.2a
<alive-comp-act> alive component operation 37b 9.2a.1
<alive-comp-snap> alive component operation 37c 9.2a.2
<alt-stmt> alt statement 38 9.3
<altstep-call> invocation of an altstep 44 9.4
<altstep-call-branch> alt statement 41 9.3.3
<assignment-stmt> assignment 45 9.5
<b-call-with-duration> call operation 52 9.6.4
<b-call-without-duration> call operation 51 9.6.3
<blocking-call-op> call operation 47 9.6
<break-altstep-stmt> break statement (leaving an altstep) 45a 9.5a
<call-op> call operation 46 9.6
<call-reception-part> call operation 53 9.6.5
<catch-op> catch operation 55 9.7
<catch-timeout-exception> call operation 54 9.6.6
<check-op> check operation 56 9.8
<check-with-sender> check operation 57 9.8.1
<check-without-sender> check operation 58 9.8.2
<checkstate-port-op> checkstate operation 58a 9.8a
<check-port-status> checkstate operation 58b 9.8a.1
<check-port-connection> checkstate operation 58c 9.8a.2
<clear-port-op> clear port operation 59 9.9
<connect-op> connect operation 60 9.10
<constant-definition> constant definition 61 9.11
<create-op> create operation 62 9.12
<deactivate-all-defaults> deactivate Statement 63c 9.13.2
<deactivate-one-default> deactivate statement 63b 9.13.1
<deactivate-stmt> deactivate Statement 63a 9.13
<default-evocation> alt statement 43 9.3.5
<disconnect-op> disconnect operation 64 9.14
<disconnect-one-par-pair> disconnect operation 64a 9.14.1
<disconnect-all> disconnect operation 64b 9.14.2
<disconnect-comp> disconnect operation 64c 9.14.3
<disconnect-port> disconnect operation 64d 9.14.4
<disconnect-two-par-pairs> disconnect operation 64e 9.14.5
<do-while-stmt> do-while statement 65 9.15
<done-op> done component operation 66 9.16
<dynamic-error> execute statement 69a 9.17.3
<else-branch> alt statement 42 9.34
<execute-stmt> execute statement 67 9.17
<execute-timeout> execute Statement 69 9.17.2
<execute-without-timeout> execute Statement 68 9.17.1
<expression> expression 70 9.18
<finalize-component-init> used in component type definitions 75 9.19

ETSI

169 ETSI ES 201 873-4 V4.4.1 (2012-04)
Identifier Related TTCN-3 construct Reference

Figure Clause
<for-stmt> for statement 79 9.23
<func-op-call> expression 73 9.18.3
<function-call> call of a function 80 9.24
<getcall-op> getcall operation 86 9.25
<getreply-op> getreply operation 87 9.26
<getverdict-op> getverdict operation 88 9.27
<goto-stmt> goto statement 89 9.28
<halt-port-op> halt port operation 89a 9.28a
<if-else-stmt> if-else statement 90 9.29
<init-component-scope> used in component type definitions 76 9.20
<init-scope-with-runs-on> used in function and altstep definitions 76a 9.20a
<init-scope-without-runs-on> |used in function and altstep definitions 76b 9.20b
<kill-all-comp> kill component operation 90d 9.29%a.3
<kill-component> kill component operation 90c 9.29a.2
<kill-component-op> kill component operation 90a 9.29a
<kill-control> kill execution statement 90f 9.29h.1
<kill-exec-stmt> kill execution statement 90e 9.29b
<kill-mtc> kill component operation 90b 9.29a.1
<killed-op> killed component operation 90g 9.29¢c
<label-stmt> label statement 91 9.30
<lit-value> expression 71 9.18.1
<log-stmt> log statement 92 9.31
<map-op> map operation 93 9.32
<mtc-op> mtc operation 94 9.33
<nb-call-without-receiver> call operation 50 9.6.2
<nb-call-with-one-receiver> |call operation 49 9.6.1
<nb-call-with-multiple- call operation 49a 9.6.1a
receivers>
<non-blocking-call-op> call operation 48 9.6
<operator-appl> expression 74 9.18.4
<parameter-handling> handling of parameters of functions, altsteps and test cases 77 9.21
<port-declaration> port declaration 95 9.34
<predef-ext-func-call> call of a function (call of a pre-defined or external function) 85 9.24.5
<raise-op> raise operation 96 9.35
<raise-with-one-receiver-op> |raise operation 97 9.35.1
<raise-with-multiple-receivers- |raise operation 97a 9.35.1a
op>
<raise-without-receiver-op> |raise operation 98 9.35.2
<read-timer-op> read timer operation 99 9.36
<receive-assignment> receive operation 103 9.37.3
<receive-op> receive operation 100 9.37
<receive-with-sender> receive operation 101 9.37.1
<receive-without-sender> receive operation 102 9.37.2
<receiving-branch> alt statement 40 9.3.2
<ref-par-port-calc> call of a function (handling of port parameters) 83a 9.24.3.a
<ref-par-timer-calc> call of a function (handling of timer parameters) 83 9.24.3
<ref-par-var-calc> call of a function (handling of reference parameters) 82 9.24.2
<repeat-stmt> repeat Statement 104 9.38
<reply-op> reply operation 105 9.39
<reply-with-one-receiver-op> |reply operation 106 9.39.1
<reply-with-multiple-receivers- |reply operation 106a 9.39.1a
op>
<reply-without-receiver-op> |reply operation 107 9.39.2
<return-stmt> return statement 108 9.40
<return-with-value> return statement 109 9.40.1
<return-without-value> return statement 110 9.40.2
<running-component-op> component running operation 111 9.41
<running-comp-act> component running operation 112 9.41.1
<running-comp-snap> component running operation 113 9.41.2
<running-timer-op> timer running operation 114 9.42

