ETSIES 201 873-1 va.5.1 (2013-09)

ETSI Standard

Methods for Testing and Specification (MTS);
The Testing and Test Control Notation version 3;
Part 1: TTCN-3 Core Language

2 ETSI ES 201 873-1 V4.5.1 (2013-04)

Reference
RES/MTS-201873-1 T3ed451 cor

Keywords
language, methodology, testing, TTCN-3

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).
In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2013.
All rights reserved.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members.
3GPP™and LTE™ are Trade Marks of ETSI registered for the benefit of its Members and
of the 3GPP Organizational Partners.
GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.

ETSI

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
http://portal.etsi.org/chaircor/ETSI_support.asp

3 ETSI ES 201 873-1 V4.5.1 (2013-04)

Contents

INntellectual Property RIGNES.ottt senrenbe e 11
= 11 o PSSR 11
1 o0 o< PSPPSR 12
2 L= £ 01 SRS 12
21 NOFMEBLIVE FEFEIEINCES ...ttt ettt sttt b et e e s e e ke b e eb e e bt e a e e e e s et e se e eb e s bt eh e e ne e e e b sheebesneenee e enrenes 12
2.2 INfOrMELIVE FEFEIENCES. ...ttt bbbttt e et et b e bt e a e et e e e b sheebeeneene e e enee e 13
3 Definitions and @DBreVIaLiONS...........coveieirieieises et 13
31 D= T 0T (0] 1 PSSR 13
3.2 F Y o] o= V7= 0] 17
4 100 [Tox A o o SRS 18
41 The core language and pPresentation FOrMALSc.c e iiere e seesae e ea e saeenaesreenreas 18
4.2 Unanimity of the SPECITICALIONc.ieeiciecie e te s te e e sreesaeesne e reenseens 19
4.3 (00010100 7= 0o TR TSSO U U P USROS 20
5 BasiC 1angQUagE ElEMENTSoiiceie ettt st s b e e ebesae e e e be et e s restesae e renreennens 20
51 [AENtITIErS AN KEYWOITS ...ttt e bbbt b et b bbb eb e ens 21
52 SCOPE FUIES ...ttt bbbt b e bt b e b e e bt e b e e e bt e R e e eh e e E e e e bt e E e e e bt b e he e bt e e e nt e b e e e et eb e s e et eb e b e 21
521 SCOPE Of FOIMEl PAFBIMELES ...ttt ettt b bbb e bt b et b e b se et s b e e ebesbe e ebesbennenea 23
522 UNiQUENESS OF THBNTITIEIS ...ttt bbb ettt 23
5.3 Ordering Of [aNQUAGE ElEMIENLS.........ceiieiie ettt e e e e te e te s e e s e e sreesaeeaeenseenteeneeeneesneesrens 24
54 e 01 (= 74 (o] o IO PO PP USTORPP 24
54.1 FOrMEl PAIAIMIELENSecueeieesiee ettt ettt e st e st esbe e s teeaeeaeeeaeeeaeease e seenteentensaesteesseesseeseensenneennes 24
54.1.1 Formal parameters Of KinNG VAIUE..........ccviueieeieieeeceee ettt ena e snaesnaesreennees 25
54.1.2 Formal parameters of Kind teMPIELE.c.vccuvieieiecies e snees 27
54.1.3 Formal parameters Of Kind tIMEN...........ooeiiiieieeere et eb e 28
5414 Formal parameters Of KiNG POFT..........ooeeeiiieirieseeese et s eb e ebesresnene 29
542 ACTUBl PBIBIMELEIS ...ttt ettt bbbt h bbbt E e e h e s b e s st e b e b e st e b et e bt e b e b e st eb e b et e be b e e 29
55 CYClIC DEFINMITTIONS. ...ttt bbbt b e et b e et b e b et b e et b e et e st eb et et eb e e e 32
6 TYPES @MU VAIUBS ...ttt sttt e st e et e te s te et e s bess e e eesaeeneesteeneeseesreeseenteseeensensenneenes 32
6.1 BaSIC LYPES N0 VAIUES.........ooceieieeieee et ste ettt et e et e st et e e e stesstesaeesaeesaeeteenteessesseessaesseesseesseenseanennnes 33
6.1.0 SiMPIe basiC tyPES AN VBIUES.........cceeiieieeie ettt e et s ae e saeenaeeaeessaeetaasteesseenseeeenneennes 33
6.1.1 BasiC StriNg tYPES @NA VAIUES........coiuee ittt et e nte et e s e te e be e teeseenneeneennes 34
6.1.1.1 Accessing individual StrinNg EleMENES........ccveiieiiiece e ee s e e e e e sreenreenseens 36
6.1.2 SUBLYPING OF DASIC LYPES ...ttt bbbt b e et b et eb e b e e b e b nnene 36
6.1.2.1 LiStS Of TEIMPIALIESceeeeeeteeeeet ettt bbb b e bt b e bt sb e e ebesbeneebenbennenea 36
6.1.2.2 LiSES OF LYPIBS ..tttk b bbb bt h e bR b e Rt b bbbt n b 36
6.1.2.3 RENGES.....ce e e 37
6.1.24 SUNG 1ENGEN FESIITICIIONS ...ttt bbbt sa s 37
6.1.2.5 Pattern subtyping Of CharaCter SHNG tYPESc.eiirieiiirieerie et eb e 38
6.1.2.6 Mixing SUDBLYPING MECNANISIMS.......cciieeiieee ettt e s esreesaeeae e e eseesraesreessesneesneesseesenes 38
6.1.2.6.1 Mixing patterns, lIStS aNd FANJES........vccuieeeeeeseeseee e see st e se e e s e e e te e e etessaesraesreeseeaeeneennes 38
6.1.2.6.2 Using length restriction with Other CONSLraiNtS...........cceiieiiiieie s 39
6.2 SEUCLUNEd tYPES ANA VAIUES.......eeceieceie ittt et ettt e st et e e e e e seesseesaeesaeesseeseenseenteeneesneesneesrens 39
6.2.1 RECOIA tYPE @NU VBIUES........c.eeeeieiie ettt ettt e te s e s e sae e sae e teenaeeaaeeseessaeste e seeseenseeneenneennes 41
6.2.1.1 Referencing fields Of @reCOrd tYPRuiiie et esnaesreenrees 43
6.2.1.2 Optional ElEmMENESIN @IECONT......c.euiiiiieiertere ettt b et b e b e b e 43
6.2.1.3 Nested type definitions fOr field tYPES ..o 44
6.2.2 SELLYPE BNA VBIUES ...ttt b bbbt b e bt b e bt b e s b et bt sb e e eb e s b e e ebesbeneeneebeneenea 44
6.221 Referencing fields Of @SBt LYPE.....c.ciireiieree e eb e ene 44
6.2.2.2 OpPtioNal ElEMENES TN A SEL ...ttt b e bbb sa s 44
6.2.2.3 Nested type definition for field tYPES.......cv i 45
6.2.3 Records and SetS Of SINGIE LYPEScveiiie et re et et te s e s re e re e teeteennenneennes 45
6.2.3.1 NeSted tyPe AEfiNITIONS........ece et e e e reeaeeesaeesaesnaesreesneas 47
6.2.3.2 Referencing elements of record of and Set Of tYPESocveeieciecieece e 47

ETSI

4 ETSI ES 201 873-1 V4.5.1 (2013-04)

6.2.4 Enumerated tYPe @nU VEIUEScoiuee ettt sttt e e ae e e saess e s te e te e teeseeneennnennes 48
6.2.5 L o] LT P ST TS PO PRTURTURURPRTRIN 49
6.25.1 Referencing fields Of @ UNION TYPEccueeiee ettt esnaesreenneas 49
6.2.5.2 (@] o 1Yo 1= o I 0o o TS 50
6.2.5.3 Nested type definition for field tYPES.......cv i 50
6.2.6 LI S=)Y 87 S S 50
6.2.7 N 1= Y TP UOP O 50
6.2.8 THE AEFAUIT EYPE ...t b et b bbbt b et b et e e bbbt e nnens 52
6.2.9 COMMUNI CALION POIT LYPES.....cveeeueetereeieete sttt sttt sttt sb et e et et se et ebese e et esa et ek e sb e e et e sbe e ebesbe e ebesbennenens 52
6.2.10 COMPONENT TYPIES ...ttt h e e s e e r e R e e ae e e e e e e R e s b sh e e be e e eb e e s e s e nresreeresneenne e enes 54
6.2.10.1 Component tYPE dEfiNITION..........oouiiiieee bbb 54
6.2.10.2 ReUSE Of COMPONENT LYPES ..o ceeeeieestie e e e e st e te et e e te e tess e ssaesaeesaeesseenaesanesneesseenseenseans 55
6.2.11 COMPONENE FEFEIEICES ... e eeeeceeeeteete et s sttt e et et e e e e tesseesaeesreesaeenaeenseeseeeseesseesseenseensenneennes 57
6.2.12 Addressing entitieS iNSIAE ThE SUTcceeiieiice ettt s sre e sreesae et e e nneenaesreesnaesnees 59
6.2.13 W04 o g To o RS 0T (0 =0 Y 0= 61
6.2.13.1 Length subtyping of record of Sand Set Of S..........oceeiiiiiiieece e 61
6.2.13.2 List subtyping of structured types and @nytyPe..........c.cveeieeieere et ene e 62
6.2.13.3 Subtyping of the iterated type of record of Sand SEt OfS.........ccovireiiiriire e 64
6.2.13.4 MixXing SUBLYPING MECNANISIMIS........ccuiitiietiitiiet sttt sttt b e b b e b b e b e e ebesrennenen 65
6.3 TYPE COMPEALIDITTITY ...ttt ettt b e e b bt b b se b e s b e eb e e b neene s 65
6.3.1 Compatibility Of NON-SIFUCLUIE TYPEScverieiieiirieieeie ettt st s b e e eb e seene 65
6.3.2 Compatibility Of SIFUCIUIEH tYPES......cue ettt b e e e b b e b b nnenea 66
6.3.2.1 Compatibility Of ENUMErELEH tYPEScveueieirieietere et 67
6.3.2.2 Compatibility of record and reCord Of tYPESueiviicie e seees 67
6.3.2.3 Compatibility Of Set @and SEt Of LYPES...cveeieeice e sraesraennees 68
6.3.24 Compatibility Of UNION TYPES.......ecveiieiie ettt te e st sae e te e ae e e sneesreenteenaeenaesneeneeas 68
6.3.2.5 Compatibility Of ANYLYPE LYPEScieeieee ettt e ae e e sreesteenneeneeeneesseesaenn 69
6.3.2.6 Compatibility DEtWEEN SUD-SIIUCLUIES.........ccuieiieeie ettt eenaesraennees 69
6.3.3 Compatibility Of COMPONENE LYPES. ... eeieeiieie ettt et ere et see s e e rae e e e sae e sae e e e sreeste e se e reeteeneesneennes 70
6.34 Type compatibility of COMMUNICaLioN OPEraliONScciirieiririeirii e 70
6.3.5 LY 0L 0177= = o o TSP RO STRPRRT 71
6.4 IR 0L,/ 01 0 TP O 71
7 0= 0] TSSO P SRRSO 71
7.1 (01 = (0] £ T TSR PPTRP 72
711 F N g0 T olo o< = (] =SSR 73
7.1.2 LIRS0 0= = () 74
7.1.3 e 0] 7= 0 0= = (o] = S 74
7.1.4 (0T Lo 0] 1= =1 0] £ 76
7.15 BiTWISE OPEIGIOIS ...ttt ettt bt b et b e bbb et b e b et b e b et bt et b e et b bbb 77
7.16 ShITE OPEIBLOIS...... ettt bbbttt b bt b e bt b e s b e b e b et b e s bt sb et eb e s b e e ebesb e e ebesbennenea 77
7.1.7 L0z (ST 00l = (0] £ TP PP TP 78
7.2 Field references and l1St BlEMENES.ttt e sae e ene e e e e es 79
8 1770 o 111 =SS 79
8.1 DEfiNitionN Of @IMOGAUIEouiiiiieiieee ettt b bbbt a et e et sheeb e s st ene e e enrees 79
8.2 K0T LB T X0 TR Y] LS o = 80
821 Kol LU LS o= = 1< (= S 8l
8.2.2 L€ l0T 1Y) e U=t 11 110 = 82
823 IMPOrtiNg frOM MOTUIES ...ttt bt b et e et b e bbb 83
8231 General fOrmMat OF TMPONTc.eiuiieiiie et b et b et b e sn s 83
8232 IMPOrting SINGIE AEfiNITIONSccuiitiiiteree bbbttt b e e 89
8233 [MPOITING GrOUPS. ...ttt sttt sttt sttt se et a ettt e et besb et ebe s b e e eb e s b e e eb e e b e e eb e s b e neeb e s b et ebenbe e ebenbeneees 90
8234 Importing definitions of the SAME KINGcciiiiiiii e 91
8.2.35 Importing al definitions Of @MOAUIE...........c.coeeiee i 92
8.2.3.6 Import definitions from other TTCN-3 editions and from non-TTCN-3 modules...........ccccoevvvervennns 93
8.2.3.7 Importing of import statements from TTCN-3 MOAUIES.........ccoveii e 94
8.2.3.8 Compatibility of language SpecificationS iIN IMPOITS........ccccviiiieeriereee e 95
824 Definition of friend MOAUIES............coiiiii et e et sae b e e e 96
8.25 ViSiDility Of AEfiNITIONS.......ccviiee et e e e re e teeteenaeesaesneesnees 96
8.3 MOAUIE CONEFOI Pttt ettt ettt e e bt b et bt b et b bbbt e s eb e s e st b e e et b et e e eb e e e nns 98
9 Port types, component types and test CONfIQUIaLIONSccceueiririrerine e 98

ETSI

5 ETSI ES 201 873-1 V4.5.1 (2013-04)

9.1 (o001 01T o= 1 o I o0 €= SRS 99
9.2 TESE SYSEM INEEITACE.eeeeeeeeeee ettt e bbbt eh et eb e ae e b e b sbesbeeaeese e e ennas 101
O T B = o =T o o) 1 = £ SR 103
11 DeClaring VAADIES.ocueieeeeee ettt bbb et b bt n e nr e e e 103
111 RV L0 = T o= S 103
11.2 TEMPIAIE VAITADIES ...t bbbt b e bbbt b e bbbt b b 104
12 DECIAITNG TIMIEIS ...ttt a bt a b e e e e e e e e he e bt e bbb e b e b e e et e st ebenb e renr e e e nn s 105
G T B Tc o 1 o 0= o (TS 106
14 Declaring ProCeAUIE SIGNAEUIES.coueruereeeeeueeiesseesesse st s s ssee s se st ssessesbesbess et e e e s e s e e eseanesrennennens 107
15 DECIariNg tEMPIELES.ceeeeeeieeiiet ettt e et s bt bbb e b e e e e e e e st e bt nb e ne e e nn e 108
15.1 Declaring MESSAgE tEMPIALESvecieeeeecie e e e e e et e s e e saeesaeeteenreenteeneesnaenneas 109
15.2 Declaring SIgNature tEMPIELEScve et e e e st e e tesne e saeesae e teenseenteeneesnaesnnas 110
15.3 (€1T0] o> =T o W LoTor= I (4]0 F= 1= 112
154 T TSR I 00T 0 = 1SS 112
155 MOTITIE TEMPIALES. ...ttt b et b bbb e bt bt e bt b e et s bt e eb et n b e e ens 113
15.6 Referencing elements of templates or template fIeldsS.c.ooireiiirinice s 116
156.1 Referencing individual String @EMENTS.........cooeriiiee e 116
15.6.2 Referencing r eCor d and SEt fIEldS. ..o e 116
15.6.3 Referencingr ecor d of and set Of €lementS........ccooeo e 117
1564 Referencing SIgNature ParaMELErS.........cci ittt sb et st n e sb e 120
15.7 Template MatChing MECHANISIMSocuiiiecieiee et e e e e e s saesreesreesseesaesneesaeesseenseesenns 121
1571 SPECITIC VAIUBS ...ttt et st sttt b e e st b e ne s e be st e st e be st e e s bente e nbe st e ens 122
15.7.2 Specia symbolsthat can be used instead Of VAIUES...........cceeiieiiee i 122
15.7.3 Specia symbolsthat can be used INSIAE VAIUES...........cooeiiieiiee et 123
15.74 Specia symbols which describe attributes of VAIUES..........c.ooveieeieee e 123
15.8 I 0] B S (== ok e S 124
159 = (e g T @ o1 = (o SO O SO SPE TP 126
15.10 WV BIUEOF OPEIGLIONcvetieetiiteeet ettt ettt b et b bbb e bt e bt e bt s b seebe s b et ebesbeneebesbeneenesbeneenea 126
1511 Concatenating templates of String and liSt tYPESc.ooviiririeireer e 127
16 FUuNctions, altSePS anNA LESICASESoivieie ettt ettt et aesteereeneenaeeneenes 129
16.1 FEUNCLIONS ...ttt bt e et bt et e bRt e he e e e e e b e eh e e b e s bt eh e e e e b e sbeebenbeeneenne e ennenes 129
16.1.1 120 T o R 0 0 S 130
16.1.2 Predefined FUNCLIONScoiie e bt s b e et b e b et bbbt ene e e e e 132
16.1.3 EXEEINEL TUNCLIONS.eeeieeee bbbttt ettt et e sb e b saeene e e et e 134
16.1.4 Invoking functions from SPECITIC PlACES........ccuviiiieece e e 134
16.2 AAIESEEDS. ..ttt b e b b E bR AR R oA £ R e SRR E Rt R e R e R e R e e Rt R e e ekt eR et ebeebe e enenrenrenea 135
16.2.1 INVOKING @IESEEIS. ...ttt ettt b bbbt bbbt b e b et b e bbb 136
16.3 LS = S = TSP UPP PR 138
A Y o o BRSSO 139
18 Overview of program statements and OPEratioNS...........cccviieeeiieieesie e e e ee e ens 139
RS T T S Tol o0 o = IS = (= 41 £ S 141
191 F S [10 1< 01 E SO O SO U O SOP TP PO PURPRTPRIN 142
19.2 THE IT-€1SE SEALEIMENL ...ttt sttt e a et e e e eeseestesaeeaeeneenteseeseeseesneeneeneenees 142
19.3 The SElECT CASE SEALEIMENL ..ottt see et s e se et e seeseesaesaeese e e enseseeseesaeeneeneenennees 143
194 QLI 0L 5 07 | S 144
195 THE WHIIE SEBLEIMENL.......ceeeeeeeieeet ettt sb et se bbbt it et b e e e e b e b sresbeeaeenee e enras 144
19.6 The DO-WHIl@ STALEIMENL ...ttt ettt b e bbbttt e b b sbesaeene e e ennas 145
19.7 THE LADE] STAIEIMENL ..ot bbbt e b et eb et e b et e sbesbesaeene e e eneas 145
19.8 TNE GOLO SEALEIMIENL ...ttt sttt ettt eb et et e e se ke a e eb e e heeae e s e se e b e s bt eb e e e e b e besbenbeeneeneennennes 146
19.9 The StOP EXECULTION SLALEIMIENL...........iieeeeesteeteeteee s e seeste et eeseeseesaeesse e seeseeseeesaessaesseeseensesnsesnnesneesseansennsenns 147
19.10 LT RS (U g R = =0 | RS 147
1911 THE LOG SEBLEMENTttt b ettt b e bbbt b e s bt b e s b et b e s e et b e e et e b e s b e e e b e b e 148
19.12 I 2 =2 NS = 1= 1= 0L RS 150
19.13 THe CONLINUE SEBEEIMENTeeueeeeiere sttt e e ae e e e e teseesbesaees e e e esesbeseesaesaeeseeneanteseeseesaesneeneenennss 150
19.14 SEAEEMENT DIOCK ...ttt ettt et et e aeese et e e neeneese e besaesaeeneeneeneeseens 151

ETSI

6 ETSI ES 201 873-1 V4.5.1 (2013-04)

20 Statement and operations for aternative bENaVIOUS...........c.cccciieeeiii e 151
20.1 The SNaPSNOL MECHANISIM........eoiie ettt e esr e e s te e be e teensesnaesnnesneesseanseensenns 152
20.2 TRE AIT SEBLEIMENT ...ttt et bt ae b e e e b e b seeeb e s Rt eb e et et e beseesbeeneeneennentes 152
20.3 The REPEAL SLAIEMENT ...ttt b et b e et b e st he b e e e bt b e st e st eb e b et e b e s bt e be b e 156
204 The INtErTEAVE SLALEMENT ...ttt sttt e e e be st seesaeeaeene e e e teseeseesaeeneeneenennees 157
205 DEFAUIT HANAITNG ...ttt e b et b et b bbbt e eb b nenn e ens 159
20.5.1 The defallt MECHANISIM ..ottt st st ae e et e tesresaeeneeneeneeneas 159
20.5.2 THE ACHVELE OPEIALION.eceeitieeeieteree ettt bt b bbbt b e et b b et b s se bt st e e bt ne s enes 159
20.5.3 The DEACTIVALE OPEIBLIONcveiveieetireeiiete ettt ettt b e bbbt e e bt s b e bt b s e st bt e e b nn e ens 161
21 Configuration OPEIrAliONS..........cccueiieieeie s eieste st e e e e te e e s tesreetesbesreestesseesesteeasestesseessessesreensensens 161
21.1 (o la] 01 oo g @] o= = o] 1 162
21.1.1 The Connect and Map OPEIAliONSccueieeieeieereeeseesee s e s e e steeste e teeseessaesseesreesaeesseenseeneesseesseenseensenns 163
2112 The Disconnect and UNMBap OPEIaLiONSooveeruerieiertirieiniereeesie st ss e sse s saese s sneneenes 164
21.2 TESE CASE OPEIBLIONS. ...t ettt ettt ettt ettt ettt b e et s etk e s e e st e bt s b et e bt s e e st e b e s b et e b e e b e aeeb e b e st e b e s b e e be b 165
2121 TESE CASE SIOP OPEFBLION ...ttt ettt bbb et bbbt b bt e bt b e st b e s et b et e e bt e s ens 165
213 TSt COMPONENT OPEFALTONS........civeeeieetereeit ettt sttt sttt sttt s e b e bt et e st ae b e se e bt bese e st ebe s b e st ebesee e ebenbe e ees 166
21.31 THE CreEate OPEIAION. ... e.eeueiteeeteit ettt b et b e bt e a e bt s ae bt b et bt e e bt b e e e st e bt e e e bt se e e ens 166
21.3.2 The Start test COMPONENE OPEIBLIONeeeiirtireeierteri ettt e e b e s b s e b e eneens 167
21.3.3 The Stop test DENAVIOUr OPEFELIONcceceeiieciec e e s e e e saesreesreesneanseenneens 168
21.34 The Kill test COMPONENE OPEIELION.........cceiieiieieeseeseerte e et ese e st e e e eeessaesreesteesseesesneesreesseesseenseensenns 169
21.35 I Sl AV LAY 0] = = 1 o o S 170
21.3.6 I SN R0 T T ale e 0T = 1 o o S 171
21.3.7 I (=] B0 g =T o o < (o] o S 171
21.3.8 I SN S LN L= o o] o= = 1o o S 173
21.39 Summary of the use of any and all With COMPONENLScccoiieiiiirieeiee e 174
22 COMMUNI CALION OPEFAETONS. ... cvetetiterseteseeseeseese st s sse st s e e s e s eseeseeaeesesb e e b e sr e s e s e s e s eseeseeseeneneeanennennas 174
22.1 The coOmMMUNICatioN MECNANISMSuiieiieeeieee ettt st se et e eeseesbesaesbeeseeneeneeseessesneeneeneenees 175
22.1.1 Principles of message-hased COMMUNICALION.cccueiiiieiie e eneens 175
22.1.2 Principles of procedure-based COMMUNICELIONcc.eeceiieiie e eesreenreeneens 175
22.1.3 Principles of unicast, multicast and broadcast COMMUNICALION.cccceveererierie e 176
22.1.4 General format of COMMUNICatioN OPEIALIONSccecveeeeriieieee e e s e ste e e sre e te e ereesraesreesneas 176
22.1.4.1 General format of the Sending OPEraliONScooiviieice i nreereens 176
22.1.4.2 General format of the reCeiVing OPEralioNS...........cveiieiiiiiiiiese et enaeereens 177
22.2 M essage-based COMMUNICBLION. ...ttt b bbbt b bt e e sb et nenn e enis 178
2221 THE SENA OPEIBLION ... ettt ettt b et b et b et b b a bt bbb eb e bt e e st e b et e e bt nn e e enis 178
2222 THE RECEIVE OPEIBLION ...ttt bt b et b et b e et b e et b e et bbbt e e ens 179
22.2.3 THE THIQUEN OPEIELION ...ttt b et b et b et b bt b b e e bt b et bbbt st e e b b e s ens 181
223 Procedure-based COMMIUNICBLION............coeiieerise ettt e et te e ese e e e eeseeseesaesneeseeeaneeses 183
2231 THE Call OPEFALTON ...ttt b e bbbt et b e bbb e st b b e bt sn e ens 183
22.3.2 I SY T o= o o < (o) o S 187
22.3.3 I ST R E o Y] 1= 1o o TS 188
22.34 I SY T i = oY 0] = 1 e o S 190
22.35 I ST R =TS ST 0] 0 = 1 o o S 191
22.3.6 B (SY O (e n e o = 1 oo S 192
224 ThEe CECK OPEIALTON ...ttt ettt b et b e et b e et b e s et b e b et b e b et et e st et ebe b 194
225 Controlling COMMUNICALTION POFTS.......eveueruirieiirtiieiertere ettt bbbttt b e st b e e e e st b bt s be b 196
2251 The Clear POIT OPEIEHIONc.eitireeeeetirtei ettt b et b e bbbt a e bt s e e bt s b e b e e eb e st e e ebeneennens 196
2252 The Start POt OPEIALHIONccueeeiiitiee ettt b bbbt b bbbt bbb e e b b s enes 196
2253 T StOP POt OPEIBLIONeeveeeiiitereet ettt ettt b et b e bt e b e e et b b e b e s e e bt b e e ebene e s ens 197
2254 The Halt POIT OPEIALTON.c.eiuieeeiieiiet ettt bbb bt bbb bbb bt n s ens 197
2255 The CheCKState POt OPEIELIONc.ecieeeeseeseeieeese st e s e sreesteeseeeee e e ssaesteesse e teessesneesseesseesseanseensennsenns 198
22.6 Use Of any and all With POIES........cooiie ettt e s te e saeeteenreenteeneesraesanes 199
PG T 1001 o] o= (0] 1S 200
231 LR (0 001= 7= T o S 200
23.2 The Start tiMer OPEIALION.coiiee ettt b e bbb se et b e b et b bt b e b 200
233 THe StOP tIMEN OPEIBEIONc.eitiiete ittt ettt et b et b e bbbt b e b e bt se et b e b et ebe s b et e b e b 201
234 The REAO tIMEr OPEIELIONeveeeteieeeete ettt sttt et b et b e bt b e bbbt be bt e b b et sb e b e 202
235 The RUNNING tIMEN OPEIALION.uiieiiitiieeeee ettt b bbbt e et b bbb 202
23.6 THe TIMEOUL OPEIGLIONcitiieiiite ettt bbbt b e bbbt eb et et be s b et b b 203
23.7 Summary of use of any and all WIth IMES.........ccooi i e 203

ETSI

7 ETSI ES 201 873-1 V4.5.1 (2013-04)

P == Y= (o ol 0] = (0] 1RSSR 204
24.1 The VerdiCt MECNENISIM........ooii e bbb et eb et b et b sbeeaeenee e nnas 204
24.2 LI (SRS = Y= (o [ot l0] o< = 1 o o S 205
243 The GELVEITiCt OPEIELION........ccuieeieite ettt bbbt b et b e et b e bbb et b e se e st b e b et e be st e e ebe b 206
P2 S g 7= = 1 LT 206
P2 T Y/ o LN L= oo 1 o T 207
26.1 THE EXECULE SALEIMENL.ceeeeeieeite sttt et bbb et b e ae b e et e b e besbenbesaeenee e ennes 207
26.2 QLI (ST o 11 0] N o= 1 OSSN 209
S o= o1 Y Lo =] o U1 211
27.1 The AttriDULE MECHANISIM ...ttt e ee e e be e ebe e e eneeseeseesaeeneeneeneennes 211
2711 SCOPE OF BLLITDULES ...ttt bbb bbb bbbt b b 211
2712 OVErwriting rUlES fOr @LITDULES.........co.ciitiieeiiee ettt b e bbb e 212
27121 Additional overwriting rules for variant attribULES.............cceoeiiieriic e 213
27.1.3 Changing attributes of imported language €l EMENLS............cocveieriecce e 214
27.2 THE WL SEAEEIMENL ...ttt ettt et b e bbb e b et b e et eb e et et et e sbenbeeaeenee e enras 214
27.3 [T o] K= VA= 1] 0T SR 215
27.4 Lot o T = o TS 215
275 VAITANT BEITDULES ...ttt bbbt et b e e e eb bt s bt eb e e aees e e e et e s besbesbeeneeneeneetas 216
27.6 EXTENSION BIIITDULES ...ttt bbbt e et b e bt b e h e e b e e e e e b e ebeebeeaeese e e e e e 218
27.7 OPLiONE] BILFTOULES ...ttt bbbt bbb st b bbbt b b 218
Annex A (normative): BNF and static SEMantiCS.......cccevvieeiieii et 220
Nt N I O L = | 220
A.ll Conventions for the SYNtaxX dESCITPLIONceiirieiricri bbb 220
A.l2 Statement terminator SYMOISciiie bbb 220
A.13 0TS g1 = RS 220
Al4 (001010101 01U 220
A.l5 B IO R (0111 OSSR 221
A.151 Use of WhiteSpaces and NEWIINES..........cocv et re e naesaesaeesaeenreeneens 222
A.16 TTCN-3 syntax BNF ProQUCTIONSccui ittt e te e s e snnesneesneenseenneens 223
A.1.6.0 TTCON-3 MOUUIE......ceeitiieeieetirieiete sttt sttt sb e bt eese b e s s e st e b et eseese s e e s e e beseesesbe s eneebestenenseseeneann 223
A.l6.1 MOAUIE AEFINITIONS PAIT......eeeeiieiie e e e st e s et e e te e tess e ssaesreesseeneesneesaeesseenseensenns 223
A.1.6.1.0 LC = 31 TSRS 223
A.16.11 TyPEdEf AEfiNITIONS ..ot b e e et b e ens 224
A.16.1.2 CONSLANT AEFINITTIONS ...ttt sttt e e e e eeeseeseeseeeneeneeneeneeee 225
A.16.1.3 TEMPIAE AEfiNITIONS.... ettt bbb bt e eb e eas 225
A.l16.14 L0 TpTex o] e I = {1 oL o] = TR 227
A.16.15 SIGNAEUIE AEFINITIONS ...ttt b bbb et b e b b e sesbeseeneas 228
A.16.1.6 TESICASE AEfINITIONS. ..ottt bttt b e bt h et e et e s b e b bt ene e e e nbe e 228
A.1.6.1.7 F N NS 1 oI L= 1T o] PSR 229
A.1.6.1.8 o0 1= 1T o o PSS 229
A.1.6.1.9 L€ (0 T0 o]0 L= 1 01110 0SSP 229
A.1.6.1.10 External function definitioNS............cooiiiiiiieee e e e 230
A.16.1.11 External constant definitionS...........c.ooiiiiiiiiineeee e 230
A.16.1.12 Module parameter defiNItIONSocoieiiire bbb e 230
A.1.6.1.13 Friend MOdule AEfiNITIONSooi ittt s e et ne e et e 230
A.16.2 (@00] 01101 7= 1 SO TSP P ST SR UPTPPRUTP 230
A.16.3 (o To o U= 1 T (Ko 0 230
A.16.3.1 Variabl € INSEANLTBLIONc.eeceeeeee ettt ettt sr e e et ne et et e seeseeeneeneeneeneennas 230
A.1.6.3.2 L= TS =g L= o) o TSP RRRRS 230
A.164 (0] 1= 10 TS 230
A.l164.1 COMPONENE OPEIBLIONSeeveeeeeee e eeee et e st es e e e e e s e seeseesreesseesteenseessessaesseesseesseesseenensneesseesseensennsenns 230
A.1.6.4.2 Lo 0] 1= =10 231
A.1.6.4.3 I L 0= 0] 1= 11 0] PSSR 233
A.16.4.4 IES (0= = 0] o 1= 1 o] o USSR 233
A.16.5 I3 0T UP TP OPURT 233
A.16.6 Y =SSP 234
A.16.7 01 (= 174 1 o] SR 235
A.16.8 2 =00 0TSSR 235

ETSI

8 ETSI ES 201 873-1 V4.5.1 (2013-04)

A.16.8.1 WWITHh SEBEEITIENT ...ttt b et b et b et e bt n e nnas 235
A.1.6.8.2 BEhaVIOUP SEAEEIMENTS ...t b bbbt e e sn b saeebe e e e e 235
A.1.6.8.3 BaSIC SEALEMENTS. ...ttt ettt eb ettt e bbbt aeeae e e ne e ke Rt bt e aeeae e e e nn b naeen e e nne e 236
A.16.9 MiSCEIlaNEOUS PrOTUCTIONS ..ottt b et se et e e sn e b s ene e e e 239
Annex B (normative): MatChiNG VAIUEScoueeiee e 240
B.1 Template matChing MECNANISIMScoiiiieie et e e e e s reens 240
B.1.1 MatChing SPECIHTIC VBIUES........c.eeceeecieeeee ettt et e st ete et e s e e saeesaeeteenteenteeneennaesnnes 240
B.1.2 Matching mechanismsinStead Of VAIUESc.ooiiiiiieee s 240
B.1.21 TOMPIAIE TSE .ttt bt b e b e b b s h bt e h bbbt b e et bt e e bt e e 240
B.1.2.2 Complemented tEMPIALE TS ..o bbb e 241
B.1.2.3 AANY VBIUB. ...ttt b e b e h bt e st h e E e b e E e b E R R R £ bt e e ne bt b e e n e e enn 242
B.1.24 ANY VBIUE OF NONE......ctieiiiitiieeieettrt ettt ettt eb st s b s st b e e st e bt s e se e bt e e s e e bt s e e e eb e ne e b e e bt b eneeb et eneebesne e enis 242
B.1.25 RV U o TS 243
B.1.2.6 SUPEISEL ...ttt ettt sttt bbb e bR R R R R R R R R R R bR Rt e R R R R nn R nnan 243
B.1.2.7 SUDSEL ...ttt bR R R R R R e R R e Rt e Rt R Rt e R nnan 244
B.1.2.8 (@ T ale e o 10 Te g I = o 245
B.1.3 Matching MechaniSMSINSIAE VAIUESc.oiiiiieiiece ettt se e s aeete et e enaesnaesnaenneas 246
B.1.3.1 N V= 0= 0| S 246
B.1.3.1.1 Using single CharaCter WIilACAIS...........coueererieiiieieeie ettt bbb 246
B.1.3.2 Any number of elementS Or NO ElEMENT ..o 246
B.1.32.1 Using multiple charaCter WildCardS............cooieiiirieeiereeseee bbb 247
B.1.33 [00101 o] o SR 247
B.1.4 MaLChiNg BLLITDULES OF VBIUEScveuiitiieciiitiiet ettt 248
B.14.1 LeNGEN FESIITICIIONS ...ttt b e et b bbb 249
B.1.4.2 THE ITPIESENE INAICAIONeteiee ettt b e bt e et e et e b et b eb et e e e neennas 249
B.1.5 MatChing CharaCler PALLEIN..........eeieeceee ettt s e st et e e teetesaeesaeesaeeseenseenteeneennaesanns 250
B.1.5.1 S S 0] == o o USSR 252
B.1.5.2 REFEIENCE EXPIESSIONevieteeteeite e e eeeee st e et e st e e e e e estessaesaeesreesaeesseeaseesaeeseasseeseenseenseeneesnnesaeesseanseensenns 252
B.1.5.3 Ve o a0 =T o N T 0= PR 254
B.1.54 Match areferenCed ChAraCter SEL..........ccii ittt e e sr e b st ne e e 254
B.1.55 Type compatibility rUlES fOr PALLEINS.........ccuc i 255
Annex C (normative): Pre-defined TTCN-3 fUNCLIONS........cocoviciiiicee e e 256
C.0 Genera exception handling ProCEAUIEScciiieiiieee ettt st s reeae e re e 256
O30 R @0 V7= €= o] £ 8 1 U1 1 o LS 256
Cl1 Fg 10 e = (o o7 S 256
Cl2 INteger tO UNIVErSal ChaIACLESccuiiie ettt e e st e e sae e saeenaeenteenteenaeeneesnaesaeas 256
C.13 T 100 = (o 8 o] £ 4 o SR 256
Cl4 R 10 e = (= (8]0 1= (o S 257
C.15 T 100 = (o0 = 1 1o S 257
C.l6 T 100 =g (o0 (= K= 1 o S 257
C.l17 INEEGEN TO CNAISIIING. ...t eeeeete ettt bbbt b e bt b e b e b b se et e s b e e b e e b et ebesbeneeneebeneeneas 258
C.18 INEEGEN TO FIOBL ...ttt et b e et b e et b e e bt eb e s b e e bt b e e et e ebeseeneebeneeneas 258
C.19 (0T (o T 1= (< TSRS PRSTPRPTSURPS 258
(O3 e (O I @1 = = ot (= O (o I 01 = OSSPSR U RSO SU RO PRUPP 258
C.1A1 CharaCter t0 OCLEISIIINGeveueerereeuertereetestere ettt et st ettt st et b e bt ebe bt b e s b et b s e et e b e e e st ebese e st ebesb et eb e s b e e eb e b e s 258
C.112 UNIiversal CharaCler 10 INTEgENic i eeeetiesee e te st te e te e st e st e te et e et e ereeste e teesseesseeneesnensneesnnesseenseensenns 259
Ot = 1 (= T a0 N (o N1 1 = PSS 259
O I = 1 €= T a0 N (o 1= 1 1o PSS 259
O 0t LT =1 €= T a0y (o o (= (= 1 o SR 259
O30 e G =1 €= T oy (o e 7= = 1 o PSR 260
O It A o =TS (1T I (o111 = PSS 260
C.1A8 HEXSIING 1O DITSIIINGe vttt ettt ettt b e st b e bbbt b bbb 260
C.119 HEXSIING 10 OCLELSIITNG ...vc.eevetereeiestese ettt ettt sttt sttt ettt b et b e bbbt b e s bbb et s b e se et sb e b et e b et et e b b e 261
C.1.20 HEXSIING T CRAISIIING ..veueeteiteeetestee ettt sttt sttt b e bbbt b e s b e b b et e bt b et b e s e et eb e s b et eb e s b e e e b e b 261
C.1.21 OCHELSIITNG 1O IMEEOEN ...ttt reeieete sttt sttt sttt sttt b et eb e et b e s e et b s e e st e b e s e e bt e be s e eaeeb e s e et ebesb et eb e s be e e b e be e e 261
C.1.22 OCHEtSIIING tO DITSITNG. ..ottt b e et b et b e bbb b b 261
C.1.23 OCHELSIITNG TO NEXSIITNG ...veeeueiteieeieite sttt ettt et b et b e et b et b e et s et eb e s et e b be e b b 262
(O W27/ @ Tox (= = 1 gTo (o I 0= = ot = 8=] o PSS 262

ETSI

9 ETSI ES 201 873-1 V4.5.1 (2013-04)

C.1.25 Octetstring to charaCter String, VErSION [........oceiiiii et te e s seesae e e sneesneesneenseenseens 262
O G T O = (] 0 I (o N1 o = PSS 263
C.1.27 Character StriNg t0 NEXSIIING ...ciuveieeieccieie e eee et ste e e st e st e st e e e es e s neesseesseeseesnsesnensnnesneesseanseensenns 263
C.1.28 Character StriNg tO OCLELSIIINGecveeeesteestieieeiesteseesee st e steeaeeeeeseesseeste e seestesseesseesseessesnsesnensnnesneesseansennsenns 263
LR B2 B O = Tox (= = 10 J (01 o PSR 264
O O B = oW 0= = 0o (I 1= T S 264
C.2 LenGth/SIZE FUNCLIONScouiiiieiieiieiieie sttt ettt b b bt n bbb e nen e 265
c21 Length Of SLINGS @NO TISESeeviiiiietiiieeet ettt bbbt sb bbb ens 265
c22 Number of elementsin @ StrUCIUrEd VBIUE..........ccoiuiruieieeees e e 266
C.3 Presence checking fFUNCLIONSocuiiiiiccc ettt sttt besre e e e ne e 267
C31 THE ISPrESENT TUNCLION......eeiiieieeeee ettt h bttt e bbbt sb et eb e et e b e b e sbesbeeaeene e e enees 267
C3.2 THE ISCNOSEN FUNCLION. ...ttt bbbt s e ke h e e bt e b b e e et e b sbenbeeaeenee e entes 268
C33 LI BV A= 1 T= {1 o o o ST 269
c34 QLI L K = To g o 1070 Tox o] o 1SS 270
C.4 String/list haNdling fUNCLIONSc.oitiieiieieieieeee ettt nr e nne e 271
c41 The REGEXP FUNCLION ...ttt et bbbt et b e bbb e b bt 271
c4.2 I SRS T oS o N 0 o o S 273
Cc43 I (ST R = = o U o e TS 274
(O3 ST 0o = o 110 {0 LSS 274
C51 The enCOdING FUNCLION.........couiiiiie bbbt e b e bbbt b e b 274
C5.2 The decodiNg FUNCLION.........coiiiie e bbbt e et bbb et b e b 275
(O ST © 1107 g 11 o1 o 0TSSR 275
C6.1 The random NUMDbEr geNErator FUNCLIONccviiieiicie et sre e sae e e sreesreenreenneens 275
C.6.2 The tESICASENAME FUNCLION ..ottt b e e b et b et b e b sb e ae e e e 275
Annex D (nor mative): PreprOCESSING MACT 0S.......civiiiiiereiieseeeeeeeee st se e e e enes 277
D.1 Preprocessing Mmacro _ MODULE__ ..o s 277
D.2 Preprocessing Macro FILE ..ottt sttt et st sne s 277
D.3 Preprocessing Macro _ BFILE_ ...t 277
D.4 Preprocessing Macro _ LINE .o e 277
D.5 Preprocessing mMacro SCOPE. ...ttt sttt st st e aa et e e s ae e e naesreenes 278
Annex E (informative): Library of USEfUl TYPEScc.oiieieeeeeeeesese st 280
R I 10T = 0] OSSR 280
I U = O I Ve B Y o= RS 280
E21 USEFUL SIMPIE DASIC LYPES ...ttt b bbb bbb bbbt nn e enis 280
E210 Signed and unsigned SINGIE DYLE INTEJESc.oiiriiieee et 280
E211 Signed and UNSIgNEd SNOI INMEEJEIS.......eecieeieeieiee e see st ste e e e e e s esre e sre e teeeeenaeesaesreenseeneesnaesseesneas 280
E.2.1.2 Signed and UNSIgNEd [ONQ INTEJEISccuveiieeiee et et e e teeee e aeeseeeseesteenseeneeenaessaesneas 281
E.2.1.3 Signed and unsigned 1oNgIONG INLEOEISevieiie et et sre et e e aessaeeraesraesneas 281
E214 L1 o7 { Lo TSP TS 281
E.2.2 USEf Ul CharaCter SEHNQ LYPESoiueeeieeieeie ettt e ee st s ettt e s e sreesreesseeseeneesseesseeseenseenseaneennaesnnns 282
E.2.2.0 UTHF-8 character String "ULfBSLIING™ccveeieeee ettt s e e e saeenreeneens 282
E221 BMP character string "DIMPSIiNG"ooueiiiieere bbb e 282
E222 UTF-16 character String "UFLOSIIING"ccerueererieieiirieeee sttt 282
E.2.23 ISO/IEC 10646 character string "iSO8859SIING"covevririeieieriiieisies st 282
E224 Status values fOr TTCN-3 ODJECES.......oiueiiiereeeie ettt 283
E.2.3 USEFUL SEIUCTUNE TYDES.....eeeeeeeee ettt b et b bbb bbbt b et b et ens 283
E.2.30 Fixed-point deCimal HTEIalcuiieiie bbbt 283
E.24 (01U = o0 Tl T o N 0= SR 283
E24.1 Single Recommendation ITU-T T.50 CharaCter tyPe.........ovveiieiiee ettt 283
E.24.2 SiNGIe UNIVErSal CRaraCler TYPE ...t st eere et e et e enteenaessaesneas 284
E.24.3 L6 1 L= o 5] oS 284
E.24.4 S T T0 [L= =GR 1] USSR 284

ETSI

10 ETSI ES 201 873-1 V4.5.1 (2013-04)

E.245 IS T Te = ot B Y o= SRS 284
Annex F (informative): Operationson TTCN-3 aCtive 0DJECES........c.covirrerirerere e 285
F.1 T ESt COMPONENES.eeiiiteeeesie ettt sttt r e e s e b s b e e e e s Rt e e e se e sme e resreenn e nesre e e e sne e e e nrennes 285
F.11 TSt COMPONENE FEFEIENCES......eueeieeeieeeite et ete et e st et e e e et esee s e e s e e steeseeseeeseeesaestaese e seensesneesnnesneesseensennsenns 285
F.1.2 DynamiC DENAVIOUN Of PTICS.......uiiiiiieiie ettt ae et e e te et e eaeesneenteeneeenaeeneesnaesneas 286
F.1.3 Dynamic behaviour Of tNE MTC.......o e e s re e beete et e enaesnaesraesneas 288
e 111 £ S RR 289
T T 0 TS 289
F.3.1 CONfIQUIaLiON OPEIALIONS.....c.eeteieeeteeieeieete sttt sttt ettt se e bt bt ae b e et e e e seesbesbe s bt eb e e aeesee e e b e sbesaesbeeneenneneens 289
F.3.2 POrt ControlliNg OPEraLIONSc..eeiieeiieiieieeieeseesteete et e s e s e s e e e e teseessaesreesaeesseenseesseeseesseenseensesneesseessansaes 290
F.3.3 (0ol 0004 8 qTT o= Ko g @ o < = 1] 1 291
Annex G (informative): Deprecated language fEALUIES.........ccviiiiiireeeee s 292
G.1 Group style definition of MOdUIE PAramMELENrS..........c.eiiiieiececce et s 292
G.2 RECUISIVE IMPONTctiiteete ittt see st st e e st e ae et e s e e e e s be et e sbesae e sesteeasessesse e seaneensesteensestesreensensesreensensens 292
G.3 Usingal | inport type defiNitiONS..........coieeieieirieie e e 292
(TS b= o) i (o g (=0T |1 g o L ST 292
G.5 sizeoftype predefined FUNCLIONooi et st re e 292
L I (Y 1D o 004 £ OSSR PSPPSR PSURURORN 292
G.7 EXEEINGl CONSLANTSo.viuieueeiieiietieiesteste sttt ettt b e et e s et et sesbe e bt esb et et e s eseebesbesbeneessenseneas 293
G.8 PrefiXing enUMErated VAIUEScoi ittt sttt sttt s beeae et besreeneene e 293
G.9 Record of/arrays not compatible to record; set of not compatible with Set..........ccoocviveieieieinieens 293
Annex H (informative): Bibliography ..o e 294
[11 (TP US PRSI 295

ETSI

11 ETSI ES 201 873-1 V4.5.1 (2013-04)

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential |PRs, if any, ispublicly available for ETSI member s and non-member s, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards', which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web

server (http://ipr.etsi.org).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given asto the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword

ThisETSI Standard (ES) has been produced by ETSI Technical Committee Methods for Testing and Specification
(MTS).

The present document is part 1 of a multi-part deliverable covering the Testing and Test Control Notation version 3, as
identified below:

Part 1: "TTCN-3 CorelLanguage";

Part2: "TTCN-3 Tabular presentation Format (TFT)";
Part 3: "TTCN-3 Graphical presentation Format (GFT)";
Part 4: "TTCN-3 Operational Semantics';

Part 5. "TTCN-3 Runtime Interface (TRI)";

Part 6: "TTCN-3 Control Interface (TCI)";

Part 7: "Using ASN.1 with TTCN-3";

Part8: "ThelDL to TTCN-3 Mapping";

Part9: "Using XML with TTCN-3";

Part 10: "TTCN-3 Documentation Comment Specification”.

ETSI

http://webapp.etsi.org/IPR/home.asp

12 ETSI ES 201 873-1 V4.5.1 (2013-04)

1 Scope

The present document defines the Core Language of TTCN-3. TTCN-3 can be used for the specification of all types of
reactive system tests over avariety of communication ports. Typical areas of application are protocol testing (including
mobile and Internet protocols), service testing (including supplementary services), module testing, testing of CORBA
based platforms, APIs, etc. TTCN-3 is not restricted to conformance testing and can be used for many other kinds of
testing including interoperability, robustness, regression, system and integration testing. The specification of test suites
for physical layer protocolsis outside the scope of the present document.

TTCN-3isintended to be used for the specification of test suites which are independent of test methods, layers and
protocols. Various presentation formats are defined for TTCN-3 such as atabular presentation format

(ES 201 873-2i.1]) and agraphical presentation format (ES 201 873-3 [i.2]). The specification of these formatsis
outside the scope of the present document.

While the design of TTCN-3 has taken the eventua implementation of TTCN-3 translators and compilersinto
consideration the means of realization of Executable Test Suites (ETS) from Abstract Test Suites (ATS) is outside the
scope of the present document.

2 References

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
reference document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected |ocation might be found at
http://docbox.etsi.org/Reference.

NOTE: While any hyperlinksincluded in this clause were valid at the time of publication ETSI cannot guarantee
their long term validity.

2.1 Normative references
The following referenced documents are necessary for the application of the present document.
[1] ETSI ES 201 873-4: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 4: TTCN-3 Operational Semantics'.
[2] ISO/IEC 10646: "Information technology -- Universal Coded Character Set (UCS)".
[3] Recommendation ITU-T X.292: "OSI conformance testing methodology and framework for
protocol Recommendations for ITU-T applications - The Tree and Tabular Combined Notation
(TTCN)".

NOTE: The corresponding ISO/IEC standard is | SO/IEC 9646-3: "Information technology - Open Systems
Interconnection - Conformance testing methodology and framework - Part 3: The Tree and Tabular
Combined Notation (TTCN)".

[4] Recommendation ITU-T T.50: "International Reference Alphabet (IRA) (Formerly International
Alphabet No. 5 or IA5) - Information technology - 7-bit coded character set for information
interchange”.

NOTE: The corresponding ISO/IEC standard is 1SO/IEC 646: "Information technology - 1SO 7-bit coded
character set for information interchange”.

[5] Recommendation ITU-T X.290: "OSI conformance testing methodol ogy and framework for
protocol Recommendations for ITU-T applications - General concepts'.

NOTE: The corresponding ISO/IEC standard is | SO/IEC 9646-1: "Information technology - Open Systems
I nterconnection -Conformance testing methodol ogy and framework; Part 1: General concepts'.

ETSI

http://docbox.etsi.org/Reference

(6]

2.2

13 ETSI ES 201 873-1 V4.5.1 (2013-04)

IEEE 754: "|EEE Standard for Floating-Point Arithmetic".

Informative references

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1]

[i.2]

[i.3]

[i.4]

[i.5]

[i.6]

[i.7]

[i.8]

[i.9]
[i.10]

[i.11]

[i.12]

[i.13]

[i.14]

ETSI ES 201 873-2: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 2: TTCN-3 Tabular presentation Format (TFT)".

ETSI ES 201 873-3: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 3: TTCN-3 Graphical presentation Format (GFT)".

ETSI ES 201 873-5: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 5: TTCN-3 Runtime Interface (TRI)".

ETSI ES 201 873-6: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 6: TTCN-3 Control Interface (TCI)".

ETSI ES 201 873-7: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 7: Using ASN.1 with TTCN-3".

ETSI ES 201 873-8: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 8: The IDL to TTCN-3 Mapping".

ETSI ES 201 873-9: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 9: Using XML schemawith TTCN-3".

ETSI ES 201 873-10: "Methods for Testing and Specification (MTS); The Testing and Test
Control Notation version 3; Part 10: TTCN-3 Documentation Comment Specification”.

Void.

Object Management Group (OMG) (2001): "The Common Object Request Broker: Architecture
and Specification - IDL Syntax and Semantics'. Version 2.6, FORMAL/01-12-01.

ETSI ES 202 781: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; TTCN-3 Language Extensions. Configuration and Deployment Support”.

ETSI ES 202 784: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; TTCN-3 Language Extensions. Advanced Parameterization”.

ETSI ES 202 785: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; TTCN-3 Language Extensions. Behaviour Types'.

ETSI ES 202 782: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; TTCN-3 Language Extensions. TTCN-3 Performance and Rea Time Testing".

3

3.1

Definitions and abbreviations

Definitions

For the purposes of the present document, the terms and definitions given in Recommendation ITU-T X.290 [5],
Recommendation I TU-T X.292 [3] and the following apply:

actual parameter: value, expression, template or name reference (identifier) to be passed as parameter to the invoked
entity (function, test case, atstep, etc.) as defined at the place of invoking

assignment notation: notation that can be used for record, set, record of and set of values, where the fields or the
elemens to which avalueis assigned are identified explicitly within apair of curly brackets ("{" and "}") by the field
names or the positions of the elements

ETSI

14 ETSI ES 201 873-1 V4.5.1 (2013-04)

basic types: set of predefined TTCN-3 types described in clauses 6.1.0 and 6.1.1 of the present document
NOTE: Basictypes are referenced by their names.
communication port: abstract mechanism facilitating communication between test components

NOTE: A communication port is modelled as a FIFO queue in the receiving direction. Ports can be
message-based or procedure-based.

compatibletype: TTCN-3 isnot strongly typed but the language does require type compatibility
NOTE: Variables, constants, templates, etc. have compatible typesif conditionsin clause 6.3 are met.
completely initialized: values and templates of simple types are completely initialized if they are partially initialized

NOTE: Vauesand templates of structured types and arrays are completely initialized if all their fields and
elements are completely initialized. In case of record of, set of, and array values and templ ates, this means
at least the first n elements are initialized, where n is the minimal length imposed by the type length
restriction or array definition (thusin case of n equals 0, the value "{}" also completely initializes a
record of, a set of or an array).

data types. common name for simple basic types, basic string types, structured types, the specia data type anytype and
all user defined types based on them (see table 3 of the present document)

defined types (defined TTCN-3 types): set of all predefined TTCN-3 types (basic types, al structured types, the type
anytype, the address, port and component types and the default type) and all user-defined types declared either in the
module or imported from other TTCN-3 modules

dynamic parameterization: form of parameterization, in which actual parameters are dependent on run-time events,
e.g. the value of the actual parameter is avalue received during run-time or depends on areceived value by alogical
relation

exception: in cases of procedure-based communication, an exception (if defined) israised by an answering entity if it
cannot answer a remote procedure call with the normal expected response

formal parameter: typed name or typed template reference (identifier) not resolved at the time of the definition of an
entity (function, test case, atstep, etc.) but at the time of invoking it

NOTE: Actua values or templates (or their names) to be used at the place of formal parameters are passed from
the place of invoking the entity (see also the definition of actual parameter).

global visibility: attribute of an entity (module parameter, constant, template, etc.) that itsidentifier can be referenced
anywhere within the module where it is defined including all functions, test cases and altsteps defined within the same
module and the control part of that module

Implementation Confor mance Statement (1CS): See Recommendation ITU-T X.290 [5].
I mplementation eXtra Information for Testing (IX1T): See Recommendation ITU-T X.290 [5].
Implementation Under Test (IUT): See Recommendation ITU-T X.290 [5].

in parameterization: kind of parameterization where the value of the actual parameter (the argument) is bound to the
formal parameter when the parameterized object isinvoked, but the value of the formal parameter is not passed back to
the actual parameter when the invoked object completes

NOTE 1: The arguments are evaluated before the parameterized object is entered.

NOTE 2: Only the values of the arguments are passed and changes to the arguments within the invoked object have
no effect on the arguments as seen by the invoking object.

index notation: notation that can be used both on the right hand side and the |eft hand side of assignments for record of
and set of values, where the element to which avalue is assigned isidentified explicitly by the position of that element
(inindex notation no pair of curly brackets ("{" and "}") is present)

ETSI

15 ETSI ES 201 873-1 V4.5.1 (2013-04)

inout parameterization: kind of parameterization where the actual parameter is bound to the formal parameter when
the parameterized object isinvoked

NOTE 1: Theinvoked object uses the actual parameter directly, so that all changes made on the formal parameter
become immediately effective on the actual parameter.

NOTE 2: Inout parameters can be used for functions, atsteps, and test cases only.

known types: set of all TTCN-3 predefined types, types defined in a TTCN-3 module and typesimported into that
module from other TTCN-3 modules or from non-TTCN-3 modules

left hand side (of assignment): value or template variable identifier or afield name of a structured type value or
template variable (including array index if any), which stands left to an assignment symbol (:=)

NOTE: A constant, module parameter, timer, structured type field name or atemplate header (including template
type, name and formal parameter list) standing left of an assignment symbol (:=) in declarations and or a
modified template definitions are out of the scope of this definition as not being part of an assignment.

local visibility: attribute of an entity (constant, variable, etc.) that itsidentifier can be referenced only within the
function, test case or atstep whereit is defined

Main Test Component (MTC): See Recommendation ITU-T X.292 [3].

out parameterization: kind of parameterization where the value of the actual parameter (the argument) is not bound to
the formal parameter when the parameterized object isinvoked, but the value of the formal parameter is passed back to
the actual parameter when the invoked object completes

NOTE 1. Out parameters can be used for functions, altsteps, and test cases only.
NOTE 2: Anout formal parameter is uninitialized (unbound) when the invoked object is entered.

NOTE 3: Thevalueis passed back to the actual parameter only if within the invoked object avalue is assigned to it.
If no value is assigned, the actual parameter remains unchanged when the invoked object compl etes.

Parallel Test Component (PTC): See Recommendation ITU-T X.292[3].

partially initialized: values are partially initialized if a concrete value has been assigned to it or to at |east one of its
fields or elements

NOTE 1: A template variableisinitialized if a matching mechanism has been assigned to it or to at least one of its
fields or elements, directly or indirectly via expansion (see clause 15.6). A templateisinitialized if a
matching mechanism has been assigned to it, directly or indirectly via expansion (see clause 15.6).

NOTE 2: Thus, constants and templates are always initialized at declaration. Variables (both value and template)
areinitialized if they, or at least one of their fields or elements has been used on the | eft hand side of an
assignment (including initial value assignment at declaration), except when they were uninitialized before
the assignment and the right hand side does not change any of itsfield or element. Module parameters are
initialized either at declaration or by the test system before test execution.

port parameterization: ability to pass aport as an actual parameter into a parameterized object via a port parameter
NOTE: Thisactua port parameter is added to the specification of that object and may completeit.
qualified name: TTCN-3 elements can be identified unambiguously by qualified names

NOTE: For modules, the qualified name is the <module name>. For global definitions such as testcases,
functions, etc., the qualified name is <module name>.<definition name>. For control, the qualified name
is <module name>.control. For local definitions, such as variables, local templates, etc. within a global
definition, the qualified name is <module name>.<global definition name>.<local definition name>.

right hand side (of assignment): expression, template reference or signature parameter identifier which stands right to
an assignment symbol (:=)

NOTE: Expressions and template references standing right of an assignment symbol (:=) in constant, module
parameter, timer, template or modified template declarations are out of the scope of this definition as not
being part of an assignment.

ETSI

16 ETSI ES 201 873-1 V4.5.1 (2013-04)

root type: root types of types derived from TTCN-3 basic types are the respective basic types

NOTE 1: Theroot type of user defined record typesisr ecor d, the root type of user defined record of and array
typesisrecord of,theroot type of user defined set typesisset , the root type of user defined set of
typesisset of . Theroot type of user defined union typesisunion and the root type of anytypesis
anyt ype. Theroot types of special configuration types are def aul t or conponent , respectively.
Port types do not have aroot type.

NOTE 2: Asaddr ess ismore a predefined type name than a distinct type with its own properties, the root type of
an addr ess type and al of its derivatives are the same, as the root type was, if the type was defined
with aname different from addr ess.

static parameterization: form of parameterization, in which actual parameters are independent of run-time events;
i.e. known at compile time or in case of module parameters are known by the start of the test suite execution

NOTE 1: A static parameter isto be known from the test suite specification, (including imported definitions), or the
test system is aware of its value before execution time.

NOTE 2: All types are known at compiletime, i.e. are statically bound.
strong typing: strict enforcement of type compatibility by type name equivalence with no exceptions
System Under Test (SUT): See Recommendation ITU-T X.290 [5].

template: TTCN-3 templates are specific data structures for testing; used to either transmit a set of distinct values or to
check whether a set of received values matches the template specification

template parameterization: ability to pass atemplate as an actual parameter into a parameterized object via atemplate
parameter

NOTE 1: Thisactual template parameter is added to the specification of that object and may complete it.
NOTE 2: Values passed to template formal parameters are considered to be in-line templates (see clause 15.4).

test behaviour: (or behaviour) test case or a function started on a test component when executing an execut e or a
st art component statement and all functions and altsteps called recursively

NOTE: During atest case execution each test component has its own behaviour and hence several test behaviours
may run concurrently in the test system (i.e. atest case can be seen as a collection of test behaviours).

test case: See Recommendation ITU-T X.290 [5].
test case error: See Recommendation ITU-T X.290 [5].

test suite: set of TTCN-3 modules that contains a completely defined set of test cases, optionally supplemented with
one or more TTCN-3 control parts

test system: See Recommendation ITU-T X.290[5].

test system interface: test component that provides a mapping of the ports available in the (abstract) TTCN-3 test
system to those offered by the SUT

timer parameterization: ability to passatimer as an actual parameter into a parameterized object via atimer
parameter

NOTE: Thisactual timer parameter is added to the specification of that object and may complete it.

type compatibility: language feature that allows to use values, expressions or templates of a given type as actual values
of another type (e.g. at assignments, as actual parameters at calling afunction, referencing atemplate, etc. or asareturn
value of afunction)

type context: "In the context of atype" means that at least one object involved in the given TTCN-3 action (an
assignment, operation, parameter passing etc.) identifies a concrete type unambiguously

NOTE: Either directly (e.g. an in-line template) or by means of atyped TTCN-3 object (e.g. via a constant,
variable, formal parameter etc.).

ETSI

17 ETSI ES 201 873-1 V4.5.1 (2013-04)

unqualified name: unqualified name of a TTCN-3 element isits name without any qualification
user-defined type: type that is defined by subtyping of a basic type or declaring a structured type
NOTE: User-defined types are referenced by their identifiers (names).

value list notation: notation that can be used for record, set, record of and set of values, where the values of the
subsequent fields or elements are listed within apair of curly brackets ("{" and "}"), without an explicit identification of
the field name or element position

value notation: notation by which an identifier is associated with a given value or range of a particular type
NOTE: Vauesmay be constants or variables.

value parameterization: ability to pass avalue as an actual parameter into a parameterized object viaavalue
parameter

NOTE: Thisactua value parameter is added to the specification of that object and may completeit.

3.2 Abbreviations

For the purposes of the present document, the following abbreviations apply:

AP Application Programming Interface
ASN Abstract Syntax Notation
ASP Abstract Service Primitive

NOTE: See Recommendation ITU-T X.290 [5].

ATS Abstract Test Suite

BER Basic Encoding Rules

BMP Basic Multilingual Plane

BNF Backus-Nauer Form

CORBA Common Object Request Broker Architecture
ETS Executable Test Suite

FIFO First In First Out

GFT Graphical presentation Format

ICS I mplementation Conformance Statement

IDL Interface Definition Language

IRV International Reference Version

uT Implementation Under Test

IXIT Implementation eXtra Information for Testing
MTC Main Test Component

PDU Protocol Data Unit

NOTE: See Recommendation ITU-T X.290 [5].

PTC Parallel Test Component

SDL Specification and Description Language
SUT System Under Test

TCI TTCN-3 Control Interfaces

TFT Tabular presentation Format

TRI TTCN-3 Runtime Interfaces

TSI Test System Interface

TTCN-3 Testing and Test Control Notation version 3
ucCs Universal Character Set

UCs4 Universal Coded Character Set

UTF UCS Transformation Format

UTF-8 Unicode Transformation Format-8
XML eXtensible Markup Language

ETSI

18 ETSI ES 201 873-1 V4.5.1 (2013-04)

4 Introduction

TTCN-3isaflexible and powerful language applicable to the specification of al types of reactive system tests over a
variety of communication interfaces. Typical areas of application are protocol testing (including mobile and Internet
protocols), service testing (including supplementary services), module testing, testing of CORBA based platforms, AP
testing, etc. TTCN-3 is not restricted to conformance testing and can be used for many other kinds of testing including
interoperability, robustness, regression, system and integration testing.

TTCN-3 includes the following essential characteristics:
. the ability to specify dynamic concurrent testing configurations;
. operations for procedure-based and message-based communication;
. the ability to specify encoding information and other attributes (including user extensibility);
e theahility to specify data and signature templates with powerful matching mechanisms;
. value parameterization;
. the assignment and handling of test verdicts;
e test suite parameterization and test case selection mechanisms;
. combined use of TTCN-3 with other languages;
o well-defined syntax, interchange format and static semantics;
. different presentation formats (e.g. tabular and graphical presentation formats);
. a precise execution agorithm (operational semantics).

NOTE: The present document uses the following pattern of concept description: concepts, principles and
mechanisms are explained in (introductory) text at the beginning of a clause. For every concept having
concrete syntax, the syntactical structure of that concept is presented afterwards. The syntactical structure
follows the conventions for the TTCN-3 syntax description in clause A.1.1 and uses rules of the TTCN-3
BNF given in clause A.1. A semantic description follows the syntactic structure. The restrictions on the
concept are listed subsequently. Finally, examples on the usage of the concept are given.

In case of a contradiction between the body of the present document (clauses 5 to 27) and annex A of the present
document, annex A hasthe priority.

4.1 The core language and presentation formats

The TTCN-3 specification is separated into several parts (see figure 1).

Thefirst part, defined in the present document, is the core language.

The second part, defined in ES 201 873-2 [i.1], isthe tabular presentation format.

The third part, defined in ES 201 873-3[i.2], isthe graphical presentation format.

The fourth part, ES 201 873-4 [1], contains the operational semantics of the language.

The fifth part, ES 201 873-5 [i.3], defines the TTCN-3 Runtime Interface (TRI).

The sixth part, ES 201 873-6 [i.4], defines the TTCN-3 Control Interfaces (TCI).

The seventh part, ES 201 873-7 [i.5], specifies the use of ASN.1 definitions with TTCN-3.
The eight part, ES 201 873-8[i.6], specifiesthe use of IDL definitions with TTCN-3.

The ninth part, ES 201 873-9 [i.7] specifies the use of XML definitions with TTCN-3.

ETSI

19 ETSI ES 201 873-1 V4.5.1 (2013-04)

The tenth part, ES 201 873-10 [i.8] specifies documentation tags for TTCN-3.
The core language serves three purposes:
a) asageneralized text-based test language in its own right;
b) asastandardized interchange format of TTCN-3 test suites between TTCN-3 tools;
c) asthe semantic basis (and where relevant, the syntactical basis) for various presentation formats.

The core language may be used independently of the presentation formats. However, neither the tabular format nor the
graphical format can be used without the core language. Use and implementation of these presentation formats will be
done on the basis of the core language.

The tabular format and the graphical format are the first in an anticipated set of different presentation formats. These
other formats may be standardized presentation formats or they may be proprietary presentation formats defined by
TTCN-3 users themselves. These additional formats are not defined in the present document.

TTCN-3 may optionally be used with TTCN-3 packages, which define additional concepts for specific purposes.

TTCN-3 may optionally be used with other type-value notations in which case definitionsin other languages may be
used as alternative data type and val ue syntax. Other parts of the TTCN-3 standard specify use of some other languages
with TTCN-3. The support of other languages is not limited to those specified in the ES 201 873 series of documents
but to support languages for which combined use with TTCN-3 is defined, rules given in the present document apply.

Deployment Advanced_ Behavior L TTCN-3
and Parameteri- Types Packagﬁs K
Configuration zation
Support ™
TTCN-3 P i

ASN.1 Types .| core M T
& Values "| Language Tabular

format ¢ '
IDL Types R

Graphical P
XML Types > format N

- TTON-3 User

Other Types . Presentation | The shaded boxes are not
& Values, v format p, « defined in this document

Figure 1: User's view of the core language, its packages and the various presentation formats

The core language is defined by a complete syntax (see annex A) and operational semantics (ES 201 873-4 [1]). It
contains minimal static semantics (provided in the body of the present document and in annex A) which do not restrict
the use of the language due to some underlying application domain or methodology.

4.2 Unanimity of the specification

The language is specified syntactically and semantically in terms of atextual description in the body of the present
document (clauses 5 to 27) and in aformalized way in annex A. In each case, when the textual description is not
exhaustive, the formal description completesit. If the textual and the formal specifications are contradictory, the latter
shall take precedence.

ETSI

20 ETSI ES 201 873-1 V4.5.1 (2013-04)

4.3

For an implementation claiming to conform to this version of the language, all features specified in the present
document shall be implemented consistently with the requirements given in the present document and in
ES 201 873-4[1].

Conformance

5 Basic language elements

The top-level unit of TTCN-3 isamodule. A module cannot be structured into sub-modules. A module can import
definitions from other modules. Modules can have module parametersto allow test suite parameterization.

A module consists of a definitions part and a control part. The definitions part of a module defines test components,
communication ports, data types, constants, test data templates, functions, signatures for procedure calls at ports, test
Cases, €tC.

The control part of amodule calls the test cases and controls their execution. The control part may a so declare (local)
variables, etc. Program statements (such asi f -el se and do- whi | e) can be used to specify the selection and
execution order of individual test cases. The concept of global variables is not supported in TTCN-3.

TTCN-3 has a number of pre-defined basic data types as well as structured types such as records, sets, unions,
enumerated types and arrays.

A special kind of data structure called a template provides parameterization and matching mechanisms for specifying
test data to be sent or received over the test ports. The operations on these ports provide both message-based and
procedure-based communication capabilities. Procedure calls may be used for testing implementations which are not
message based.

Dynamic test behaviour is expressed as test cases. TTCN-3 program statements include powerful behaviour description
mechani sms such as aternative reception of communication and timer events, interleaving and default behaviour. Test
verdict assignment and logging mechanisms are also supported.

Finally, TTCN-3 language elements may be assigned attributes such as encoding information and display attributes. It is
also possible to specify (non-standardized) user-defined attributes.

The TTCN-3 language elements are summarized in table 1.

Table 1: Overview of TTCN-3 language elements

Language element Associated | Specified in | Specified in | Specified in | Specified in
keyword module module functions/ test
definitions control altsteps/ test| component
cases type
TTCN-3 module definition module
Import of definitions from other module [import Yes
Grouping of definitions group Yes
Data type definitions type Yes
Communication port definitions port Yes
Test component definitions component Yes
Signature definitions signature Yes
External function definitions external Yes
Constant definitions const Yes Yes Yes Yes
Data/signature template definitions template Yes Yes Yes Yes
Function definitions function Yes
Altstep definitions altstep Yes
Test case definitions testcase Yes
Value variable declarations var Yes Yes Yes
Template variable declarations var template Yes Yes Yes
Timer declarations timer Yes Yes Yes
NOTE: The notions "definition" and "declaration" of variables, constants, types and other language elements are
used interchangeably throughout the present document. The distinction between both notions is useful only
for implementation purposes, as it is the case in programming languages like C and C++. On the level of
TTCN-3, the notions have equal meaning.

ETSI

21 ETSI ES 201 873-1 V4.5.1 (2013-04)

5.1 Identifiers and keywords

TTCN-3 identifiers are case sensitive. TTCN-3 keywords shall be written in all lowercase letters (see annex A).
TTCN-3 keywords shall neither be used as identifiers of TTCN-3 objects nor as identifiers of objects imported from
modules of other languages. The same rules apply to names of predefined TTCN-3 functions (see annex C).

5.2 Scope rules

TTCN-3 provides nine basic units of scope:
a) module definitions part;
b) control part of amodule;

C) component types,

d) functions;
e atseps,
f) testcases;

g) statement blocks;

h)y templates;

i) user defined named types.

NOTE 1: Additional scoping rule for groupsis givenin clause 8.2.2.

NOTE 2: Additional scoping rule for counters of f or loopsisgiven in clause 19.4.

NOTE 3: Statement blocks may include declarations. They may occur as stand-alone statement blocks, embedded
in another statement block or within compound statements, e.g. as body of a while loop.

NOTE 4: Builtin TTCN-3 typeslikei nt eger, char stri ng, anyt ype, etc. are not scope units, but all named
user defined types are scope units, independent of their kinds.

Each unit of scope consists of (optional) declarations. The scope units: control part of a module, functions, test cases,
altsteps and statement blocks may additionally specify some form of behaviour by using the TTCN-3 program
statements and operations (see clause 18).

Definitions made in the modul e definitions part but outside of other scope units are globally visible, i.e. may be used
elsewhere in the module, including all functions, test cases and altsteps defined within the module and the control part.
Identifiers imported from other modules are also globally visible throughout the importing module.

Definitions made in the module control part have local visibility, i.e. can be used within the control part only.

Definitions made in a test component type may be used in a component type extending this component type definition,
and in functions, test cases and altsteps referencing that component type or a compatible test component type (see
clause 6.3.3) by ar uns on clause.

Test cases, altsteps and functions are individual scope units without any hierarchical relation between them,

i.e. declarations made at the beginning of their body have local visibility and shall only be used in the given test case,
altstep or function (e.g. adeclaration made in atest caseis not visible in afunction called by the test case or in an
altstep used by the test case).

Stand-alone statement blocks and statements within compound statements, likee.g. i f - el se, whi | e, do-whi | e, or
al t statements may be used within the control part of a module, test cases, altsteps, functions, or may be embedded in
other statement blocks or compound statements, e.g. ani f - el se statement that is used within awhi | e loop.

Statement blocks and embedded statement blocks have a hierarchical relation both to the scope unit including the given
statement block and to any embedded statement block. Declarations made within a statement block have local visibility.

ETSI

22 ETSI ES 201 873-1 V4.5.1 (2013-04)

The hierarchy of scope unitsis shown in figure 2. Declarations of a scope unit at a higher hierarchical level are visible
in all units at lower levels within the same branch of the hierarchy. Declarations of a scope unit in alower level of
hierarchy are not visible to those units at a higher hierarchical level.

module
definitions part

module

function without
runs on-clause

user defined

altstep without
runs on-clause

component type template

control part

named type

statement block statement block statement block

testcase with
runs on-clause
and optional

system-clause

function with
runs on-clause

altstep with
runs on-clause

nested
statement block

nested
statement block

nested

statement block

statement block statement block statement block

nested nested nested

statement block statement block statement block

Figure 2: Hierarchy of scope units

EXAMPLE 1: Local scopes
nodul e MyModul e
;:onst integer M/Const := 0; // MyConst is visible to MyBehavi our A and MyBehavi our B

functi on MyBehavi our A()

{ :

const integer A := 1; /1 The constant Ais only visible to MyBehavi our A
}
functi on MyBehavi our B()
{ :

const integer B := 1; /1l The constant Bis only visible to MyBehavi ourB
}

}
EXAMPLE 2: Component type scopes

type conponent MyConponent Type {
const integer MyConst := 1;

}

type conponent MyExt endedConponent Type extends MyConponent Type {
var integer MyVar:= 2 * MyConst; // using MyConst of MyConponent Type

ETSI

23 ETSI ES 201 873-1 V4.5.1 (2013-04)

5.2.1 Scope of formal parameters

The scope of formal parameters in a parameterized object (e.g. in afunction definition) shall be restricted to the
definition in which the parameters appear and to the lower levels of scope in the same scope hierarchy. That is they
follow the scope rules for local definitions (see clause 5.2).

5.2.2 Uniqueness of identifiers

TTCN-3 requires unigueness of identifiers, i.e. all identifiersin the same scope hierarchy shall be distinctive. This
means that a declaration in alower level of scope shall not re-use the same identifier as a declaration in a higher level of
scope in the same branch of the scope hierarchy.

Theidentifier of a module (its module name) or of an imported module belongs to the scope unit of the module and
cannot be used asidentifier for other definitionsinside this module. Identifiers for fields of structured types, enumerated
values and groups do not have to be globally unique, however in the case of enumerated values the identifiers shall only
be reused for enumerated values within other enumerated types. The rules of identifier uniqueness shall also apply to
identifiers of formal parameters.

EXAMPLE 1. Nested scopes
nodul e MyModul e

{ :const integer A:= 1,
iuncti on MyBehavi our A()

.const integer A:=1; // Is NOT allowed: clash with global constant A
if(.)
{ .

.const boolean A := true; // Is NOT allowed: clash with |ocal constant A

}
EXAMPLE 2: Independent scopes

/1 The following IS allowed as the constants are not declared in the sane scope hierarchy
/1 (assuming there is no declaration of A in nodul e header)

functi on MyBehavi our A()

{ .

const integer A :=1;

}

functi on MyBehavi our B()
{ i:onst integer A := 1,

}
EXAMPLE 3: Module scopes

nmodul e MyModul eB {
import from MyModul eA { ...}

function MyFunction() {
var integer M/yModuleB:= 1; // Is NOT allowed: class with nodul e nane

}

type bool ean MyModul eA; // Is NOT allowed: class with inported nodul e nane

ETSI

24 ETSI ES 201 873-1 V4.5.1 (2013-04)

5.3 Ordering of language elements

Generally, the order in which declarations can be made is arbitrary. Inside a statement block, such as a function body or
abranch of ani f - el se statement, all declarations (if any), shall be made at the beginning of the statement block only.

EXAMPLE:
/1 This is a legal mxing of TTCN-3 decl arations
Var MyVar Type MyVar2 : = 3;

const integer MyConst:= 1;
if (MyVar2+MyConst > 10)

var integer MyVarl:= 1;

MyVar 1: = MyVarl + 10;

Declarations in the module definitions part and in a component type definition may be made in any order. However
inside the module control part, test case definitions, functions, altsteps, and statement blocks, al required declarations
shall be given beforehand. This meansin particular, local variables, local timers, and local constants shall never be used
before they are declared. The only exceptionsto thisrule are labels. Forward references to a label may be used in got o
statements before the label occurs (see clause 19.8).

5.4 Parameterization

TTCN-3 alows to parameterize modules, templates, functions, altsteps and testcases. Vaues, templates, timers, and
ports may be used as actual parameters. A summary of which language elements can be parameterized and what can be
passed to them as parametersis givenin table 2.

NOTE: Type parameterization for TTCN-3 is defined in the optional package[i.12].

Table 2: Overview of parameterizable TTCN-3 objects

Keyword Allowed kind of Allowed form of Allowed types in formal parameter lists
Parameterization Parameterization
module Value parameterization Static at start of run-time |all basic types, all user-defined types and addr ess
type.
template Value and template Dynamic at run-time |all basic types, all user-defined types, addr ess type
parameterization and t enpl at e.
function Value, template, port and Dynamic at run-time |all basic types, all user-defined types, addr ess
timer parameterization type, conponent type, port type, def aul t,
tenplateandti ner.
altstep Value, template, port and Dynamic at run-time |all basic types, all user-defined types, addr ess
timer parameterization type, conponent type, port type, def aul t,
tenplateandti ner.
testcase Value, template, port and Dynamic at run-time |all basic types and of all user-defined types,
timer parameterization address type and tenpl at e.

NOTE: Signatures are not shown in the table, because a signature declares parameters only. The templates for the
sighatures can be parameterized, however.

54.1 Formal parameters

TTCN-3 modules, structured types, templates, functions, altsteps, and testcases may be defined incompletely, i.e. some
entities (variables, templates, ports, timers, etc.) used by the above objects may not be resolved in the definition of the
object. These objects are called parameterized objects. Formal entities replacing the unresolved entitiesin the
parameterized object's definition are called formal parameters.

Formal parameters of parameterized templates, functions, altsteps, and testcases are defined in formal parameter lists.
Formal parameters of modules are defined in module parameter definitions (see clause 8.2.1).

ETSI

25 ETSI ES 201 873-1 V4.5.1 (2013-04)

Formal parameters shall bei n, i nout or out parameters (see definitionsin clause 3.1). If not stated otherwise, a
formal parameter isani n parameter. For all these three sorts of parameter passing, the formal parameters can both be
read and set (i.e. get new values being assigned) within the parameterized object. Formal parameters can be used
directly as actual parameters for other parameterized objects, e.g. as actual parametersin function invocations or as
actual parametersin template instances.

Formal i n parameters may have default values. This default value is used when no actual parameter is provided.
NOTE: Although out parameters can be read within the parameterized object, they do not inherit the value of
their actual parameter; i.e. they should be set before they are read.
5411 Formal parameters of kind value

Values of all basic types, all user-defined types, address type, component type, and default can be passed as value
parameters.

Syntactical Structure

[(in] inout | out)] Type ValueParldentifier [":=" (Expression | "-")]
Semantic Description

Value formal parameters can be used within the parameterized object the same way as values, for examplein
expressions.

Value formal parameters may bein, inout or out parameters. The default for value formal parametersisi n
parameterization which may optionally be denoted by the keyword i n. Using of inout or out kind of parameterization
shall be specified by the keywordsi nout or out respectively.

In parameters may have a default value, which is given by an expression assigned to the parameter. Formal parameters
of modified templates may inherit the default values from the corresponding parameters of their parent templates; this
shall explicitly be denoted by using a dash (don't change) symbol at the place of the modified template parameters
default value.

TTCN-3 supports val ue parameterization according to the following rules:

e thelanguage element nodul e allows static value parameterization to support test suite parameters, i.e. this
parameterization may or may not be resolvable at compile-time but shall be resolved by the commencement of
run-time (i.e. static at run-time). This means that, at run-time, module parameter values are globally visible but
not changeable (see more detailsin clause 8.2);

. the language elementst enpl at e, t est case, al t st ep andf unct i on support dynamic value
parameterization (i.e. this parameterization shall be resolved at run-time).

NOTE: Component and default references are also handled as value parameters. In the case of component
references, the corresponding component type is the type of the formal parameter. In the case of default
referencesthe TTCN-3 type def aul t isthe type of the forma parameter.

Restrictions

a) Language elements which cannot be parameterized are: const ,var, ti nmer,control, record of,
set of, enunerated, port, conponent and subtype definitions, group andi nport.

b) Formal value parameters of templates, and of altsteps activated as defaults (see clause 20.5.2) shall always be
i n parameters.

¢) Restrictions on module parameters are given in clause 8.2.
d) Default values can be provided for i n parameters only.

e) Theexpression of the default value has to be compatible with the type of the parameter. The expression shall
not refer to elements of the component type of the optional r uns on clause. The expression shall not refer to
other parameters of the same parameter list. The expression shall not contain the invocation of functions with a
runs on clause.

ETSI

26 ETSI ES 201 873-1 V4.5.1 (2013-04)

f) Default values of component type formal parameters shall be one of the special valuesnul |, nmtc, self,
orsystem

g) Default values of default type forma parameters shall be the special valuenul | .

h) The dash (don't change) symbol shall be used with formal parameters of modified templates only (see al'so
clause 15.5).

i) For formal value parameters of templates the restrictions specified in clause 15 shall apply.
Examples

EXAMPLE 1: In, out and inout formal parameters

function MyFunctionl(in bool ean MyReferenceParaneter){ ...};
/'l MyReferenceParaneter is an in value paraneter. The paraneter can be read. It can al so be set
/1 within the function, however, the assignnent is local to the function only

function MyFunction2(inout bool ean MyReferenceParaneter){ ...};
/'l MyReferenceParaneter is an inout value paraneter. The paraneter can be read and set
/1 within the function - the assignnent is not |ocal

function MyFunction3(out tenplate bool ean MyReferenceParaneter){ ...};
/'l MyReferenceParaneter is an out value paraneter. The paraneter can be set within the function,
/1 the assignnent is not local. It can also be read, but only after it has been set.

EXAMPLE 2: Reading and setting parameters

type record MyMessage {
integer f1,
integer f2

}

function f_MyMessage (integer p_int) return MyMessage {
var integer f1, f2;
fl:=f_milt2 (p_int);
/] paraneter p_int is passed on; as the paranmeter of the called function f_mult2 is
/1 defined as an inout paraneter, it passes back the changed value for p_int,
f2 := p_int;
return {f1, f2};

}
function f_mult2 (inout integer p_integer) return integer {
p_integer := 2 * p_integer;
/'l the value of the formal paranmeter is changed; this new val ue is passed back when
/1 f_mult2 conpletes
return p_integer-1
}

testcase tc_01 () runs on MIC _PT {

P1.send (f_M/Message(5))
/1 the value sent is { f1:=9, f2 :=10}

}
EXAMPLE 3: Function with default value for parameter
function f_conp (in integer p_intl, in integer p_int2 := 3) return integer {
var integer v := p_intl + p_int2;
return v;
}

function f () {
var integer w,

f_conp(1); /'l sanme as calling f_conp(1,3);
f_comp(l,2); // value 2 is taken for parameter p_int2 and not its default value 3

w
e

ETSI

27 ETSI ES 201 873-1 V4.5.1 (2013-04)

EXAMPLE 4: Direct passing of formal parametersto functions

function f_MyFunc2(in bitstring p_refParl, inout integer p_refPar2) return integer {

function f_MFuncl(inout bitstring p_refParl, out integer p_refPar2) return integer {
.ret urn f_MyFunc2(p_refParl, p_refPar2);

/1 p_refParl and p_refPar2 can be passed directly to a function invocation

5.4.1.2 Formal parameters of kind template
Template kind parameters are used to pass templates into parameterizable objects.

Syntactical Structure

[in] inout | out] tenplate [Restriction] Type Val ueParldentifier
[":=" (Tenplatelnstance | "-")]

Semantic Description
Templates parameters can be defined for templates, functions, altsteps, and test cases.

To enable a parameterized object to accept templates or matching symbols as actual parameters, the extra keyword

t enpl at e shall be added before the type field of the corresponding formal parameter. This makes the parameter a
template parameter and in effect extends the allowed actual parameters for the associated type to include the appropriate
set of matching attributes (see annex B) as well as the normal set of values.

Formal template parameters can be used within the parameterized object the same way as templates and template
variables.

Formal template parameters may bein, inout or out parameters. The default for formal template parametersisi n
parameterization.

In parameters may have a default template, which is given by atemplate instance assigned to the parameter. Formal
template parameters of modified templates may inherit their default templates from the corresponding parameters of
their parent templates; this shall explicitly be denoted by using a dash (don't change) symbol at the place of the
modified template parameter's default template.

Formal template parameters can be restricted to accept actual parameters containing a restricted set of matching
mechanisms only. Such limitations can be expressed by the restrictions omit, present, and value. The restriction
template (omit) can be replaced by the shorthand notation omit. The meaning of the restrictionsis explained in
clause 15.8.

Restrictions
a Onlyfunction,testcase,altstepandtenpl ate definitions may have formal template parameters.

b) Formal template parametersof t enpl at es, of f unct i ons started as test component behaviour
(seeclause 21.3.2) and of al t st eps activated as defaults (see clause 20.5.2) shall alwaysbei n parameters.

c¢) Default templates can be provided for in parameters only.

d) The default template instance has to be compatible with the type of the parameter. The template instance shall
not refer to elements of the component type in aruns on clause. The template instance shall not refer to other
parameters in the same parameter list. The template instance shall not contain the invocation of functions with
arunson clause.

e) Default templates of component type formal parameters shall be built from the special valuesnul |, nt c,
sel f,orsystem

f) Restrictions specified in clause 15 shall apply.

g) Thedash (don't change) symbol shall be used with formal parameters of modified templates only (see also
clause 15.5).

ETSI

28 ETSI ES 201 873-1 V4.5.1 (2013-04)

Examples

EXAMPLE 1: Template with template parameter

/1 The tenplate
tenpl ate M/MessageType MyTenpl ate (tenpl ate i nteger MyFormal Param: =

{ fieldl : = MyFor nal Param
field2 := pattern "abc*xyz",
field3 := true

}

/1 could be used as follows

pcol.recei ve(M/Tenpl ate(?));

/1 O as follows

pcol.recei ve(M/Tenpl ate(onit)); // provided that fieldl is declared in M/MessageType as opti onal

EXAMPLE 2: Function with template parameter

function MyBehavi our (tenpl ate MyMsgType MyFor mal Par anmet er)
runs on MyConponent Type
{ .

pé:ol. recei ve(MyFor mal Par anet er) ;
} :
EXAMPLE 3: Template with restricted parameter

/1 The tenplate
tenpl ate M/MessageType MyTenpl atel (tenplate (omit) integer MyFormal Param: =

{ fieldl : = MyFor nal Param
field2 := pattern "abc*xyz",
field3 := true

}

/1l could be used as follows

pcol. send(M/ Tenpl atel(onit));

/1 but not as follows

pcol.recei ve(M/Tenpl atel(?)); // AnyValue is not within the restriction

/1 the same tenplate can be witten shorter as
tenpl ate M/MessageType MyTenpl ate2 (omt integer MyFormal Param: =
{ fieldl : = MyFor nal Param

field2 := pattern "abc*xyz",
field3 := true
}
5.4.1.3 Formal parameters of kind timer

Functions and altsteps can be parameterized with timers.