ETSI

170 ETSI ES 201 873-4 V4.4.1 (2012-04)

Identifier Related TTCN-3 construct Reference
Figure Clause
<self-op> self operation 115 9.43
<send-op> send operation 116 9.44
<send-with-one-receiver-op> |send operation 117 9.44.1
<send-with-multiple-receivers- |send operation 117a 9.44.1a
op>
<send-without-receiver-op> |send operation 118 9.44.2
<setverdict-op> setverdict operation 119 9.45
<start-component-op> start component operation 120 9.46
<start-port-op> start port operation 121 9.47
<start-timer-op> start timer operation 122 9.48
<start-timer-op-default> start timer operation 123 9.48.1
<start-timer-op-duration> start timer operation 124 9.48.2
<statement-block> block of statements in compound statements 78 9.22
<stop-component-op> stop component operation 125 9.49
<stop-alive-component> stop component operation 126 9.49.2
<stop-all-comp> stop component operation (all component.stop) 127 9.49.3
<stop-exec-stmt> stop execution statement 128 9.50
<stop-port-op> stop port operation 129 9.51
<stop-timer-op> stop timer operation 130 9.52
<system-op> system operation 131 9.53
<take-snapshot> alt statement 39 9.3.1
<test-case-stop-op> test case stop operation 131a 9.53a
<timer-declaration> timer declaration 132 9.54
<timer-decl-default> timer declaration 133 9.54.1
<timer-decl-no-def> timer declaration 134 9.54.2
<timeout-timer-op> timeout operation 135 9.55
<unmap-op> unmap operation 136 9.56
<unmap-all> unmap operation 136a 9.56.1
<unmap-comp> unmap operation 136b 9.56.2
<unmap-port> unmap operation 136¢ 9.56.3
<user-def-func-call> call of a function (call of a user-defined function) 84 9.24.4
<value-par-calculation> call of a function (handling of value parameters) 81 9.24.1
<var-declaration-init> variable declaration 138 9.57.1
<var-declaration-undef> variable declaration 139 9.57.2
<var-value> expression 72 9.18.2
<variable-declaration> variable declaration 137 9.57
<while-stmt> while statement 140 9.58

ETSI

171

ETSI ES 201 873-4 V4.4.1 (2012-04)

History
Document history

V221 February 2003 Publication

V311 June 2005 Publication

V321l February 2007 Publication

V331 April 2008 Publication

V34l September 2008 | Publication

V4.1.1 June 2009 Publication

V421 July 2010 Publication

V4.4.0 February 2012 Membership Approval Procedure MV 20120401: 2012-02-01 to 2012-04-02
V441 April 2012 Publication

ETSI

	Intellectual Property Rights
	Foreword
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Introduction
	5 Structure of the present document
	6 Restrictions
	7 Replacement of short forms
	7.1 Order of replacement steps
	7.2 Replacement of global constants and module parameters
	7.3 Embedding single receiving operations into alt statements
	7.4 Embedding stand-alone altstep calls into alt statements
	7.5 Replacement of interleave statements
	7.6 Replacement of trigger operations
	7.7 Replacement of select-case statements
	7.8 Replacement of simple break statements
	7.9 Replacement of continue statements
	7.10 Adding default parameters to disconnect and unmap operations without parameters
	7.11 Adding default values of parameters