Syntactical Structure

[inout] timer TinmerParldentifier
Semantic Description

Timers passed into a parameterized object are known inside the behaviour definition of that object. Timer parameters
can be used within the parameterized object like any other timer, i.e. they need not to be declared inside the
parameterized object.

Timer parameters shall preserve their current state, i.e. only the timer is made known within the parameterized object.
For example, also a started timer continues to run, i.e. it is not stopped implicitly. Thereby, possible timeout events can
be handled inside the function or altstep to which the timer is passed.

Formal timer parameters are identified by the keyword t i nmer .
Restrictions
a) Formal timer parameters shall be inout parameters, which can optionally be indicated by the keyword inout.

b) Only f uncti on - with the exception of functions started as test component behaviour (see clause 21.3.2) -
and al t st ep definitions may have formal timer parameters.

ETSI

29 ETSI ES 201 873-1 V4.5.1 (2013-04)

Examples

/1 Function definition with a timer in the formal parameter |ist
function MyBehavi our (timer MyTimer)

M/Ti ner.start;

}

/1 could be used as follows
functi on MyBehavi our2 ()

timer t;
MyBehavi our (t);

5414 Formal parameters of kind port
Functions and altsteps can be parameterized with ports.

Syntactical Structure

[inout] PortTypeldentifier PortParldentifier
Semantic Description

Ports passed into a parameterized object are known inside the behaviour definition of that object. Port parameters can be
used within the parameterized object like any other port, i.e. they need not to be made visible by ar uns on clause.

Ports passed in as parameters shall preserve their current state, only the port is made known within the parameterized
object's body. For example, a started port continues to send/receive messages, i.e. it is not stopped implicitly; thereby,
possible port events can be handled inside the function or altstep to which the port is passed to.

Restrictions
a) Formal port parameters shall be inout parameters, which can optionally be indicated by the keyword inout.

b) Only f uncti on - with the exception of functions started as test component behaviour (see clause 21.3.2) -
and al t st ep definitions may have formal port parameters.

Examples

/Il Atstep definition with a port in the formal paranmeter |ist
al tstep MyBehavi our (MyPortType MyPort)

t] M/Port.receive { setverdict(fail); stop; }

5.4.2 Actual parameters

Values, templates, timers and/or ports can be passed into parameterized TTCN-3 objects as actual parameters. Actual
parameters can be provided both as alist in the same order as the formal parameters as well asin an assignment
notation explicitly using the associated formal parameter names.

Syntactical Structure

(Expression | /1 for value paraneter
Tenpl at el nst ance | /1 for tenplate paraneter
Ti mer Ref | /1 for timer paraneter
Por t | /1 for port paraneter
-t /1 to skip a paraneter with default
Parameterld ":=" (Expression | Tenplatelnstance | TimerRef | Port))

ETSI

30 ETSI ES 201 873-1 V4.5.1 (2013-04)

Semantic Description

Actual parametersthat are passed by valueto i n formal value parameters shall be variables, literal values, module
parameters, constants, variables, value returning (external) functions, formal value parameters (of in, inout or out
parameterization) of the current scope or expressions composed of the above.

Actual parametersthat are passed toi nout or out formal value parameters shall be variables or formal value
parameters (of in, inout or out parameterization).

Actual parametersthat are passed toi n formal template parameters shall be literal values, module parameters,
congtants, variables, value or template returning (external) functions, formal value parameters (of in, inout or out
parameterization) of the current scope or expressions composed of the above, as well as templates, template variables or
formal template parameters (of in, inout or out parameterization) of the current scope.

Actual parametersthat are passed toi nout or out formal template parameters shall be variables, template variables,
formal value or template parameters (of in, inout or out parameterization) of the current scope.

Actual parameters that are passed to formal timer parameters shall be component timers, local timers or formal timer
parameters of the current scope.

Actual parameters that are passed to formal port parameters shall be component ports or formal port parameters of the
current scope.

When aformal parameter has been defined with a default value or template, respectively, then it is not necessary to
provide an actual parameter. The actual parameters are evaluated in the order of their appearance. If for some formal
parameters, no actual parameter has been provided, their default values are taken and evaluated in the order of the
formal parameter list.

The empty brackets for instances of parameterized templates that have only parameters with default values are optional
when no actual parameters are provided, i.e. al formal parameters use their default values.

Restrictions

a When using list notation, the order of elementsin the actual parameter list shall be the same astheir order in
the corresponding formal parameter list. For each formal parameter without a default there shall be an actual
parameter. The actual parameter of aformal parameter with default value can be skipped by using dash "-" as
actual parameter. An actual parameter can also be skipped by just leaving it out if no other actual parameter
followsin the actual parameter list - either because the parameter is last or because al following formal
parameters have default values and are left out.

b) Either list notation or assignment notation shall be used in a single parameter list. They shall not be mixed.

€) When using assignment notation, each formal parameter shall be assigned an actual parameter at most once.
For each formal parameter without default value, there shall be an actual parameter. In order to use the default
value of aformal parameter, no assignment for this specific parameter shall be provided.

d) Thetype of each actual parameter shall be compatible with the type of each corresponding formal parameter.

€) Actua parameters passed to restricted formal template parameters shall obey the restrictions given in
clause 15.8.

f) All parameterized entities specified as an actual parameter shall have their own parameters resolved in the
top-level actual parameter list.

g) If theformal parameter list of TTCN-3 objectsf uncti on, t est case,signature, altstepor
ext ernal functi on isempty, thenthe empty parentheses shall be included both in the declaration and in
the invocation of that object. In all other cases the empty parentheses shall be omitted.

h) Restrictions on the use of signature parameters are given in clauses 15.2 and 22.3.

i) Redtrictions on parameters passed to altsteps are given in clauses 16.2.1 and 20.5.2.

ETSI

31 ETSI ES 201 873-1 V4.5.1 (2013-04)

Examples

EXAMPLE 1: Formal and actual parameter lists have to match

/1 A function definition with a formal paraneter |ist
function MyFunction(integer Formal Parl, bool ean Formal Par2, bitstring Formal Par3) { ...}

/1 A function call with an actual parameter |ist
MyFunction(123, true,'1100' B);

/1 A function call with assignnent notation for actual paraneters
MyFunction(Formal Par1 := 123, Fornal Par3 := '1100'B, Formal Par2 := true);

EXAMPLE 2. In parameters

function MyFunction(in tenplate MyTenpl ateType MyVal ueParaneter){ ...};
/'l MyVal ueParaneter is in paraneter, the in keyword is optional

/1 A function call with an actual paraneter
MyFunct i on(Myd obal Tenpl ate) ;

EXAMPLE 3: Inout and out parameters

function MyFunction(inout bool ean MyReferenceParaneter){ ...};
/'l MyRef erenceParaneter is an inout paraneter

/1 A function call with an actual paraneter

MyFunct i on(MyBool eanVari abl e) ;
/'l The actual paraneter can be read and set within the function

functi on MyFunction(out tenplate bool ean M/Ref erenceParaneter){ ...};
/'l MyRef erenceParaneter is an out paraneter
/1 A function call with an actual paraneter

MyFunct i on(MyBool eanVari abl e) ;
/Il The actual paraneter is initially unbound, but can be set and read within the function.

EXAMPLE 4: Empty parameter lists

/1 A function definition with an enpty paraneter list shall be witten as
function M/Function(){ ...}

/1 and shall be called as
MyFunction();
/1l Arecord definition with an enpty paranmeter list shall be witten as

type record M/Record { ...}

/1 and shall be used as
tenpl ate MyRecord Mytenplate :={ ...}

EXAMPLES: Nested parameter lists

/] G ven the nessage definition
type record MyMessageType

{
i nt eger fieldl,
charstring field2,
bool ean field3
}

/1 A message tenplate mght be
tenpl ate MyMessageType MyTenpl ate(i nteger MyVal ue) : =

fieldl := MyVal ue,
field2 := pattern "abc*xyz",
field3 := true

}

/'l A test case paraneterized with a tenplate night be
testcase TCOOl(tenpl ate MyMessageType RxMsg) runs on PTCl system TSl {

M/PCO. recei ve(RxMsQ) ;

ETSI

32 ETSI ES 201 873-1 V4.5.1 (2013-04)

/1 When the test case is called in the control part and the paraneterized tenplate is
/| passed as an actual paraneter, the tenplate's actual paraneters shall be provided
control

éxecut e(TC001(MyTenpl ate(7)));

5.5 Cyclic Definitions
Direct and indirect cyclic definitions are not allowed with the exception of the following cases:
a) for recursive type definitions (see clause 6.2);
b) function and atstep definitions (i.e. recursive function or altstep calls);
¢) cyclicimport definitions, if the imported definitions only form allowed cyclic definitions.

NOTE 1: Indirect cyclic definitions may be aresult of imports of definitions that are needed for the usage of a
definition but do not need to be known in the importing module (see clause 8.2.3.1).

NOTE 2: For the detection of cycles only the main identifiers of the definition are used. For example, field
identifiers are not used.

Examples
EXAMPLE 1: Module with cyclic constant definition that is not allowed
nodul e MyModul e {
éype record ARecordType { integer a, integer b };

I/ The following two lines include a cycle that is not allowed
const ARecordType cConst :={ 1, dConst.b}; // cConst refers to dConst
const ARecordType dConst :={ 1 , cConst.b}; // dConst refers to cConst

}
EXAMPLE 2: Modules with cyclic import that is allowed

nmodul e MyModul eA {
i mport from MyModul eB { type Myl nteger }
type record of Myl nteger Myl ntegerlList;

}

nodul e MyModul eB {
type integer Myl nteger;
import from MyModul eA { type Myl ntegerlList }

6 Types and values

TTCN-3 supports a number of predefined basic types. These basic types include ones normally associated with a
programming language, such asi nt eger, bool ean and string types, as well as some TTCN-3 specific ones such as
ver di ctt ype. Structured types such asr ecor d types, set typesand uni on types can be constructed from these
basic types. enuner at ed types are specific structured types being constructed of enumerated values.

The specia datatype anyt ype is defined as the union of all known data types and the address type within a module.

Specia types associated with test configurations such asaddr ess, port and conmponent may be used to define the
architecture of the test system (see clause 21).

The special typedef aul t may be used for the default handling (see clause 20.5).

The TTCN-3 types are summarized in table 3.

ETSI

33 ETSI ES 201 873-1 V4.5.1 (2013-04)

Table 3: Overview of TTCN-3 types

Class of type Keyword Subtype
Simple basic types integer range, list
float range, list
boolean list
verdicttype list
Basic string types bitstring list, length
hexstring list, length
octetstring list, length
charstring range, list, length, pattern
universal charstring range, list, length, pattern
Structured types record list (see note)
record of list (see note), length
set list (see note)
set of list (see note), length
enumerated list (see note)
union list (see note)
Special data type anytype list
Special configuration types address
port
component
Special default type default
NOTE: List subtyping of these types is possible when defining a new constrained type
from an already existing parent type but not directly at the declaration of the first
parent type.

NOTE: Behaviour typesfor TTCN-3 are defined in the optional package [i.13].

6.1 Basic types and values

6.1.0 Simple basic types and values
TTCN-3 supports the following basic types:

a) i nteger: atypewith distinguished values which are the positive and negative whole numbers, including
zero.

Values of integer type shall be denoted by one or more digits; the first digit shall not be zero unless the
valueis 0; the value zero shall be represented by a single zero.

b) fl oat: atype to describe floating-point numbers and special float values.
In general, floating point numbers can be defined as.<mantissa> x <base> <&xponent>

where <mantissa> is apositive or negative integer, <base> a positive integer (in most cases 2, 10 or 16)
and <exponent> a positive or negative integer.

In TTCN-3, the floating-point number value notation is restricted to a base with the value of 10. Floating
point values can be expressed by using two forms of value notations:

L] the decimal notation with a dot in a sequence of numbers like, 1.23 (which represents 123x102),
2.783 (i.e. 2783 x 10°3) or -123.456789 (which represents -123 456 789 x 10°6); or

" by two numbers separated by E where the first number specifies the mantissa and the second
specifies the exponent, for example 12.3E4 (which represents 123 x 103) or -12.3E-4 (which
represents -123 x 1079).

ETSI

34 ETSI ES 201 873-1 V4.5.1 (2013-04)

NOTE 1: In contrast to the genera definition of float values, the mantissa of in theT TCN-3 value notation, beside
integers, alows decimal numbers as well.

The special values of the float type consist of i nf i ni ty (positiveinfinity), - i nfi ni ty (negative infinity) and the
valuenot _a_nunber . For the ordering of special values see clauses7.1.1 and 7.1.3.

NOTE 2: - not _a_nunber (i.e. minusnot a number) is not to be used.

¢) bool ean: atype consisting of two distinguished values.

Values of boolean type shall bedenoted by t r ue and f al se.

d) verdicttype: atypefor use with test verdicts consisting of 5 distinguished values. Values of
ver di ctt ype shal be denoted by pass,fail,i nconc,noneanderror.

6.1.1 Basic string types and values

TTCN-3 supports the following basic string types:

NOTE 1. The general term string or string typein TTCN-3 refersto bi t st ri ng, hexstri ng, octetstri ng,
charstring anduni versal charstring.

a) bitstring: atypewhose distinguished values are the ordered sequences of zero, one, or more bits.

Values of typebi t st ri ng shal be denoted by an arbitrary number (possibly zero) of the bit digits:
01, preceded by asingle quote (') and followed by the pair of characters 'B.

EXAMPLE 1: 'o01101'B.

b) hexstri ng: atypewhose distinguished values are the ordered sequences of zero, one, or more hexadecimal
digits, each corresponding to an ordered sequence of four bits.

Values of type hexst ri ng shal be denoted by an arbitrary number (possibly zero) of the hexadecimal
digits (uppercase and lowercase letters can equally be used as hex digits):

0123456789abcdefABCDEF

preceded by asingle quote (') and followed by the pair of characters 'H; each hexadecimal digit is used to
denote the value of a semi-octet using a hexadecimal representation.
EXAMPLE 2: ' ABO1D H

' ab0ld' H
' AbO1D H

c) octetstring: atypewhose distinguished values are the ordered sequences of zero or a positive even
number of hexadecimal digits (every pair of digits corresponding to an ordered sequence of eight bits).

Values of typeoct et st ri ng shall be denoted by an arbitrary, but even, number (possibly zero) of the
hexadecimal digits (uppercase and lowercase letters can equally be used as hex digits):

0123456789abcdefABCDEF

preceded by a single quote (') and followed by the pair of characters' ¢; each hexadecimal digit is used to
denote the value of a semi-octet using a hexadecimal representation.
EXAMPLE 3: ' FF96' O
"ff96' O
' Ff96' O
d) charstring: aretypeswhose distinguished values are zero, one, or more characters of the version of

Recommendation ITU-T T.50 [4] complying with the International Reference Version (IRV) as specified in
clause 8.2 of Recommendation ITU-T T.50 [4].

ETSI

35 ETSI ES 201 873-1 V4.5.1 (2013-04)

NOTE 2: ThelRV version of Recommendation ITU-T T.50 [4] is equivalent to the IRV version of the International
Reference Alphabet (former International Alphabet No.5 - |A5), described in
Recommendation ITU-T T.50 [4].

Values of char st ri ng type shall be denoted by an arbitrary number (possibly zero) of non-control
characters from the relevant character set, preceded and followed by double quote (). Graphical characters
include the range from SP(32) to TILDE (126). Values of char st ri ng type can aso be calculated using the
predefined conversion function int2char with the positive integer value of their encoding as argument (see
clause C.1).

NOTE 3: The predefined conversion function is able to return single-character-length values only.

In cases where it is necessary to define strings that include the character double quote (*) the character is
represented by a pair of double quotes on the same line with no intervening space characters.

EXAMPLE 4: The charstring "ab"cd" iswritten in TTCN-3 code as in the following constant declaration. Each of
the 3 quote characters that are part of the string is preceded by an extra quote character and the

whole character string is delimited by quote characters, e.g.
var charstring vl _char:= """ab""cd""";

€) The character string type preceded by the keyword uni ver sal denotes types whose distinguished values are
zero, one, or more characters from | SO/IEC 10646 [2].

uni ver sal char stri ng valuescan aso be denoted by an arbitrary number (possibly zero) of characters from the
relevant character set, preceded and followed by double quote (), calculated using a predefined conversion function
(see clause C.1.2) with the positive integer value of their encoding as argument or by a"quadruple”.

NOTE 4: The predefined conversion function is able to return single-character-length values only.

In cases where it is necessary to define strings that include the character double quote (*) the character is
represented by a pair of double quotes on the same line with no intervening space characters.

The "quadruple” is only capable to denote a single character and denotes the character by the decimal
values of its group, plane, row and cell according to 1SO/IEC 10646 [2], preceded by the keyword char
included into a pair of brackets and separated by commas (e.g. char (0, O, 1, 113) denotes the
Hungarian character "i"). In cases where it is necessary to denote the character double quote (") ina
string assigned according to the first method (within double quotes), the character is represented by a
pair of double quotes on the same line with no intervening space characters. The two methods may be
mixed within a single notation for a string value by using the concatenation operator.

EXAMPLES5: Theassignment : "the Braille character” & char (0, 0, 40, 48) & "looks like this' represents the
literal string: the Braille character & looks like this.

NOTE 5: Control characters can be denoted by using the predefined conversion function or the quadruple form.

By default, uni ver sal char st ri ng shall conform to the UCS-4 coded representation form
specified in clause 14.2 of 1SO/IEC 10646 [2].

NOTE 6: UCS-4 isan encoding format, which represents any UCS character on afixed, 32 bits-length field.

This default encoding can be overridden using the defined variant attributes (see clause 27.5). The
following useful character string types utf8string, bmpstring, utf16string and iso8859string using these
attributes are defined in annex E.

ETSI

36 ETSI ES 201 873-1 V4.5.1 (2013-04)

6.1.1.1 Accessing individual string elements

Individual elementsin a string type may be accessed using an array-like syntax. Only single elements of the string may
be accessed.

Units of length of different string type elements are indicated in table 4.

Indexing shall begin with the value zero (0). The index shall be between zero and the length of the string minus one for
retrieving an element from a string. For assigning an element to the end of a string, the length of the string should be
used asindex.

EXAMPLE 1: Accessing an existing element

/1 Gven

MyBitString := "'11110111" B;
/1 Then doi ng
M/BitString[4] :='1'B;

// Results in the bitstring '11111111'B

EXAMPLE 2: Specific cases

var bitstring MyBitStringA MBitStringB, MBitStringC

M/BitStringA := '010'B;
M/BitStringA[1] := '11'B; //causes an error as only individual elenents can be accessed
MyBitStringB :="'1'B;

T

MyBitStringB[4] :='1"B; //causes an error as the index is larger than the length of the |hs
M/BitStringC :=''B
MyBit StringC 0] :
MyBit StringC 1] :

"1'B; /1 value of MyBitStringCis '"1'B
"0'B; // value of MyBitStringCis '10'B

6.1.2 Subtyping of basic types

User-defined types shall be denoted by the keyword t ype. With user-defined typesit is possible to create subtypes
(such aslists, ranges and length restrictions) on basic types, structured types and anytype according to table 3.

6.1.2.1 Lists of templates

TTCN-3 permits the specification of alist of distinguished templates aslisted in table 3. The templatesin the list shall
be instances of the type being constrained and the set of values matching at least one of these templates shall be a subset
of the values defined by the type being constrained. The subtype defined by this list restricts the allowed values of the
subtype to those values matching at least one of the templatesin the list. The templatesin the list shall only (directly or
indirectly) reference other templates or constant expressions. Constant expressions used (directly or indirectly) in the
template expressions shall meet with the restrictionsin clause 10 for constant expressions used in type definitions.

EXAMPLE:

type bitstring MListOFBitStrings ('01'B, '10'B, '11' B);
type float pi (3.1415926);
type charstring MyStringList ("abcd", "rgy", "xyz");
type universal charstring Special Letters
(char(0, 0, 1, 111), char(O0, 0, 1, 112), char(0, O, 1, 113));

6.1.2.2 Lists of types

TTCN-3 permits the specification of alist of subtypes aslisted in table 3 for value lists. The typesin the list shall be
subtypes of the root type. The subtype defined by thislist restricts the allowed values of the subtype to the union of the
values of the referenced subtypes.

EXAMPLE:
type bitstring BitStringsl ('0'B, '1'B);

type bitstring BitStrings2 ('00'B, '01'B, '10'B, '10' B);
type bitstring BitStrings_1_2 (Bitstringsl, Bitstrings2);

ETSI

37 ETSI ES 201 873-1 V4.5.1 (2013-04)

6.1.2.3 Ranges

TTCN-3 permits the specification of range constraints for the typesi nt eger, charstring, uni versal
charstringandfl oat (or derivations of thesetypes). Fori nt eger andf | oat, the subtype defined by the
range restricts the allowed values of the subtype to the valuesin the range including or excluding the lower boundary
and/or the upper boundary. The upper boundary shall be greater than or equal to the lower boundary.

In order to specify an infinite integer range, the keyword -i nfi ni ty ori nfi ni ty canbe used instead of avalue
indicating that there is no lower or upper boundary; - i nfi ni ty shall not be used as the upper boundandi nfinity
shall not be used as the lower bound for integer ranges.

Alsoforfl oat,-infinityorinfinity canbeusedastheboundsinrange restrictions. Using the special value
-i nfinity asthelower bound shall indicate that the allowed numerical values are not restricted downward and the
special value- i nfi ni ty isalsoincluded. If both the lower and upper bounds denote - i nf i ni t y, no numerical
values are included, only the specia value-i nfi ni ty. Using the special valuei nfi ni ty asthe upper bound shall
indicate that the allowed numerical values are not restricted upward and the special valuei nf i ni ty isaso included.
If both the lower and upper bounds denotei nf i ni t y, no numerical values are included, only the special value
infinity.Ifexclusvebounds(!i nfinityor!-infinity) isusedinstead, only the respective numerical float
values are included in therange. In case of f | oat , the specia valuenot _a_nunber isnot allowed in arange
constraint.

Inthecase of char stri ng anduni versal charstring types, the range restricts the allowed values for each
separate character in the strings. The boundaries shall evaluate to valid character positions according to the coded
character set table(s) of the type (e.g. the given position shall not be empty). Empty positions between the lower and the
upper boundaries are not considered to be valid values of the specified range.

Constants used in the constant expressions defining the values shall meet with the restrictionsin clause 10.

EXAMPLE 1:
type integer Myl ntegerRange (0 .. 255); /'l range fromO..255

/1 (with inclusive boundari es)
type integer MylntegerRange (-infinity .. -1); /1 all negative integer nunbers
type integer Myl ntegerRange (0 .. !256); /1 the sanme range as above (with left

/1 inclusive and right exclusive boundary)
type integer Myl ntegerRange (!-1 .. 255); /1 the same range as above(with |eft

/1 exclusive and right inclusive boundary)
type integer MylntegerRange (!-1 .. !256); /1 the sane range as above

/1 (with exclusive boundaries)
type float piRange (3.14 .. 3142E-3);
type float LessThanPi (-infinity .. 3142E-3);
type float Nunbers (-infinity .. infinity); /lincludes all float val ues but not_a_nunber
type float Wong (-infinity .. not_a_nunber); // causes an error as not_a_nunber is not
/1 allowed in range subtyping

EXAMPLE 2:

type charstring MyCharString ("a" .. "z");

/1 Defines a string type of any length with each character within the specified range
type universal charstring MyUCharStringl ("a" .. !"z");

/Il Defines a string type of any length with each character within the range froma to y
/1 (character codes from97 to 121), I|ike "abxy";

/1 strings containing any other character (including control characters), Ilike

/1 "abc2" are disall owed.

type universal charstring MyUCharString2 (char(0, O, 1, 111) .. char(0, 0, 1, 113));

/1 Defines a string type of any length with each character within the range specified using
/1 the quadruple notation

6.1.2.4 String length restrictions

TTCN-3 permits the specification of length restrictions on string types. The length boundaries are based on different
units depending on the string type with which they are used. In al cases, these boundaries shall be inclusive boundaries
only and evaluate to hon-negative i nt eger values (or derivedi nt eger values).

ETSI

38 ETSI ES 201 873-1 V4.5.1 (2013-04)

EXAMPLE:

type bitstring M/Byte | ength(8); /1 Exactly length 8

type bitstring M/Byte length(8 .. 8); /1 Exactly length 8

type bitstring MyN bbl eToByte | ength(4 .. 8); /1 Mnimmlength 4, naxi numlength 8

Table 4 specifies the units of length for different string types.

Table 4: Units of length used in field length specifications

Type Units of Length
bitstring bits
hexstring hexadecimal digits
octetstring octets
character strings characters

For the upper bound the keyword i nfi ni ty may also be used to indicate that thereis no upper limit for the length.
The upper boundary shall be greater than or equal to the lower boundary.

6.1.2.5 Pattern subtyping of character string types

TTCN-3 alows using character patterns specified in clause B.1.5 to constrain permitted values of char st ri ng and
uni ver sal char stri ng types. Thetype constraint shall usethe pat t er n keyword followed by a character
pattern. All values denoted by the pattern shall be a subset of the type being sub typed. Constants used in the constant
expressions defining the values shall meet with the restrictionsin clause 10.

NOTE: Pattern subtyping can be seen as a specia form of list constraint, where members of the list are not
defined by listing specific character strings but via a mechanism generating elements of the list.

EXAMPLE:

type charstring MyString (pattern "abc*xyz");
I/ all permitted values of MyString have prefix abc and postfix xyz

type universal charstring MUString (pattern "*\r\n")
/1 all permitted values of M/UString are terminated by CR/ LF

type charstring MyString2 (pattern "abc?\q{0,0, 1, 113}");
/] causes an error because the character denoted by the quadruple {0,0,1,113} is not a
Il legal character of the TTCN-3 charstring type

type MyString MyString3 (pattern "d*xyz");

/] causes an error because the type MyString does not contain a value starting with the
/'l character d

6.1.2.6 Mixing subtyping mechanisms

6.1.2.6.1 Mixing patterns, lists and ranges

Withini nt eger andf | oat (or derivations of these types) subtype definitionsit is allowed to mix lists and ranges. It
is possible to mix both template list and type list subtyping with each other and with range subtyping. Overlapping of
different constraintsis not an error.

EXAMPLE 1:

type integer MylntegerRange (1, 2, 3, 10 .. !20, 99, 100);
type float |essThanPi AndNaN (-infinity .. 3142E-3, not_a_nunber);

Withinchar stri ng and uni versal charstring subtypedefinitionsit isnot allowed to mix pattern, template
list, type list, or range constraints.

ETSI

39 ETSI ES 201 873-1 V4.5.1 (2013-04)

EXAMPLE 2:

type charstring MyCharStrO ("gr", "xyz");
/1 contains character strings gr and xyz;

type charstring M/CharStrl ("a".."z");
/1 contains character strings of arbitrary length containing characters a to z.

type charstring M/CharStr2 (pattern "[a-z]#(3,9)");
/1 contains character strings of length from3 to 9 characters containing characters a to z

6.1.2.6.2 Using length restriction with other constraints

Withinbi t stri ng, hexstring, octetstring subtype definitionslists and length restriction may be mixed in
the same subtype definition.

Withinchar stri ng and uni versal charstri ng subtypedefinitionsit isallowed to add alength restriction
to constraints containing list, range or pattern subtyping in the same subtype definition.

When mixed with other constraints the length restriction shall be the last element of the subtype definition. The length
restriction takes effect jointly with other subtyping mechanisms (i.e. the value set of the type consists of the common
subset of the value setsidentified by the list, range or pattern subtyping and the length restriction).

EXAMPLE:

type charstring M/CharStr5 ("gr", "xyz") length (1..9);
/1 contains the character strings gr and xyz;

type charstring M/CharStr6 ("a".."z") length (3..9);
/1 contains character strings of length from3 to 9 characters and containi ng characters
/Il atoz

type charstring M/CharStr7 (pattern "[a-z]#(3,9)") length (1..9);
/1 contains character strings of length from3 to 9 characters containing characters a to z

type charstring M/CharStr8 (pattern "[a-z]#(3,9)") length (1..8);
/'l contains character strings of length from3 to 8 characters containing characters a to z

type charstring MyCharStr9 (pattern "[a-z]#(1,8)") length (1..9);
// contains any character strings of length from1 to 8 characters containing characters
/1 atoz

type charstring MyCharStr10 ("gr", "xyz") length (4);
/]l causes an error as it contains no value
6.2 Structured types and values

Thet ype keyword is also used to specify structured types such asr ecor d types, r ecor d of types, set types, set
of types, enurrer at ed typesand uni on types.

Values of these types may be given using an explicit assignment notation or a short-hand value list notation.

EXAMPLE 1:

const MyRecordType MyRecordVal ue: = / l assi gnnent notation
fieldl :="11001' B,
field2 := true,
field3 := "A string"

}

/1 O

const MyRecordType MyRecordVal ue: = {'11001'B, true, "A string"} //value list notation

The assignment notation can be used for record, record of,set,set of anduni on value notations and for
arrays. The value list notation can be used for r ecord, record of,set andset of vaue notationsand for
arrays. The indexed notation can be used for r ecor d of and set of value notations and for arrays. See more details
in the subsequent clauses.

ETSI

40 ETSI ES 201 873-1 V4.5.1 (2013-04)

EXAMPLE 2:
var MyRecordType MyVari abl e: = // assi gnnent notation
{
fieldl :="11001' B,
/] field2 inplicitly unspecified
field3 := "A string"
}
/1 O
var MyRecordType MyVari abl e: = // assi gnnent notation
fieldl :="11001' B,
field2 := -, // field2 explicitly unspecified
field3 := "A string"
}
/1 O
var MyRecordType MyVariable:= {'11001'B, -, "A string"} //value list notation

It isnot alowed to mix the two value notations in the same (immediate) context.

EXAMPLE 3:

/1 This is disallowed
const MyRecordType MyRecordVal ue: = { M/l ntegerValue, field2 := true, "A string"}

Where applicable TTCN-3 type definitions may be recursive. The user, however, shall ensure that all type recursionis
resolvable and that no infinite recursion occurs.

In case of record and set types, to avoid infinite recursion, fields referencing to its own type, shall be optional.

EXAMPLE 4:

/1 Valid recursive record type definition
type record MyRecordl

Fi el dTypel fieldi,
M/Recordl field2 optional,
Fi el dType3 field3

}

/1 Invalid recursive record type definition causing an error
type record MyRecord2

Fi el dTypel fieldi,
MyRecor d2 field2,
Fi el dType3 field3

}

In case of union types, to avoid infinite recursion, at least one of the alternatives shall not reference its own type.

EXAMPLE 5:

/1 Valid recursive union type definition
type union MyUni onl
{

MyUni onl choi cel,
charstring choice2

}

/1 Invalid recursive union type definition causing an error
type uni on MyUni on2
{

MyUni on2 choi cel,
MyUni on2 choi ce2

ETSI

41 ETSI ES 201 873-1 V4.5.1 (2013-04)

6.2.1 Record type and values

TTCN-3 supports ordered structured types known asr ecor d. The elements of ar ecor d type may be any of the basic
types or user-defined data types (such as other records, sets or arrays). The values of ar ecor d shall be compatible
with the types of ther ecor d fields. The element identifiers are local to ther ecor d and shall be unique within the

r ecor d (but do not have to be globally unique).

EXAMPLE 1:

type record MyRecordType
{

i nt eger fieldl,
MyQt her Recor dType field2 optional,
charstring field3

}

type record MyQt her Recor dType
bitstring fieldl,
bool ean field2
}
Records may be defined with no fields, i.e. as empty records.

EXAMPLE 2:

type record MyEnptyRecord {}

A record valueisassigned on anindividual element basis. The order of field valuesin the value list notation shall be
the same as the order of fields in the related type definition.

EXAMPLE 3:
var integer MylntegerValue := 1;
const MyQt her Recor dType MyQt her Recor dVal ue: =

fieldl :
field2 :

'11001" B,
true

var MyRecordType MyRecordVal ue : =

fieldl := Myl ntegerVal ue,
field2 : = M/O her Recor dVal ue,
field3 := "A string"

The same val ue specified with avalue list.

EXAMPLE 4:

M/Recor dVval ue: = { Myl nt eger Val ue, {'11001'B, true}, "A string"};

When the assignment notation is used for r ecor d-s, fields wished to be changed shall be identified explicitly and a
value, the not used symbol "-" or the om t keyword can be associated with them. The omi t keyword shall only be
used for optional fields. Itsresult isthat the given field is not present in the given value.

NOTE: Pleases note the difference between omitted and uninitialized fields. Omitted optional fields are not
present in the record or set value intentionally, i.e. the field isinitialized and it does not prevent the whole
record or set from being completely initialized.

When the assignment notation is used in a scope, wherethe opt i onal attribute isimplicitly or explicitly set to
"explicit omt",fields, not explicitly referred to in the notation, shall remain unchanged. In particular, when
specifying partial values (i.e. setting the value of only a subset of the fields) using the assignment notation, for example,
a initialization, only the fields or elements to be assigned val ues shall be specified. Fields or elements not mentioned
areimplicitly left uninitialized. It is also possible to leave fields explicitly unspecified using the not used symbol "-".
When re-assigning a previoudly initialized value, using the not used symbol or just skipping afield or element in an

assignment notation, will cause that field or element to remain unchanged.

ETSI

42 ETSI ES 201 873-1 V4.5.1 (2013-04)

EXAMPLE 5:
var MyRecordType MyVariable :=
{
fieldl := "'111' B,
field2 := fal se,
field3 := -
}
MyVariable := { '10111'B, -, - };

/] after this, MyVariable contains:
/1 { '10111'B, false /* unchanged */, <undefined> /* unchanged */ }

MyVari abl e :

field2 := true

/1 after this, MyVariabl e contains:
/1 { '10111'B /* unchanged */, true, <undefined> /* unchanged */ }

MyVari able : =

{
fieldl := -,
field2 := fal se,
field3d := -

/1 after this, MyVariable contains:
/1 { '10111'B /* unchanged */, false, <undefined> /* unchanged */}

When the assignment notation is used in a scope, wherethe opt i onal attributeissetto"inplicit omt",
optiona fields, not directly referred to in the notation, shall implicitly be set to omit, while mandatory fields shall
remain unchanged (see also clause 27.7).

When using the value list notation, all fields in the structure shall be specified either with a value, the not used symbol
"-" ortheomi t keyword. Theom t keyword shall only be used for optional fields. Its result isthat the given field is
not present in the given value. The first component of thelist (avalue, a"-" or om t) is associated with the first field,
the second list component is associated with the second field etc. No empty assignment is allowed (i.e. two commas, the
second immediately following the first or only with white space between them). Fields or elements to be left unchanged
shall be explicitly skipped in thelist by using the not-used-symbol "-".

When the value list notation is used in a scope, wherethe opt i onal attribute isimplicitly or explicitly set to
"explicit omt,aready initiadized fields or elements left without an associated component in a value list notation
(i.e. a the end of avalue) are becoming uninitialized. In this way, a value with initialized fields or elements can be
made empty by using an empty pair of curly brackets ("{}").

When using value list notation in a scope wherethe opt i onal attributeissetto”i nplicit omit", optiona fields
wished to be omitted by the implicit mechanism, but followed by fields to which avalue or template is assigned
explicitly, shall be skipped by using the not used symbol "-". When all remaining fields at the end of the type definition
are optional and they are wished to be omitted by the implicit mechanism, either the not used symbol "-" can be used for
some or all of them or they can simply be left out from the notation.

EXAMPLE 6:

type record R {
integer f1,
integer f2 optional,
i nteger f3,
integer f4 optional,
integer f5 optional

}

var Rx :={ 1, -, 2} with { optional "inplicit omt" }

/1 after the assignnment x contains { 1, omt, 2, omt, omt }

var Rx2 :={ 1, 2} with { optional "inplicit omt" }

/1 after the assignnent x2 contains { 1, 2, <undefined> onit, onit }

ETSI

43 ETSI ES 201 873-1 V4.5.1 (2013-04)

6.2.1.1 Referencing fields of a record type

Elements of ar ecor d shal be referenced by the dot notation Typel dOr Expr essi on. El enent | d, where
Typel dOr Expr essi on resolvesto the name of a structured type or an expression of a structured type such as
variable, formal parameter, module parameter, constant, template, or function invocation. El enent | d shall resolve to
the name of afield in the structured type. Fields of record type definitions shall not reference themselves.

EXAMPLE 1:

MyVarl : = MyRecordl. nyEl enent 1;
/1 If arecord is nested within another type then the reference nay look like this
MyVar 2 : = MyRecordl. nyEl enent 1. nyEl enent 2;

EXAMPLE 2:

type record MyType

{
integer fieldl,

M/Type.field2 field2 optional, // this circular reference is NOT ALLOANED
bool ean fiel d3

}

If afieldinarecord type or asubtype of arecord typeis referenced by the dot notation, the resulting type is the set of
values allowed for that field imposed by the constraints of the field declaration itself (i.e. any constraints applied to the
record type itself are ignored).

EXAMPLE 3:
type record MyType2
{
integer fieldl (1 .. 10),
charstring field2 optional
}
type MyType2 MyType3d ({1, onit}, {2, "foo"}, {3, "bar"}) ;
type MyType3.fieldl MyType4; /'l MyTyped is the integer type constrained to
/1 the values 1..10
type MyType3.field2 MyType5; /'l MyType5 is the charstring type
type MyType2.fieldl MyTypes6; /'l MyType6 is the integer type constrained to
/1 the values 1..10
type MyType2.field2 MType7; /'l MyType7 is the charstring type
6.2.1.2 Optional elements in a record

Optiona elementsinar ecor d shall be specified using the opt i onal keyword.
EXAMPLE 1:

type record MyMessageType

Fi el dTypel field1,
Fi el dType2 field2 optional,

Fiel dTypeN fiel dN
}

Optional fields shall be omitted using the omit symbol.
EXAMPLE 2:
MyRecor dVal ue: = { Myl nt eger Val ue, omt , "A string"};
/'l Note that this is not the sane as witing,

/'l MyRecordVal ue: = { Myl ntegerValue, -, "A string"};
/1 which would nean the value of field2 is unchanged

ETSI

44 ETSI ES 201 873-1 V4.5.1 (2013-04)

6.2.1.3 Nested type definitions for field types

TTCN-3 supports the definition of types for record fields nested within the r ecor d definition. Both the definition of
new structured types (r ecor d, set , enurrer at ed, set of ,record of ,and uni on) and the specification of
subtype constraints are possible.

EXAMPLE:

Il record type with nested structured type definitions
type record MyNest edRecordType

{

record

{

i nt eger nestedFi el d1,
float nestedFiel d2
} outerFieldi,
enuner at ed {
nest edEnum,
nest edEnung
} outerField2,
record of bool ean outerField3

}

/1 record type with nested subtype definitions
type record MyRecor dTypeW t hSubt ypedFi el ds
{

i nt eger fieldl (1 .. 100),
charstring field2 length (2 .. 255)

6.2.2 Set type and values

TTCN-3 supports unordered structured types known as set . Set types and values are similar to records except that the
ordering of the set fieldsis not significant.

EXAMPLE:
type set M/Set Type
{
i nt eger fieldl,
charstring field2
}

Thefield identifiers are local to the set and shall be unique within the set (but do not have to be globally unique).

The value list notation for setting values shall not be used for values of set types.

6.2.2.1 Referencing fields of a set type

Elements of aset shall be referenced by the dot notation (see clause 6.2.1.1). Elements of set type definitions shall not
reference themselves. For referencing field types of set types, the samerules apply asin clause 6.2.1.1 for fields of
record types.

EXAMPLE:
MyVar3 : = MySet 1. nyEl enent 1;
/1 1f a set is nested in another type then the reference may | ook like this
MyVar4 : = MyRecordl. nyEl enent 1. nyEl enent 2;

/'l Note, that the set type, of which the field with the identifier 'nyElenent2' is referenced,
/1l is enbedded in a record type

6.2.2.2 Optional elements in a set

Optional elementsinaset shall be specified using the opt i onal keyword.

ETSI

45 ETSI ES 201 873-1 V4.5.1 (2013-04)

6.2.2.3 Nested type definition for field types

TTCN-3 supports the definition of types for set fields nested within the set definition, similar to the mechanism for
record types described in clause 6.2.1.3.

6.2.3 Records and sets of single types

TTCN-3 supports the specification of records and sets whose elements are all of the same type. These are denoted using
the keyword of . These records and sets do not have element identifiers and can be considered similar to an ordered
array and an unordered collection respectively.

NOTE 1: Subtyping of record of and set of types seein clause 6.2.13.
EXAMPLE 1:

type set of boolean MySetOf Type; // is an unlinmited set of bool ean val ues

When the assignment notation isused for r ecord of -s, set of -sand arrays, el ements wished to be changed are
identified explicitly and either a value or the not used symbol "-" can be assigned to them. Other fields, not referred to
in the notation, shall remain unchanged. In particular, when specifying partial values (i.e. setting the value of only a
subset of the fields) using the assignment notation, for example, at initialization, only the elements to be assigned values
shall be specified: elements not mentioned are implicitly left uninitialized. It is also possible to leave fields explicitly
unspecified using the not used symbol "-". When re-assigning a previously initialized value, using the not used symbol
or just skipping afield or element in an assignment notation, will cause that field or element to remain unchanged.

EXAMPLE 2:

var MyRecordOf Type MyVariable := {
[0] :='111'B,
.= "101' B,

—_
=
—

1o

MyVariable := { '10111'B, -, - };
// after this, MyVariable contains:
/1 { '10111'B, '101'B /* unchanged */, <undefined> /* unchanged */ }

M/Vari able : =

{
[1] :='010'B,

/] after this, MyVariabl e contains:
/1 { '10111' B/ * unchanged */, '010'B, <undefined>/* unchanged */ }

MyVari able : =
{
[0] :
[1] :
[2] :

/] after this, MyVariabl e contains:
/1 { '10111' B/ * unchanged */, '001' B, <undefined> /* unchanged */}

' 001' B,

When using the value list notation, all elementsin the structure shall be specified either with a value or the not used
symbol "-". The first member of the list is assigned to the first element, the second list member is assigned to the second
element, etc. No empty assignment is allowed (e.g. two commas, the second immediately following the first or only
with white space between them). Elements to be left out of the assignment shall be explicitly skipped in the list by use
of the not-used-symbol "-". Already initialized elements left without a corresponding list member in avalue list notation
(i.e. a the end of alist) are becoming uninitialized. In this way, a value with initialized elements can be made empty by
using the empty value list notation ("{}").

ETSI

46 ETSI ES 201 873-1 V4.5.1 (2013-04)

Indexed value notations can be used on both the right-hand side and left-hand side of assignments. The index notation,
when used on the right hand side, refers to the value of the identified element of ar ecor d of oraset of or array.
When it isused at the left hand side, only the value of the identified single element is changed, values assigned to other
elements already remain unchanged. The index of the first element shall be zero and the index value shall not exceed
the limitation placed by length subtyping. If the value of the element indicated by the index at the right-hand of an
assignment is undefined (uninitialized), this shall cause a semantic or run-time error. If an indexing operator at the left-
hand side of an assignment refers to a non-existent element, the value at the right-hand side is assigned to the element
and all elements with an index smaller than the actual index and without assigned value are created with an undefined
value. Undefined elements are permitted only in transient states (while the value remainsinvisible). Sending ar ecor d
of orset of vauewith undefined elements shall cause a testcase error.

NOTE 2: When using on the right hand side of an assignment for r ecor d of - s, set of - sor arrays, the
assignment notation and the indexed notation have similar effect, with the exception that the assignment
notation is able to address multiple elements in one notation, while the index notation is able to address a
single element only.

EXAMPLE 3:

/1 Gven

type record of integer MyRecordd;

var integer MyVar;

/1 Using the value list notation

var MyRecorddf MyRecordOfvar :={ 0, 1, 2, 3, 4 };

/1 The sane record of, defined with the assignnent notation
var MyRecordOf MyRecor dOf Var Assi gnnent @ = {
[0] :=
[1]
[2]
[3]
[4]

BWNRPO

}s

/1 Using an i ndexed notation
MyVar = MyRecordOfVar[O0]; // the first element of the "record of" value (integer 0)
/1 is assigned to MyVar

/1 I ndexed values are permitted on the left-hand side of assignments as well:
M/RecordOFVar[1] := MyVar; // MyVar is assigned to the second el enent
/1 value of MyRecordOfVar is { 0, 0, 2, 3, 4}

/1 The assi gnnment

M/RecordOvVar :={ 0, 1, -, 2 };

/1 will change the value of MyRecordOfVar to{ 0, 1, 2 <unchanged>, 2};

/1 Note, that the 3' el ement woul d be undefined if had no previous assigned val ue.

/1 The assi gnment

M/RecordOf Var[6] : = 6;

/1 will change the value of MyRecordOfVar to

I/ {0, 1, 2, 2, <uninitialized> <uninitialized> 6 };

/! Note the 5'" and 6'" el enents (with indexes 4 and 5) had no assigned val ue before this
/1 last assignnent and are therefore undefined.

M/RecordCf Var[4] := 4; MyRecordCfVar[5] := 5;
/1 will conplete MyRecordOfVar to the fully defined value { 0, 1, 2, 2, 4, 5, 6 };

//Pls. Note the difference between the to i ndex assignnent notations the followi ng exanple:
var M/RecordOf ix :={ 0,1,2 }

ix = { [3] :=2*ix[2]+1 }

/1 the value of ixis: {0, 1, 2, 5}

/1 The sane result can be achi eved by using an index notation on the left hand side of
//the assignnent:

var MyRecordOf ix :={ 0,1,2 }

ix[3] :=2*ix[2]+1

/1 the value of ix is: {0, 1, 2, 5}

NOTE 3: Theindex notation makesit possible e.g. to copy r ecor d of values element by element in afor loop.
For example, the function below reverses the elements of ar ecor d of vaue:

function reverse(in M/Recordd src) return MyRecordOf

{
var MyRecordOF dest;

ETSI

a7 ETSI ES 201 873-1 V4.5.1 (2013-04)

var integer i, srcLength := |l engthof (src);
for(i :=0; i < srcLength; i:=i + 1) {

dest[srcLength - 1 - i] :=src[i];
return dest;

}

Embedded r ecord of andset of typeswill result in adata structure similar to multidimensional arrays
(seeclause 6.2.7).

EXAMPLE 4:

/1 Gven
type record of integer MyBasi cRecordOf Type;
type record of MyBasi cRecordO Type My2DRecordCf Type;

/1 Then, the variable nyRecordOfArray will have similar attributes to a two-dinensional array:
var My2DRecor dOF Type nmyRecor dOf Array;

/1 and reference to a particular elenment would | ook like this

/1 (value of the second el enent of the third ' MyBasi cRecordOf Type' construct)

nyRecordOr Array [2][1] := 1,

6.2.3.1 Nested type definitions

TTCN-3 supports the definition of the aggregated type nested withther ecor d of orset of definition. Both the
definition of new structured types (r ecor d, set , enuner at ed, set of andr ecor d of) and the specification of
subtype constraints are possible.

EXAMPLE:

type record of enunerated { red, green, blue } ColorlList;
type record length (10) of record length (10) of integer Matrix;
type set of record { charstring id, charstring val } GenericParaneters;

6.2.3.2 Referencing elements of record of and set of types

It isalso alowed to reference theinner typeof r ecor d of andset of typesby using theindex notation but with a
dash. The notation Typel d[-] , where Typel d resolvesto the name of ar ecord of orset of type, references
the inner type of Typel d. If the type definition restricts the element type of the record of or set of type, referencing
the inner type of that type yields atype which contains all values from the constrained type.

EXAMPLE:

/1 Provided the definitions bel ow
type record of integer MyRecordOf I nt;
type record of record {

integer f1,

set { integer s1, boolean s2 } f2
} MyRecor dOf Recor d;
type record of record of integer MyRecordO RecordOf I nt;
type record of record {

integer f1,

record of boolean f2
} MyRecor dOf Recor d2;

/1 Referencing the inner integer type
type MyRecordOfInt[-] Ml nteger;
const MyRecordOfInt[-] c_Mylnteger:= 5;

/'l Referencing the nested record type
type MyRecordOf Record[-] Myl nnerRecord;
const MyRecordOfRecord[-] ¢c_MRecord :={ f1 =5; f2 :={ s1 :=0; s2 :=true }}

/'l Referencing the set type nested in the inner record

type MyRecordOf Record[-].f2 My/NestedSet;

const MyRecordORecord[-].f2 c_MWSet :={ s1 :=0; s2 :=true }
/'l Referencing the innernost bool ean

type MyRecordOf Record[-].f2.s2 MyBool ean;

const MyRecordOf Record[-].f2.s2 c_M/Bool := fal se;

/1 Referencing the inner record of

ETSI

48 ETSI ES 201 873-1 V4.5.1 (2013-04)

type MyRecordOf RecordOf I nt[-] Myl nnerRecordOf I nt;
const MyRecordO RecordOfInt[-] c_MylnnerRecordOfInt :={ 0, 1, 2, 3 };

/1 Referencing the integer type within the inner record of
type MyRecordOf RecordOrInt[-][-] Ml nteger?2;
const MyRecordOf RecordOfInt[-][-] c_Mylnteger2 := 1;

/1 Referencing the boolean type within the nested record
type MyRecordOf Record2[-].f2[-] Ml nnernostBool ean;
const MyRecordO Record2[-].f2[-] c_MylnnernostBool ean : = true ;

type record length (5) of record of integer Constrai nedRecordOfInt (1 .. 10);
type Constrai nedRecordOInt[-] Constrainedlnt;

// defines the type record of integer, where the integer values are restricted
// to the range 1 .. 10 but the record of has no length restriction

6.2.4 Enumerated type and values

TTCN-3 supports enuner at ed types. Enumerated types are used to model types that take only a distinct named set of
values. Such distinct values are called enumerated values. Each enumerated value shall have an identifier. Operations
on enumerated types shall only use these identifiers and are restricted to assignment, equivalence and ordering
operators. The identifiers of enumerated values shall be unigque within the enumerated type (but do not have to be
globally unique) and are consequently visible in the context of the given type only. The identifiers of enumerated values
shall only be reused within other structured type definitions and shall not be used for identifiers of local or global
visibility at the same or alower level of the same branch of the scope hierarchy (see scope hierarchy in clause 5.2).

EXAMPLE 1: Declaration of enumerated types and values

type enunerated MyFirstEnunType {
Monday, Tuesday, Wednesday, Thursday, Friday
s

type integer Monday;
/1 This definition does not clash with the previous one
/1 as Monday in MyFirstEnunType is of |ocal scope

type enunerated MySecondEnuniType {
Sat urday, Sunday, Monday

/} This definition is legal as it reuses the Monday identifier within
/1 a different enunerated type

type record MyRecordType {
i nt eger Monday

/} This definition is legal as it reuses the Monday identifier within
/1 a distinct structured type as identifier of a given field of this type

type record MyNewRecordType {
M/Fi rst Enunifype firstField,
i nt eger secondFi el d

}

var MyNewRecor dType newRecordVal ue := { Mnday, 0 }
/'l MyFirstEnunType is inplicitly referenced via the firstField el enent of MyNewRecordType

Each enumerated value may optionally have a user-assigned integer value, which is defined after the name of the
enumerated value in parenthesis. Each user-assigned integer number shall be distinct within asingleenuner at ed
type. For each enumerated value without an assigned integer value, the system successively associates an integer
number in the textual order of the enumerated values, starting at the left-hand side, beginning with zero, by step 1 and
skipping any number occupied by any of the enumerated values with a manually assigned value. These values are only
used by the system to allow the use of relational operators. The user shall not directly use associated integer val ues but
can access them and convert integer values into enumerated values by using the predefined functions enun®i nt and

i nt 2enum (see clauses 16.1.2, C.1.29 and C.1.4).

NOTE 1: Theinteger value also may be used by the system to encode/decode enumerated values. This, however is
outside the scope of the present document (with the exception that TTCN-3 allows the association of
encoding attributesto TTCN-3 items).

For any instantiation or value reference of an enuner at ed type, the given type shall be implicitly or explicitly
referenced.

ETSI

49 ETSI ES 201 873-1 V4.5.1 (2013-04)

NOTE 2: If the enumerated type is an element of a user defined structured type, the enumerated type isimplicitly
referenced viathe given element (i.e. by the identifier of the element or the position of the valuein a
value list notation) at value assignment, instantiation, etc.

EXAMPLE 2: Using enumerated types (see also example 4 of clause 8.2.3.1)

/1 Valid instantiations of MyFirstEnunType and MySecondEnunType woul d be
var MyFirst EnunType Today := Tuesday;
var MySecondEnunilype Tonorrow : = Mnday;

/1 The followi ng statenents however cause an error as the two variables are instances
/1 of different enuneration types

Today : = Tonorrow,

Today == Tonorr ow,

/1 The followi ng operation is correct

if (Today == Monday) {...}

/1 the type of variable Today identifies the type context of MFirstEnunType for the
/1 equality operator

/1 But the foll ow ng causes an error

if (Tuesday == Wednesday) {...}

/1 there is no TTCN-3 type(d) object to establish the type context for the equality operator
/] Please note that the values Tuesday and Wednesday are defined within the type

/'l MyFirstEnunType only, but this is not sufficient to establish the type context

When a TTCN-3 global or local definition is declared using an imported enumerated type, the name of that definition
shall not be the same as any of the enumerated values of that type.

6.2.5 Unions

TTCN-3 supportsthe uni on type. The uni on typeisa collection of alternatives, each one identified by an identifier.
Only one of the specified alternatives will ever be present in an actual union value. Union types are useful to model data
which can take one of a finite number of known types.

EXAMPLE:
type uni on MyUni onType
{

i nt eger nunber,
charstring string

}s

/1 A valid instantiation of MyUnionType would be
var MyUni onType age, oneYeard der;
var integer agel nMont hs;

age. nunber := 34; /1 value notation by referencing the field. Note, that this
/'l notation makes the given field to be the chosen one
oneYear A der : = {nunber := age. nunber +1};

agel nMont hs : = age. nunber * 12;

The assignment notation shall be used for uni on-s, and the notation shall assign avalue to one field only. Thisfield
becomes the chosen field. Neither the not used symbol "-" nor omi t isalowed in union value notations.

The value list notation shall not be used for setting values of uni on types.

6.25.1 Referencing fields of a union type

Alternatives of auni on type shall be referenced by the dot notation (see clause 6.2.1.1). The same rules for the
referenced field type asin clause 6.2.1.1 apply. Alternatives of union type definitions shall not reference themselves.

EXAMPLE:

MyVar5 : = MyUni onl. nyChoi cel;

/1 If a union type is nested in another type then the reference nay look like this

MyVar6 : = MyRecordl. nyEl enent 1. nyChoi ce2;

/1 Note, that the union type, of which the field with the identifier 'nyChoice2' is referenced,
// is enbedded in a record type

ETSI

50 ETSI ES 201 873-1 V4.5.1 (2013-04)

6.2.5.2 Option and union

Optiona fields are not allowed for the uni on type, which means that the opt i onal keyword shall not be used with
uni on types.

6.2.5.3 Nested type definition for field types

TTCN-3 supports the definition of types for union alternatives nested within the union definition, similar to the
mechanism for record types described in clause 6.2.1.3.

6.2.6 The anytype

The special type anyt ype isdefined as a shorthand for the union of all known data types and the address typein a
TTCN-3 module. The definition of the term known typesis given in clause 3.1, i.e. the anytype shall comprise al the
known data types but not the port, component, and default types. The address type shall be included if it has been
explicitly defined within that module.

The fieldnames of the anyt ype shall be uniquely identified by the corresponding type names.

NOTE 1. Asaresult of this requirement imported types with clashing names (either with an identifier of a
definition in the importing module or with an identifier imported from a third module) cannot be reached
viathe anytype of the importing module.

EXAMPLE:

/1 A valid usage of anytype woul d be
var anytype MyVar One, M Var Two;
var integer MyVarThree;

MyVar One. i nt eger : = 34,
MyVar Two : = {integer := MyVarOne.integer + 1};

MyVar Three : = MyVar One. i nteger * 12;

Theanyt ype isdefined locally for each module and (like the other predefined types) cannot be directly imported by
another module. However, a user defined type of the type anyt ype can be imported by another module. The effect of
thisisthat all types of that module are imported.

NOTE 2: The user-defined type of anyt ype "contains' al typesimported into the module where it is declared.
Importing such a user-defined type into a module may cause side effects and hence due caution should be
given to such cases.

6.2.7 Arrays

Arrays can be used in TTCN-3 as a shorthand notation to specify record of types. They may be specified also at the
point of avariable declaration. Arrays may be declared as single or multi-dimensional. Array dimensions shall be
specified using constant expressions, which shall evaluate to apositivei nt eger vaues. Constants used in the
constant expressions shall meet with the restrictionsin clause 10.

EXAMPLE 1:

type integer MArrayTypel[3]; /1 Atype with 3 integer elenents
type record length (3) of integer M/Recordf Typel; // The corresponding record of

var M/ArrayTypel al:= { 7, 8, 9 };
var MyRecordOf Typel rl:= al; /'l MyArrayTypel and MyRecordOf Typel are conpati bl e

var integer nyArrayl[3]:=r1,; /1 Instantiates an integer array of 3 elenents
/1 with the index 0 to 2
/'l being conpatible to MArrayTypel and MyRecor dOf Typel

var integer nyArray2[2][3]; // Instantiates a two-dinensional integer array of 2 x 3 elenents
/1 with indexes from(0,0) to (1,2)

ETSI

51 ETSI ES 201 873-1 V4.5.1 (2013-04)

Array elements are accessed by means of the index notation ([]), which shall specify avalid index within the array's
range. Individual elements of multi-dimensional arrays can be accessed by repeated use of the index notation.
Accessing elements outside the array's range will cause a compile-time or test case error.

EXAMPLE 2:

MArrayl[1] := 5;
MWArray2[1]1[2] := 12;

MWArrayl[4] = 12; /] ERROR index shall be between 0 and 2
M/Array2[3][2] := 15; // ERROR first index shall be 0 or 1

Array dimensions may also be specified using ranges (with inclusive boundaries only). In such cases, the lower and
upper values of the range define the lower and upper index values. Such an array is corresponding to arecord of with a
fixed length restriction computed as the difference between upper and lower index bound plus 1 and indexing starting
from the lower bound of the array definition.

EXAMPLE 3:

type integer MyArrayType2[2 .. 5]; // Atype with 4 integer elenents, indices starting with 2
type record length (4) of integer MyRecordOf Type2; // The correspondi ng record of

var integer MyArray3[1 .. 5]; /1 Instantiates an integer array of 5 elenents
/!l with the index 1 to 5

M/Array3[1] := 10; // Lowest index
M/Array3[5] := 50; // Hi ghest index
var integer MJArray4[1 .. 5][2 .. 3]; [// Instantiates a two-dinensional integer array of

/1 5 x 2 elenents with indexes from(1,2) to (5,3)

NOTE: Itisnot possibleto define an array type with a variable amount of elements. Neither isit possible to
define an unlimited array with alower bound on the array index.

The values of array elements shall be compatible with the corresponding variable or type declaration. Values may be
assigned individually by avalue list notation or indexed notation or more than one or all at once by a value list notation.
When the value list notation is used, the first value of thelist is assigned to the first element of the array (the element
with index 0 or the lower bound if an index range has been given), the second value to the next element, etc. Elements
to be left out from the assignment shall be explicitly skipped in the list by using dash.

Indexed value notation can be used on both the right-hand side and left-hand side of assignments. The index of the first
element shall be zero or the lower bound if an index range has been given. The index shall not exceed the limitations
given by either the length or the upper bound of the index. If the value of the element indicated by the index at the
right-hand of an assignment is undefined, this shall cause an error. Sending an array value with undefined elements
shall cause an error. All elementsin an array value that are not set explicitly, are undefined.

For assigning values to multi-dimensional arrays, each dimension that is assigned shall resolve to a set of values
enclosed in curly braces. When specifying values for multi-dimensional arrays, the leftmost dimension corresponds to
the outermost structure of the value, and the rightmost dimension to the innermost structure. The use of array slices of
multi-dimensional arrays, i.e. when the number of indexes of the array value isless than the number of dimensionsin
the corresponding array definition, is alowed. Indexes of array slices shall correspond to the dimensions of the array
definition from left to right (i.e. the first index of the slice corresponds to the first dimension of the definition). Slice
indexes shall conform to the related array definition dimensions.

EXAMPLE 4.
M/Arrayl[0] : = 10;
M/Arrayl[1] : = 20;
M/Arrayl[3]:= 30;

/1 or using an value |ist
M/Arrayl: = {10, 20, -, 30};

MArray4: = {{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}};
/1 the array value is conpletely defined

var integer MArray5[2][3][4] :=
{
{1, 2, 3, 4}, /I assigns a value to M/Array5 slice [0][0]

{5, 6, 7, 8}, // assigns a value to M/Array5 slice [0][1]
{9, 10, 11, 12} // assigns a value to M/Array5 slice [0][2]

ETSI

52 ETSI ES 201 873-1 V4.5.1 (2013-04)

}, I/ end assignnents to M/Array5 slice [0]

{13, 14, 15, 16}, {17, 18, 19, 20}, {21, 22, 23, 24}
} // assigns a value to M/Array5 slice [1]
b

M/Array4[2] := {20, 20};
/1l yields {{1, 2}, {3, 4}, {20, 20}, {7, 8}, {9, 10}};

MArray5[1] :={ {0, 0, 0, 0}, {0, 0, 0, O}, {0, O, O, 0}}
/1 yields {{{1, 2, 3, 4}, {5 6, 7, 8, {9, 10, 11, 12}},
/1 {{o, 0, 0, 0}, {0, 0, 0, O}, {0, O, O, O}}};

M/Array5[0][2] := {3, 3, 3, 3};
Il yields {{{1, 2, 3, 4}, {5 6, 7, 8},
I/ {{o, o, o, 0}, {0, 0, O, 0O},

e
o w
o w
Ao
o w
——
——
-

var integer MArraylnvalid[2][2];
M/Arraylnvalid :={ 1, 2, 3, 4}

/] causes an error as the dinension of the value notation

/1 does not correspond to the dinmensions of the definition
M/Arraylnvalid[2] :={ 1, 2}

/] causes an error as the index of the slice should be 0 or 1

6.2.8 The default type

TTCN-3 alows the activation of altsteps (see clause 16.2) as defaults to capture recurring behaviour. Default references
are unique references to activated defaults. Such a unique default reference is generated by atest component when an
atstep is activated as a default, i.e. a default referenceisthe result of anact i vat e operation (see clause 20.5.2).

Default references have the special and predefined type def aul t . Variables of type def aul t can be used to handle
activated defaults in test components. The special value nul | represents an unspecific default reference, e.g. can be
used for the initialization of variables of default type.

Default referencesare used in deact i vat e operations (see clause 20.5.3) in order to identify the default to be
deactivated.

Default references have meaning only within the test component instances they are activated, i.e. a default reference
assigned to a default variable in test component instance "al" of type "A" has no meaning in test component instance
"a2" of type"A".

The actual data representation of thedef aul t type shall be resolved externally by the test system. This allows abstract
test cases to be specified independently of any real TTCN-3 runtime environment, in other words TTCN-3 does not
restrict the implementation of atest system with respect to the handling and identification of defaults.

6.2.9 Communication port types
Ports facilitate communication between test components and between test components and the test system interface.

TTCN-3 supports message-based and procedure-based ports. Each port shall be defined as being message-based or
procedure-based. Message-based ports shall be identified by the keyword nessage and procedure-based ports shall be
identified by the keyword pr ocedur e within the associated port type definition.

Ports are bidirectional. The directions are specified by the keywordsi n (for the in direction), out (for the out
direction) and i nout (for both directions). Directions shall be seen from the point of view of the test component
owning the port with the exception of the test system interface, wherei n identifies the direction of message sending or
procedure call and out identifies the direction of message receive, get reply or catch exception from the point of view
of the test component connected to the test system interface port.

Each port type definition shall have one or more lists indicating the allowed collection of (message) types or procedure
signatures together with the allowed communication direction.

For configuration purposes the port type may have one map param and one unmap param declaration indicating the
allowed additional parameters for the respective operation. These forma parameters shall be value parameters.

ETSI

53 ETSI ES 201 873-1 V4.5.1 (2013-04)

Whenever a signature (see also clause 14) is defined in the out direction of a procedure-based port, the types of al its

i nout and out parameters, itsreturn type and its exception types are automatically part of thei n direction of this
port. Whenever asignature is defined inthei n direction for a procedure-based port, the types of al itsi nout and out
parameters, its return type and its exception types are automatically part of the out direction of this port.

Ports used for the communication with the SUT may need to address specific entities within the SUT. In addition,
several address schemes may be supported by one SUT at different ports. To support such addressing schemes, TTCN-3
alowsto bind an addr ess type to aport. Vaues of thistype may be used for addressing purposes in communication
operations (see clause 22.1) and be stored in variables. The handling of address types bound to different ports by means
of the dot notation is explained in clause 6.2.12.

Syntactical Structure

M essage-based port:

type port PortTypeldentifier message "{"
{ (address Type ";") |
(map param " (" { Formal ValuePar [","] }+ ")") |
(unmap param " (" { Formal Val uePar [","] }+ ")") |
((in] out | inout) { MessageType [","]

Procedure-based port:
type port PortTypeldentifier procedure "{"

{ (address Type ";") |
(map param " (" { Formal Val uePar [","]

}
(unmap param " (" { Formal ValuePar [","] }+ ")") |
((in] out | inout) { Signature [","] }+";") }
nye
Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) At most one address type should be bound to a port type.
b) At most one map parameter list should be defined for a port type.
c) At most one unmap parameter list should be defined for a port type.

Examples

EXAMPLE 1. Message-based port

/'l Message-based port which allows types MsgTypel and MsgType2 to be received at, MsgType3 to be
/1 sent via and any integer value to be send and received over the port

type port MyMessagePort TypeOne nmessage

{

in MsgTypel, MsgTypeZ2;
out MsgType3;
i nout i nt eger

}

EXAMPLE 2: Procedure-based port

/'l Procedure-based port which allows the renote call of the procedures Procl, Proc2 and Proc3.
/1 Note that Procl, Proc2 and Proc3 are defined as signatures

type port MyProcedurePort Type procedure
{

out Procl, Proc2, Proc3

}
EXAMPLE 3: Message-based port with address type definition
type port MyMessagePort TypeTwo nessage
addr ess integer; /] if addressing is used on ports of type M/MessagePort TypeTwo

/1 the addresses have to be of type integer
i nout MsgTypel, MsgType2;

ETSI

54 ETSI ES 201 873-1 V4.5.1 (2013-04)

NOTE: Theterm message is used to mean both messages as defined by templates and actual values resulting
from expressions. Thus, the list restricting what may be used on a message-based port is simply alist of
type names.

EXAMPLE 4: Usage of param in port declaration

/1 Message based port which allows MsgTyped4 to be send and received over the port
/1 and MsgType5 and MsgType6 as configuration paraneter type

type port MyMessagePort Type message

{

i nout MsgType4;
map param (in MsgType5 pl, out MsgType6 p2);
}
/1 Procedure based port which allows the renpte call of the procedure Procl
/1l and MsgType5 as configuration paraneter type
type port MyProcedurePort Type procedure
{

out Procl,;
unmap param (MsgType5 pl);

6.2.10 Component types

6.2.10.1 Component type definition

The component type defines which ports are associated with a component (see figure 3). The port namesin a
component type definition are local to that component type, i.e. another component type may have ports with the same
names. Port names in the same component type definition shall all have unique names.

PCO2 PCO3
MyMTC MyPTC [r—
/I of MyMTCType fm— Il of MyPTCType —
PCO4
PCO1 PCO1

Figure 3: Typical components

It isalso possible to declare constants, variables and timers local to a particular component type. These declarations are
visible to all testcases, functions and atsteps that run on an instance of the given component type. This shall be
explicitly stated using ther uns on keyword (see clause 16) in the testcase, function or atstep header. Component type
definitions are associated with the component instance and follow the scope rules defined in clause 5.2. Each new
instance of a component type will thus have its own set of constants, variables and timers as specified in the component
type definition (including any initial values, if stated). Constants used in the constant expressions of type declarations
for variables, constants or ports shall meet with the restrictionsin clause 10, however constants used in the constant
expressions of initial values for variables, constants or timers do not have to obey these restrictions.

Syntactical Structure

type conponent Conponent Typeldentifier "{"
{ (Portlnstance
| Varlnstance
| Tinerlnstance

| ConstDef) }

"y
Semantic Description

Component type definitions specify the creation, declaration and initialization of ports and component constants,
variables and timers during the creation of an instance of a component type. These instances can be used asthe main
test component, asthe test system interface or as a parallel test component. Every instance of a component type hasits
own fresh copy of the port, constant, variable, and timer instances defined in the component type definition.

ETSI

55 ETSI ES 201 873-1 V4.5.1 (2013-04)

Restrictions
No specific restrictions in addition to the genera static rules of TTCN-3 given in clause 5.
Examples

EXAMPLE 1. Component type with port instances only
type conponent M/PTCType
{

port MyMessagePort Type PCOL, PCO4,
port M/ProcedurePort Type PCQO2;
port M/AI | MesssagesPort Type PCO3

}
EXAMPLE 2. Component type with variable, timer and port instance
type conponent MyMICType

var integer MyLocal | nteger;

timer MyLocal Ti ner;

port MyMessagePort Type PCOL
}

EXAMPLE 3: Component type with port instance arrays
type conponent MyConpType
{

port MyMessagel nterfaceType PCJO 3]

port MyProcedurel nterfaceType PCO 3][3]

/1 Defines a conponent type which has an array of 3 nessage ports and a two-di nensi onal
/Il array of 9 procedure ports.

6.2.10.2 Reuse of component types
It is possible to define component types as the extension of other component types, using the ext ends keyword.

Syntactical Structure

type conponent Conponent Typel dentifier extends Conponent Typeldentifier "{"
{ (Portlnstance
| Varlnstance
| Tinerlnstance

| ConstDef) }

"y
Semantic Description

In such a definition, the new type definition isreferred to as the extended type, and the type definition following the
ext ends keyword isreferred to as the parent type. The effect of this definition isthat the extended type will implicitly
aso contain all definitions from the parent type. It is called the effective type definition.

It isallowed to have one component type extending several parent typesin one definition, which have to be specified as
acomma-separated list of typesin the definition. Any of the parent types may aso be defined by means of extension.
The effective component type definition of the extended type is obtained as the collection of all constant, variable, timer
and port definitions contributed by the parent types (determined recursively if a parent type is aso defined by means of
an extension) and the definitions declared in the extended type directly. The effective component type definition shall
be name clash free.

NOTE 1: Itisnot considered to be a different declaration and hence causes no error if a specific definitionis
contributed to the extended type by different parent types (via different extension paths).

The semantics of component types with extensions are defined by simply replacing each component type definition by
its effective component type definition as a pre-processing step prior to using it.

NOTE 2: For component type compatibility, this means that a component reference ¢ of type CT1, which extends
CT2, is compatible with CT2, and test cases, functions and altsteps specifying CT2 in their r uns on
clauses can be executed on ¢ (see clause 6.3.3).

ETSI

56 ETSI ES 201 873-1 V4.5.1 (2013-04)

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a)

b)

©)

When defining component types by extension, there shall be no name clash between the definitions being
taken from the parent type and the definitions being added in the extended type, i.e. there shall not be a port,
variable, constant or timer identifier that is declared both in the parent type (directly or by means of extension)
and the extended type. It is not considered to be a name clash if a specific definition is contributed to the
extended type via different extension paths.

When defining component types by extending more than one parent type, there shall be no name clash
between the definitions of the different parent types, i.e. there shall not be a port, variable, constant or timer
identifier that is declared in any two of the parent types (directly or by means of extension). It is not
considered to be a name clash if a specific definition is contributed to the extended type via different extension
paths.

It is allowed to extend component types that are defined by means of extension, aslong as no cyclic chain of
definition is created.

Examples

EXAMPLE 1. A component type extension and its effective type definition

type conponent MyMICType
{

}

var integer MyLocal | nteger;
timer MyLocal Tiner;
port MyMessagePort Type PCOL

type conponent M/Ext endedMICType extends MyMICType

}

var float MyLocal Fl oat;
timer MyQ her Local Ti ner;
port MyMessagePort Type PCQO2;

/Il effectively, the above definition is equivalent to this one:
type conponent M/Ext endedMICType

}

/* the definitions from MyMICType */
var integer MyLocal | nteger;

timer MyLocal Ti ner;

port MyMessagePort Type PCOL

/* the additional definitions */
var float MyLocal Fl oat;

timer MyQtherLocal Ti ner;

port MyMessagePort Type PCQO2;

EXAMPLE 2: A component type extension chain and forbidden cyclic extensions

type
type
type
type

conmponent MICTypeA extends MICTypeB { /* ...
conmponent MICTypeB extends MICTypeC { /* ...
conponent MICTypeC extends MICTypeA { /* ..
conmponent MICTypeD extends MICTypeD { /* ..

/1 ERROR - cyclic extension

*/ '}, I/ ERROR - cyclic extension

EXAMPLE 3: Component type extensions with name clashes

type
{

}

type
type
type
{

conmponent MyExt endedMICType extends MyMICType
var integer MyLocal Integer; // ERROR - already defined in M/fMICType (see above)

var float MyLocal Tiner; /1 ERROR - tiner with that nane exists in MyMICType
port MyQt her MessagePort Type PCOL; // ERROR - port with that name exists in MyMICType

conponent MyBaseConponent { tinmer MyLocal Tiner };
conponent Ml nteri nConponent extends MyBaseConponent { timer MyQtherTinmer };
conmponent MyExt endedConponent extends M nteri nConponent

timer MyLocal Timer; // ERROR - already defined in MylnterinConponent via extension

ETSI

57 ETSI ES 201 873-1 V4.5.1 (2013-04)

EXAMPLE 4: Component type extension from several parent types

type conponent MyConpB { tiner T };
type conponent MyConpC { var integer T };
type conponent MyConpD ext ends MyConpB, MyConpC {}
/1 ERROR - nane clash between MyConpB and MyConpC

/1 MyConpB is defined above

type conponent MyConpE extends MyConpB {
var integer MyVarl := 10;

}

type conponent MyConpF extends MyConpB {
var float Myvar2 := 1.0;
}

type conponent MyConpG extends MyCompB, MyConpE, MyConpF {
/1 No name cl ash.
/1 Al three parent types of MyConpG have a tinmer T, either directly or via extension of
/1 MyConpB; as all these stem (directly or via extension) fromtiner T declared in My/ConpB,
/1 which make this formof collision |egal.
/* additional definitions here */

6.2.11 Component references
Component references are unique references to the test components created during the execution of atest case.
Syntactical Structure
system| ntc | self | VariableRef | Functionlnstance
Semantic Description

A unique component reference is generated by the test system at the time when a component is created. It is the result of
acr eat e operation (see clause 21.2.1). In addition, component references are returned by the predefined operations
syst em(returns the component reference of the test system interface, which is automatically created when testcase
execution is started), nt ¢ (returns the component reference of the MTC, which is automatically created when testcase
execution started) and sel f (returns the component reference of the component in which sel f iscalled).

Component references are used in the configuration operations such asconnect , nap and st art (see clause 21) to
set-up test configurationsand inthef r omt 0 and sender parts of communication operations of ports connected to
test components other than the test system interface for addressing purposes (see clause 22 and figure 6).

In addition, the specia value nul | isavailable to indicate an undefined component reference, e.g. for the initialization
of variables to handle component references.

The actual data representation of component references shall be resolved externally by the test system. This allows
abstract test cases to be specified independently of any real TTCN-3 runtime environment, in other words TTCN-3 does
not restrict the implementation of atest system with respect to the handling and identification of test components.

A component reference includes component type information. This means, for example, that avariable for handling
component references shall use the corresponding component type name in its declaration.

The configuration operations (see clause 21) do not work directly on arrays of components. Instead a specific element
of the array shall be provided as the parameter to these operations. For components, the effect of an array is achieved by
using an array of component references and assigning the relevant array element to the result of the cr eat e operation.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Theonly operations allowed on component references are assignment, equality and non-equality.

b) Thevariable associated with VariableRef (being a component type variable, a component type parameter, etc.)
or the return type associated with Functionlnstance shall be of component type.

ETSI

58 ETSI ES 201 873-1 V4.5.1 (2013-04)

Examples

EXAMPLE 1: Component references with component type variables

/1 A conponent type definition

type conponent MyConpType {
port Port TypeOne PCOL;
port Port TypeTwo PCO2

}

/1 Declaring one variable for the handling of references to conmponents of type MyConpType
/1 and creating a conponent of this type
var MyConpType MyConplnst := MyConpType.create;

EXAMPLE 2: Usage of component referencesin configuration operations

/1 referring to the conponent created above

connect (sel f: MyPCOL, MyConpl nst: PCOL) ;

map(MyConpl nst: PCO2, system Ext PCOL) ;

MyConpl nst . start (MyBehavior(self)); // self is passed as a paraneter to MyBehavi or

EXAMPLE 3: Usage of component referencesin from- and to- clauses
M/PCQOL. recei ve from MyConpl nst ;
IVQ/PCOZ. recei ve(integer:?) -> sender MyConpl nst;
l\/:yPCOL. recei ve(M/Tenpl ate) from MyConpl nst;
N;/PCOZ. send(integer:5) to MyConplnst;
EXAMPLE 4: Usage of component references in one-to-many connections

/1 The foll owi ng exanpl e explains the case of a one-to-nany connection at a Port PCOL

/] where values of type ML can be received fromseveral conponents of the different types
/1 ConmpTypel, ConpType2 and ConpType3 and where the sender has to be retrieved.

/1 In this case the followi ng schene nay be used:

var ML MyMessage, MyResult;

var MyConpTypel Mylnstl := null;
var MyConpType2 Mylnst2 := null;
var MyConpType3 Mylnst3 := null;

ait {
[] PCOL.receive(M:?) fromMlnstl -> val ue MyMessage sender Mylnstl {}
[] PCOL.receive(M:?) fromMlnst2 -> val ue MyMessage sender Mylnst2 {}
[T PCOL.receive(M:?) fromM/Inst3 -> value MyMessage sender Mylnst3 {}

}
WResult .= MyMessageHandl i ng(MyMessage) ; /1 some result is retrieved froma function
i].‘ (MyInstl I'= null) {PCOL.send(M/Result) to Mylnst1};
if (MlInst2 !'=null) {PCOL send(M/Result) to Ml nst2};
I'= null) {PCOL. send(M/Result) to Ml nst3};

if (MInst3!

EXAMPLES: Usage of self

var MyConponent Type MyAddress;
M/Address : = self; // Store the current conponent reference

ETSI

59 ETSI ES 201 873-1 V4.5.1 (2013-04)

EXAMPLE 6: Usage of component arrays

/1 This exanpl e shows how to nodel the effect of creating, connecting and running arrays of
/1 conmponents using a |loop and by storing the created conponent reference in an array of
/1 conponent references.

testcase MyTest Case() runs on MyMcType system MyTest System nterface
{

vér integer i;

var MyPTCTypel MPtc[11];

for (i:= 0: i<=10; i:=i+1)

{
MyPtc[i] := MYPTCTypel. create;
connect (sel f: Pt cCoordi nati on, MyPtc[i]: M cCoordi nation);
MyPtc[i].start(M/PtcBehaviour());

6.2.12 Addressing entities inside the SUT

An SUT may consist of several entities which can be addressed individually. The global addr ess data type may be used
if only one datatype is needed. If several datatypes at different ports are needed for addressing SUT entities, the type
used for addressing via a port instance shall be declared in the corresponding port type definition.

Syntactical Structure

Tenpl at el nst ance
Semantic Description

The actual data representation of the global addr ess type isresolved either by an explicit global address type
definition within the test suite, address type definitions within port definitions, or externally by the test system (i.e. the
addr ess typeisleft as an open type within the TTCN-3 specification). This allows abstract test cases to be specified
independently of any real address mechanism specific to the SUT.

If an addr ess typeisbound to a port type definition, addressing of SUT instances (i.e. t o- and f r omdirectivesin
communication operations) viainstances of that port type shall be restricted to values of the bound addr ess type.

If several address types exist within atest suite, ambiguities shall be resolved by means of the dot notation. For
example, atype reference within a variable definition used to store an SUT address may be prefixed by a port type
identifier or amodule identifier. If both a globa address type definition and port definitions with an address type
definition exist in a module, the global address type shall only affect ports without an explicit address type definition.
The consistent use of explicit address type definitions within port definitionsis recommended over the use of global
address type definitions.

Explicit SUT addresses for a globally defined address type shall only be generated inside a TTCN-3 module if the type
is defined inside the module itself. If the type is not defined inside the module, explicit SUT addresses for a global
address type shall only be passed in as parameters or be received in message fields or as parameters of remote
procedure calls.

In addition, the specia value nul | isavailable for theaddr ess type to indicate an undefined address, e.g. for the
initialization of variables of the address type.

If a port type definition includes the declaration of atype that shall be used for addressing SUT entities, only values of
that type shall beusedint o, f r omand sender parts of receive and send operations of port instances of that type
mapped to the test system interface.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Templatelnstance shall be of type addr ess or of the type of the address declaration in a port type definition.
If Templatelnstance is of type addr ess, it and can be an address type value, an address type variable, etc.

ETSI

60 ETSI ES 201 873-1 V4.5.1 (2013-04)

b) For addressing purposes, the addr ess datatype shall only be used inthet o, f r omand sender parts of
receive and send operations of ports mapped to the test system interface.

Examples

EXAMPLE 1: Global addresstype

/] Associates the type integer to the open type address
type integer address;

/) new address variable initialized with null
var address MySUTentity := null;

/) recei ving an address value and assigning it to variable MySUTentity
PCO. recei ve(address: ?) -> value MySUTentity;

/) usage of the received address for sending tenplate M/Result
PCO send(M/Result) to MySUTentity;

/'l usage of the received address for receiving a confirnation tenplate
PCO. recei ve(M/Confirmation) from MySUTentity;

EXAMPLE 2: Port type-specific address type

type record MyAddressType { /'l user-defined type
integer fieldi;
bool ean fiel d2;

type port MyPort Type nessage {
address MyAddr essType; /1 address decl aration
i nout i nt eger;

}

type conponent MyConponent Type

{

port MyPort Type PCG,

}
function nyFunction () runs on MyConponent Type {
var MyAddressType SUT_Address := { 5, true}; /] address value for addressing via ports
/1 of MyPort Type
iDCO. send(integer: 5) to SUT_Address; /1 use of address value in to
iDCO. receive(integer: ?) from SUT_Address; /'l use of address value in from
}

EXAMPLE 3: Elaborated address example
type AddressTypel address; /'l address type definition on nodule |evel

type port MyPort Typel nessage {
i nout MsgTypel;
}

/] address types bound to port types
type port MyPortType2 nessage {
addr ess AddressType2; /1 val ues of type AddressType2 can be
/] used to address SUT entities.
i nout MsgType2;

}
type port MyMessagePort3 nessage {
address AddressType3; /'l values of type AddressType3 can be
/1 used to address SUT entities.
i nout MsgTypes3;
}
/1 component type definition
type conmponent MyConponent Type

port MyPort Typel PCOL;
port MyPort Type2 PCQO2;
port MyPort Type3 PCO3

/1 The followi ng behaviour is considered to be executed on an instance of M/Conponent Type.
I/l Furthernore, it is considered that the ports PCOl, PCO2 and PCO3 are napped ports, i.e.
/1 used for the comunication with the SUT.

ETSI

61 ETSI ES 201 873-1 V4.5.1 (2013-04)

/'l new address variable initialized with null

var address MySUTentityl := null; /1 type of MySUTentityl is AddressTypel
var MyPort Type2. address MySUTentity2 := null; /1 type of MySUTentity2 is AddressType2
var MyPort Type3. address MySUTentity3 := null; /1 type of MySUTentity3 is AddressType3

/1 receiving an address val ues and assigning themto variables
PCOL. recei ve(MsgTypel: ?) from address:? -> sender MySUTentityl;
/1 Address type of nodul e scope,
/'l no prefix needed
PCX2. recei ve(MsgType2: ?) from MyPort Type2. address: ? -> sender MySUTentity2;
/1 Resolution of address type
/'l by nmeans of a prefix
PC33. recei ve(MsgType3: ?) from MyPort Type3. address: ? -> sender MySUTentitys3;

/) usage of the received address val ues for addressing purposes
PCOL. send(M/Resul t) to MySUTentityl;

PCCR. r ecei ve(M/Confirnmation) from MySUTentity2;

PC(B. send(MyRequest) to MySUTentitys3;

6.2.13 Subtyping of structured types

TTCN-3 alows subtyping of structured types as givenin table 3.

6.2.13.1 Length subtyping of record ofs and set ofs
TTCN-3 permits constraining the number of elementsininstancesof r ecord of andset of types.

Thel engt h keyword followed by avalue or arange (with inclusive boundaries only) within brackets and used
betweenther ecord orset andtheof keywords, restrictsthe allowed lengths of the givenr ecor d of or set

of type. The value or the bounds within the brackets shall be non-negative integer values, except whenthei nfinity
keyword is used at the place of the upper bound, in which case the maximum number of the elementsis not constrained.

Record of and set of type definitions may be used to definenew r ecord of orset of subtypes. Inthiscasethe
rules of the previous paragraph apply, except that the | engt h keyword and the value or range defining the allowed
number of iterations (within brackets) shall be placed following the identifier of the new type.

Constants used in the constant expressions of length subtyping shall meet with the restrictionsin clause 10.

EXAMPLE 1: Length restrictions of record of and set of types

type record | ength(10) of integer MyRecordOf TypelO;
/1 is a record of exactly 10 integers

type record | ength(0..10) of integer MyRecordOf TypeO_10;
/1 is a record of a maxinum of 10 integers

type record |l ength(10..infinity) of integer M/RecordO TypelOup;
/1 record of at least 10 integers

type record length(O..infinity) of integer MyRecordO TypeOup;
// an unrestricted record of integer type

EXAMPLE 2: Length subtyping of referenced record of types

type record of charstring StringArray;
// is an unlimted record of, each elenent shall be a charstring

type StringArray StringArray34 length(4 .. 5);

/1 is arecord of 4 or 5 elenents, each elenent is a charstring
/1 it is equivalent to

/1 type record length(4 .. 5) of charstring StringArray34a;

type StringArray34 StringArray34again length(4 .. 5);
/'l the same as StringArray34

type StringArray34 StringArray6 | ength(6);
/] causes an error as record ofs with 6 elenments are not |egal values of StringArray34

ETSI

62 ETSI ES 201 873-1 V4.5.1 (2013-04)

EXAMPLE 3: Length subtyping of referenced set of types

type record MyCapsul e {
set of integer nySet Of | nt
}

type MyCapsul e.nySet Of I nt MySet Of I nt Sub | engt h(5..10);
/1 unordered list of 5 to 10 integers

6.2.13.2 List subtyping of structured types and anytype

List subtyping is possible when defining a new type based on an existing parent type, but not directly at the declaration
of the first parent type (see table 3).

Subtypes defined by alist subtyping restrict the allowed values of the subtype to the values matched by at least one of
the templatesin the list. In case of list subtyping of r ecor d, set ,record of,set of,uni onandanytype
types, the list may contain both templates and subtypes of the parent types of the type being constrained. The collection
of templates denoted by the type(s) referenced in the list become instances of the new subtype. When constraining
record of,set of,uni onandanytype types, all templates of the expanded list (i.e. after resolving the type
references) shall be valid (i.e. complete) templates of the first parent type, except in the case of field assignment
notations for constrained record or set types where the fields that are not explicitly present in the value notation are seen
as containing Any for mandatory fields and AnyOrOmit for optional fields of the type.

In case of enuner at ed types, the template list subtyping shall contain only values of the parent type.