	8 Flow graph semantics of TTCN-3
	8.1 Flow graphs
	8.1.1 Flow graph frame
	8.1.2 Flow graph nodes
	8.1.2.1 Start nodes
	8.1.2.2 End nodes
	8.1.2.3 Basic nodes
	8.1.2.4 Reference nodes
	8.1.2.4.1 OR combination of reference nodes
	8.1.2.4.2 Multiple occurrences of reference nodes

	8.1.3 Flow lines
	8.1.4 Flow graph segments
	8.1.5 Comments
	8.1.6 Handling of flow graph descriptions

	8.2 Flow graph representation of TTCN-3 behaviour
	8.2.1 Flow graph construction procedure
	8.2.2 Flow graph representation of module control
	8.2.3 Flow graph representation of test cases
	8.2.4 Flow graph representation of functions
	8.2.5 Flow graph representation of altsteps
	8.2.6 Flow graph representation of component type definitions
	8.2.7 Retrieval of start nodes of flow graphs

	8.3 State definitions for TTCN-3 modules
	8.3.1 Module state
	8.3.1.1 Accessing the module state

	8.3.1a Configuration state
	8.3.1a.1 Accessing the configuration state

	8.3.2 Entity states
	8.3.2.1 Accessing entity states
	8.3.2.2 Data state and variable binding
	8.3.2.3 Accessing data states
	8.3.2.4 Timer state and timer binding
	8.3.2.5 Accessing timer states
	8.3.2.6 Port references and port binding
	8.3.2.7 Accessing port references

	8.3.3 Port states
	8.3.3.1 Handling of connections among ports
	8.3.3.2 Handling of port states

	8.3.4 General functions for the handling of module states

	8.4 Messages, procedure calls, replies and exceptions
	8.4.1 Messages
	8.4.2 Procedure calls and replies
	8.4.3 Exceptions
	8.4.4 Construction of messages, procedure calls, replies and exceptions
	8.4.5 Matching of messages, procedure calls, replies and exceptions
	8.4.6 Retrieval of information from received items

	8.5 Call records for functions, altsteps and test cases
	8.5.1 Handling of call records

	8.6 The evaluation procedure for a TTCN-3 module
	8.6.1 Evaluation phases
	8.6.1.1 Phase I: Initialization
	8.6.1.2 Phase II: Update
	8.6.1.3 Phase III: Selection
	8.6.1.4 Phase IV: Execution

	8.6.2 Global functions

	9 Flow graph segments for TTCN-3 constructs
	9.1 Action statement
	9.2 Activate statement
	9.2a Alive component operation
	9.2a.1 Flow graph segment <alive-comp-act>
	9.2a.2 Flow graph segment <alive-comp-snap>

	9.3 Alt statement
	9.3.1 Flow graph segment <take-snapshot>
	9.3.2 Flow graph segment <receiving-branch>
	9.3.3 Flow graph segment <altstep-call-branch>
	9.3.4 Flow graph segment <else-branch>
	9.3.5 Flow graph segment <default-evocation>

	9.4 Altstep call
	9.5 Assignment statement
	9.5a Break statements in altsteps
	9.6 Call operation
	9.6.1 Flow graph segment <nb-call-with-one-receiver>
	9.6.1a Flow graph segment <nb-call-with-multiple-receivers>
	9.6.2 Flow graph segment <nb-call-without-receiver>
	9.6.3 Flow graph segment <b-call-without-duration>
	9.6.4 Flow graph segment <b-call-with-duration>
	9.6.5 Flow graph segment <call-reception-part>
	9.6.6 Flow graph segment <catch-timeout-exception>

	9.7 Catch operation
	9.8 Check operation
	9.8.1 Flow graph segment <check-with-sender>
	9.8.2 Flow graph segment <check-without-sender>

	9.8a Checkstate port operation
	9.8a.1 Flow graph segment <check-port-status>
	9.8a.2 Flow graph segment <check-port-connection>

	9.9 Clear port operation
	9.10 Connect operation
	9.11 Constant definition
	9.12 Create operation
	9.13 Deactivate statement
	9.13.1 Flow graph segment <deactivate-one-default>
	9.13.2 Flow graph segment <deactivate-all-defaults>

	9.14 Disconnect operation
	9.14.1 Flow graph segment <disconnect-one-par-pair>
	9.14.2 Flow graph segment <disconnect-all>
	9.14.3 Flow graph segment <disconnect-comp>
	9.14.4 Flow graph segment <disconnect-port>
	9.14.5 Flow graph segment <disconnect-two-par-pairs>