EXAMPLE 1: List subtyping of record types

type record MyRecord {
i nt eger f1 optional,
charstring f2,
charstring f3

}

type M/Record MyRecordSubl (
{ f1:=omt, f2 := "user", f3 := "password" },
{ f1:=1, f2 := "User", f3 := "Password" }

) // a valid subtype of MyRecord containing 2 val ues

type M/Record MyRecordSub2 (
MyRecor dSub1,
{ f1:=2, f2 := "unane", f3 := "pswd" },
{ f1:=3, f2 :="Unanme", f3 := "Pswd" }
) // a valid subtype of MyRecord, containing 4 values; notice that val ues of
/1 MyRecordSubl are identified by referenci ng MyRecordSubl

type MyRecordSubl MyRecordSub3 (

{ f1:=1, f2 := "user", f3 := "password" },
{ f1:=1, f2 := "User", f3 := "Password" }
) // invalid type as { f1 :=1, f2 := "user", f3 := "password" } is not a |legal value of

/1 MyRecordSubl (notice field f1)

type MyRecord MyRecordSub4 (

{ f2 := "user", f3 := "password" },
{ f2 :="User", f3 := "Password" }
) /1 any valid value of MyRecord, where the conbination of f2 and f3 is
/1l f2 := "user" AND f3 := "password" or f2 := "User" AND f3 := "Password"
type MyRecord MyRecordSub5 (
{ f2 := "user", f3 := pattern "password| Password" },
{ f1:=(1.. 10), f2 := "User" }
) // a valid subtype of MyRecord containing all values which match one of the given tenplates
/1 { f1:=* f2 :="user", f3 := pattern "password| Password" } or
/r{f1:=(1.. 10), f2 :="User", f3 := 72}

EXAMPLE 2: List subtyping of record of types
type record of charstring StringArray;

type StringArray StringArrayListl (
"aa" },
{ "bbb", "cc" },
{ "ddd", "ee", "ff" }
); /1 valid subtype of StringArray

ETSI

63 ETSI ES 201 873-1 V4.5.1 (2013-04)

type StringArrayListl StringArrayList2 (
{ "aa" 3},
{ "bbb", "cc" }

); I/ valid subtype of StringArrayListl

type StringArrayListl StringArrayList3 (
StringArraylList2,
{ "ddd", "ee", "ff" }

); /1 valid, but equivalent to StringArrayListl

type StringArraylListl StringArraylList4 (
StringArraylList2,
{ "ddd", "ee", "fff" }

); I/ enpty type as { "ddd", "ee", "fff" } is not a value of StringArrayListl
/1 (notice the extra character f in the third el ement)

EXAMPLE 3: List subtyping of union types

type union MyUnion {
i nt eger cl,
charstring c2,
charstring c3

b

type MyUni on MyUni onSubl (
{ cl:=01},
{ cl:=11}

); /1 a valid subtype of MyUnion containing tw val ues

type MyUni on MyUni onSub2 (

My Uni onSub1,
{ c2 :="mne" },
{ ¢c3 :="yours" }

); /1 a valid subtype of MyUnion containing four values; notice that val ues of
/1 MyUnionSubl are identified by referencing M/Uni onSubl

type MyUni onSubl MyUni onSub3 (

{ cl:=01},
{cl:=2}
); I/ causes an error as { ¢l := 2} is not a value of MyUnionSubl

EXAMPLE 4: List subtyping of enumerated types
type enunerated MyEnum{ first, second, third, fourth, fifth };

type MyEnum Enuntubl (first, second, third);
// a valid subtype of MyEnum

type EnunBSubl EnuntSub2 (first, second);
/1 a valid subtype of Enunfubl

type EnunBSubl EnuntSub3 (first, second, fourth);
/1 causes an error as fourth is not a value of EnunSubl

type MyEnum EnuntBub4 (Enunfubl, fourth);

/] causes an error as type references are not allowed in the tenplate |ist
/1 of enumerated types

EXAMPLES: List subtyping of anytype

type anytype MyAnySubl (

{ integer := ,

{ boolean := false },

{ bitstring := "'0011'B },
{ charstring := "mne" },
{ MJEnum := first }

); // a valid subtype of anytype, consisting of 5 values

type MyAnySubl MyAnySub2 (
{ integer := 51},
{ boolean := false },
{ bitstring := "'0011'B }
); /1l a valid subtype of MyAnySubl, consisting of 3 val ues

type anytype MyAnySub3 (

MyAny Sub2,
{ octetstring := "FF O}

ETSI

64 ETSI ES 201 873-1 V4.5.1 (2013-04)

); /1 a valid subtype of anytype, consisting of 4 values, 3 of which are defined
/1 by referring to M/AnySub2

type MyAnySubl MyAnySub4 (
{ integer := 5},
{ boolean := false },
{ MyEnum : = second }
); I/ causes an error as { MyEnum:= second } is not a value of MyAnySubl

type M/AnySubl MyAnySub5 (

MyAny Sub3,
{ MYEnum : = first }
); /1 causes an error as { octetstring :="'FF O} (defined via referencing M/AnySub3) is

/1 not a value of MyAnySubl

6.2.13.3 Subtyping of the iterated type of record ofs and set ofs

A type restriction following the identifier of anewly definedr ecor d of orset of type (i.e. when the keywords
recor d andof orset andof areused inthe definition) shall constrain the innermost type. The newly defined
iterated type shall be a subset of the innermost type. If the innermost type is a basic type, the subtyping rulesin

clause 6.1.2 shall apply. If the innermost type is referencing a structured type or anyt ype, the rulesin clauses 6.2.13.1
and 6.2.13.2 shall apply.

EXAMPLE 1: Subtyping of basic innermost types of record ofs and set ofs

type record of charstring String23Array length(2 .. 3);
/1 is an unlinmted record of, each elenent shall be a charstring of 2 or 3 characters

type record | ength(0..10) of charstring Stringl2Arrayl10 | ength(12);
[/l is a record of a maxinumof 10 strings each with exactly 12 characters

type record of record of charstring Stringl2Array2D | engt h(12);
I/l is a two-dinensional unlimted array of strings each with exactly 12 characters

type set length(5) of set length(6) of charstring Stringl2Array2D56 |ength(12);
/1 is an unordered two-dinensional array of the size 5*6 strings, each with
/1 exactly 12 characters

const String23Array c_str23arr_a :={ "aa", "bbb", "cc", "ddd", "ee", "ff" };
// valid, all charstrings are 2 or 3 characters |ong

const String23Array c_str23arr_b := { "a", "bbbb", "cc", "ddd", "ee", "ff" };
/] causes an error as "a" and "bbbb" are not 2 or 3 characters |ong

const Stringl2Array2D56 c_stril2arr2D56_a : =
{ "aa", "aaa", "bb", "bbb", "cc", "ccc" }
{ "dd", "ddd", "ee", "eee", "ff", "fff" }
{ "gg", "ggg", "hh", "hhh", "ii", "iii" }
{ " piit, o tkk", kkkU,otrrt,otirrt o}
{"m, "nmm{, "nn", "nnn", "oo0", "ooo0" }
}; /1 valid, a 5*6 matrix of charstrings being 2 or 3 characters |ong

const Stringl2Array2D56 c_strl2arr2D56_b : =
{ "a", "aaa", "bb", "bbbb", "cc", "ccc" }
{ "dd", "ddd", "ee", "eee", "ff", "fff" }
{ "gg", "ggg", "hh", "hhh", "ii", "iii" }
iy "iii", "kk", "kkk", "Crt,otreet oy
{"m, "mm, "nn", "nnn", "oo0", "ooo0", "pp" }

}; I/ causes an error as "a" and "bbbb" are not 2 or 3 characters |ong and
/1 the 5th inner record of has 7 elenents

EXAMPLE 2: Length subtyping of structured innermost types of record ofs

type record of String23Array String23Array45 length(4 .. 5);

/l is a two-dinensional array, the first dinension is unlimted,

/1 the second dinmension is restricted to 4 or 5 el ements and each el ement

I/l is a charstring of 2 or 3 characters. It is equivalent to:

/1 type record of record length(4 .. 5) of charstring String23Array45 length(2 .. 3);

const String23Array45 c_str23arr45_a := {
{ "aa", "bbb", "cc", "ddd" },
{ "ee", "fff", "gg", "hhh", "ii" }
}; /1 valid, 4 or 5 elenents in the inner record of, all containing 2 or 3 characters

ETSI

65 ETSI ES 201 873-1 V4.5.1 (2013-04)

const String23Array45 c_str23arr45 b :={
{ "aa" , "bbb", "cc" }
}; //lcauses an error as there are only 3 elenments in the inner record of

const String23Array45 c_str23arr45 c : = {
{ "aa", "bbbb", "cc", "dd" }
}; //causes an error as "bbbb" contains 4 characters

type record length(O .. 1) of String23Array String23Array0145 length(4 .. 5);

/1 is a two-dinensional array, the first dinension is limted to O or 1 elenents,
/1 the second dinmension is restricted to 4 or 5 elenents, each elenent is a

/1 charstring of 2 or 3 characters.

const String23Array0145 c_str23arr0145_a : = {
{ "aa", "bbb", "cc", "ddd" },
}; /1 avalid 1*4 array of charstrings, each of 2 or 3 characters

const String23Array0145 c_str23arr0145_a : = {
{ "aa", "bbb", "cc", "ddd" },
{ "ee", "fff", "gg", "hhh", "ii" }
}; I/ causes an error as there are two elenments in the outer record of

const String23Array0145 c_str23arr0145 b := {
{ "aa" , "bbb", "cc" }
}; I/ causes an error as there are only 3 elenents in the inner record of
const String23Array0145 c_str23arr0145_c : = {
{ "aa", "bbbb", "cc", "dd" }
}; /1 causes an error as "bbbb" contains 4 characters
type record of String23Array45 String23Array6 | ength(6);

/] enpty type as String23Array45 is restricted to 4 or 5 el enents,
/1 thus length restriction 6 is outside the allowed range

6.2.13.4 Mixing subtyping mechanisms

In the case of structured types and the special type anyt ype, itisforbidden to mix different subtyping mechanisms
(e.g. list and length) in the same definition.

6.3 Type compatibility
Generally, TTCN-3 requires type compatibility of values at assignments, instantiations and comparison.

For the purpose of this clause the actual value to be assigned, passed as parameter, etc., is called value "b". The type of
value"b" iscalled type "B". The type of the formal parameter, which isto obtain the actual value of value "b" is called
type"A".

NOTE: Asaddr ess ismore apredefined type name than a distinct type with its own properties, the same type
compatibility rules apply to an addr ess type and to its derivatives as the rules were if the type was
defined with a name different from addr ess.

6.3.1 Compatibility of non-structured types

For variables, constants, templates, etc. of simple basic types and basic string types the value "b" is compatible to type
"A" if type "B" resolves to the same root type astype "A" (e.g. i nt eger) and it does not violate subtyping
(e.g. ranges, length restrictions) of type "A".

EXAMPLE 1: Compatibility of integers

/1 Gven
type integer MyInteger(1l .. 10);

var integer Xx;
var Myl nteger vy,

/1 Then
y :=5; // is a valid assignnent

ETSI

66 ETSI ES 201 873-1 V4.5.1 (2013-04)

X 1=y,
/1 is a valid assignnent, because y has the sane root type as x and no subtyping is violated

20; // is a valid assignment
X,
/1 is NOT a valid assignnent, because the value of x is out of the range of Ml nteger

x :=5; /] is a valid assignhnent
y 1= X;
/1 is a valid assignnent, because the value of x is now within the range of Ml nteger

EXAMPLE 2: Compatibility of floats

/1 Gven
type float PositiveFloats(0.0 .. infinity);

var PositiveFloats x;
var float vy;

/1 Then

y :=5.0; // is a valid assignnment

X 1=y,

I/l is a valid assignnent, because y has the sane root type as x and no subtyping is violated

y -20.0; // is a valid assignnent
X 1=y,
/] causes an error, because the value of y is out of the range of PositiveFloats

y not _a_nunber; // is a valid assignment
X =Y,
/] causes an error, because the value not_a nunber is out of the range of PositiveFloats

EXAMPLE 3: Compatibility of charstrings

/1 G ven

type charstring MyChar length (1);

type charstring MySingleChar length (1);
var MyChar nyCharacter;

var charstring nyCharString;

var MySingl eChar nySingleCharString := "B";

/1 Then

nyChar String := nySingl eChar String;

/lis a valid assignnent as charstring restricted to length 1 is conpatible with charstring.
myCharacter := nySingl eChar String;

/lis a valid assignnent as two single-character-length charstrings are conpati bl e.

/1 G ven
myChar String : = "abcd";

/1 Then
nyCharacter := nyCharString[1];
/lis valid as the r.h.s. notation addresses a single element fromthe string

/1Gven
var charstring nyCharacterArray [5] := {"A", "B", "C', "D', "E"}

/] Then
nyChar String : = nyCharacterArray[1];
/lis valid and assigns the value "B" to nyCharString;

For variables, constants, templates etc. of char st ri ng type, value 'b' is compatible with auni ver sal
char st ri ng type'A’ unlessit violates any type constraint specification (range, list or length) of type"A".

For variables, constants, templates etc. of uni ver sal char stri ng type, value'b' is compatible with a

char st ri ng type'A'if al characters used in value 'b" have their corresponding characters (i.e. the same control or
graphical character using the same character code) in the type char st ri ng and it does not violate any type constraint
specification (range, list or length) of type"A".

6.3.2 Compatibility of structured types

This clause defines compatibility rules for structured types. In subsequent clauses, "value "b"" is called the value to be
assigned, e.g. when passed as parameter, to an object of type "A".

ETSI

67 ETSI ES 201 873-1 V4.5.1 (2013-04)

6.3.2.1 Compatibility of enumerated types

Enumerated types are only compatible to synonym types (see clause 6.4) and not compatible with other basic or
structured types.

6.3.2.2 Compatibility of record and record of types

r ecor d types are compatible if the number, and optional aspect of the fields in the textual order of definition are
identical, the types of each field are compatible and the value of each existing field of the value "b" is compatible with
the type of its corresponding field in type "A". The value of each field in the value "b" is assigned to the corresponding
field in the value of type"A".

EXAMPLE 1:
/1 Gven
type record AType {
i nt eger a(0..10) optional ,
i nt eger b(0..10) optional ,
bool ean c
}
type record BType {
i nt eger a optional ,
i nt eger b(0..10) optional ,
bool ean c
}
type record CType { /1 type with different field names
i nt eger optional ,
i nt eger e optional,
bool ean f
}
type record DType { /1 type with field c optional
i nt eger a optional,
i nt eger b optional,
bool ean c optional
}
type record EType { /1l type with an extra field d
i nt eger a optional,
i nt eger b optional,
bool ean c,
fl oat d opti onal
}
var AType MyVarA := { -, 1, true};
var BType MyVarB := { omit, 2, true};
var CType MyVarC := { 3, omt, true};
var DType MyVarD := { 4, 4, true};
var EType MyVarE := { 5, 5, true, omit};
/1 Then
MyVar A : = MyVar B; /1 is a valid assignnent,
/1 new value of My\VarAis (a :=omitted, b:= 2, c:= true)
MyVar C : = MyVar B; /1 is a valid assignhnent
/1 new value of M\VarCis (d :=omtted, e:= 2, f:= true)
MyVar A : = MyVar D, /1 is NOT a valid assignnent because the optionality of fields does not
/1 match
MyVar A : = MyVar E; /1 is NOT a valid assignment because the nunber of fields does not match
MyVarC := { d:= 20 };// actual value of MVarCis { d:=20, e:=2,f:= true }
MyVar A : = MyVar C /1 is NOT a valid assignment because field 'd of MyVarC violates subtyping

/1 of field 'a" of AType

recor d of typesand arrays are compatibleif their element types are compatible and value "b" does not violate any
length subtyping of ther ecor d of type"A" or dimensions of the array type. Values of elements of the value "b" shall
be assigned sequentially to the instance of type"A", including undefined elements.

Two array types are compatible if their correspondingr ecor d of typesare compatible.

ETSI

68 ETSI ES 201 873-1 V4.5.1 (2013-04)

EXAMPLE 2:

/1 Gven

type record HType {
i nteger a,
integer b optional,
integer ¢

}

type record of integer |Type

var HType MyVarH := { 1, onit, 2};
var | Type MyVarl;

var integer M/ArrayVar[2];

/1 Then

M/ArrayVar := MyVarH;
/1 is NOT a valid assignnent as type of MyArrayVar and HType are inconpatible

MyVarl := MyVarH,

/1 is NOT a valid assignment as the types are inconpatible
MyVarl = { 3, 4 };

MyVarH : = MyVarl ;

/1 is NOT a valid assignnent as the nandatory field 'c' of Htype receives no val ue

6.3.2.3 Compatibility of set and set of types

set typesareonly compatible with other set typesand set of typesare only compatible with other set of types.
For set typesthe same compatibility rules shall apply asto r ecor d typesand for set of typesthe same
compatibility rules shall apply astor ecor d of types.

NOTE 1: Thisimpliesthat though the order of elements at sending and receipt is unknown, when determining type
compatibility for set types, the textual order of the fields in the type definition is decisive.

NOTE 2: Inset valuesthe order of fields may be arbitrary, however this does not affect type compatibility asfield
names unambiguoudly identify, which fields of therelated set type correspond to which set value
fields.

EXAMPLE:

/1 Gven

type set FType {
integer a optional,
integer b optional,
bool ean ¢

}
type set Glype {
integer d optional ,

integer e optional,
bool ean f

}

var FType MyVarF
var GIype MyVarG :

/1 Then
MyVarF : = MyVar G /1 is a valid assignnent as types FType and GIype are conpatible

MyVar F : = MyVar A; /1 is NOT a valid assignnent as M/VarA is a record type

6.3.2.4 Compatibility of union types

union types are only compatible with other union types. A union value "a" of union type"A" is compatible with union
type "B" if the dternative selected in "a" has a corresponding alternative with identical namein"B" and the value of the
selected alternativein "a" is compatible to the type of the corresponding alternativein "B".

ETSI

69 ETSI ES 201 873-1 V4.5.1 (2013-04)

EXAMPLE:

type union Ul {integer i};

type union W2 {integer i, boolean b};

var Ul ul := {i := 1};

var U2 u2 := ul, /1 correct

ul: = u2; /] correct as the alternative i is selected in u2 and is conpatible
/1 toi in UL

u2: = {b := true};

ul: = u2; /1 incorrect as ul has no alternative b

var anytype x := ul; /1 incorrect as the anytype is not a union type.

6.3.2.5 Compatibility of anytype types

anytype types are only compatible with other anytype types. An anytype value "a"' of anytype type "A" is compatible
with anytype type "B" if the alternative selected in "a" has a corresponding alternative with identical namein "B" and
the value of the selected alternative in "a' is compatible to the type of the corresponding alternativein "B". Identical
alternative names in this case mean the name of a TTCN-3 basic type or the name of the same user defined type
definition (considering also the module in which the type is defined).

EXAMPLE:

nmodul e A {
type integer |
type float F;

(0..2);

type anytype Atype //anytype conposed of TTCN-3 built-in basic types, I, and F
}
nodul e B {
type integer | (0..2);
type anytype Atype
}
nodul e C {
import fromA all;
import fromB all;
type union U {
integer | (0..2)
control {
var A Atype aa;
var A Atype aal :={ | =1}
var A Atype aaF :={ F:=1.0}
var B.Atype ba :={ integer :=11}
var B.Atype bal :={ | :=1}
var Uu:={ I :=1}
aa : = ba; Il correct, the value of aal becones { integer := 1}
aa : = bal; /'l incorrect, type B.l is not present in the anytype A Atype
aa ;= u; Il incorrect, type of u is not anytype but a user defined union type
ba :={ float := 1.0 }; // correct, assigning a literal value
ba : = aal; /'l incorrect, type Al is not present in the anytype B. Atype
ba : = aaF; /1 incorrect, type A Fis not present in the anytype B. Atype
}
}
6.3.2.6 Compatibility between sub-structures
The rules defined in this clause for structured types compatibility are also valid for the sub-structure of such types.
EXAMPLE:
/1l Gven
type record JType {
HType H,
integer b optional,
integer c
}

ETSI

70 ETSI ES 201 873-1 V4.5.1 (2013-04)

var JType MyVarJ

/1 1f considering the declarati ons above, then

MyVarJ. H : = MyVar H;

I/l is a valid assignnent as the type of field H of JType and HType are conpati bl e

MyVarl = MyVarJ. H
I/l is a valid assignnent as | Type and the type of field H of JType are conpatible

6.3.3 Compatibility of component types
Type compatibility of component types has to be considered in two different conditions:

1) Compatibility of acomponent reference value with a component type (e.g. when passing a component
reference as an actual parameter to afunction or an altstep or when assigning a component reference valueto a
variable of different component type): a component reference "b" of component type "B" is compatible with
component type "A" if al definitions of "A" have identical definitionsin"B".

2) Runson compatibility: afunction or altsteps referring to component type "A" in its runs on clause may be
called or started on a component instance of type 'B' if all the definitions of "A" have identical definitionsin
e

Identity of definitionsin"A" with definitions of "B" is determined based on the following rules:
a) For port instances, both the type and the identifier shall be identical.

b) For timer instances, identifiers shall be identical and either both shall have identical initial durations or both
shall have no initial duration.

¢) For variable instances and constant definitions, the identifiers, the types and initialization values shall be
identical (in case of variablesthis meansthat either the values are missing in both definitions or are the same).

d) For loca template definitions, the identifiers, the types, the formal parameter lists and the assigned template or
template field values shall be identical.

6.3.4 Type compatibility of communication operations

The communication operations (see clause 22) send, r ecei ve,trigger,call,getcal |l ,reply,getreply
andr ai se are exceptions to the weaker rule of type compatibility and require strong typing. The types of values or
templates directly used as parameters to these operations shall aso be explicitly defined in the associated port type
definition. Strong typing also appliesto storing the received value, address or component reference during ar ecei ve
ortrigger operation.

EXAMPLE:
type record MRec {...} /] user defined type
type MyRec MyRecAli as; /1 a type alias

type port MyPort nessage { inout M/Rec, MyRecAlias; } /'l port that can transport both types
type conponent MyConponent { port MyPort P; }

tenmpl ate MyRecAlias t_M/RecAlias:= {...} /1l a tenplate of the alias type
var MyConponent mnyConpl : = MyConponent.create, nyConp2 := MyConponent.create;

connect (nyConpl: P, myConmp2: P) /1 two connected PTCs via ports that can
/1 transport the user-defined and the alias type

/1 in nyConpl:
P.send (t_My/RecAli as); /'l sending of tenplate of alias type
/1 in nyConp2:

P.receive (M/Rec: ?);
/1 shall not match as the transmitted tenplate is of the alias type and
/1l not of the user-defined type

ETSI

71 ETSI ES 201 873-1 V4.5.1 (2013-04)

/1 in nyConp2:

var MyRec Xx;

P.receive (M/RecAlias:?) -> value x;

/1 shall cause an error since also storing the value requires strong typing

6.3.5 Type conversion

If it is necessary to convert values of one type to values of another type, because their types have different root types,
then either one of the predefined conversion functions defined in clause 16.1.2 or a user defined function shall be used.

EXAMPLE:

/1 To convert an integer value to a hexstring value use the predefined function int2hex
M/Hstring : = int2hex(123, 4);

6.4 Type synonym

A type can be defined as a synonym to another type. Type synonyms can be defined for al kinds of types. Synonym
types are compatible.

EXAMPLE:

type My Typel MyType2; // MyType2 is synonymto M/Typel

7 Expressions

TTCN-3 alows the specification of expressions using the operators defined in clause 7.1.

Syntactical Structure

Si ngl eExpressi on |

"{" { (FieldReference ":=" (Expression | "-")) [","] } "}" | [/ conpound expression

“{" [{ (Expression | "-") [","]1 } 1 "}" /1 compound expression
Semantic Description

Expressions may be built from other (simple) expressions. Functions used in expressions shall have areturn clause. The
operands of the operators used in an expression shall be values and their root types shall be the types specified for the
appropriate operator in the subsequent clauses.

Compound expressions are used for expressions of array, record, record of and set of types.
Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Operands of operators used in expressions shall be completely initialized values except where explicitly stated
otherwise in the specific clause of the operator.

b) Theroot types of the operands shall be the types specified for the appropriate operand.

This means also that all fields and elements of structured types referenced in an expression shall contain compl etely
initialized values, while other fields and elements, not used in the expression, may be uninitialized or contain ori t .

Examples
(x +y - increment(z))*3 /'l single expression
{ as=1, b:=true} /1 compound expression, field expression |ist
{ 1, true} /1 conpound expression, value |ist

ETSI

72 ETSI ES 201 873-1 V4.5.1 (2013-04)

7.1 Operators

TTCN-3 supports a number of predefined operators that may be used in the terms of TTCN-3 expressions. The
predefined operators fall into seven categories:

a) arithmetic operators;
b) list operator;
c) relational operators;
d) logical operators;
€) bitwise operators;
f) shift operators;
g) rotate operators.
Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Values used as the operands of operators shall be completely initialized, except for those operands for which it
is explicitly allowed to be partially initialized (see clause 11.1).

These operators are listed in table 5.

Table 5: List of TTCN-3 operators

Category Operator Symbol or Keyword
Arithmetic operators addition +
subtraction -
multiplication *
division /
modulo mod
remainder rem
String operators concatenation &
Relational operators equal ==
less than <
greater than >
not equal 1=
greater than or equal >=
less than or equal <=
Logical operators logical not not
logical and and
logical or or
logical xor xor
Bitwise operators bitwise not not4b
bitwise and and4b
bitwise or ordb
bitwise xor xordb
Shift operators shift left <<
shift right >>
Rotate operators rotate left <@
rotate right @>

ETSI

73 ETSI ES 201 873-1 V4.5.1 (2013-04)

The precedence of these operatorsis shown in table 6. Within any row in this table, the listed operators have equal
precedence. If more than one operator of equal precedence appears in an expression, the operations are evaluated from
left to right. Parentheses may be used to group operands in expressions, in which case a parenthesized expression has
the highest precedence for evaluation.

Table 6: Precedence of Operators

Priority Operator type Operator
highest (...)
Unary +, -
Binary * [, mod, rem
Binary + - &
Unary not4b
Binary and4b
Binary xor4b
Binary ordb
Binary <<, >> <@, @>
Binary <, >, <=, >=
Binary == 1=
Unary not
Binary and
Binary xor
Lowest Binary or

7.1.1 Arithmetic operators

The arithmetic operators represent the operations of addition, subtraction, multiplication, division, modulo and
remainder. Operands of these operators shall be of i nt eger values (including derivations of i nt eger) or floating-
point numbers (including derivations of f | oat , containing numeric values only), except for nod and r emwhich shall
be used withi nt eger (including derivationsof i nt eger) typesonly.

NOTE: Thespecia float valuesi nfinity,-infinityandnot_a_nunber arenot to be used with
arithmetic operators.

Withi nt eger types, the result type of arithmetic operationsisi nt eger . With float types, the result type of
arithmetic operationsisf | oat .

In the case where plus (+) or minus (-) is used as the unary operator the rules for operands apply as well. The result of
using the minus operator is the negative value of the operand if it was positive and vice versa. The result of using the

plus operator is the value of the operand, i.e. a positive value if the operand value was positive and a negative value if
the operand value was negative.

The result of performing the division operation (/) on two:

a) integer vauesgivesthewholei nt eger part of the value resulting from dividing the first i nt eger by
the second (i.e. fractions are discarded);

b) numericf| oat valuesgivesthef| oat valueresulting from dividing thefirst f | oat by the second (i.e.
fractions are not discarded).

The operatorsr emand nod compute on operands of typei nt eger and have aresult of typei nt eger . The
operationsx remy andx nod y compute the rest that remains from an integer division of x by y. Therefore, they
are only defined for non-zero operandsy . For positive x and y, both x r emy and x nod y have the same result but for
negative arguments they differ.

Formally, nod and r emare defined as follows:

X remy =x -y * (xly)

x mod y = x rem|y| when x >= 0
=0 when Xx <0 and xrem]|y|l =0
= |yl +x rem]y| when x <0 and x rem|y| <O

ETSI

74 ETSI ES 201 873-1 V4.5.1 (2013-04)

Table 7 illustrates the difference between the mod and rem operator:

Table 7: Effect of mod and rem operator

X -3 -2 -1 0 1 2 3
X mod 3 0 1 2 0 1 2 0
x rem 3 0 -2 -1 0 1 2 0

7.1.2 List operator

The predefined list operator (&) performs concatenation of values of string types, r ecord of ,set of,orarray of
the same root types. The operation is a simple concatenation from left to right. No form of arithmetic addition is
implied. The result type is the root type of the operands.

NOTE 1: Incase of thelist types, both the outer type (i.e.r ecord of ,set of orarray) andtheiterated inner
type need to have the same root type in arecursive manner.

NOTE 2: Itisalso possible to concatenate two or more value list notation expressions if the result isto be used as a
record of orarray of the sameroot type as the concatenated expressions.

EXAMPLE:

'1111'B & '0000'B & '1111'B gives '111100001111' B
{1,2} & {3,4} & {5,6} gives the followi ng record of integer {1,2,3,4,5,6}

7.1.3 Relational operators

The predefined relational operators are equality (==), less than (<), greater than (>), non-equality to (! =), greater than
or equal to (>=) and less than or equal to (<=). The result type of all these operationsisbool ean.

The relational operators less than (<), greater than (>), greater than or equal to (>=), and less than or equal to (<=) shall
have only operands of typei nt eger (including derivationsof i nt eger), f | oat (including derivationsof f | oat),
or instances of the same enuner at ed type. It is not allowed to compare instances of different root types.

Operands of equality (==) and non-equality (!=) shall be completely initialized values or field references of type
compatible root types and the values or field references being compared shall obey the following rules. Thisimplies that
instances of types not mentioned below shall not be operands of equality and non-equality.

NOTE: Asaddress ismore apredefined type name than a distinct type with its own properties, the same rules
apply to an addr ess type and to its derivatives as the rules were if the type was defined with a name
different from addr ess.

3 Two field references are equal if the referenced fields are both opt i onal fieldsand both fields are set to
oni t orif both referenced fields (regardless if they are optional or not) are initialized with values and these
values are equal. A field referenceis equal to avalueif the referenced field isinitialized with a value and both
values are equal.

3 Two integer values are equal if and only if they contain the same value. Otherwise, normal mathematical
ordering is applied.

e Two floating-point numbers are equal if and only if they contain the same value. The values minus zero and
plus zero are two distinct values (e.g. they are encoded differently in some standardized languages) and minus
zero islessthan plus zero, which represents zero. Otherwise, normal mathematical ordering is applied. The
specia values-i nfinity, infinityandnot_a number areequa tothemselves only. The special
value-i nfi ni ty islessthan any other float value. The special valuei nf i ni t y isgreater than any
numerical float valuesand - i nfi ni ty. The special valuenot _a_nunber isgreater than any other float
value (includingi nfi ni ty).

e Two charstring or two universal charstring values are equal if and only if they have equal lengths and the
characters at all positions are the same.

ETSI

75 ETSI ES 201 873-1 V4.5.1 (2013-04)

For values of bitstring, hexstring or octetstring types, the same equality rule applies as for charstring values
with the exception, that fractions which shall equal at all positions are bits, hexadecimal digits or pairs of
hexadecimal digits accordingly.

Two record values, or set values are equal respectively if and only if they are mutually compatible with the
type of the other operand (see clause 6.3), the actua values of all present fields are equal to their
corresponding fields and all fields corresponding to omitted fields are also omitted in the peer value.

Two record of values, set of values or array values, respectively, are equal if and only if they are mutually
compatible with the type of the other operand (see clause 6.3) and the actual values of all their elements are
equal. Record of values and array values may also be compared, in which case the corresponding record of
type of the array is being considered.

Vaues of the same union type, and values of different union typesin which at least one of the aternativesis
compatible with the other type (see clause 6.3.2.4) can be compared (independent if a compatible aternativeis
the selected one or not). Two values of union types are equal if and only if in both values the name of the
selected alternative isidentical, they are compatible with the type of the other value, and the actual values of
the chosen fields are equal .

Values of the same or any two anytype types can be compared. For anytype values the same rule apply asto
union values, with the addition that names of types defined with the same name in different modules do not
denote the same name of the selected alternatives.

Two default or two component values are equal if and only if they contain the same value (i.e. they designate
the same default or test component, independent of the actual state of the denoted object).

It isalso possible to use compound expressions (field assignment or value list notation) directly as operands of
comparison operations of structured types. If thereis a compound expression on both sides of the comparison
operator, they shall both be value list notation expressions where the elements shall be of the same root type.

EXAMPLE:

/1 Gven
type

type

type

type

type

type

type

set S1 {
integer al
i nteger a2
i nteger a3

}s

set S2 {
integer bl
i nteger b2
i nteger b3

b
set S3 {

integer cl
integer c2

b
set of integer

uni on Ul {

integer di,
i nteger d2,

}s

uni on U2 {

i nteger el,
i nteger e2,

b
union U3 {

i nteger di,
i nteger d2,

bool ean d3

}s

optional,
optional,

opti onal

optional ,
optional ,

opti onal

optional,
optional ,

SI;

ETSI

76 ETSI ES 201 873-1 V4.5.1 (2013-04)

/1 And
const S1 s1 := { al :=0, a2 :=omt, a3 := 2 };
/1 Notice that the order of defining values of the fields does not matter
const S2 s2a:= { bl :=0, b3 :=2, b2 :=ont };
const S2 s2b:= { b2:=0, b3 :=2, bl :=onmt };
const S3 s3 = {cl:=0, c2:=21},
var Sl v.si:= {0 -, 2},
const Sl si = {0 2}%;
const Ul ul = { di:=0 };
const U2 u2 = { el:=0};
const U3 u3; := { di:= 0 };
/1 Then
sl == s2a;
/1l returns true
sl == s2b;

/'l returns fal se, because neither al nor a2 are equal to their counterparts

/1 (the corresponding elenent is not onitted)
sl == s3;

/'l returns fal se, because the effective value structures of sl and s3 are not conpati bl e
sl == v_si;

/] causes test case error as v_si is not conpletely initialized

/1 (2nd elenent is left uninitialized)
sl == si;

/'l returns false, as the counterpart of the onitted a2 is 2,

/1 but the counterpart of a3 is undefined

s3 == si;

/'l returns true
ul == u2;

/'l causes error as Ul and U2 have no common subset of alternatives
ul == u3;

/] returns true, as alternatives with the sane nanes are chosen and
/'l the actual values in the selected alternatives are equal
{ 0, omt, 2} == sl
/1 returns true
s2a == { bl :=0, b2:=omt, b3 :=2};
/1 returns true
{ s1, s2b == { s2a, sl };
Il returns fal se because s2b != sl
{ s1, s2b, s2a } == { sl };
/1 returns fal se because of different I ength
sl.al == s2a.bil;
Il returns true, both fields are initialized with values and the val ues are equal
sl.a2 == s2a.b2;
/1 returns true, both fields are omt
sl.al == s2a.b2;
Il returns false, value vs. omt

sl.al == onmit;
/1 error, omt is neither a value nor a field reference
sl.a2 == 3;

/1 false, omt vs. value

7.1.4 Logical operators

The predefined bool ean operators perform the operations of negation, logical and, logical or and logical xor . Their
operands shall be of root type bool ean. The result type of logical operationsisbool ean.

Thelogical not isthe unary operator that returnsthe valuet r ue if its operand was of valuef al se and returnsthe
valuef al se if the operand was of valuet r ue.

Thelogical and returnsthe valuet r ue if both its operands aret r ue; otherwiseit returnsthe valuef al se.

Thelogical or returnsthevaluet r ue if at least one of itsoperandsist r ue; it returnsthe valuef al se only if both
operandsaref al se.

Thelogica xor returnsthevaluet r ue if one of itsoperandsist r ue; it returnsthe value f al se if both operands are
f al se orif both operandsaret r ue.

Short circuit evaluation for boolean expressionsis used, i.e. the evaluation of operands of logical operatorsis stopped
once the overall result is known: in the case of the and operator, if the left argument evaluatesto f al se, then the right
argument is not evaluated and the whole expression evaluatesto f al se. In the case of the or operator, if the left
argument evaluatesto t r ue, then the right argument is not evaluated and the whole expression evaluatestot r ue.

ETSI

77 ETSI ES 201 873-1 V4.5.1 (2013-04)

7.1.5 Bitwise operators

The predefined bitwise operators perform the operations of bitwise not , bitwise and, bitwise or and bitwise xor .
These operators are known as not 4b, and4b, or 4b and xor 4b respectively.

NOTE: Toberead as"not for bit", "and for bit", etc.

Their operands shall be of root type bi t stri ng, hexstring oroctetstring.Inthecaseof and4b, or4b and
xor 4b the operands shall be of the same root types.The result type of the bitwise operators shall be the root type of the
operands.

The bitwise not 4b unary operator inverts the individual bit values of its operand. For each bit in the operand a1 bit is
settoOand a0 hitissetto 1. That is:
not4b '1'B gives '0'B
not4b '0'B gives '1'B
EXAMPLE 1:

not4b '1010'B gives '0101'B
not4b '1A5'H gives 'E5A'H
not4b ' 01A5' O gives ' FE5A' O

The bitwise and4b operator accepts two operands of equal length. For each corresponding bit position, the resulting
valueisal if both bits are set to 1, otherwise the value for the resulting bit isO. That is:

'"1'B and4b '1'B gives
"1'B and4b '0'B gives
'0'B and4b '1'B gives
'0'B and4b '0'B gives

eeaer
W wWww

EXAMPLE 2:

'1001' B and4b ' 0101'B gives '0001'B
"B'Hand4b '5'H gives '1'H
"FB'O and4b '15'O gives '11'0O

The bitwise or 4b operator accepts two operands of equal length. For each corresponding bit position, the resulting
valueis 0 if both bits are set to 0, otherwise the value for the resulting bit is 1. That is:

'"1'Bor4b "1'B gives '1'B
'"1'Bor4b '0'B gives '1'B
'0'Bordb "1'Bgives '1'B
'0'Bordb '0'Bgives '0'B
EXAMPLE 3:

'1001' B or4b '0101'B gives '1101'B
"9'Hor4b '5'Hgives 'DH
"A9"O or4b '"F5'Ogives 'FD O

The bitwise xor 4b operator accepts two operands of equal length. For each corresponding bit position, the resulting
valueis 0 if both bitsare set to 0 or if both bits are set to 1, otherwise the value for the resulting bitis 1. That is:

xordb '1'B gives '0'B
xordb '0'B gives '
xordb '1'B gives

'1'B
'0'B
'0'B
'"1'B xor4b '0'B gives

RRQ
W wWww

EXAMPLE 4:

'1001' B xor4b '0101'B gives '1100'B
"9'H xordb '5'H gives 'CH

'39'0O xor4b '15' O gives '2C O

7.1.6 Shift operators

The predefined shift operators perform the shift left (<<) and shift right (>>) operations. Their left-hand operand shall
be of root type bi t string, hexstringoroctetstring. Ther right-hand operand shall be a non-negative
i nt eger . Theresult type of these operators shall be the same as the root type of the left operand.

ETSI

78 ETSI ES 201 873-1 V4.5.1 (2013-04)

The shift operators behave differently based upon the type of their left-hand operand. If the type of the left-hand
operand is:

a) bitstring thentheshift unit appliedis 1 bit;
b) hexstri ng then the shift unit applied is 1 hexadecimal digit;
c) oct et string thenthe shift unit applied is 1 octet.

The shift left (<<) operator accepts two operands. It shifts the left-hand operand by the number of shift unitsto the left
as specified by the right-hand operand. Excess shift units (bits, hexadecimal digits or octets) are discarded. For each
shift unit shifted to the left, a zero ('0'B, '0'H, or '00'O determined according to the type of the left-hand operand) is
inserted from the right-hand side of the left operand.

EXAMPLE 1:
'111001'B << 2 gives '100100'B

'12345'H << 2 gives ' 34500 H
' 1122334455' O << (1+1) gives ' 3344550000' O

The shift right (>>) operator accepts two operands. It shifts the left-hand operand by the number of shift unitsto the
right as specified by the right-hand operand. Excess shift units (bits, hexadecimal digits or octets) are discarded. For
each shift unit shifted to the right, a zero ('0'B, '0'H, or '00'O determined according to the type of the left-hand operand)
isinserted from the left-hand side of the |eft operand.

EXAMPLE 2:
'111001' B >> 2 gives '001110'B

'12345'H >> 2 gives '00123'H
'1122334455' O >> (1+1) gives '0000112233'0O

7.1.7 Rotate operators

The predefined rotate operators perform the rotate left (<@ and rotate right (@) operators. Their left-hand operand
shall be of root type bi t st ri ng, hexstring,octetstring,charstring,universal charstring,
record of,orset of.Their right-hand operand shall be anon-negativei nt eger . The result type of these
operators shall be the same as the root type of the left-hand operand.

NOTE: Please note that the root types of arraysisr ecor d of , therefore arrays are allowed as | eft-hand
operands of rotate operators.

The rotate operators behave differently based upon the type of their left-hand operand. If the type of the left-hand
operand is:

a) bitstring thentherotate unit applied is 1 bit;

b) hexstri ng then the rotate unit applied is 1 hexadecimal digit;

Cc) octetstring thentherotate unit applied is 1 octet;

d) charstringoruniversal charstri ng thentherotate unit applied is one character;
€) record of, set of, or array thentherotateunit applied is one element.

The rotate left (<@ operator accepts two operands. It rotates the left-hand operand by the number of shift unitsto the
left as specified by the right-hand operand. Excess shift units (bits, hexadecimal digits, octets, characters, or elements)
are re-inserted into the left-hand operand from its right-hand side.

EXAMPLE 1.

'101001'B <@2 gives '100110'B

'12345'H <@2 gives '34512'H
'1122334455' O <@ (1+2) gives '4455112233'0
"abcdefg" <@3 gives "defgabc"

ETSI

79 ETSI ES 201 873-1 V4.5.1 (2013-04)

Therotateright (@) operator accepts two operands. It rotates the left-hand operand by the number of shift unitsto the
right as specified by the right-hand operand. Excess shift units (bits, hexadecimal digits, octets, characters, or elements)
arere-inserted into the left-hand operand from its left-hand side.

EXAMPLE 2:

'100001'B @ 2 gives '011000'B

'12345'H @ 2 gives '45123'H

'1122334455' O @ (1+2) gives '3344551122'0
"abcdefg" @ 3 gives "efgabcd"

7.2 Field references and list elements

Within expressions, fields of record and set types are referenced with the dot notation " . f i el d" . Elements of record
of, set of, array and string types are referenced with the index notation " [i ndex] " . Dot and brackets have the same
binding power. Field references and list elements are evaluated from left to right.

8 Modules

The principal building blocks of TTCN-3 are modules. A module may define afully executable test suite or just a
library. A module may refer to the TTCN-3 language version and to package versions being used. A module consists of
a (optional) definitions part, and a (optional) module control part.

NOTE: Theterm test suite is synonymous with a complete TTCN-3 module containing test cases and a control
part.

The transfer syntax of TTCN-3 modules shall be UTF-8, i.e. each character of the module shall be individually encoded
and decoded according to the UCS Transformation Format 8 (UTF-8) as defined in annex R of ISO/IEC 10646 [2] and
no characters not corresponding to any character of the module shall be present.

8.1 Definition of a module

A module is defined with the keyword module.

NOTE 1: Thetreatment of TTCN-3 modulesin files, repositories and alike is outside the scope of the present
document.

Syntactical Structure

nodul e Modul el dentifier [|anguage FreeText { "," FreeText }] "{"
[Modul eDefinitionsPart]
[Modul eControl Part]

"y

Semantic Description

A TTCN-3 module groups a set of (typically cohesive) TTCN-3 definitions. TTCN-3 modules have an explicit import
interface to use definitions from other TTCN-3 or non-TTCN-3 modules. It is possible to hide definitionsin a TTCN-3
module (see clause 8.2.5). TTCN-3 modules can be compiled/interpreted separately. They are reusable and
parameterizable.

Module names are of the form of a TTCN-3 identifier.
NOTE 2: The moduleidentifier istheinformal text name of the module.

In addition, a module specification can carry an optional attribute identified by the| anguage keyword that identifies
the edition of the TTCN-3 language, in which the module is specified. The following language strings are to be used:

"TTCN- 3: 2001" - to be used with modules complying with version 1.1.2 of the present document (see annex H).
"TTCN- 3: 2003" - to be used with modules complying with version 2.2.1 of the present document (see annex H).
"TTCN- 3: 2005" - to be used with modules complying with version 3.1.1 of the present document (see annex H).
"TTCN- 3: 2007" - to be used with modules complying with version 3.2.1 of the present document (see annex H).

ETSI

80 ETSI ES 201 873-1 V4.5.1 (2013-04)

"TTCN- 3: 2008" - to be used with modules complying with version 3.3.2 of the present document (see annex H).
"TTCN- 3: 2008 Amendrent 1" - to be used with modules complying with version 3.4.1 of the present document
(see annex H).

"TTCN- 3: 2009" - to be used with modules complying with version 4.1.1 of the present document (see annex H).
"TTCN- 3: 2010" - to be used with modules complying with version 4.2.1 of the present document (see annex H).
"TTCN- 3: 2011" - to be used with modules complying with version 4.3.1 of the present document (see annex H).
"TTCN- 3: 2012" - to be used with modules complying with version 4.4.1 of the present document (see annex H).
"TTCN- 3: 2013" - to be used with modules complying with the present document.

Furthermore, the optional attribute identified by the | anguage keyword may identify package versions being used by
this module. The package tags are defined in ES 202 781 [i.11], ES 202 782 [i.14], ES 202 784 [i.12], and
ES 202 785 [i.13]. The language identifier and the package identifier are to be written as a comma-separated list.

Restrictions
In addition to the general static rules of TTCN 3 given in clause 5, the following restrictions apply:

a) At most one language string per module shall be given to define the core language version in which the
module is defined.

b) Per extension package, at most one extension package string of that extension package shall be used by a
module.

Examples

nodul e MyTest Suite | anguage "TTCN 3: 2003"
{3

8.2 Module definitions part

The module definitions part specifies the top-level definitions of the module and may import visible identifiers from
other modules. Visibility rules are given in clause 8.2.5. Scope rules for declarations made in the module definitions
part and imported declarations are given in clause 5.3. Those language elements which may be defined ina TTCN-3
module are listed in table 1. Every definition can be associated with attributes using the with statement defined in
clause 27. Visible module definitions may be imported by other modules.

Syntactical Structure

[Visibility] (
TypeDef |
Const Def |
Tenpl at eDef |
Modul ePar Def |
Functi onDef |
Si gnat ur eDef |
Test caseDef |
Al t st epDef |
| mpor t Def |
G oupDef |
Ext Functi onDef |
Fri endDef

) [WthStatenent]

["]

1+

Semantic Description
Definitions in the modul e definitions part may be made in any order.

Such definitions, i.e. top-level definitions outside of other scope units, are globally visible within the module. They may
be used elsewhere in the module. This includes identifiersimported from other modules.

Declarations of dynamic language elements such as variables or timers shall only be made in the control part, test cases,
functions, altsteps or component types.

ETSI

81 ETSI ES 201 873-1 V4.5.1 (2013-04)

TTCN-3 does not support the declaration of variablesin the module definitions part, i.e. global variables cannot be
defined in TTCN-3. However, variables defined in a test component type may be used by all test cases, functions etc.
running on components of that component type and variables defined in the control part provide the ability to keep their
values independently of test case execution.

Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

Examples

modul e MyModul e
{ /1 This nodul e contains definitions only

.const i nteger MyConstant := 1;
type record MyMessageType { ...}

functi on TestStep(){ ...}

8.2.1 Module parameters

Module parameters define a set of values that are supplied by the test environment at run-time. Module parameters do
not change their value during test execution. They can be used on right hand side of assignments, in expressions, in
actual parameters, and in template definitions, but not within type definitions.

Syntactical Structure
Single type, single module parameter form:

[Visibility] nodul epar Mdul ePar Type Mdul eParldentifier [":=" Constant Expression] ";"
Single type, multiple module parameter form:

[Visibility] nodul epar Mdul ePar Type
{ Modul eParldentifier [":=" ConstantExpression] "," }
Modul eParldentifier [":=" Constant Expression] ";"

Semantic Description

Module parameters behave as global constants at run-time. For module parameterization, TTCN-3 only supports value
parameterization which hasto be resolved static at start of run-time.

Module parameters allow to customize a TTCN-3 test suite for a specific IUT, test setup or test campaign. Module
parameters are declared by specifying the type and listing their identifiers following the keyword modul epar .

It is allowed to specify default values for module parameters. This shall be done by an assignment in the module
parameter list. A default value can merely be assigned at the place of the declaration of the module parameter.

If the test system does not provide an actual run-time value for amodule parameter, the default value shall be used
during test execution, otherwise the actual value provided by the test system. Actual run-time values shall be literals
only.

Visible module parameters can be imported.

Optional fields of record and set module parameters or module parameter fields can beinitialized explicitly or
implicitly. For implicit initialization of the optional fields of a module parameter or a module parameter field, an

opti onal attribute withthevalue"i nplicit om t" (seeclause 27.7) shal be associated with it either directly or
viathe attribute distribution (scoping) mechanism (see clause 27.1.1).

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) During test execution these values shall be treated as constants.

b) Module parameters shall not be of port type, default type or component type.

ETSI

82 ETSI ES 201 873-1 V4.5.1 (2013-04)

¢) A module parameter shall only be of type addressif the address type is explicitly defined within the associated
module.

d) Module parameters shall be declared within the module definition part only.

€) More than one occurrence of module parameters declaration is alowed but each parameter shall be declared
only once (i.e. redefinition of the module parameter is not allowed).

f) The constant expression for the default value of a module parameter shall respect the limitations given in
clause 16.1.4.

g) Module parameters shall not be used in type or array definitions.

Examples
modul e MyTest Sui t eW t hPar aneters
{

/'l single type, single nodule paraneter, which is per default public
nmodul epar bool ean TS Par0Q : = true;

/1 single type, nultiple nodule paraneters with an explicit public visibility
public nodul epar integer TS Parl, TS Par2 := 1 + char2int("a");

8.2.2 Groups of definitions

In the module definitions part, definitions can be collected in named groups. Grouping is done to aid readability and to
add logical structure to the module if required. If necessary, the dot notation shall be used to identify sub-groups within
the group hierarchy uniquely, e.g. for the import of a specific sub-group.

Syntactical Structure
[public] group G oupldentifier "{"
{ Modul eDefinition [";"] }
"y
Semantic Description

A group of definitions can be specified wherever a single definition is allowed. Groups may be nested, i.e. groups may
contain other groups. This alows the test suite specifier to structure, among other things, collections of test data or
functions describing test behaviour.

Groups and nested groups have no scoping. Please note however, attributes given to a group by an associated with
statement apply to all elements of a group (see clause 27). Import statements may import groups so that all visible
elements of a group are imported (see clause 8.2.3.3).

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Group identifiers across the whole module need not necessarily be unique. However, top-level group
identifiersand al group identifiers of subgroups of a single group shall be unique.

b) Only publ i c visihility can be defined for groups as they are always public.

Examples
nmodul e MyModul e {

)/ A collection of definitions

group MyG oup {
const integer MyConst:= 1;

type record MyMessageType { ...};

group MyG oupl { /1 Sub-group with definitions
type record Anot her MessageType { ...};
const bool ean MyBool ean : = fal se

ETSI

83 ETSI ES 201 873-1 V4.5.1 (2013-04)

}

/1l A group of altsteps
group MyStepLibrary {
group MG oupl { /1 Sub-group with the sane nane as the sub-group with definitions
altstep MyStepl1() { ...}
altstep MyStep12() { ...}

aitstep M/Steplin() { ...}
}
group MyG oup2 {
altstep MyStep21() { ...}
altstep MyStep22() { ...}

éltstep M/Step2n() { ...}

}

/1 An inport statement that inports MyGoupl within MyStepLibrary
import from MyModul e {

group MyStepLibrary. MyG oupl
}

8.2.3 Importing from modules

It is possible to re-use visible definitions specified in different modules using the i mpor t statement. Every definition
in a TTCN-3 module has an associated visibility, which is by default publ i ¢ (see clause 8.2.5).

NOTE: Groupsarepubl i ¢ only. Importing a group means that only the visible elements of the group are being
imported.

8.2.3.1 General format of import
Animport statement can be used anywhere in the module definitions part.

Syntactical Structure
[Visibility] inport from Mduleld

(all [except "{" ExceptSpec "}"])
|("{" lnportSpec "}")
[":")]
Semantic Description

TTCN-3 supports the import of the following definitions: module parameters, user defined types, signatures, constants,
data templates, signature templates, functions, external functions, altsteps and test cases. Each definition has a name
(defines the identifier of the definition, e.g. afunction name), a specification (e.g. atype specification or asignature of a
function) and in the case of functions, altsteps and test cases an associated behaviour description. In addition, import
statements of one module can be explicitly imported by another module (see clause 8.2.3.7). Only definitions or import
statements visible from the importing module can be imported (see clause 8.2.5).

In contrast to module definitions, which are by default public, import statements are by default private.

EXAMPLE l1a
Name Specification Behaviour description
function MyFunction [(inout MyTypel MyPar) return MyType2 {
runs on MyConpType const MyType3 MyConst := ..
: [/ further behaviour
}

ETSI

84 ETSI ES 201 873-1 V4.5.1 (2013-04)

Specification Name Specification
type record M/Recor dType [{

fieldl MyType4,
field2 integer

}

Specification Name Specification
tenplate |MyTypeb M/Tenpl ate |: = {
fieldl := 1,
field2 := MConst, // MConst is a nodul e constant
field3 := Mdul ePar // Modul ePar is nodul e paraneter
}

Behaviour descriptions have no effect on the import mechanism, because their internals are considered to beinvisible to
the importer when the corresponding functions, altsteps or test cases are imported. Thus, they are not considered in the
following descriptions.

The specification part of an importable definition contains local definitions (e.g. field names of structured type
definitions or values of enumerated types) and referenced definitions (e.g. references to type definitions, templates,
constants or module parameters). For the examples above, this means:

Name Local definitions Referenced definitions
function |MyFunction MyPar MyTypel, MyType2, MyCompType
type MyRecordType |fieldl, field2 MyType4, integer
tenplate |MyTemplate MyType5, fieldl, field2, field3, MyConst, ModulePar

NOTE 1: Thelocal definitions column refersto identifiers only that are newly defined in the importable definition.
Values assigned to individual fields of importable definitions, e.g. in template definitions, may also be
considered as local definitions, but they are not important for the explanation of the import mechanism.

NOTE 2: The referenced definitions fieldl, field2 and field3 of template MyTemplate are the field names of
MyType5, i.e. they are referenced via MyTypeb.

Referenced definitions are also importable definitions, i.e. the source of areferenced definition can again be structured
into a name and a specification part and the specification part also contains local and referenced definitions. In other
words, an importable definition may be built up recursively from other importable definitions.

The TTCN-3 import mechanism is related to the local and referenced definitions used in the specification part of the
importable definitions. Table 8 specifies the possible local and referenced definitions of importable definitions.

ETSI

85 ETSI ES 201 873-1 V4.5.1 (2013-04)

Table 8: Possible local and referenced definitions of importable definitions

Importable Definition Possible Local Definitions Possible Referenced Definitions
Module parameter Module parameter type
User-defined type (for all)
e enumerated type Concrete values
e structured type Field names, nested type Field types
definitions
e port type Message types, signatures
e component type Constant names, variable names, |Constant types, variable types, port types
timer names and port names
Signature Parameter names Parameter types, return type, types of exceptions
Constant Constant type
Data Template Parameter names Template type, parameter types, constants, module
parameters, functions
Signature template Signature definition, constants, module parameters
functions
Function Parameter names Parameter types, return type, component type
(runs on clause)
External function Parameter names Parameter types, return type
Altstep Parameter names Parameter types, component type (r uns
on clause)
Test case Parameter names Parameter types, component types (r uns on- and
syst emclause)

NOTE 1: For the import of import statements see clause 8.2.3.7.
NOTE 2: For the import of groups see clause 8.2.3.3.

The TTCN-3 import mechanism distinguishes between the identifier of a referenced definition and the information
necessary for the usage of a referenced definition within the imported definition. For the usage, the identifier of a
referenced definition is not required and therefore not imported automatically.

EXAMPLE 1b: Differentiation between information necessary for the usage and the identifier.

nmodul e A {
type record MyRecl {
i nt eger fieldl,
charstring field2
}
}
nodul e B {

import fromA all;

type record MyRec2 {
M/Recl nyFieldil,
/1 "nyFieldl" is the local definition, "M/Recl" is a referenced definition;
/'l the name "M/Recl" shall be inported in this case as is directly referenced
bool ean nyFi el d2

}

}

modul e C {
import fromB all;
const MyRec2 t_MyRec2 : = {
nyFieldl :={ fieldl :=5, field2 :="A" },
/'l to define nyFieldl of M/Rec2 the nane "MyRecl" is not needed, the
/1 information necessary for the usage is its type infornation,
/1 i.e. names and types of its fields fieldl and field2
/1 which is enbeddded in the inported definition of M/Rec2
nmyField2 := true
}
}

If an imported definition has attributes (defined by means of awi t h statement) then the attributes shall also be
imported. The mechanism to change attributes of imported definitionsis explained in clause 27.1.3.

NOTE 3: If the module has global attributes they are associated to definitions without these attributes.

ETSI

86 ETSI ES 201 873-1 V4.5.1 (2013-04)

Theuseof i nport on single definitions, groups of definitions, definitions of the same kind, etc. may lead to situations
where the same definition is referred to more than once. Such cases shall be resolved by the system and definitions shall
be imported only once.

NOTE 4: The mechanisms to resolve such ambiguities, e.g. overwriting and sending warnings to the user, are
outside the scope of the present document and should be provided by TTCN-3 tools.

All'i mport statements and definitions within import statements are considered to be treated independently one after
the other in the order of their appearance.

All TTCN-3 modules shall have their own name space in which all definitions shall be uniquely identified. Name
clashes may occur due to import, e.g. import from different modules. Name clashes shall be resolved using qualified
name(s) for the imported definition(s), i.e. prefixing the imported definition (which causes the name clash) by the
identifier of the module in which it has been defined; the prefix and the identifier shall be separated by adot (".").

Thereis one exception to this rule: when in the context of an enumerated type (see clause 6.2.4), an enumerated value
is clashing with the name of a definition in the importing module, the enumerated value shall take precedence and the
definition in the importing module shall be referenced by using its qualified name (see example 4 below in this clause).

In cases where there are no ambiguities the prefixing need not (but may) be present when the imported definitions are
used. When the definition is referenced in the same module where it is defined, the module identifier of the module (the
current module) also may be used for prefixing the identifier of the definition.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Animport statement shall only be used in the module definitions part and not be used within a control part,
function definition, and alike.

b) Only top-level visible definitions of a module may be imported. Definitions which are top-level but invisible
to the importing module or which occur at alower scope (e.g. local constants defined in afunction) shall not
be imported.

c) A definition isimported together with its name and all local definitions.

NOTE5: A local definition, e.g. afield name of a user-defined record type or an enumerated value, has only
meaning in the context of the definitionsin which it is defined, e.g. afield name of arecord type can only
be used to access afield of the record type and not outside this context.

In particular, importing an enumerated type does not impose the restriction given in clause 6.2.4 on global
names defined in the importing module.

d) A definitionisimported together with al information of referenced definitions that are necessary for the usage
of the imported definition, independent of the visibility of the referenced definitions (see clause 8.2.5).

NOTE 6: If module C imports a definition from module B that uses atype reference defined in module A, the
corresponding information necessary for the usage of that type is automatically imported into module C
(see example 5 below in this clause). Identifiers of referenced definitions are not automatically imported.

In particular, if module C imports global value or template definitions (e.g. constants, module parameters,
templates) or loca definitions (e.g. formal parameters of templates, functions, etc., or constants and
variables of component types) of an enumerated type from module B, the enumerated values of this type
(i.e. theidentifiers) areimplicitly and automatically imported to module C. That is, the enumerated values
are known when an enumerated value or template is used in module C (e.g. when an actual parameter is
passed or avalueis assigned to a component variable). Note that thisimplicit importing does not impose
the restriction given in clause 6.2.4 on global names defined in module C.

e) If thereferenced definitions are wished to be used in the importing module, they shall be explicitly imported
either directly fromits source module or indirectly by importing the import statements of a module importing
it (seeclause 8.2.3.7).

f) Whenimporting a function, altstep or test case the corresponding behaviour specifications and all definitions
used inside the behaviour specifications remain invisible for the importing module.

ETSI

9)

h)

87 ETSI ES 201 873-1 V4.5.1 (2013-04)

The language specification (see clause 8.1) of the import statement shall not override the language
specification of the importing module.

The language specification of the import statement shall be identical to the language specification of the source
module from which definitions are imported (see clause 8.2.3.8) provided a language specification is defined

in the source module. If not, the language specification in the import statement is taken as the language
specification of the source module. If the source module uses however language concepts not being part of that
language specification, this causes an error for the import statement.

Examples

EXAMPLE 1. Selected import examples

modul e MyModul eA

{

}

)/ Scope of the inported definitions is global to MyMdul eA

inmport from MyModuleB all; // inport of all definitions from MyMdul eB
import from MyModul eC { /1 inmport of selected definitions from M/Mdul eC
type M Typel, MyType2; [/ inport of types MyTypel and MyType2
tenplate all [/ inport of all tenplates
}

functi on MyBehavi our ()

/1 inport cannot be used here

}
;:ontrol

/1 inmport cannot be used here
) :

EXAMPLE 2: Use of imported definitions and visibility of definitions referenced by them

nmodul e Modul eONE {

nodul epar integer MddParl := .;

type record RecordType_T1 {
integer Fieldl_T1,

}

type record RecordType_T2 {
Recor dType_T1 Field1_T2,

}
const integer MyConst := ..

tenpl ate RecordType_T2 Tenpl ate_T2 (RecordType_T1 TenpPar_T2):= { // paranmeterized tenplate
Fieldl T2 := .,

}

} /1 end nodul e Modul eONE

nodul e Modul eTVWD {

i mport from Modul eONE {
tenpl ate Tenplate T2

/1l Only the nanes Tenplate_T2 and TenpPar_T2 will be visible in Mdul eTWD. Please note, that
/1 the identifier TenpPar_T2 can only be used when nodifying Tenplate_T2. Al infornation

/'l necessary for the usage of Tenplate T2, e.g. for type checking purposes, are inported

/1 for the referenced definitions RecordType_T1, Fieldl_T2, etc., but their identifiers are
/1 not visible in Mdul eTWO

/1 This neans, e.g. it is not possible to use the constant MyConst or to declare a

/1 variable of type RecordType T1 or RecordType_T2 in Mdul eTWD wi thout explicitly inporting
/'l these types.

ETSI

88 ETSI ES 201 873-1 V4.5.1 (2013-04)

i mport from Modul eONE {
nodul epar ModPar 2
}

/1 The nodul e paraneter MdPar2 of Mdul eONE is inported from Mdul eONE and
/'l can be used |like an integer constant

} /1 end nodul e Modul eTWO

nodul e Mbdul eTHREE {
import from Modul eONE all; // inports all definitions from Mdul eONE
type port MyPortType nessage {
i nout RecordType_T2 /'l Reference to a type defined in Mbdul eONE
}

type conponent MyConpType {
var integer MyConponentVar := NModPar2;
/'l Reference to a nodul e paraneter of Mdul eONE

}
function MyFunction () return integer {

return MyConst /'l Reference to a nodul e constant of Mdul eONE
}

testcase MyTest Case (out RecordType_T2 MyPar) runs on MyConpType {
M/Port .send(Tenplate_T2); // Sending a tenplate defined i n Modul eONE

}
} // end Modul eTHREE

nodul e Modul eFOUR {
i mport from Modul eTHREE {
testcase MyTest Case
}

/1 Only the nane MyTestCase will be visible and usable in Mdul eFOUR

/1 Type information for RecordType_T2 is inported via Mdul eTHREE from Modul eONE and
Il Type information for MyCompType is inported from Mbdul eTHREE. All definitions

/'l used in the behaviour part of MyTestCase renmin hidden for the user of Mdul eFOUR

} /1 end Modul eFOUR

EXAMPLE 3: Handling of name clashes
nodul e MyModul eA {
type bitstring MTypeA

i mport from SoneMdul eC {

type M/ TypeA, /1 Where MyTypeA is of type character string
M/ TypeB /1 Where MyTypeB is of type character string
}
cbntrol {
vér SomeMbdul eC. My TypeA MyVarl : = "Test String"; // Prefix shall be used
var MyTypeA MyVar2 : = '10110011' B; /1 This is the original MTypeA
vér M/ TypeB MyVar3 := "Test String"; /1 Prefix need not be used ...
var SoneMdul eC. MyTypeB MyVar3 : = "Test String"; // ..but it can be if wi shed
}

ETSI

89 ETSI ES 201 873-1 V4.5.1 (2013-04)

NOTE 7: Definitions with the same name defined in different modules are always assumed to be different, even if
the actual definitionsin the different modules are identical. For example, importing atype that is already
defined locally, even with the same name, would lead to two different types being available in the
module.

EXAMPLE 4: Name clash between enumerated values and global definitions

nodul e A {
type enunerated MyEnuniType {enumX, enun¥, enun¥}
type enunerated MyEnuniType2 {enun¥X, enun¥, enuny}

nodul e B {
import fromA all;
const MyEnunilype enun¥ := enunX; // this is not allowed as enunerated val ues restrict
/1 gl obal nanes (see clause 6.2.4)
const MyEnunilype2 enunX := enunX;// this is |ikew se not allowed
const integer enunZ := 0;

modul epar MyEnuniType px_M/Mdul ePar1 : = enun¥

/1 the default value of the nodule paraneter will be the value enun¥, as the type of

/'l px_MyModul ePar1 creates the context of MyEnunType and in this context enunerated val ues
/'l take precedence over global definition names; note that for the same context reason there
/1 in no name clash between the enunerated val ues defined in M/EnunType and i n MyEnuniType2

nmodul epar MyEnuniType px_M/Modul ePar2 : = B. enun¥
/'l the default value of the npbdul e paraneter will be the value enunX, as the prefix
/1 identifies the constant definition enunY unanbi guously, which has the val ue enunX

nmodul epar i nteger px_I|ntegerPar := enuni;
/'l the default value of the nodule paraneter will be O as this assignnent is not in the
/1 context of an enunerated type, hence no nanme clash occurs

nodul epar MyEnuniType px_M/Mdul ePar3 : = B. enunX
/] causes an error as px_M/Mdul ePar3 and the constant enunX has different types

}
EXAMPLES5: Importing local definitions transitively

nmodul e A {
type enunerated MyEnum Type { enun¥X, enun¥, enuni}
type record M/Rec { integer a, integer b}
type conponent MyConp { var MJRec v_Rec :={ a:=51} }

nodul e B {
import fromA all;
modul epar MyEnum Type px_M/Modul ePar : = enun;
type conponent MyConpUser extends MyConp {}

modul e C {
import fromB all;
testcase TC() runs on MyConpUser {
if (px_MyModul ePar == enun¥) {
/1 the enunerated value enun¥ is knowin C w thout explicitly inmporting it fromA
set verdi ct (pass)

}

if (v_Rec.a == 5) {
V_Rec.b := v_Rec. a;
// Both the variable name v_Rec and the record field names are known in C w thout
/] explicitly inporting themfromA
setverdi ct (pass)

}

}
}

8.2.3.2 Importing single definitions

Single visible definitions can be imported by referring to the definition kind and the definition name(s). The import of
single definitions can be used in combination with imports of groups (see clause 8.2.3.3), with imports of definitions of
the same kind (see clause 8.2.3.4), and with imports of import statements (see clause 8.2.3.7).

ETSI

90 ETSI ES 201 873-1 V4.5.1 (2013-04)

Syntactical Structure

[Visibility] inport from Mduleld "{"
{
(

(type { TypeDefldentifier ["1 31) I
(tenplate { Tenplateldentifier [""11)1
(const { Constldentifier [" 1%1) 1
(testcase { Testcaseldentifier [""131) 1
(altstep { Altstepldentifier [""11) |
(function { Functionldentifier [" 11)I
(signature { Signatureldentifier ["," 11}) |
(nmodul epar { Modul ePar | dentifier [""11)

Semantic Description

See clause 8.2.3. Import of an invisible definition shall cause an error.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) The definition to be imported shall be defined in the module from which it isto be imported and shall be visible
to the importing module.

b) Seetherestrictions givenin clause 8.2.3.

Examples

i mport from MyModul eA {
type MyTypel /1 inports one type definition from M/Mddul eA only

i mport from MyModul eB {

type My Type2, Mtype3, MType4; /] inports three types,
tenpl ate MyTenpl at el; Il inports one tenplate, and
const MyConstl1l, MyConst2 /] inmports two constants
}
8.2.3.3 Importing groups

Groups of definitions may be imported. The import of groups can be used in combination with imports of single
definitions (see clause 8.2.3.2), with imports of definitions of the same kind (see clause 8.2.3.4), and with imports of
import statements (see clause 8.2.3.7).

It isallowed to import sub-groups (i.e. a group which is defined within another group) directly, i.e. without the groups
in which the sub-group is embedded. If the name of a sub-group that should be imported is identical to the name of
another sub-group in the same module (see clause 8.2.2), the dot notation shall be used to identify the sub-group to be
imported uniquely.

If some visible definitions of a group are wished not to be imported, their kinds and identifiers shall be listed in the
exception list within a pair of curly brackets following the except keyword. Theal | keyword isalso allowed to be
used in the exception list; this will exclude all definitions of the same kind from the import statement.

Syntactical Structure
[Visibility] inport from Mduleld "{"
{

(group { Qualifiedldentifier [except "{" ExceptSpec "}" 1 [“," 1 })
["1

B

ETSI

91 ETSI ES 201 873-1 V4.5.1 (2013-04)

Semantic Description

The effect of importing agroup isidentical to ani nmport statement that listsall visible definitions (including
sub-groups) of this group except of those that are listed in the except specification. See also clause 8.2.3. Import
statements contained in the group or in its subgroups are not part of thislist, only definitions are.

It isimportant to point out, that the except statement does not exclude the definitions listed from being imported in
general; all statements importing definitions of the same kind can be seen as a shorthand notation for an equivalent list
of identifiers of single definitions. The except statement excludes definitions from this single list only.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a Thegroup to beimported shall be defined in the module from which it isto be imported.
b) Seetherestrictions givenin clause 8.2.3.

Examples
import from MyModul e { group MyGroup } // includes all visible definitions from MG oup

import from MyMudul e {
group MyGoup except {
type M Type3, MyType5; [/ excludes the two types fromthe inport statenent,
tenplate all /1 excludes all tenplates defined in M/G oup
/1 fromthe inport statenent
/1 but inports all other visible definitions of M/G oup

}

import from MyModul e {

group MyG oup
except { type MyType3 };// inports all visible types of M/Group except MyType3

type MyType3 /] inports MyType3 explicitly

8.2.3.4 Importing definitions of the same kind

Theal | keyword may be used to import all visible definitions of the same kind of amodule. Theal | keyword used
with theconst ant keyword identifies all visible constants declared in the definitions part of the module the import

statement refersto. Similarly theal | keyword used with the f unct i on keyword identifies al visible functions and
all visible external functions defined in the module the import statement denotes.

If some visible declarations of akind are wished to be excluded from the given import statement, their identifiers shall
be listed following theexcept keyword.

The import of visible definitions of the same kind can be used in combination with imports of single visible definitions
(see clause 8.2.3.2), with imports of groups (see clause 8.2.3.3), and with imports of import statements (see
clause 8.2.3.7).

Syntactical Structure

[Visibility] inport from Mduleld "{"
{
(

(type all [except { TypeDefldentifier [""" 111
(tenplate all [except { Tenplateldentifier [""1%ry1) 1
(const all [except { Constldentifier [""1%Yy1) 1
(testcase all [except { Testcaseldentifier [""1%ry1) 1
(altstep all [except { Altstepldentifier [""" 131) 1
(function all [except { Functionldentifier [""" 13r1) 1
(signature all [except { Signatureldentifier ["," 1} 1) |
(nodul epar all [except { Mdul eParldentifier ["," 1 } 1)

ETSI

92 ETSI ES 201 873-1 V4.5.1 (2013-04)

Semantic Description

The effect of importing definitions of the ssme kind isidentical to ani npor t statement that lists all visible definitions
of that kind except of those that are listed in the except specification. See also clause 8.2.3.

NOTE: If thelist of al visible definitions of that kind except of those that are listed in the except specification
is empty, the import statement has no effect. This case does not lead to an error.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Seetherestrictionsgivenin clause 8.2.3.

Examples
import from MyMddul e {
type all; /1 inmports all types of MyMdul e
tenpl ate all /1 inmports all tenplates of MyMdul e

}

import from MyModul e {
type all except MyType3, MType5; /1 inports all types except MyType3 and MyTypeb
tenplate all /1 inports all tenplates defined in Mynodul e

8.2.35 Importing all definitions of a module
All visible definitions of a module definitions part may be imported using theal | keyword next to the module name.

If some visible definitions are wished not to be imported, their kinds and identifiers shall be listed in the exception list
within apair of curly brackets following the except keyword. Theal | keyword is also alowed to be used in the
exception list; thiswill exclude all visible declarations of the same kind from the import statement.

NOTE 1: If thelist of al visible definitions of a module except of those that are listed intheexcept specification
is empty, the import statement has no effect. This case does not lead to an error.

NOTE 2: Importing al definitions of a module imports only definitions declared directly in that module, but does
not import the import statements of that module (see also clause 8.2.3.7).

Syntactical Structure

[Visibility] inport from Mduleld

al |
[
{
except "{"
(group { Qualifiedldentifier """ 131 al)|
(type { TypeDefldentifier """ 131 atl)|
(tenplate { Tenplateldentifier [", 1%}] al)|
(const { Constldentifier [", 1%}] al)|
(testcase { Testcaseldentifier """ 131 al)|
(altstep { Altstepldentifier """ 1%} al)|
(function { Functionldentifier [", 1%} al)|
(signature { Signatureldentifier [", 1%}] al)|
(modul epar { Modul eParldentifier ["" 1%} al)
"y
["]
}

]
[

Semantic Description

The effect of importing all visible definitions of amodule isidentical to ani nmpor t statement that lists all importable
definitions of that module except of those that are listed in the except specification. See also clause 8.2.3.

ETSI

93 ETSI ES 201 873-1 V4.5.1 (2013-04)

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) If dl visible definitions of a module are imported by using the all keyword, no other form of import (import of
single definitions, import of the same kind, etc.) shall be used for the same import statement.

b) Inthe set of except statements for an all import, only one except statement per kind of definition (i.e. for a
group, type, etc.) isallowed.

Examples
import from MyModul e al | ; /1 includes all definitions from M/Mddul e

inmport from MyMddul e all except {
type MyType3, MType5; // excludes these two types fromthe inport statenent and
tenplate all /1 excludes all tenplates declared in M/Mdul e,
/1 fromthe inport statenent
/1 but inports all other definitions of MyMdule

8.2.3.6 Import definitions from other TTCN-3 editions and from non-TTCN-3 modules

In cases when visible definitions are imported from modules from other TTCN-3 editions or from other sources than
TTCN-3 modules, the language specification (see clause 8.1) shall be used to denote the language (may be together
with aversion number) of the source (e.g. module, package, library or even file) from which definitions are imported. It
consists of thel anguage keyword and a subsequent textual declaration of the denoted language.

The use of the language specification is optional when importing from a TTCN-3 module of the same edition as the
importing module. The TTCN-3 language identifiers defined in clause 8.1 are to be used. Package identifiers from

ES 202 781 [i.11], ES 202 782 [i.14], ES 202 784 [i.12] and ES 202 785 [i.13] can be used in addition. Identifiers for
other languages are defined in the language mapping parts of TTCN-3, i.e. in ES 201 873-7 [i.5], ES 201 873-8[i.6] and
ES 201 873-9]i.7].

When an incompatibility is discovered between the language and/or package identification (including implicit
identification by omitting the |anguage specification) and the syntax of the module from which definitions are imported,
tools shall provide reasonable effort to resolve the conflict.

Syntactical Structure

[Visibility] inport from Mddul eldentifier [LanguageSpec] ...[";" 1]
Semantic Description

TTCN-3 supports the referencing of elements defined in other TTCN-3 editions (versioned elements) or other languages
(foreign elements) from within TTCN-3 modules. Such elements can be used in a TTCN-3 module of a given edition
only if they have a TTCN-3 view in that TTCN-3 edition. The term TTCN-3 view can be best explained by considering
the case when the definition of a TTCN-3 element is based on another TTCN-3 element, the information content of the
referenced element shall be available and is used for the new definition. For example, when a template is defined based
on astructured type, the identifiers and types of fields of the base type shall be accessible and are used for the template
definition. In asimilar way, when a base typeis a versioned or foreign element it shall provide the same information
content as would be required from a TTCN-3 type declaration. The versioned or foreign element, naturally, may contain
more information than required by TTCN-3. The TTCN-3 view of aversioned or foreign element means that part of the
information carried by that element, which is necessary to useit in TTCN-3. Obviously, the TTCN-3 view of a
versioned or foreign element may be the full set or a subset of the information content of that element but never a
superset. There may be versioned or foreign element without a TTCN-3 view (zero TTCN-3 view), i.e. for some reason
no TTCN-3 definition in the given edition could be based on them.

To make declarations of versioned or foreign element visible in TTCN-3 modules, their names shall be imported just
like definitionsin other TTCN-3 modules of the given edition. When imported, only the TTCN-3 view of the versioned
or foreign element will be seen from the importing TTCN-3 module. There are two main differences between importing
TTCN-3 elements of the same editions and versioned or foreign elements:

e toimport fromaTTCN-3 module of another edition of from a non-TTCN-3 module the import statement shall
contain an appropriate language identifier string;

ETSI

94 ETSI ES 201 873-1 V4.5.1 (2013-04)

. only versioned or foreign elements with a TTCN-3 view of a given edition are importable into a TTCN-3
module of that edition.

Importing can be done automatically using the al directive, in which case al importable objects shall automatically be
selected by the testing tool, or done manually by listing names of elements to be imported. Naturally, in the second case
only importable elements are allowed in the list.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Thelanguage specification may only be omitted if the referenced module contains TTCN-3 notation and the
TTCN-3 version is known.

b) Definitionsimported from non-TTCN-3 language sources have by default public visibility provided that no
other rules are defined in the respective language mapping (see ES 201 873-7 [i.5], ES 201 873-8 [i.6] or
ES 201 873-9[i.7], respectively).

Examples
modul e MyNewibdul e {
import from MyA dMvbdul e | anguage "TTCN 3: 2003" {
type My/Type
}

nodul e MyNewest Modul e {
i mport from MyNewMbdul e | anguage "TTCN 3: 2010" { inport all };
/'l the Il anguage specifications shall be identical, see clause 8.2.3.8

}

NOTE: Theimport mechanism is designed to allow the re-use of definitions from other TTCN-3 editions or from
other non-TTCN-3 language sources. The rules for importing definitions from specifications written in
other languages, e.g. SDL packages, may follow the TTCN-3 rules or may have to be defined separately.

8.2.3.7 Importing of import statements from TTCN-3 modules
Visibleimport statements of TTCN-3 modules can be imported by other TTCN-3 modules.

Syntactical Structure

[Visibility] inport from Mddul eldentifier [LanguageSpec]
(" import all [t 1)L

Semantic Description

TTCN-3 supports importing of visible import statements from other TTCN-3 modules. This means that import
statements of the module, from which the import statements are imported, are re-imported to the importing module. For
example, if module B imports the import statements of module A, everything that isimported by A using import
statements visible for module B, is aso imported by B. If another module C imports all import statements from B, then
Cimportsall what A isimporting - provided that the import statements are visible to modules B and C.

It isnot possible to import individual import statements of another module.

The import of import statements can be used in combination with imports of single definitions (see clause 8.2.3.2), with
imports of groups (see clause 8.2.3.3), and with imports of definitions of the same kind (see clause 8.2.3.4).

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Therestrictionsgivenin clause 8.2.3.1 apply.
b) Therestrictionsgivenin clause 8.2.3.6 apply.

¢) Importing of import statementsis only possible from other TTCN-3 modules, i.e. the language specification
(see clause 8.1) shall denote a TTCN-3 edition only, not a non-TTCN-3 language.

ETSI

95 ETSI ES 201 873-1 V4.5.1 (2013-04)

Examples

EXAMPLE: Importing of visible import statements

nodul e A {
type integer T1;
type integer T2;
tenplate T1 t1 :
tenplate T2 t2 : ;

* -

modul e B {
public inport fromA { type T1 }
type charstring T2;
template T1 t1 :=(1, 2, 3);

}

nodul e C {
public inmport fromB { inport all } // inports the inport statenents only
public inmport fromB { type T2 } /1 inmports the type B. T2

import fromA { tenplate all }

}
nmodul e D {
private inport fromC { inport all } // inports the inport statenents only

nmodul e E {
import fromD{ inport all }

/1 yields the follow ng
/1 rmodul e A knows

/1 ATL (defined)

Il A T2 (defined)

I Atl (defined)

11 At2 (defi ned)

/1

/1 modul e B knows

Il ATl (i mported)

/1 B.T2 (defi ned)

/1 B.tl (defi ned)

/1

/1 modul e C knows

Il ATL (inmported fromB inporting it fromA)
/Il B.T2 (i mport ed)

Il Atl (i mported)

Il At2 (i mported)

/1

/1 nodul e D knows

/1 ATl (inmported fromC inporting it fromB inporting it fromA)
/1l B.T2 (inmported fromC inporting it from B)
/1 At2 and A't2 are not inported as their inports are private to C
/1

/1 nodul e E "knows" not hi ng
/1 as the inmports of D are private and not visible to E

8.2.3.8 Compatibility of language specifications in imports

When importing into a TTCN-3 module, the language specification (see clause 8.1) of the importing module, the
language specification of the import statement and the language specification of the source module, where the imported
definitions are defined, have to be compatible according to the following rules.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a A TTCN-3 module of any TTCN-3 edition can import from a non-TTCN-3 language source provided that a
TTCN-3 view for the non-TTCN-3 language exists (see clause 8.2.3.6).

ETSI

96 ETSI ES 201 873-1 V4.5.1 (2013-04)

b) Definitions or import statements are imported according to the language specification in which the definition
or the import statement is defined. If no language specification is given in this module, the language
specification of the import statement with which those definitions or import statements are to be imported, is
used instead. If the module, within which the definitions or the import statements are defined, and the import
statement for these definitions or import statements provide both alanguage specification, then they shall be
identical. If none of the two has alanguage specification, the language specification has to be known from
other sources, which istool specific.

¢) The TTCN-3 language specification in an import statement shall be lower or equal to the TTCN-3 language
specification of the importing module, i.e. a TTCN-3 module can only import from earlier or same editions of
TTCN-3 but not from later editions.

8.2.4 Definition of friend modules
Modules can define other modules to be friends.

Syntactical Structure
[private] friend nodul e Modul el dentifier { "," Mduleldentifier } ";"
Semantic Description

Friendship to modulesis defined by the exporting modul e (the modul e that declares the definitions) not by the
importing module (the module that uses the module definitions of another module). Friendship can be cyclic.

If amoduleisfriend to a module from which it imports top-level definitions, al top-level definitions with public and
friend visibility are visible to the friend module. For non-friend modules, public top-level definitions are visible only.

Missing friend modules shall not cause an error.

NOTE: Friend modules can be checked by tools, however at most warning are to be issued if afriend module is
missing.

Restrictions
In addition to the general static rules of TTCN 3 given in clause 5, the following restrictions apply:
a) Only private visibility can be defined for friend definitions as they are always private.

Examples

nmodul e MyModul eA {
friend nodul e MyModul eB, MyModul eC;

}
/1 MyModul eB and MyModul eC are friends of MyMdul eA

modul e MyModul eB {
friend nodul e MyModul eA;

}
/1l MyModul eA is friend of MyMdul eB

nmodul e MyModul eC {
}

8.2.5 Visibility of definitions

Top-level module definitions and import statements have a visibility, which can be explicitly set. They are by default
publ i ¢ except for imported and friend definitions. Import definitions are by default pri vat e. Friend definitions are
pri vat e only. Group definitionsare publ i ¢ only.

Syntactical Structure

[public | friend | private]
Semantic Description

The visibility controls whether atop-level definition or an import statement isimportable by another module.

ETSI

97 ETSI ES 201 873-1 V4.5.1 (2013-04)

Three visibilities are distinguished:
e Atop-level definition or an import statement with publ i ¢ visibility isimportable by any other module.

e A top-level definition or an import statement with f r i end visibility isimportable by friend modules only
(seeclause 8.2.4).

e Atop-level definition or an import statement with pri vat e visibility cannot be imported at all.

NOTE: Asspecifiedin restriction €) of clause 8.2.3.1, this means that importable definitions are imported
together with all information of referenced definitions that are necessary for the usage of the importable
definition, even if the referenced definition is private. Only the identifier of the referenced definitionis

not visible in the importing TTCN-3 module.

The visibility of groupsisawayspubl i c. Thevisibility of imported definitionsis by default pri vat e. All other
module definitions are by default publ i c.

The visibility of atop-level definition or an import statement defines their importability by another module. If the
top-level definition or the import statement is part of a group, this has no effect on the importability of the module
definition. The importability of atop-level definition by another module is summarized in table 9, the importability of
import statementsin table 10.

Table 9: Visibility and import of module definitions

Visibility of Module definition | Module definition [Module definition [Module definition
module definition importable importable importable via importable via
directly by a directly by a [group import by afgroup import by a
non-friend friend module non-friend friend module
module module
public yes yes yes yes
friend no yes no yes
private no no no no
Table 10: Visibility and import of import statements
Visibility of Import imported | Import imported
import by a non-friend by a friend
module module
public yes yes
friend no yes
private no no
Restrictions

No specific restrictions in addition to the genera static rules of TTCN-3 given in clause 5.

Examples

nmodul e MyModul eA {

friend nodul e MyModul eC;

private type integer M/ nteger;
/'l Mylnteger is not visible to other nodul es
friend type charstring MyString;
/1 MyString is visible to friend nodul es
public type bool ean MyBool ean;

/1 MyBoolean is visible to all

}
nmodul e MyModul eB {

import from MyModul eA al | ;
/1l MyString and Myl nteger are not visible and are not inported

/1 MyBoolean is i

nmported

nodul es

ETSI

98 ETSI ES 201 873-1 V4.5.1 (2013-04)

nodul e MyModul eC {
import from MyModul eA al | ;
/1 Mylnteger is not visible and is not inported
/1 MyString and MyBool ean are inported

8.3 Module control part

The module control part may contain local definitions (i.e. constants or templates), local instances (i.e. variables or
timers) and describe the selection, parameterization and execution order (possibly repetitive) of the actual test cases. A
test case shall be defined in the module definitions part or imported from another module, and called in the control part.

The control part of amodule calls the test cases with actual parameters and controls their execution. Program statements
can be used to specify the selection and execution order of the test cases. Definitions made in the module control part
have local visibility, i.e. can be used within the control part only.

Thisis explained in more detail in clause 26.

EXAMPLE:

modul e MyTest Suite
{ /1 This nodul e contains definitions ...

é:onst i nteger MyConstant := 1;
type record MyMessageType { ...}
tenpl ate MyMessageType MyMessage := { ...}

functi on MyFunctionl() { ...}
function MyFunction2() { ...}

festcase MyTest casel() runs on MyMICType { ...}
testcase MyTestcase2() runs on MyMICType { ...}

/1 ...and a control part so it is executable
control

var bool ean MyVariable; // local control variable

éxecute(M/Test Casel()); // sequential execution of test cases
execute(MyTest Case2());

9 Port types, component types and test configurations

TTCN-3 alows the (dynamic) specification of concurrent test configurations (or configuration for short). A
configuration consists of a set of inter-connected test components with well-defined communication ports and an
explicit test system interface which defines the borders of the test system (see figure 4).

NOTE: Additional configuration and deployment support for TTCN-3 is defined in the optional package [i.11].

TTCN Test system

<+“——>
MTC PTC,

‘l_, PTC, —T

+ Abstract Test SystemInterface v ¢

_/
Real Test System Interface

SUT

Figure 4: Conceptual view of atypical TTCN-3 test configuration

ETSI

99 ETSI ES 201 873-1 V4.5.1 (2013-04)

Within every configuration there shall be one (and only one) Main Test Component (MTC). Test components that are
not MTCs are called paralel test components or PTCs. The MTC shall be created by the system automatically at the
start of each test case execution. The behaviour defined in the body of the test case shall execute on this component.
During execution of atest case, other components can be created dynamically by the explicit use of thecr eat e
operation.

Test case execution shall end when the MTC terminates. All other PTCs are treated equally i.e. there is no explicit
hierarchical relationship among them and the termination of a single PTC terminates neither other components nor the
MTC. When the MTC terminates, the test system has to stop al PTCs not terminated by the moment when the test case
execution is ended.

Communication between test components and between the components and the test system interface is achieved via
communication ports (see clause 9.1).

Test component types and port types, denoted by the keywords conmponent and por t , shall be defined in the module
definitions part. The actual configuration of components and the connections between them is achieved by performing
creat e and connect operations within the test case behaviour. The component ports are connected to the ports of
the test system interface by means of the map operation (see clause 21.1.1).