	9.15 Do-while statement
	9.16 Done component operation
	9.17 Execute statement
	9.17.1 Flow graph segment <execute-without-timeout>
	9.17.2 Flow graph segment <execute-timeout>
	9.17.3 Flow graph segment <dynamic-error>

	9.18 Expression
	9.18.1 Flow graph segment <lit-value>
	9.18.2 Flow graph segment <var-value>
	9.18.3 Flow graph segment <func-op-call>
	9.18.4 Flow graph segment <operator-appl>

	9.19 Flow graph segment <finalize-component-init>
	9.20 Flow graph segment <init-component-scope>
	9.20a Flow graph segment <init-scope-with-runs-on>
	9.20b Flow graph segment <init-scope-without-runs-on>
	9.21 Flow graph segment <parameter-handling>
	9.22 Flow graph segment <statement-block>
	9.23 For statement
	9.24 Function call
	9.24.1 Flow graph segment <value-par-calculation>
	9.24.2 Flow graph segment <ref-par-var-calc>
	9.24.3 Flow graph segment <ref-par-timer-calc>
	9.24.3a Flow graph segment <ref-par-port-calc>
	9.24.4 Flow graph segment <user-def-func-call>
	9.24.5 Flow graph segment <predef-ext-func-call>

	9.25 Getcall operation
	9.26 Getreply operation
	9.27 Getverdict operation
	9.28 Goto statement
	9.28a Halt port operation
	9.29 If-else statement
	9.29a Kill component operation
	9.29a.1 Flow graph segment <kill-mtc>
	9.29a.2 Flow graph segment <kill-component>
	9.29a.3 Flow graph segment <kill-all-comp>

	9.29b Kill execution statement
	9.29b.1 Flow graph segment <kill-control>

	9.29c Killed component operation
	9.30 Label statement
	9.31 Log statement
	9.32 Map operation
	9.33 Mtc operation
	9.34 Port declaration
	9.35 Raise operation
	9.35.1 Flow graph segment <raise-with-one-receiver-op>
	9.35.1a Flow graph segment <raise-with-multiple-receivers-op>
	9.35.2 Flow graph segment <raise-without-receiver-op>

	9.36 Read timer operation
	9.37 Receive operation
	9.37.1 Flow graph segment <receive-with-sender>
	9.37.2 Flow graph segment <receive-without-sender>
	9.37.3 Flow graph segment <receive-assignment>

	9.38 Repeat statement
	9.39 Reply operation
	9.39.1 Flow graph segment <reply-with-one-receiver-op>
	9.39.1a Flow graph segment <reply-with-multiple-receivers-op>
	9.39.2 Flow graph segment <reply-without-receiver-op>

	9.40 Return statement
	9.40.1 Flow graph segment <return-with-value>
	9.40.2 Flow graph segment <return-without-value>

	9.41 Running component operation
	9.41.1 Flow graph segment <running-comp-act>
	9.41.2 Flow graph segment <running-comp-snap>

	9.42 Running timer operation
	9.43 Self operation
	9.44 Send operation
	9.44.1 Flow graph segment <send-with-one-receiver-op>
	9.44.1a Flow graph segment <send-with-multiple-receivers-op>
	9.44.2 Flow graph segment <send-without-receiver-op>

	9.45 Setverdict operation
	9.46 Start component operation
	9.47 Start port operation
	9.48 Start timer operation
	9.48.1 Flow graph segment <start-timer-op-default>
	9.48.2 Flow graph segment <start-timer-op-duration>

	9.49 Stop component operation
	9.49.1 Void
	9.49.2 Flow graph segment <stop-alive-component>
	9.49.3 Flow graph segment <stop-all-comp>

	9.50 Stop execution statement
	9.51 Stop port operation
	9.52 Stop timer operation
	9.53 System operation
	9.53a Test case stop operation
	9.54 Timer declaration
	9.54.1 Flow graph segment <timer-decl-default>
	9.54.2 Flow graph segment <timer-decl-no-def>

	9.55 Timeout timer operation
	9.56 Unmap operation
	9.56.1 Flow graph segment <unmap-all>
	9.56.2 Flow graph segment <unmap-comp>
	9.56.3 Flow graph segment <unmap-port>

	9.57 Variable declaration
	9.57.1 Flow graph segment <var-declaration-init>
	9.57.2 Flow graph segment <var-declaration-undef>

	9.58 While statement

	10 Lists of operational semantic components
	10.1 Functions and states
	10.2 Special keywords
	10.3 Flow graphs of TTCN-3 behaviour descriptions
	10.4 Flow graph segments

	History