9.1 Communication ports

Test components are connected via their ports, i.e. connections among components and between a component and the
test system interface are port-oriented. Each port is modelled as an infinite FIFO queue which stores the incoming
messages or procedure calls until they are processed by the component owning that port (see figure 5).

NOTE: While TTCN-3 portsareinfinitein principlein area test system they may overflow. Thisisto be treated
as atest case error (see clause 24.1).

MTC [[m‘— PTC

—

Figure 5: The TTCN-3 communication port model

TTCN-3 connections are port-to-port and port-to-test system interface connections (see figure 6). There are no
restrictions on the number of connections a component may maintain. One-to-many connections are also allowed
(e.g. figure 6 (g) or figure 6 (h)).

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Thefollowing connections are not allowed (see figure 7):

- A port owned by a component A shall not be connected with two or more ports owned by the same
component (figures 7 (a) and 7 (g)).

- A port owned by a component A shall not be connected with two or more ports owned by a component B
(seefigure 7(c)).

- A port owned by a component A can only have a one-to-one connection with the test system interface.
This means, connections as shown in figures 7 (b) and 7 (d) are not allowed.

- Connections within the test system interface are not allowed (see figure 7 (f)).

- A port that is connected shall not be mapped and a port that is mapped shall not be connected (see
figure 7 (Q)).

b) Since TTCN-3 alows dynamic configurations and addresses, the restrictions on connections cannot always be
checked at compile-time. The checks shall be made at run-time and shall lead to atest case error when failing.

ETSI

test component

A

test component

B

@

test component

A

[
[

test component

B

(©)

test component

A

(e)

test component

A

test component

] s

test component

C

(@)

100

ETSI ES 201 873-1 V4.5.1 (2013-04)

test system

test component

test system interface

-0

(b)

test system

test component

A

test system interface

OO

(d)

test component

A

®

test system

test component

test component

A B

=

-

test system interface

N

Figure 6: Allowed connections

ETSI

p—

(h)

101 ETSI ES 201 873-1 V4.5.1 (2013-04)

test system

test component
test component

A

test system interface

@ (b)

test system

test component test component
test component :| B A
A
il —

test system interface

] mN
AN

(
(

(c) (d)

test component test system

A -
[é test system interface /_I\ %

(e) ®

test system test component test component

A B

test system interface f\/
N/

@)

Figure 7: NOT allowed connections

9.2 Test system interface

TTCN-3is used to test implementations. The object being tested is known as the Implementation Under Test or IUT.
The IUT may offer direct interfaces for testing or it may be part of system in which case the tested object isknown asa
System Under Test or SUT. Inthe minimal casethe IUT and the SUT are equivalent. In the present document the term
SUT isused in agenera way to mean either SUT or [UT.

In areal test environment test cases need to communicate with the SUT. However, the specification of the real physical
connection is outside the scope of TTCN-3. Instead, awell defined (but abstract) test system interface shall be
associated with each test case. A test system interface definition isidentical to a component definition, i.e. it isalist of
all possible communication ports through which the test case is connected to the SUT.

The test system interface statically defines the number and type of the port connectionsto the SUT during atest run.
However, the connections between the test system interface and the TTCN-3 test components are dynamic in nature and
may be modified during atest run by using map and unmap operations (see clause 21.1).

ETSI

102 ETSI ES 201 873-1 V4.5.1 (2013-04)

A component type definition is used to define the test system interface because, conceptually, component type
definitions and test system interface definitions have the same form (both are collections of ports defining possible
connection points). When used as test system interfaces, components cannot make use of any constants, variables and
timers declared in the component type.

Syntactical Structure
The same as a component type definition (see clauses 6.2.10 and 6.2.10.1).
Semantic Description

Generally, a component type reference defining the test system interface shall be associated with every test case using
more than one test component. The ports of the test system interface shall automatically be instantiated by the system
together with the MTC when the test case execution starts.

The operation returning the component reference of the test system interfaceissyst em This shall be used to address
the ports of the test system.

In the case where the MTC is the only component that is instantiated during test execution, atest system interface need
not be associated to the test case. In this case, the component type definition associated with the MTC implicitly defines
the corresponding test system interface.

Variables, timers and constants declared in component types, which are used as test system interfaces will have no
effect.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) The same asfor component type definitions (see clauses 6.2.10 and 6.2.10.1).

Examples

EXAMPLE 1. Explicit definition of atest system interface
type conponent MyMICType
{

var integer MyLocal | nteger;
timer MyLocal Tiner;
port MyMessagePort Type PCOL

}

type conponent MyTest System nterface

port MyMessagePort Type PCOL, PCQO2;
port M/ProcedurePort Type PCC3

/'l MyTestSystem nterface is the test systeminterface
testcase MyTestcasel () runs on M/MICType system MyTest System nterface {
/'l establishing the port connections
map(ntc: PCOL, system PCQ2);
/1 the testcase behaviour
...

}
EXAMPLE 2 Implicit definition of atest system interface

/'l MyMICType is the test systeminterface
testcase MyTestcase2 () runs on MyMICType {
/'l map statenents are not needed
/'l the testcase behavi our
...

ETSI

103 ETSI ES 201 873-1 V4.5.1 (2013-04)

10 Declaring constants

TTCN-3 constants are run-time constants. After value assignment, they do not change their value during test execution.
They can be used on the right hand side of assignments, in expressions, in actual parameters, and in template
definitions. Constants used within type definitions have to have values known at compile-time.

Syntactical Structure

const Type { Constldentifier [ArrayDef] ":=" ConstantExpression [","] } [";"]
Semantic Description

A constant assigns a name to a fixed value. A valueis assigned only once to a constant, at the place of its declaration.
The constant does not change its value during test execution. The constant is defined only once, but can be referenced
multipletimesin a TTCN-3 module.

Optional fields of record and set constants or constant fields can be initialized explicitly or implicitly. For implicit
initialization of the optional fields of a constant or a constant field, anopt i onal attribute withthevalue"i npli cit
om t" (seeclause 27.7) shall be associated with it either directly or viathe attribute distribution (scoping) mechanism
(seeclause 27.1.1).

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Constants shall not be of port type.

NOTE: Theonly value that can be assigned to constants of default and component types is the special value
nul | .

b) Constant expressionsinitializing constants, which are used in type and array definitions, shall only contain
literals, predefined functions except of r nd (see clause 16.1.2), operators specified in clause 7.1, and other
constants obeying the limitations of this clause.

Examples

1:

const integer MyConst1l : ;
true, MyConst3 : = fal se;

const bool ean MyConst2 :

11 Declaring variables

TTCN-3 variables are statically typed variables. Variables are either value variables to store values or template
variables to store templates.

Variables can be of simple basic types, basic string types, structured types, special data types (including subtypes
derived from these types) as well as address, component or default types.

Variables can be declared and used in the module control part, test cases, functions and altsteps. Additionally, variables
can be declared in component type definitions. These variables can be used in test cases, altsteps and functions which
are running on a given component type.

11.1 Value variables

A TTCN-3 vaue variable stores values. It is declared by the var keyword followed by atype identifier and a variable
identifier. Aninitial value can be assigned at variable declaration.

It may be used at the right hand side as well as at the left hand side of assignments, in expressions, following the
r et ur n keyword in bodies of functions with areturn clause in their headers and may be passed to both value and
template-type formal parameters.

ETSI

104 ETSI ES 201 873-1 V4.5.1 (2013-04)

Syntactical Structure

var Type Varldentifier [ArrayDef] [":=" Expression]
{[","] Varldentifier [ArrayDef] [":=" Expression] } [";"]

Semantic Description

A value variable associates a name with the location of avalue. A value variable may change its value during test
execution several times. A value can be assigned several timesto a value variable. The value variable can be referenced
multipletimesin a TTCN-3 module.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Expression shall be of type Type.
b) Vauevariablesshal storevaluesonly.

¢) Vauevariables shall not be declared or used in a module definitions part (i.e. global variables are not
supported in TTCN-3).

d) Useof uninitialized value variables at other places than the left hand side of assignments or as actual
parameters passed to formal parameters shall cause an error.

€) Useof partialy initialized value variables at other places than the left hand side or the right hand side of
assignments, as actual parameters passed to formal parameters, in return statements, or the left operand to the
rotate operator or the operands of the list concatenation (&) operator shall cause an error.

Examples

var integer MyVarO;
var integer MyVarl :
var bool ean MyVar2 :

1;
true, MyVar3 : = fal se;

11.2 Template variables

A TTCN-3 template variable stores templates. They are declared by thevar t enpl at e keyword followed by atype
identifier and avariable identifier. Aninitial content can be assigned at declaration. In addition to values, template
variables may also store matching mechanisms (see clause 15.7).

Template variables may be used on the right hand side as well as on the left hand side of assignments, following the
r et ur n keyword in bodies of functions defining atemplate-type return value in their headers and may be passed as
actual parameters to template-type formal parameters. It is also allowed to assign a template instance to atemplate
variable or atemplate variable field.

Syntactical Structure

var tenplate [restriction] Type Varldentifier [ArrayDef] ":=" Tenpl at eBody
{[","] Varldentifier [ArrayDef] ":=" TenplateBody } [";"]

Semantic Description

A template variable associates a name with the location of atemplate or avalue (as every value is also atemplate).
A template variable may change its template during test execution several times. A template or value can be assigned
several times to atemplate variable. The template variable can be referenced multiple timesin a TTCN-3 module.

The content of atemplate variable can be restricted to the matching mechanisms specific value and omit in the same
way as formal template parameters, see clause 5.4.1.2. The restriction template (omit) can be replaced by the shorthand
notation omit.

NOTE 1: String and list type templates can be concatenated, see clause 15.11.

ETSI

105 ETSI ES 201 873-1 V4.5.1 (2013-04)

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Template variables shall not be declared or used in a module definitions part (i.e. global variables are not
supported in TTCN-3).

b) When used on the right hand side of assignments template variables shall not be operands of TTCN-3
operators (see clause 7.1) and the variable on the left hand side shall be a template variable too.

¢) When accessing element of template variables either on the left hand side or on the right hand side of
assignments, the rules given in clause 15.6 shall apply.

NOTE 2: Whileitis not allowed to directly apply TTCN-3 operations to template variables, it is allowed to use the
dot notation and the index notation to inspect and modify template variable fields.

d) Useof uninitialized template variables at other places than the left hand side of assignments or as actual
parameters passed to formal parameters shall cause an error.

€) Useof partidly initialized template variables at other places than the left hand side or the right hand side of
assignments, as actual parameters passed to formal parameters, or in return statements shall cause an error.

f) If thetemplate variable is restricted, then the template used to initialize it shall contain only the matching
mechanisms as described in clause 15.8.

g) Templatevariables, similarly to global and local templates, shall be fully specified in order to be used in
sending and receiving operations.

h) Restrictions on templatesin clause 15 shall apply.

Examples

var tenplate integer MVarTenpl := ?;
var tenplate M/Record MyVarTenp2 := { fieldl := true, field2 := * },
MyVar Tenp3 := { fieldl :=?, field2 := MyVarTenpl };

12 Declaring timers

TTCN-3 provides atimer mechanism. Timers can be declared and used in the module control part, test cases, functions
and altsteps. Additionally, timers can be declared in component type definitions. These timers can be used in test cases,
functions and altsteps which are running on the given component type.

A timer declaration may have an optional default duration value assigned to it. The timer shall be started with this value
if no other value is specified. The timer value shall be anon-negativef | oat value (i.e. greater than or equal to 0.0)
where the base unit is seconds.

In addition to single timer instances, timer arrays can aso be declared. Default duration(s) of the elements of atimer
array shall be assigned using avalue array. Default duration(s) assignment shall use the array value notation as specified
in clause 6.2.7. If the default duration assignment is wished to be skipped for some element(s) of the timer array, it shall
explicitly be declared by using the not used symbol (*-").

Syntactical Structure
timer { Tinmerldentifier [ArrayDef] ":=" TimerValue ["," 1 } [";" 1]
Semantic Description

Timers are local to components. A component can start and stop atimer, check if atimer is running, read the elapsed
time of arunning timer and process timeout events after timer expiration. The timer value is interpreted with a base unit
of seconds.

NOTE 1: Timersdeclared and started in scope units such as functions cease to exist when the scope unit is left.
They do not contribute to the test behaviour once the scope unit isleft.

NOTE 2: Itisnot possible to define atimer array as type.

ETSI

106 ETSI ES 201 873-1 V4.5.1 (2013-04)

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Incaseof asingletimer, the default duration value shall resolve to a non-negative numerical float value
(i.e. the value shall be greater or equal 0.0, infinity and not_a_number are disallowed).

b) Incaseof atimer array, it shall resolve to an array of float values obeying to restriction @) above of the same
Size asthe size of the timer array.

Examples

EXAMPLE 1. Singletimer

timer MyTinerl := 5E-3;
/1 declaration of the timer MyTinerl with the default value of 5nms

timer MTiner2; // declaration of MyTiner2 without a default tiner value i.e. a value has
/'l to be assigned when the tiner is started

EXAMPLE 2: Timer array

timer t_Mytinmerl[5] :={ 1.0, 2.0, 3.0, 4.0, 5.0}
/1 all elenents of the tiner array get a default duration.

timer t_Mtiner2[5] :={ 1.0, -, 3.0, 4.0, 5.0}
/1 the second tinmer (t_Mtiner2[1]) is left without a default duration.

13 Declaring messages

One of the key elements of TTCN-3 is the ability to send and receive simple or complex messages over message-based
ports defined by the test configuration (see clauses 9 and 21). These messages may be those explicitly concerned with
testing the SUT or with the internal co-ordination and control messages specific to the relevant test configuration.

Messages are instances of types declared in the infout/inout clauses of message port type definition.

Any type can be declared as type of a message in a message port type definition, i.e. values of any basic or structured
type (see clauses 6.1 and 6.2) can be sent or received. Received messages can also be declared as a combination of
value and matching mechanisms (see clause 15.5). Instances of messages can be declared by global, local or in-line
templates (see clause 15) or being constructed and passed via variables or template variables (see clause 11) and
parameters or template parameters (see clause 5.4).

Syntactical Structure

See syntactical structure of types (see clause 6).

Semantic Description

See semantic description of types (see clause 6).

Restrictions

No specific restrictions in addition to the genera static rules of TTCN-3 given in clause 5.

Examples

/1 a structured, ordered nessage with two fields
type record ARecord { integer i, float f }

ETSI

107 ETSI ES 201 873-1 V4.5.1 (2013-04)

14 Declaring procedure signatures

Procedure signatures (or signatures for short) are needed for procedure-based communication. Procedure-based
communication may be used for the communication within the test system, i.e. among test components, or for the
communication between the test system and the SUT. In the latter case, a procedure may either be invoked in the SUT
(i.e. thetest system performsthe call) or in the test system (i.e. the SUT performsthe call).

Syntactical Structure

signature Signatureldentifier

"(" { [in] inout | out] Type ValueParldentifier [","] } ")"
[(return Type) | noblock]

[exception "(" ExceptionTypeList ")"]

Semantic Description

For al used procedures, i.e. procedures used for the communication among test components, procedures called from the
SUT and procedures called from the test system, a procedure si gnat ur e shall be defined in the TTCN-3 module.

TTCN-3 supports blocking and non-blocking procedure-based communication. By default, signature definitions without
the nobl ock keyword are assumed to be used for blocking procedure-based communication.

Signature definitions may have parameters. Parameters shall be of datatype only, i.e. of abasic type, a structured type
thereof or a subtype thereof. Withinasi gnat ur e definition the parameter list may include parameter identifiers,
parameter types and their direction, i.e.i n, out , ori nout . Thedirectioni nout and out indicate that these
parameters are used to retrieve information from the remote procedure.

NOTE 1: The direction of the parametersis as seen by the called party rather than the calling party.

A remote procedure may return a value after its termination. The type of the return value shall be specified by means of
ar et ur n clausein the corresponding signature definition.

Exceptions that may be raised by remote procedures are represented in TTCN-3 as values of a specific type. Therefore
templates and matching mechanisms can be used to specify or check return val ues of remote procedures.

NOTE 2: The conversion of exceptions generated by or sent to the SUT into the corresponding TTCN-3 type or
SUT representation istool and system specific and therefore beyond the scope of the present document.

The exceptions are defined in the form of an exception list included inthe si gnat ur e definition. Thislist defines all
the possible different types associated with the set of possible exceptions (the meaning of exceptions themselves will
usualy only be distinguished by specific values of these types).

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Signature definitions for non-blocking communication shall use the nobl ock keyword, shall only havei n
parameters and shall have no return value but may raise exceptions.

b) Signature parameters shall not be of port, component or default type or of structured types having fields of
port, component or default type.

Examples
si gnature MyRenot eProcOne (); /1 MyRenoteProcOne will be used for bl ocking
/'l procedure-based comunication. It has neither
/| paraneters nor a return val ue.
si gnature MyRenoteProcTwo () nobl ock; /1 MyRenoteProcTwo will be used for non bl ocking

/'l procedure-based comunication. It has neither
/| paraneters nor a return val ue.

signature MyRenoteProcThree (in integer Parl, out float Par2, inout integer Par3);

/'l MyRenoteProcThree will be used for bl ocking procedure-based conmunication. The procedure
/1 has three paraneters: Parl an in paraneter of type integer, Par2 an out paraneter of

/1 type float and Par3 an inout paraneter of type integer.

ETSI

108 ETSI ES 201 873-1 V4.5.1 (2013-04)

signature MyRenoteProcFour (in integer Parl) return integer;

/'l MyRenot eProcFour will be used for bl ocking procedure-based conmuni cation. The procedure
/1 has the in parameter Parl of type integer and returns a value of type integer after its
/] termnation

si gnature MyRenoteProcFive (inout float Parl) return integer

exception (ExceptionTypel, ExceptionType2);
/'l MyRenot eProcFive will be used for bl ocking procedure-based comunication. It returns a
/1 float value in the inout paraneter Parl and an integer value, or may raise exceptions of
/1 type ExceptionTypel or ExceptionType2

signature MyRenoteProcSix (in integer Parl) nobl ock

exception (integer, float);
/'l MyRenoteProcSix will be used for non-bl ocking procedure-based comunication. In case of
/1 an unsuccessful term nation, MyRenoteProcSix raises exceptions of type integer or float.

15 Declaring templates

Templates are used to either transmit a set of distinct values or to test whether a set of received values matches the
template specification. Templates can be defined globally or locally.

Templates provide the following possibilities:
a) they are away to organize and to re-use test data, including a simple form of inheritance;
b) they can be parameterized;
c) they allow matching mechanisms;
d) they can be used with either message-based or procedure-based communications.

Within atemplate values, ranges and matching attributes can be specified and then used in both message-based and
procedure-based communications. Templates may be specified for any TTCN-3 type or procedure signature. The
type-based templates are used for message-based communications and the signature templates are used in
procedure-based communications.

A modified template declaration (see clause 15.5) specifies only the fields to be changed from the base template, i.e. it
isapartia specification.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Templatesshall not be of def aul t or port type.

b) Templates shal not be of a structured type that containsfields of def aul t or port type on any level of
nesting.

NOTE: Theanyt ype type doesnot include the def aul t type nor port types (see clause 6.2.6), so that
restriction b) does not apply to anytype templates.

Examples

type record MyRecord {
defaul t def

}

type uni on MyUnion {
i nt eger choicel,
MyRecord choi ce2

tenpl ate MyUnion t_integerChosen := { choicel :=5}

/'l shall cause an error as the type MyUnion contains MyRecord, which includes
/1 a field of default type.

ETSI

109 ETSI ES 201 873-1 V4.5.1 (2013-04)

15.1 Declaring message templates

Instances of messages with actual values may be specified using templates. A template can be thought of as being a set
of instructions to build a message for sending or to match a received message.

Syntactical Structure
See syntactical structure of global and local templates (see clause 15.3) and of in-line templates (see clause 15.4).
Semantic Description

A template used in asend operation defines a complete set of field values comprising the message to be transmitted
over aport.

NOTE: For sending templates, omitting an optional field is considered to be a value notation rather than a
matching mechanism.

A templateused inar ecei ve, t ri gger or check operation defines a data template against which an incoming
message is to be matched. Matching mechanisms, as defined in clauses 15.7 and 15.8 and in annex B, may be used in
receive templates. No binding of the incoming values to the template shall occur.

Restrictions
In addition to restrictions in clause 15, the following restrictions apply:

a) Atthetimeof asend operation, the used template shall be completely initialized and all fields shall resolveto
actual values or to omit and no other matching mechanisms shall be used in the template fields, neither directly
nor indirectly.

Atthetimeof ar ecei vi ng operation, the matching template shall be completely initialized.

b) Optional fields of record and set templates or template fields can be initialized explicitly or implicitly. For
implicit initialization of the optional fields of atemplate or atemplate field, an opt i onal attribute with the
value"inplicit omt" (seeclause 27.7) shall be associated with it either directly or viathe attribute
distribution (scoping) mechanism (see clause 27.1.1).

Examples

EXAMPLE 1. Template for sending messages

/1 Gven the nessage definition
type record MyMessageType

i nt eger fieldl optional,
charstring field2,
bool ean field3

}

/1 a message tenplate coul d be
tenpl ate MyMessageType MyTenpl ate: =

fieldl := omt,
field2 := "M string",
field3 := true

}

/1 and a correspondi ng send operation could be
M/PCO. send(MyTenpl at e) ;

EXAMPLE 2: Template for receiving messages

/1 G ven the nessage definition
type record MyMessageType

{

i nt eger fieldl optional,
charstring field2,
bool ean field3

ETSI

110 ETSI ES 201 873-1 V4.5.1 (2013-04)

/1 a nessage tenplate mght be
tenpl ate MyMessageType MyTenpl ate: =

fieldl := 2,
field2 := pattern "abc*xyz",
field3 :=true

}

/1 and a corresponding receive operation could be
M/PCO. r ecei ve(MyTenpl at e) ;

EXAMPLE 3: Template for receiving messages

/1 When used in a receiving operation this tenplate will natch any integer val ue
tenplate integer Mtenplate := ?;

/1 This tenplate will natch only the integer values 1, 2 or 3
tenpl ate integer Mytenplate := (1, 2, 3);

15.2 Declaring signature templates

Instances of procedure parameter lists with actual values may be specified using templates. Templates may be defined
for any procedure by referencing the associated signature definition.

Syntactical Structure
See syntactical structure of global and local templates (see clause 15.3) and of in-line templates (see clause 15.4).
Semantic Description

A signature template defines the values and matching mechanisms of the procedure parameters only, but not the return
value. The values or matching mechanisms for a return have to be defined within the reply (see clause 22.3.3) or
getreply operation (see clause 22.3.4).

A templateusedinacal | orrepl y operation defines acomplete set of field valuesfor al i n and i nout
parameters. At thetime of thecal | operation, al i n and i nout parametersin the template shall resolve to actual
values, no matching mechanisms shall be used in these fields, either directly or indirectly. Any template specification
for out parametersissimply ignored, thereforeit is allowed to specify matching mechanisms for these fields, or to
omit them (see annex B).

A template used inaget cal | operation defines a data template against which the incoming parameter fields are
matched. Matching mechanisms, as defined in annex B, may be used in any templates used by this operation. No
binding of incoming values to the template shall occur. Any out parameters shall be ignored in the matching process.

Restrictions
In addition to restrictions in clause 15, the following restrictions apply:

a) Atthetimeofacal | ,reply andrai se operation, the used template shall be completely initialized and all
i n/i nout parametersinacal |, al out /i nout parametersinar epl y orr ai se operation shall resolve
to specific values or to omit and no other matching mechanisms shall be used for these parameters, neither
directly nor indirectly.

b) The NotUsedSymbol shall only be used in signature templates for parameters which are not relevant and in
modified template declarations and modified in-line templates to indicate no change for the specified field or
element.

Atthetimeof aget cal | ,get repl y and cat ch operation, the matching template shall be completely initialized.

c) Optional fields of record and set parameters or parameter fields can be initialized explicitly or implicitly. For
implicit initialization of a parameter or a parameter field, an opt i onal attribute with thevalue™i npli cit
om t" (seeclause 27.7) shall be associated with it either directly or viathe attribute distribution (scoping)
mechanism (see clause 27.1.1).

ETSI

111 ETSI ES 201 873-1 V4.5.1 (2013-04)

Examples

EXAMPLE 1. Templates for invoking and accepting procedures

/] signature definition for a renote procedure
signature RenoteProc(in integer Parl, out integer Par2, inout integer Par3) return integer;

/] exanple tenplates associated to defined procedure signature
tenpl ate RenoteProc Tenpl atel: =

Parl := 1,
Par2 := 2,
Par3 := 3
}
tenpl ate RenoteProc Tenpl ate2: =
Parl := 1,
Par2 := 72,
Par3 := 3
}
tenpl ate RenoteProc Tenpl ate3: =
Parl := 1,
Par2 := ?,
Par3 := ?

}
tenpl ate RenoteProc Tenpl at e4: =?;

EXAMPLE 2: In-line templates for invoking procedures
/1l Gven exanple 1 in this clause

/1 Valid invocation since all in and inout paraneters have a distinct val ue
M/PCO. cal | (Renot eProc: Tenpl at el) ;

/1 Valid invocation since all in and inout paraneters have a distinct val ue
M/PCO. cal | (Renpt eProc: Tenpl at e2) ;

/1 Invalid invocation causing an error
/'l since the inout paraneter Par3 has a natching attribute not a val ue
M/PCO. cal | (Renot eProc: Tenpl at e3) ;

/] Tenpl ates never return values. In the case of Par2 and Par3 the values returned by the
/1 call operation shall be retrieved using an assignnent clause at the end of the call statenent

EXAMPLE 3: In-line templates for accepting procedure invocations
/1l Gven exanple 1 in this clause

// Valid getcall, it will match if Parl == 1 and Par3 ==
M/PCO. get cal | (Renot eProc: Tenpl at el);

// Valid getcall, it will match if Parl == 1 and Par3 ==
M/PCO. get cal | (Renot eProc: Tenpl at e2) ;

/1 Valid getcall, it will natch on Parl == 1 and Any val ue of Par3
M/PCO. get cal | (Renot eProc: Tenpl at e3) ;

EXAMPLE 4: In-line templates for accepting procedure replies
/1l Gven exanple 1 in this clause

/1 Valid getreply, in paraneters will be ignored, matches if return value is 4
M/PCO. get r epl y(Renot eProc: Tenpl at e2 val ue 4);

/1 Valid getreply, accepting any reply for RenoteProc
M/PCO. get r epl y(Renot eProc: ?);

/1 Valid getreply, also accepting any reply for RenoteProc
M/PCO. get cal | (Renot eProc: Tenpl ate4 val ue ?);

ETSI

112 ETSI ES 201 873-1 V4.5.1 (2013-04)

15.3 Global and local templates
TTCN-3 alows defining global templates and local templates.

Syntactical Structure

tenplate [restriction] Type Tenplateldentifier ["(" Tenpl ateFornal ParList ")"]
[nodifies TenplateRef] ":=" Tenpl at eBody

NOTE: The optional restriction part is covered by clause 15.8.
Semantic Description

Global templates shall be defined in the module definitions part. Local templates shall be defined in module control,
testcases, functions, altsteps or statement blocks. Both global and local templates shall adhere to the scoping rules
specified in clause 5.

Both global and local templates can be parameterized. The actual parameters of atemplate can include values and
templates. The rules for formal and actual parameter lists shall be followed as defined in clause 5.2.

Both global and local templates are initialized at the place of their declaration. This means, all template fields which are
not affected by parameterization shall receive avalue or matching mechanism. Template fields affected by
parameterization areinitialized at the time of template use.

At the time of their use (e.g. in communication operationssend, r ecei ve,cal | ,getcal |, etc),itisalowedto
change template fields by in-line modified templates, to passin values via value parameters as well asto passin
templates via template parameters. The effects of these changes on the values of the template fields do not persist in the
template subsequent to the corresponding communication event.

Restrictions
In addition to restrictions in clause 15, the following restrictions apply:

a) Thedot notation such as MyTemplateld.Fieldld shall not be used to set or retrieve values in templatesin
communication events. The "->" symbol shall be used for this purpose (see clause 23).

b) Redtrictions on referencing elements of templates or template fields are described in clause 15.6.

c) Thereexist anumber of restrictions on the functions used in expressions when specifying templates or
template fields; these are specified in clause 16.1.4.

Examples

/1 The tenplate
tenpl ate M/MessageType MyTenpl ate (i nteger MyFormal Param: =

fieldl : = MyFor nal Param
field2 := pattern "abc*xyz",
field3 := true

}

/1 could be used as follows
pcol. send(M/ Tenpl at e(123));

15.4 In-line Templates

Templates can be specified directly at the place they are used. Such templates are called in-line templates.

Syntactical Structure

[Type ":"] [nodifies Tenpl ateRef WthParList ":="] Tenpl at eBody

NOTE 1: Anin-line template is an argument of a communication operation or an actual parameter of atestcase,
function or altstep call, i.e. it is aways placed within parenthesis and potentially separated with acomma.

ETSI

113 ETSI ES 201 873-1 V4.5.1 (2013-04)

Semantic Description
In-line templates can be defined directly at the place of its use.

In-line templates do not have names, therefore they cannot be referenced or reused. The lifetime of in-line templatesis
the TTCN-3 statement (an assignment, a testcase/function/alstep invocation, a return from a function, a communication
operation), where they are defined.

Restrictions
In addition to restrictions in clause 15, the following restrictions apply:

a) Templates may be specified for any TTCN-3 type defined in table 3 and for any procedure signature except for
port anddef aul t types.

b) Thetypefield may only be omitted when the type isimplicitly unambiguous.

NOTE 2: For literal in-line templates, the following types may be omitted: i nt eger , f | oat , bool ean,
bitstring,hexstring,octetstring.

NOTE 3: Types of constants, parameters and variables of the actual scope are always unambiguous and can hence
always be omitted.

c) In-linetemplates containing instead of values or inside val ues matching mechanisms (see clause 15.7) can only
be defined in arguments of receiving communication operations (i.e. r ecei ve, tri gger, check,
get cal | ,getrepl y and cat ch), in arguments of thenat ch and sel ect case operations, in actual
template parameters, at the right hand side of assignments (when there is atemplate variable at the left hand
side of the assignment) and in return statements of template returning functions. In-line templates not
contai ning matching mechanisms can be defined wherever values are allowed.

d) When used in communication operations, the type of the in-line template shall be in the port list over which
the template is sent or received. In the case where there is an ambiguity between the listed type and the type of
the value provided (e.g. through subtyping) then the type name of the in-line template shall be included in the
communication operation.

€) Thereexist anumber of restrictions on the functions used in expressions when specifying templates or
template fields; these are specified in clause 16.1.4.

Examples

M/PCO. r ecei ve(charstring: "abcxyz");

15.5 Modified templates

Normally, atemplate specifies a set of base or default values or matching symbols for each and every field defined in
the appropriate type or signature definition. In cases where small changes are needed to specify a new template, it is
possible to specify a modified template. A modified template specifies modifications to particular fields of the origina
template, either directly or indirectly. Aswell as creating explicitly named modified templates, TTCN-3 allows the
definition of in-line modified templates.

Syntactical Structure

Global or local modified template:

tenplate [restriction] Type Tenplateldentifier ["(" Tenpl ateFornal ParList ")"]
nmodi fi es Tenpl ateRef ":=" Tenpl at eBody

NOTE: Theoptiona restriction part is covered by clause 15.8.

In-line modified template:

[Type ":"] nodifies Tenpl ateRef WthParList ":=" Tenpl at eBody

ETSI

114 ETSI ES 201 873-1 V4.5.1 (2013-04)

Semantic Description

The nodi fi es keyword denotes the parent template from which the new, or modified template shall be derived. This
parent template may be either an original template or a modified template.

The modifications occur in alinked fashion eventually tracing back to the original template. If atemplate field and its
corresponding value or matching symbol is specified in the modified template, then the specified value or matching
symbol replaces the one specified in the parent template. If atemplate field and its corresponding value or matching
symbol is not specified in the modified template, then the value or matching symbol in the parent template shall be
used. When the field to be modified is nested within atemplate field which is a structured field itself, no other field of
the structured field is changed apart from the explicitly denoted one(s).

When individual values of a modified template or amodified template field of r ecor d of type wished to be changed,
and only in these cases, the value assignment notation may also be used, where the left hand side of the assignment is
the index of the element to be altered.

Formal value or template parameters of modified templates inherit the default value or respectively template of the
corresponding parameter of their parent templates only, if thisis denoted by the dash (don't change) symbol at the place
of the parameters' default value or respectively template.

Modified templates may also be restricted. Template restrictions are specified in clause 15.8.
Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) A modified template shall not refer to itself, either directly or indirectly, i.e. recursive derivation is not
allowed.

b) If abasetemplate has aformal parameter list, the following rules apply to all modified templates derived from
that base template, whether or not they are derived in one or several modification steps:

1) thederived template shall not omit parameters defined at any of the modification steps between the base
template and the actual modified template;

2) aderived template can have additional (appended) parametersif wished;

3) if thedash (don't change) symbol is used at the place of adefault value or default template, the
corresponding parameter of the parent template shall have a valid default value or default template, either
assigned directly or inherited. If not, this shall cause an error.

¢) Restrictions on referencing elements of templates or template fields are described in clause 15.6: for modified
templates the rules for the left hand side of assignments apply.

d) Limitations on template restrictions described in clause 15.8 shall apply.
Examples

EXAMPLE 1:

/1l Gven

type record MyRecordType

{
integer fieldl optional,
charstring field2,
bool ean fiel d3

}
tenpl ate MyRecordType MyTenpl atel : =

fieldl := 123,
field2 := "A string",
field3 := true

/1 then witing
tenpl ate MyRecordType MyTenpl ate2 nodifies MyTenpl atel : =

mt, // fieldl is optional but present in My/Tenplatel
"A nodified string"
/1 field3 is unchanged

ETSI

115 ETSI ES 201 873-1 V4.5.1 (2013-04)

/1 is the sane as witing
tenpl ate MyRecordType MyTenpl ate2 : =

fieldl := onmit,
field2 := "A nodified string",
field3 := true
}
EXAMPLE 2. Modified record of template
tenpl ate MyRecordOf Type MyBaseTenplate :={ 0, 1, 2, 3, 4, 5 6, 7, 8, 9 };
tenpl ate MyRecordOf Type MyModi f Tenpl ate nodi fies MyBaseTenplate := { [2] := 3, [3] :=2};
/1l MyModi f Tenpl ate shall match the sequence of values { O, 1, 3, 2, 4, 5, 6, 7, 8 9}

EXAMPLE 3: Modified in-line template

/1 Gven
tenpl ate MyMessageType Setup : =
{ fieldl := 75,
field2 := "abc",
field3 := true
}

/1 Could be used to define an in-line nodified tenplate of Setup
pcol.send (nodifies Setup := {fieldl:= 76});

EXAMPLE 4: Modified parameterized template

/1 Gven

tenpl ate MyRecordType MyTenpl atel(i nteger MyPar): =
fieldl : = MyPar,
field2 := "A string",
field3 := true

}

/1 then a nodification could be
tenpl ate MyRecordType MyTenpl ate2(i nteger MyPar) nodifies MyTenpl atel : =

{ /1 fieldl is paranmeterized in Tenplatel and renai ns al so paraneterized in Tenpl at e2
field2 := "A nodified string"

}

EXAMPLES: Default values of modified parameterized templates

/1 Gven
tenpl ate M/RecordType MyTenpl atell (integer p_int : =5):={
/1 p_int has the default value 5
fieldl := p_int,
field2 := "A string",
field3 := true

}

/1 then possible tenplate nodifications are

tenpl ate MyRecordType MyTenpl atel2(integer p_int) nodifies MyTenpl atell : = {
/1 p_int had a default value in MyTenpl atell but has none in this tenplate
field2 := "B string"

}

tenpl ate MyRecordType MyTenpl atel3(integer p_int := 0) nmodifies MTenplatel2 : = {
/1 p_int has the default value 0
/1 no change is nmade to the tenplate's content, but only to the default value of p_int

}

tenpl ate MyRecordType MyTenpl atel4(integer p_int := -) nodifies MTenplatel3d : = {
/1 p_int inherits the default value O fromits parent MyTenpl atel3
field2 := "C string"

}

tenpl ate MyRecordType MyTenpl atel5(integer p_int := -) nodifies MTenplateld : = {
/1 p_int inherits the default value 0 from MyTenpl atel3 via M/Tenpl at eld
field2 := "D string"

}

tenpl ate MyRecordType MyTenpl at el6(i nteger p_int) nodifies M/Tenpl atel5 : = {
/1 p_int has no default val ue

}

ETSI

116 ETSI ES 201 873-1 V4.5.1 (2013-04)

tenpl ate M/RecordType MyTenpl atel7(integer p_int := -) nodifies MTenpl atel6 : = {
[/l causes an error as p_int has no default value in the parent tenplate M/Tenpl at el6
field2 := "E string"

}

15.6 Referencing elements of templates or template fields

This clause defines rules and restrictions when referencing elements of templates or template fields.

15.6.1 Referencing individual string elements

It isnot alowed to reference individual string elementsinside templates or template fields. Instead, thesubst r
function (see clause C.4.2) shall be used.

EXAMPLE:

var tenplate charstring t_Charl := "MCHAR';
var tenplate charstring t_Char?2;

t_Char2 :=t_Charl[1];
/1 shall cause an error as referencing individual string elenents is not allowed

15.6.2 Referencing record and set fields

Both templates and template variables alow referencing sub-fields inside a template definition using the dot notation.
However, the referenced field may be a subfield of a structured field to which a matching mechanism is assigned. This
clause provides rules for such cases.

a Omit, AnyVaueOrNone, template lists and complemented lists: referencing a subfield within a structured field
to which Omit, AnyVaueOrNone, atemplate list or a complemented list is assigned, at the right hand side of
an assignment, shall cause an error.

When referencing a subfield within a structured field to which AnyVaueOrNone or omit is assigned, at the
left hand side of an assignment, the structured field isimplicitly set to be present, it is expanded recursively up
to and including the depth of the referenced subfield. During this expansion an AnyValue shall be assigned to
mandatory subfields and AnyValueOrNone shall be assigned to optional subfields. After this expansion the
value or matching mechanism at the right hand side of the assignment shall be assigned to the referenced
subfield.

When referencing a subfield within a structured field to which template lists or complemented template lists
are assigned, at the left hand side of an assignment, shall cause an error.

EXAMPLE 1:

type record RL {
integer f1 optional,
R2 f2 optional
}
type record R2 {
i nteger g1,
R2 g2 optional
}

;/ar template RL t _Rl := {
fli:=5,
f2 := omt
}
var tenplate R2 t_R2 := t_R1.f2.g2;
/] causes an error as omt is assigned to t_R1.f2
f2 :=*,
= t_R1.f2.g2;
/] causes an error as * is assigned to t_R1.f2

Re

t_
t_

—

({fl:=omt, f2:={gl:=0, g2:=omit}},{fl:=5 f2:={gl:=1, @g2:={gl:=2, g2:=omit}}});

t_RL.f2;
t_R1.f2.92;
t_Rl1.f2.92.92;

S88 R

ETSI

117 ETSI ES 201 873-1 V4.5.1 (2013-04)

/1 all these assignnents cause error as a tenplate list is assigned to t_R1

t_ Rl :=
conpl ement ({f1:=omt, f2:={gl:=0, g2:=omit}},{f1l:=5 f2:={gl:=1, g2:={gl:=2, g2:=onmit}}});
t_R2 1= t_RL.f2;
t_R2 :=t_R1.f2.92;
t_ R :=1t R1.f2.92.92;

/1 all these assignnents cause errors as a conplenmented list is assigned to t_R1

b) AnyVaue: when referencing a subfield within a structured field to which AnyValue is assigned, at the right
hand side of an assignment, AnyValue shall be returned for mandatory subfields and AnyVaueOrNone shall
be returned for optional subfields.

When referencing a subfield within a structured field to which AnyValueis assigned, at the left hand side of an
assignment, the structured field isimplicitly expanded recursively up to and including, the depth of the
referenced subfield. During this expansion an AnyValue shall be assigned to mandatory subfields and
AnyVaueOrNone shall be assigned to optional subfields. After this expansion the value or matching
mechanism at the right hand side of the assignment shall be assigned to the referenced subfield.

EXAMPLE 2:
t_RL = {f1:=0, f2:=?}
t_R2 :=t_R1.f2.g2;
/] after the assignment t_R2 will be {gl:=?, g2:=*}
t_ R1.f2.92.92 := ({gl:=1, g2:=onmit},{gl:=2, g2:=omt});

/1 first the field t_Rl.f2 has hypothetically be expanded to {gl:=?,g2: ={gl: =?,g2: =*}}
/1 thus after the assignnent t_RlL will be:
I/ {f1:=0, f2:={gl:=?,92:={gl:=?,02: =({gl: =1, g2:=omit},{gl:=2, g2:=omit})}}}

c) Ifpresent attribute: referencing a subfield within a structured field to which the ifpresent attribute is attached,
shall cause an error (irrespective of the value or the matching mechanism to whichi f pr esent isappended).

15.6.3 Referencing record of and set of elements

Both templates and template variables allow referencing elements of ar ecor d of , array or set of templateor field
using the index notation. However, a matching mechanism may be assigned to the template or field within which the
element is referenced. This clause provides rules on handling such cases.

a) Omit, AnyVaueOrNone, template lists, complemented lists, subset and superset: referencing an element
within arecord of or set of field to which Omit, AnyVaueOrNone with or without alength attribute, a
template list, a complemented list, a subset or a superset is assigned, shall cause an error.

EXAMPLE 1.
type record of integer Rol;

var tenplate Rol t_Rol;
var tenplate integer t_Int;
t_Rol := ({}.{0},{0,0},{0,0,0});
t_Int :=t_Rol[0];
/'l shall cause an error as tenplate list is assigned to t_Rol

b) AnyVaue: when referencing an element of ar ecord of orset of templateor field to which AnyVaueis
assigned (without a length attribute), at the right hand side of an assignment, AnyValue shall be returned. If a
length attribute is attached to the AnyValue, the index of the reference shall not violate the length attribute.
When referencing an element withinar ecord of orset of template or field to which AnyValueis
assigned (without a length attribute), at the left hand side of an assignment, the value or matching mechanism
at the right hand side of the assignment shall be assigned to the referenced element, AnyElement shall be
assigned to al elements before the referenced one (if any) and a single AnyElementsOrNone shall be added at
the end. When alength attribute is attached to AnyValue, the attribute shall be conveyed to the new template
or field transparently. The index shall not violate type restrictionsin any of the above cases.

ETSI

EXAMPLE 2:

type record of

i nteger Rol;

type record of Rol RoRol;

var tenplate Rol t_Rol;

var tenpl ate RoRol

t_RoRol ;

var tenplate integer t_Int;

t_
t_
t_
t_
t_
t_
t_

t_

t_
t_
t_

t_
t_

t_

t_

Rol :=7?;
Int :=1t_Rol[5];

/] after the assignnent t_Int wll

RoRol := ?;
Rol := t_RoRol [5];

/] after the assignnent
Int :=t_RoRol[5].[3];

t_Rol

will

/1 after the assignnment t_Int wll

Rol
I nt

? length (2..5);
t_Rol[3];

/1 after the assignnment t_Int wll

Int :=t_Rol[5];
/'l shall

118

be AnyVal ue(?);

be AnyVal ue(?);

be AnyVal ue(?);

be AnyVal ue(?);

/'l (note that index 5 would refer to the 6'" el ement);

RoRol [2] := {0, 0};

/1 after the assignment
RoRol [4] := {1, 1};

/1 after the assignnment
Rol[0] := -5

/1 after the assignnent
Rol := ? length (2..5);
Rol[1] := 1,

/1 after the assignnent
Rol[3] := 72;

/] after the assignnent
Rol[5] :=5;

/1 after the assignnent

/'l becones an enpty set

t_RoRol

t_RoRol

t_Rol

t_Rol
t_Rol

t_Rol

will

Wil

will

Wil

will

Wil

be {?,?,{0,0},*};

be {-5,*} length(2..5);

be {?,1,*} length(2..5);

be {?,72,{0,0},2 {1,1},*};

ETSI ES 201 873-1 V4.5.1 (2013-04)

cause an error as the referenced index is outside the length attribute

be {?,1,?,?,*} length(2..5);

be {?,1,?,?2,?,5*} length(2..5);
but that shall

cause no error;

note that t_Rol

Permutation: when referencing an element of ar ecor d of template or field, whichislocated inside a
permutation (based on itsindex), this shall cause an error. Indexes of elements sheltered by a permutation shall
be determined based on the number of permutation elements. AnyElementsOrNone as a permutation element
causes that the permutation shelters all record of element indexes.

/] causes error as the pernutation contains AnyVal ueOr None(*) that

be AnyVal ue(?)

be * (AnyVal ueOr None)

c)

EXAMPLE 3:

t_Rol := {pernutation(0,1,3,7?),2,7?};
t_Int :=t_Rol[5];

/1 after the assignnent t_Int will
t_Rol := {pernutation(0,1,3,7?),2,*};
t_Int :=t_Rol[5];

// after the assignnent t_Int will
t_Int :=t_Rol[2];

/] causes error as the third elenent (with index 2)
t_Rol := {pernutation(O0,1,3,*),2,7?};
t_Int :=t_Rol[5];

/1 cover any record of indexes
d)

is inside permutation

is able to

Ifpresent attribute: referencing an element withinar ecord of orset of fieldtowhichthei f present
attribute is attached, shall cause an error (irrespective of the value or the matching mechanism to which

i f present isappended).

ETSI

119 ETSI ES 201 873-1 V4.5.1 (2013-04)

€) AnyElementsOrNone: when referencing an element of arecord of or set of template or field that contains
AnyElementsOrNone, the result of an operation is dependent on the position of AnyElementsOrNone, the
referenced index and length attributes attached to AnyElementsOrNone.

When resolving the reference, atransformed form of the record of or set of template is used. The transformed
formis equal to the original value where all occurrences of AnyElementsOrNone with alength restriction are
replaced with a sequence of AnyElements of the same size as the lower bound. If the lower bound is greater
than the upper bound, the sequence shall be followed by a single AnyElementsOrNone symbol with alength
restriction. The lower bound of this restriction is zero and the upper bound is the difference between the lower
and upper bound of the original restriction.

EXAMPLE 4:

type record of interger Rol;

tenplate Rol t_Rol := {1, * length(2), 5}; // transforned form {1, ?, ?, 5}

tenplate Rol t_Rol := {1, * length(1..3), 5};// transformed form {1, ?, * length(0..2), 5}

When the reference is used at the right hand side of the assignment, the following applies:

- If positions of all AnyElementsOrNone matching symbolsin the transformed form are greater than the
position of the referenced item, rules from the clause 6.2.3.2 are used for resolving the reference.

EXAMPLE 5:
type record of interger Rol;

var tenplate Rol t_Rol := {1, 2, * length(2), 5};
/Il transformed form {1, 2, ?, ?, 5}
var tenplate integer t_Int;
t_Int :=t_Rol[1]; // after the assignnent, t_Int will

2
t_Int :=t_Rol[2]; // after the assignnent, t_Int will ?

be
be

- If the position of the referenced item is greater or equal to the position of any AnyElementsOrNone
symbol in the transformed template, an error is generated.

EXAMPLE 6:

type record of interger Rol;

;/ar tenplate Rol t_Rol := {1, 2, *, 5};
var tenplate integer t_Int :=t_Rol[3]; // produces an error
t _Rol {1, 2, *};

t_Int :=t_Rol[2]; [/ produces an error

When the reference is used at the left hand side of the assignment, the following applies:

- If positions of al AnyElementsOrNone matching symbolsin the transformed form are greater than the
position of the referenced item the following rules are used. If the referenced item is not aresult of
transformation, the value or matching symbol at the right hand side of the assignment shall replace the
referenced symbol in the original template. If the referenced element was a result of transformation, then
the AnyVaueOrNone symbol in the original template is replaced with its transformed form and the
assignment is performed afterwards.

EXAMPLE 7:

type record of interger Rol;

var tenplate Rol t_Rol := {1, 2, * length(2), 5};

/1 transformed form {1, 2, ?, ?, 5}
t_Rol[1] := 10; /Il after the assignnment, t_Rol will be {1, 10, * length(2), 5}
t_Rol[2] :=3; [/ after the assignnent, t_Rol wll be {1, 10, 3, ?, 5}

- If the position of the referenced item is greater or equal to the position of any AnyElementsOrNone
symbol in the transformed form and this AnyElementsOrNone symbol is not the last element in the
template, an error is generated.

ETSI

120 ETSI ES 201 873-1 V4.5.1 (2013-04)

EXAMPLE 8:
type record of interger Rol;

var tenplate Rol t_Rol := {1, 2, *, 5};
t_Rol[3] :=4; // produces an error

- If the position of the referenced item is greater or equal to the position of an AnyElementsOrNone
symbol in the transformed form and this AnyElementsOrNone is the last symbol in the template, the
value or matching symbol at the right hand side of the assignment shall be assigned to the referenced
element. Then the AnyElementsOrNone symbol and all unbound values between it and the referenced
symbol shall be replaced with AnyElement symbols. If the AnyElementsOrNone symbol had alength
restriction, only as many AnyElement symbols can be added as is the value of the upper bound of the
restriction. Asthe last step, an AnyElementsOrNone symbol can be appended to the end of the template.
The symbol is always appended if the original AnyElementsOrNone symbol was unrestricted. If the
origina AnyElementsOrNone had alength restriction, the symbol is appended only if the restriction
included items beyond the referenced item. In such a case, the appended symbol contains the original
length restriction adjusted by the difference between the size of the template before and after assignment.

EXAMPLE 9:

type record of interger Rol;

;/ar tenplate Rol t_Rol := {1, 2, * };
t_Rol[4] :=5; // {1, 2, ?, 2, 5, *};
t_Rol := {1, * length(l..2)};
t_Rol[4] :=5; /I {1, ?, ?, -, 5};

/1 short length restriction: only two ? synbols added and no * at the end

t_Rol := {1, * length(1l..5)};
t_Rol[2] :=3; /1 {1, ?, 3, * length(0..3)};
/1 adjusted length restriction at the end

Theindex of the referenced item shall not violate type restrictionsin any of the above cases.

15.6.4 Referencing signature parameters

While signature templates do not allow referencing their parameters directly (e.g. using dot notation), such areference
is possible when modifying a signature template. However, there can be a matching mechanism assigned to the
signature template. This clause provides rules for such cases.

a) Vauelistsand complemented lists: referencing a parameter of a signature template to which avaluelist or a
complemented list is assigned, at the left hand side of an assignment, shall cause an error.

EXAMPLE 1.

signature MySignature(in integer parl, in integer par2);

tenplate MySignature t_nySignl := ({ parl := 1, par2 := 2}, { parl := 2, par2 :=11});
tenplate MySignature t_nySign2 nodifies t_nySignl := { parl := ? };

/1 shall cause an error as t_nySignl contains a value list tenplate

b) AnyVaue: when referencing a parameter within a signature to which AnyVaueis assigned, at the left hand
side of an assignment, the signature template is implicitly expanded to the parameter level. During this
expansion an AnyValue shall be assigned to all parameters of the template. After this expansion the value or
matching mechanism at the right hand side of the assignment shall be assigned to the referenced parameter.

EXAMPLE 2:
tenplate MySignature t_nySign3 := ?;
tenplate MySignature t_nySign4 nodifies t_nySign3 := { parl := 3 };

I/l t_nySign3 is expanded to { parl := ?, par2 := ? }, then 3 is assigned to parl,
/1 thus t_nySignd will be { parl := 3, par2 := ?}

ETSI

121 ETSI ES 201 873-1 V4.5.1 (2013-04)

15.7 Template matching mechanisms

Generally, matching mechanisms are used to replace values of single template fields or to replace even the entire
contents of atemplate. Matching mechanisms may also be used in-line (see clause 15.4).

Matching mechanisms are arranged in four groups:
. specific values,
. special symbolsthat can be used instead of values;
. specia symbols that can be used inside values,
. special symbols which describe attributes of values;
Some of the mechanisms may be used in combination.

The supported matching mechanisms and their associated symbols (if any) and the scope of their application are shown
intable 11. The left-hand column of thistable lists al the TTCN-3 types to which these matching mechanisms apply. A
full description of each matching mechanism can be found in annex B.

Table 11: TTCN-3 Matching Mechanisms

Used with values |Value Instead of values Inside values Attributes
of

S O C T A A R S S P A A P L |
p m o] e n n a u u a n n e e f
e i m m y y n p b t y y r n P
c t p p \% \% g e S t E E m g r
i I I a a e r e e | | u t e
f e a | | s t r e e t h S
i m t u u e n m m a R e
c e e e e t e e t e n
\% n L | O n n i S t

a t i r t t 0 t

I e S N (?) S n r

u d t 0] (0] i

e L n r (o]

i e N t

S * 0 i

t n o

e n

(*)

boolean Yes | Yes® | Yes | Yes | Yes | ves® Yes™
integer Yes | Yes® | Yes | Yes | Yes | Yes®| Yes Yes'
float Yes | Yes® | Yes | Yes | Yes | Yes®| Yes Yes'
bitstring Yes | Yes® | Yes | Yes | Yes | ves® Yes | Yes Yes | Yes'
octetstring Yes | Yes® | Yes | Yes | Yes | ves® Yes | Yes Yes | Yes'
hexstring Yes | Yes® | Yes | Yes | Yes | ves® Yes | Yes Yes | Yes'
character strings Yes | Yes® | Yes | Yes | Yes | ves'| Yes Yes | Yes® | Yes® Yes | Yes'
record Yes | Yes® | Yes | Yes | Yes |ves! Yes'
record of Yes | Yes® | Yes | Yes | Yes | ves® Yes | Yes | Yes | Yes | Yes'
array Yes | Yes® | Yes | Yes | Yes | ves® Yes | Yes | Yes | Yes | Yes'
set Yes | Yes® | Yes | Yes | Yes | ves® Yes'
set of Yes | Yes® | Yes | Yes | Yes | Yes Yes | Yes Yes | Yes Yes | Yes'
enumerated Yes | Yes® | Yes | Yes | Yes | ves® Yes™
union Yes | Yes® | Yes | Yes | Yes | ves® Yes'
anytype Yes | Yes® | Yes | Yes | Yes | ves® Yes'

NOTE 1: Can be assigned to templates of any type as a whole or to optional fields of record and set templates.
However when matching, it shall be applied to optional fields of record and set types only (without restriction
on the type of that field).

NOTE 2: Have matching mechanism meaning within character patterns only.

ETSI

122 ETSI ES 201 873-1 V4.5.1 (2013-04)

15.7.1 Specific values

Specific values are the basic matching mechanism of TTCN-3 templates. Specific values in templates are expressions
which do not contain any matching mechanisms.

Syntactical Structure

Si ngl eExpr essi on
Semantic Description
The matching mechanism for a specific value is an expression that evaluates to a specific value.
For further details please refer to clause 6 and to annex B.
Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Seetherestrictionsgivenintable 11 and in annex B.

Examples

M/PCO. r ecei ve(charstring: "abcxyz");
M/PCO. recei ve(' AAAA O) ;

15.7.2 Special symbols that can be used instead of values
These matching mechanisms can be used to characterize a set of values.

Syntactical Structure

omt |

"(" { (Tenplatelnstance | all from Tenpl atelnstance) [","] } ")" |

conmpl emrent "(" { (Tenplatelnstance | all from Tenpl atelnstance) [","] } ")" |

e

7

" (OonstantExpreSS|0n| -infinity) ".." (OonstantExpreSS|0n| |nf|n|ty) ")
super set "({ (Tenplatelnstance | all from Tenpl atel nstance) [","] }) |

subset "(" { (Tenplatelnstance | all from Tenpl atel nstance) [","]

pattern Cstring

Semantic Description
The matching mechanisms for special symbols that can be used instead of values are:
. omit: the optional field, in which it is used, is not present;

NOTE 1: omit can be assigned to templates of any type as a whole or to optional fields of record and set types.
omit can only be used for matching optional fields.

. (...): alist of values or templates;

. complement (...): complement of alist of values or templates;

. ?: wildcard for any value;

. *: wildcard for any value or no value at al, i.e. the field is not present;

NOTE 2: * can be assigned to templates of any type as awhole or to optional fields of record and set types. * can
only be used for matching optional fields.

e (lowerBound . . upperBound): arange of integer or float val ues between and including the lower- and upper
bounds;

. superset: at least al of the elementslisted, i.e. possibly more;

. subset: at most the elementslisted, i.e. possibly less;

ETSI

123 ETSI ES 201 873-1 V4.5.1 (2013-04)

. pattern: acharstring or universal charstring that matches this format.

The matching mechanisms list, complemented list, subset, and superset can use the elements of atemplate using the all
from clause.

For further details please refer to annex B.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Seetherestrictionsgivenintable 11 and in annex B.

b) All templates and values used in the matching mechanisms above (including the referenced ones, e.g. within a
pattern) shall be completely initialized.

Examples

M/PCO. recei ve (integer:conplenent(1l, 2, 3));

15.7.3 Special symbols that can be used inside values
These matching mechanisms allow to characterize value sets by varying valuesinside.

Syntactical Structure

Lt

::;J;lr‘;rllljtati on "(" { (TenplateBody | "?" "*" | all from Tenpl atel nstance)[","] } ")"
Semantic Description
The matching mechanisms for special symbols that can be used inside values are:

. ?: wildcard for any single element in astring, array, record of orset of;

. *: wildcard for any number of consecutive elementsin astring, array, record of orset of,orno
element at al (i.e. an omitted element);

. permutation: al of the elementslisted but in an arbitrary order (note, that ? and * are also allowed as
elements of the permutation list and all elements of atemplate can be added to permutation using the all from
clause).

For further details please refer to annex B.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Seetherestrictions givenin table 11 and in annex B.

b) All templates or values used in the permutation matching mechanism shall be completely initialized.

Examples
tenplate bitstring b :='10???"B; /1 where each "?" nay either be 0 or 1
type record of integer R ;
tenplate Rl ri := {1, ?, 3} /1 where ? nay be any integer val ue

15.7.4 Special symbols which describe attributes of values
These matching mechanisms define properties of values.

Syntactical Structure

length "(" ConstantExpression [".." (ConstantExpression | infinity)] ")" [ifpresent] |
i fpresent

ETSI

124 ETSI ES 201 873-1 V4.5.1 (2013-04)

Semantic Description
The matching mechanisms which describe attributes of values are:

. length: restrictions for string length of string types and the number of elementsfor r ecord of ,set of
and arrays,

. ifpresent: for matching of optional field values (if not omitted).

NOTE: ifpresent can be assigned to templates of any type as awhole or to optional fields of record and set types.
ifpresent can only be used for matching optional fields.

For further details please refer to annex B.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Seetheredtrictionsgivenintable 11 and in annex B.
b) All values used in the length matching attribute shall be completely initialized.

Examples

type record R {
record of integer ri optional

}
tenplate Rr:=

{
ri :=* length (1 .. 6) ifpresent /1 any value containing 1, 2, 3, 4,
/1l 5 or 6 elenents, provided it is present

15.8 Template Restrictions

Template restrictions allow to restrict the matching mechanisms that can be used with atemplate. Template restrictions
are applicable to template definitions and template variables, formal template parameters, and return template types of
functions. Template restrictions can be applied equally to message and signature templates.

Syntactical Structure
tenplate "(" (omt | present | value) ")" Type
Semantic Description

The restrictions mean in case of:

. (om t) thetemplate shall resolve to a value matching mechanism (i.e. the fields of it shall resolveto a
specific value or omit, and the whole template may also resolve to omit). Such atemplate can be used to define
afield of arecord and set template and the latter one could still be used in asend statement.

. (val ue) thetemplate shall resolveto a specific value (i.e. the fields of it shall resolve to a specific value or
omit, but the whole template shall not resolve to omit). It can be used to define a mandatory field of arecord or
set template and the latter one could still be used inasend statement.

. (present) thetemplate as awhole shall not resolve to matching mechanisms that match omit (i.e. its fields
may contain any of the matching mechanisms or matching attributes). Such a template can be used to define a
mandatory field of arecord or set template.

NOTE: Templaterestrictionsalow TTCN-3 toolsto check more easily at compile time whether templates and
matching expressions are used correctly. Whether the checks are performed at compile time and invalid
code isrejected or whether the checks are performed at execution time and dynamic errors areraised, is
outside the scope of the present document.

ETSI

125 ETSI ES 201 873-1 V4.5.1 (2013-04)

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Matching mechanisms can be used within restricted templates according to table 12.

Table 12: Using matching mechanisms with restricted templates

Used with
template Value Instead of values Inside values Attributes
restriction
S o C T A A R S S P A A P L I
p m o] e n n a u u a n n e e f
e i m m y y n p b t y y r n P
c t p p \% \% g e S t E E m g r
i \ I I a a e r e e I I u t e
f a e a | | S t r e e t h S
i I m t u u e n m m a R e
c u e elL e e t e e t e n
\% e n i | O n n i S t
a t S r t t 0 t
I e t N (?) S n r
u d o] 0] i
e L n r c
i e N t
S * 0 i
t n o]
e n
_ *)
omit Yes | Yes
value Yes | Note
present Yes | Note Yes | Yes |[Note| Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Note

NOTE: It is allowed to use the matching mechanism in fields of the template, but the template as a whole shall not
resolve to this matching mechanism.

b) Restricted and unrestricted templates can be used as actual parameters of formal template parameters or
assigned to template variables according to table 13.

Table 13: Restrictions of formal and actual template parameters

Actual value template template template template
parameter/right (omit) (value) (present)
hand side of an
expression
Formal
parameter/-
left hand
side of an
expression
template(omit) Yes Yes Yes (see note) (see note)
template(value) Yes (see note) Yes (see note) (see note)
template(present) Yes (see note) Yes Yes (see note)
template Yes Yes Yes Yes Yes
NOTE: These restrictions are related to the content of the actual parameter or right hand side expression
and not to the definition of the entities used. Which cases are checked at compile time and which
ones at runtime is a tool implementation issue.

Examples

/1 definitions of restricted tenplates
type record Exanpl eType {

i nteger a,

bool ean b optional

}

tenpl ate(onit) Exanpl eType exanpl eOrit := omt;

ETSI

126 ETSI ES 201 873-1 V4.5.1 (2013-04)

tenpl ate(onmit) Exanpl eType exanpl eOmitValue:= { 1, true };

tenpl ate(onmit) Exanpl eType exanpl eOnitAny := ?; /'l incorrect
tenpl at e(val ue) Exanpl eType exanpl eVal ueonit := onit; /'l incorrect
tenpl at e(val ue) Exanpl eType exanpleValue :={ 1, true };

tenpl at e(val ue) Exanpl eType exanpl eVal ueOptional := { 1, omt };

/1 omt assigned to a field is correct

tenpl at e(present) Exanpl eType exanpl ePresent := {1, ?};

tenpl at e(present) Exanpl eType exanpl ePresent|fpresent := { 1, true } ifpresent;
/'l incorrect

tenpl at e(present) Exanpl eType exanpl ePresent Any : = ?;

Il restricted tenpl ate usage

var tenplate (omt) ExanpleType v_omit;

var tenplate (present) Exanpl eType v_present;
var tenplate (val ue) Exanpl eType v_val ue;

v_omt := exanpleOnit;

v_omt := exanpl eVal ueQpti onal ;

v_omit := exanpl ePresent Any; /1 incorrect, not a specific value
v_present := exanpleOnit; /'l incorrect, shall not be omt
v_present := exanpl ePresent;

v_val ue : = exanpl eOnit; /'l incorrect, shall not be omt

v_val ue : = exanpl ePr esent Any; /'l incorrect, shall be a single value

15.9 Match Operation

The mat ch operation allows to compare a va ue (specified in form of an expression) with atemplate.

Syntactical Structure
match " (" Expression "," Tenpl atel nstance ")"
Semantic Description

The mat ch operation returns a boolean value. If the types of the template and the value (specified in form of an
expression) are not compatible (see clause 6.3) the operation returnsf al se. If the types are compatible, the return
value of the mat ch operation indicates whether the value matches the specified template.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Theexpression-parameter of the mat ch operation shall not evaluate to atemplate, i.e. the mat ch operation
cannot be used to compare two templ ates.

Examples
tenpl ate integer LessThanlO := (-infinity..9);

M/Port .receive(integer:?) -> value RxVal ue;
if(match(RxValue, LessThanl0)) { ...}
/1 true if the actual value of Rxvalue is less than 10 and fal se otherwi se

15.10 Valueof Operation

Theval ueof operation allows to return the value specified within atemplate. The returned val ue can be assigned to a
variable, may be used in expressions, as an actual value parameter, etc.

Syntactical Structure

val ueof "(" Tenpl atel nstance ")"

ETSI

127 ETSI ES 201 873-1 V4.5.1 (2013-04)

Semantic Description
Theval ueof operation returnsthe value of atemplate instance.
Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Thetemplate shall be completely initialized and resolve to a specific value.
Examples
EXAMPLE 1:
type record Exanpl eType

{
integer fieldl,

bool ean fiel d2

}
tenpl ate Exanpl eType SetupTenpl ate : =

fieldl :
field2 :

1,
true

}

Var Exanpl eType RxVal ue : = val ueof (SetupTenpl ate);

EXAMPLE 2:

function MyFunc() {
var tenplate integer vt_int := omit;
/lis ok, but to be used for optional record or set fields only
var integer v_int := valueof(vt_int)
//causes an error as onit is not a value and shall not be an argument of val ueof

15.11 Concatenating templates of string and list types

Templates of string and list types (bitstring, octetstring, hexstring, charstring, universal charstring, record of, set of, and
array) can be concatenated from severa single (inline) templates using the concatenation operation. Each single
template shall have the same root type. The single templates of binary string and list types shall contain only the
matching mechanisms specific values, AnyVaue or AnyVaueOrNone constrained to afixed length, AnyElement, or
AnyElementsOrNone possibly constrained with alength attribute for list types. The length matching attribute shall not
follow atemplate or template field produced by concatenation directly, but in this case the concatenation shall be placed
within apair of parentheses.

The concatenation results in the sequential concatenation of the single templates from | eft to right, with one exception:
matching symbols AnyValue, AnyVaueOrNone, AnyElement and AnyElementsOrNone constrained to a fixed length
N shall be replaced by N AnyElement matching symbols before concatenation. The concatenation shall be performed
completely before using the resulting template (e.g. for assignment or matching) and the result shall be type-compatible
with the place of its use.

NOTE 1: Inline templates used for the concatenation need not be valid templates of the result type (e.g. odd number
of hexadecimal digits are allowed in an octetstring template concatenation), but the resulting template has
to be avalid template.

NOTE 2: See aso concatenation of character string patternsin clause B.1.5.

EXAMPLE 1: Composing templates of string types

tenpl ate charstring t_Mycharl := "ABC' & "DE*" & "F?";
/1 results in the tenpl ate " ABCDE*F?"
/'l please note that "*" and "?" denote the characters "*" and "?"

tenpl ate charstring t_Mychar2 := "ABC' & * length(2) & "EF";

/'l causes an error as for character string types only
/1 specific values are allowed

ETSI

128 ETSI ES 201 873-1 V4.5.1 (2013-04)

tenplate bitstring t_Mbit :='010'B & ? & '1'B & ? length(1l) & '1'B;
// results in the tenplate '010*1?71'B

tenpl ate octetstring t_Myoctl :="ABCO & 'DO&? & ? length(l) & "'EF QG
Il results in the tenplate ' ABCD*?EF O

tenpl ate octetstring t_Myoct2 := "ABCD O & ? length (2) & 'EF O
/1 results in the tenplate ' ABCD??EF O
/1 (i.e. a5 octets i.e. 10 hexadecimal digits |ong val ue)

tenpl ate octetstring t_MyoctWongl := "ABCD O & ? length(2) & 'E G
/'l causes an error, the resulting tenplate shall be a |legal value
/1 (if conposed, 'ABCD??E O woul d denote 9 hexadecinal digits, but the Iength
/1 should be an even nunber of digits)

tenpl ate octetstring t_MyoctWong2 := "ABC O & * length(1..2) & 'E G
/'l causes an error, the length attribute shall be of fixed Iength

tenpl ate octetstring t_MyoctWong3 := "ABCD O & ? length(2) length (4);
/] causes an error, no length matching attribute shall directly follow a concatenation

tenplate octetstring t_Myoct3 := (' ABCD O & ? length(2)) length (1..3);
/1 However, this is correct but will not match any val ue;

tenpl ate hexstring t_MhexPar (integer N):= "ABCH & ? length(N & "E'H &? length(1l) &' F H
function MyFunc() runs on MyConmpType {

var integer v_int := 3;

var tenplate hexstring vt_hstring;

vt_hstring := "ABCH & ? length(v_int) & ' EH&? length(l) &' 'F H,
/lresults in the tenplate ' ABC???E?F H
P.receive (t_MhexPar(4));
/lactual content of t_MyhexPar is 'ABC????E?F H
}

EXAMPLE 2: Composing templates of list types

type record of charstring Recof Char;
type set of integer Setoflnt;

tenpl ate Recof Char t_MyRecof Char := {"ABC'} & {"D?", "EF'};
/] results the tenplate {"ABC', "D', "EF" }

template SetofInt t_MSetofint :={ 1, 2} & ? length(2) &{ 3, 4 };
/Il results the tenplate {1, 2, ?, ?, 3, 4}

tenpl ate RecofInt t_MyRecofInt :={ 1, 2} &{ * length(2), 3, 4 };
/Il results the tenplate {1, 2, ?, ?, 3, 4}

tenpl ate Recof Char t_MyRecof CharWong: = {"ABC'} & ? length(1l..2) & {"EF'};
/'l causes an error, the length attribute shall denote a fixed I ength

tenpl ate Recof Char t_M/Recof CharPar (integer N :={ "ABC' }, ? * length(N) & { "EF" };
function MyFunc() runs on MyConpType{

var integer v_int := 3;

var tenpl ate Recof Char vt_recof Char;

vt_recofChar := { "ABC' } & ? length(v_int) & { "EF" };
/lresults the tenplate { "ABC', ?, ?, ?, "EF" }
P.receive (t_M/Recof CharPar(4));
/lactual content of t_M/RecofCharPar is { "ABC', ?, ?, ?, ?, "EF" }

ETSI

129 ETSI ES 201 873-1 V4.5.1 (2013-04)

16 Functions, altsteps and testcases

In TTCN-3, functions, altsteps and testcases are used to specify and structure test behaviour, define default behaviour
and to structure computation in a modul e etc. as described in the following clauses.

16.1 Functions

Functions are used in TTCN-3 to express test behaviour, to organize test execution or to structure computation in a
module, for example, to calculate asingle value, to initialize a set of variables or to check some condition.

Syntactical Structure

function Functionldentifier

"(" [{ (Formal Val uePar | Fornal Ti merPar | Formal Tenpl atePar | Formal PortPar) [","] }] ")"
[runs on Conponent Type]

[return [tenplate] Type]

St at emrent Bl ock

Semantic Description

Functions are portions of TTCN-3 behaviour, which perform a specific task and are relatively independent of the
remaining behaviour.

Functions may return avalue or atemplate. Value return is denoted by ther et ur n keyword followed by atype
expression. Template return is denoted by ther et ur n t enpl at e keywords followed by an optional restriction and a
type expression. Execution of ar et ur n statement in the body of the function causes the function to terminate and to
return the result to the location of the call of the function.

The behaviour of afunction can be defined by using statements and operations described in clauses 18 to 25 and
clause 26.

Functions may be parameterized.
Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) A function without r uns on clause shall never invoke a function or altstep or activate an altstep as default
withar uns on clauselocally.

b) Functions started by using the st art test component operation shall dwayshavear uns on clause
(see clause 22.5) and are considered to be invoked in the component to be started, i.e. not locally. However,
thest art test component operation may be invoked in functions without ar uns on clause.

NOTE 1: Therestrictions concerning ther uns on clause are only related to functions and altsteps and not to test
Cases.

¢) Functionsused in the control part of a TTCN-3 module shall have nor uns on clause.

NOTE 2: Nevertheless, functions used in the control part are allowed to execute test cases.

d) Therulesfor formal parameter lists shall be followed as defined in clause 5.4.

€) Forreturn tenpl at e statementsthe restrictions specified in clause 15 shall apply.

f) Templater et ur n can berestricted to the matching mechanisms specific value and omi t , see clause 5.4.1.2.

g) Areturn statement in avalue returning function shall always have a value expression compatible to the type
specified in the function header return clause.

h) Ar et urn statement in atemplate returning function shall always have a template expression or template
instance compatible to the type specified in the function header return clause. If ther et ur n clause hasa
template restriction, thisrestriction shall be adhered to by the returned template.

ETSI

130 ETSI ES 201 873-1 V4.5.1 (2013-04)

i) If thefunction header includes ar et ur n clause the function, when terminating, shall do so by executing a
r et ur n statement. The function will cause atest case error if it terminates (i.e. reaches the end of the
function body) without executing ar et ur n statement.

j) If afunction uses variables, constants, timers and ports that are declared in a component type definition, the
component type shall be referenced using ther uns on keywords in the function header. The one exception to
thisruleisif al the necessary component-wide information is passed in the function as parameters.

Examples

EXAMPLE 1. Function with return

/1 Definition of MyFunction which has no paraneters
function MyFunction() return integer

{

return 7; /1 returns the integer value 7 when the function terninates

}
EXAMPLE 2: Function with template return

/1 Definition of functions which nay return natching synbols or tenpl ates
function MyFunction2() return tenpl ate integer

{
return ?; /1 returns the natching nechani sm AnyVal ue

function MyFunction3() return tenplate octetstring
{
return ' FF??FF' G /] returns an octetstring with AnyValue inside it

}
EXAMPLE 3: Function with runs on clause

function MyFunction3() runs on M/PTCType {

lo /1 MyFunction3 does not return a val ue, but
var integer MyVar := 5; /1 does neke use of the port operation
PCOL. send(MyVar) ; /1 send and therefore requires a runs on
/'l clause to resolve the port identifiers
} /1 by referencing a conponent type

EXAMPLE 4: Parameterized function

function MyFunction2(inout integer MyParl) {
/1 MyFunction2 does not return a val ue
MyParl := 10 * MyParl; [// but changes the value of MyParl which
} /1 is passed in by reference

EXAMPLES: Function without return statement
functi on MyFunction5(inout integer MyParl) return integer {
if (MParl > 5) {
MyParl := 5;
return MyPar1;
}

/1 in case of MyParl <= 5, MFunction5 does not terminate in a return statenent
/1 and will cause a test case error

16.1.1 Invoking functions
A function isinvoked by referring to its name and providing the actual list of parameters.

Syntactical Structure

FunctionRef "(" [{ ActualPar [","] }] ")"

ETSI

131 ETSI ES 201 873-1 V4.5.1 (2013-04)

Semantic Description

A function invocation results in the execution of the statement block of the invoked function. The invoked functionis
performed by the test component invoking it. Actual parameters are passed into the statement block. If the function
returns (upon termination and potentially with areturn value), the test components continues its behaviour right after
the function invocation.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Functionsthat do not return values shall be invoked directly. Functions that return values may be invoked
directly or inside expressions.
b) Therulesfor actual parameter lists shall be followed as defined in clause 5.4.
c) Specia restrictions apply to functions bound to test components using the st art test component operation.
These restrictions are described in clause 21.3.2.
d) When invoking afunction, the compatibility to the test component type of the invoking test component as
described in clause 6.3.3 need to be fulfilled.
€) Restrictions on invoking functions from specific places are described in clause 16.1.4.
Examples
MyVar := MyFunction4(); // The value returned by M/Function4 is assigned to MyVar.
/'l The types of the returned value and MyVar have to be conpati bl e
MyFunct i on2(MyVar 2) ; /1 MyFunction2 does not return a value and is called with the

/] actual paraneter MyVar2, which nay be passed in by reference

MyVar3 := MyFunction6(4) + MyFunction7(M/Var3); // Functions used in expressions

ETSI

132

16.1.2 Predefined functions

TTCN-3 contains a number of predefined (built-in) functions that need not be declared before use. These are

summarized in table 14.

Table 14: List of TTCN-3 predefined functions

ETSI ES 201 873-1 V4.5.1 (2013-04)

Category Function Keyword

Conversion functions Convert integer value to charstring value i nt 2char
Convert integer value to universal charstring value i nt 2uni char
Convert integer value to bitstring value i nt 2bi t
Convert integer value to enumerated value i nt 2enum
Convert integer value to hexstring value i nt 2hex
Convert integer value to octetstring value i nt 2oct
Convert integer value to charstring value int2str
Convert integer value to float value i nt 2f | oat
Convert float value to integer value float 2i nt
Convert charstring value to integer value char 2i nt
Convert charstring value to octetstring value char 2oct
Convert universal charstring value to integer value uni char 2i nt
Convert bitstring value to integer value bi t 2i nt
Convert bitstring value to hexstring value bi t 2hex
Convert bitstring value to octetstring value bi t 2oct
Convert bitstring value to charstring value bit2str
Convert hexstring value to integer value hex2i nt
Convert hexstring value to bitstring value hex2bi t
Convert hexstring value to octetstring value hex2oct
Convert hexstring value to charstring value hex2str
Convert octetstring value to integer value oct 2i nt
Convert octetstring value to bitstring value oct 2bi t
Convert octetstring value to hexstring value oct 2hex
Convert octetstring value to charstring value oct 2str
Convert octetstring value to charstring value, version I oct 2char
Convert charstring value to integer value str2int
Convert charstring value to hexstring value str2hex
Convert charstring value to octetstring value str2oct
Convert charstring value to float value str2fl oat
Convert enumerated value to integer value enun®i nt

Length/size functions Return the length of a value or template of any string type, I'engt hof
record of, set of or array
Return the number of elements in a value or a template of a si zeof
record or set

Presence checking functions |Determine if an optional field in a record or set value or i spresent
template is present
Determine which choice has been selected in a union value or |i schosen
template
Determine if a template evaluates to a concrete value i sval ue
Determine if a template is uninitialized or not i sbound

String/list handling functions |Returns part of the input string matching the specified pattern |r €gexp
group within a character pattern
Returns the specified portion of the input string/list value or substr
template
Replaces a substring of a string with or inserts the input string | epl ace
into a string, and similarly for lists

Codec functions Encode a value into a bitstring encval ue
Decode a bitstring into a value decval ue

Other functions Generate a random float number rnd

Returns the name of the currently executing test case

t est casenane

ETSI

Syntactical Structure

nt 2char " ("
nt 2uni char " ("
nt2bit "("

nt 2hex " ("
nt 2oct " ("

float2int " ("
char2int "("

133

Si ngl eExpression ")" |

Si ngl eExpression ")" |
Si ngl eExpression ","
nt 2enum " (" Si ngl eExpression ", "
Si ngl eExpression ", "
Si ngl eExpression ", "
nt2str "(" SingleExpression ")"

nt2float "(" SingleExpression ")" |
Si ngl eExpression ")" |
Si ngl eExpression ")" |

Si ngl eExpr essi on
Si ngl eExpr essi on
Si ngl eExpr essi on
Si ngl eExpr essi on

char2oct "(" SingleExpression ")"

uni char 2i nt

"(" SingleExpression ")" |

bit2int "(" SingleExpression ")

bi t 2hex
bi t 2oct
bit2str
hex2int "
hex2bi t
hex2oct
hex2str
oct2int "
oct 2bi t
oct 2hex
oct 2str '

(
(
(
(
(
(
(
(
(
(
(

oct 2char " ("
str2int
str2hex
str2oct "
str2float "("
enunint " ("

| engt hof " ("

si zeof
i spresent
i schosen " ("
i sval ue " ("
i sbound " ("
regexp "("

substr " ("

repl ace " ("
encval ue " ("
decval ue " ("
rnd " ("
testcasenane "()"

Semantic Description

"(" Singl eExpression
"(" Singl eExpression
" Singl eExpression
" Singl eExpression
" Singl eExpression
" Singl eExpression
" Singl eExpression "
" Si ngl eExpressi on
" Singl eExpression
" Singl eExpression
" Singl eExpression
Si ngl eExpression ")" |
(" Singl eExpression
(" Singl eExpression
(" Singl eExpression ")"
Si ngl eExpression ")
Si ngl eExpression ")" |
Tenpl at el nstance ")" |
"(" Tenpl atel nstance ")" |
"(" Tenpl atel nstance ")" |
Tenpl at el nstance ")" |
Tenpl at el nstance ")" |
Tenpl at el nstance ")" |
Tenpl at el nstance", "
Tenpl at el nstance ", "
Si ngl eExpression ","
Tenpl at el nstance ")" |
Si ngl eExpression ", "
[SingleExpression] ")" |

)
)
)
)
)
)
)
)
)
)
)"

)
)
)

Tenpl at el nstance", "

The description of predefined functionsis given in annex C.

Restrictions

Si ngl eExpr essi on

"y
"y

"y

"y

ETSI ES 201 873-1 V4.5.1 (2013-04)

Si ngl eExpression ")" |

Si ngl eExpression ", "
Si ngl eExpression ","

"y

Si ngl eExpression ")" |
Si ngl eExpression ","

Si ngl eExpression ")" |

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) When apredefined function is invoked:

1) the number of the actual parameters shall be the same as the number of the formal parameters; and

2) each actual parameter shall evaluate to an element of its corresponding formal parameter's type; and

3) dlactualinandi nout parametersshall beinitialized with the exception of the actual i n andi nout
parameter passed to the predefined functionsi sval ue, i schosen,i spresent andi sbound,
which may be uninitialized or even non-evaluable reference expressions and with the exception of the
any_string_or_sequence_t ype parameters of the functions| engt hof , subst r and
r epl ace, which may be partialy initialized.

b) Restrictions on invoking functions from specific places are described in clause 16.1.4.

Examples

var hexstring h:=
var octetstring o

b

i t2hex ('111010111' B);
substr (' 01AB23CD O 1, 2);

ETSI

134 ETSI ES 201 873-1 V4.5.1 (2013-04)

16.1.3 External functions
A function may be defined within a module or be declared as being defined externally (i.e. ext er nal).

Syntactical Structure

external function ExtFunctionldentifier
"(" [{ (Formal Val uePar | Formal Ti nerPar | Fornal Tenpl atePar | Fornal PortPar) [","] } 1 ")"
[return Type]

Semantic Description

For an externa function only the function interface has to be provided in the TTCN-3 module. The realization of the
external function is outside the scope of the present document.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) External functions are not allowed to contain port, timer or default handling operations.
b) Externa functions are not alowed to return templates.
€) Restrictions on invoking functions from specific places are described in clause 16.1.4.

Examples

external function MyFunction4() return integer; // External function w thout paraneters
/1 which returns an integer val ue

external function InitTestDevices(); /1 An external function which only has an
/] effect outside the TTCN-3 nodul e

16.1.4 Invoking functions from specific places

Value returning functions can be called in communication operations (in templates, template fields, in-line templates, or
as actual parameters), in guards of alt statements or altsteps (see clause 20.2), and in initializations of altstep local
definitions (see clause 16.2). To avoid side effects that cause changing the state of the component or the actual snapshot
and to prevent different results of subsequent eval uations on an unchanged snapshot, the following operations shall not
be used in functions called in the cases specified above:

a) All component operations, i.e.cr eat e, start (component), st op (component), kil l,
runni ng (component), al i ve, done andki | | ed (seenotes1, 3, 4 and 6).

b) All port operations, i.e. st art (port), st op (port), halt,cl ear,send,receive,trigger,call,
getcall ,reply,getreply,raise,catch,check, connect, map (seenotes 1, 2, 3and 6).

¢) Theacti on operation (see notes 2 and 6).

d) All timer operations, i.e. st art (timer), st op (timer),runni ng (timer),read,ti meout (seenotes4
and 6).

€) Calling external functions (see notes 4 and 6).
f) Calingther nd predefined function (see notes 4 and 6).

g) Changing of component variables, i.e. using component variables on the left-hand side of assignments, and in
the instantiation of out and i nout parameters (see notes4 and 6).

h) Calingtheset ver di ct operation (see notes 4 and 6).
i) Activation and deactivation of defaults, i.e. theact i vat e and deact i vat e statements (see notes 5 and 6).

j) Cdling functionswith out ori nout parameters (see notes7 and 8).

ETSI

135 ETSI ES 201 873-1 V4.5.1 (2013-04)

NOTE 1. The execution of the operationsst art, st op,done, kil |l ed, hal t,cl ear,recei ve,trigger,
getcal | ,getreply, catch andcheck cancause changesto the current snapshot.

NOTE 2: The use of operationssend, cal | ,repl y,rai se,andact i on causesan error, i.e. all
communication are to be made explicit and not as a side-effect of another communication operation or the
evaluation of a snapshot.

NOTE 3: The use of operationsmap, unnap, connect , di sconnect, cr eat e causesan error, i.e. al
configuration operations are to be made explicit, and not as a side-effect of a communication operation or
the evaluation of a snapshot.

NOTE 4: Cdling of externa functions, r nd, r unni ng, al i ve, read, set ver di ct, and writing to component
variables causes an error because it may lead to different results of subsequent evaluations of the same
snapshot, thus, e.g. rendering deadlock detection impossible.

NOTE5: The use of operationsact i vat e and deact i vat e causes an error because they modify the set of
defaults that is considered during the evaluation of the current snapshot.

NOTE 6: Restrictions except the limitation on the use of out or i nout parameterization apply recursively, i.e. it
is disallowed to use them directly, or viaan arbitrary long chain of function invocations.

NOTE 7: Therestriction of calling functionswith out or i nout parameters does not apply recursively, i.e. calling
functions that themselves call functionswith out or i nout parametersislegal.

NOTE 8: Usingout ori nout parameters causes an error because it may lead to different results of subsequent
evaluations of the same snapshoat.

16.2 Altsteps

TTCN-3 uses altsteps to specify default behaviour or to structure the alternativesof anal t statement.

Syntactical Structure
altstep Altstepldentifier
"(" [{ (Formal Val uePar | Formal Ti merPar | Fornmal Tenpl atePar | Formal PortPar) [","] }] ")"
[runs on Conponent Type]

{ (Varlnstance | Tinmerlnstance | ConstDef | TenplateDef) [";"] }
Al t Guar dLi st
wyn
Semantic Description

Altsteps are scope units similar to functions. The altstep body defines an optional set of local definitions and a set of
aternatives, the so-called top alternatives, that form the altstep body. The syntax rules of the top alternatives are
identical to the syntax rules of the alternatives of al t statements.

The behaviour of an atstep can be defined by using the program statements and operations summarized in clause 18.
Altsteps may invoke functions and altsteps or activate altsteps as defaults.

Altsteps may be parameterized as defined in clause 5.4.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Thelocal definitions of an altstep shall be defined before the set of alternatives.

b) Theinitialization of local definitions by calling value returning functions may have side effects. To avoid side
effects that cause an inconsistency between the actual snapshot and the state of the component, and to prevent
different results of subsequent evaluations on an unchanged snapshot, restrictions given in clause 16.1.4 shall
apply to theinitialization of local definitions.

ETSI

136 ETSI ES 201 873-1 V4.5.1 (2013-04)

c) If analtstep includes port operations or uses component variables, constants or timers the associated
component type shall be referenced using the r uns on keywords in the altstep header. The one exception to
thisruleisif al ports, variables, constants and timers used within the altstep are passed in as parameters.

d) Anatstep without ar uns on clause shall never invoke afunction or altstep or activate an altstep as default
witharuns on clauselocally.

€) Analtstep that is activated as a default shall only havei n value or template parameters, port parameters, and
timer parameters. An altstep that is only invoked as an alternativeinanal t statement or as stand-alone
statement in a TTCN-3 behaviour description may havei n, out andi nout parameters. The rulesfor formal
parameter lists shall be followed as defined in clause 5.4.

Examples

EXAMPLE 1: Parameterized altstep with runs on clause

/1 Gven
type conponent MyConponent Type {
var integer MyIntVar := O;

tinmer MyTiner;
port MyPort TypeOne PCOL, PCQZ2;
port MyPort TypeTwo PCCB;

}
/1 Atstep definition using PCOl, PCO2, MylntVar and MyTi ner of MyConponent Type
altstep AltSet _A(in integer MyParl) runs on MyConponent Type {
[T PCOL. receive(MTenpl ate(MyPar1l, MylntVar) {
setverdi ct (i nconc);
}
[] PCR.receive {

if (MParl !'=0) {
r epeat

el se {

br eak
}

}
[1 MTiner.timout {
setverdict(fail);
st op
}

}
EXAMPLE 2: Altstep with local definitions
altstep AnotherAltStep(in integer MyParl) runs on MyConponent Type {
var integer MyLocal Var := MyFunction(); /1 local variable
const float MyFloat := 3.41; /1 1ocal constant
[1 PCOL.receive(MyTenpl ate(MyPar1l, MyLocal Var) {
setverdi ct (i nconc);

[1 LC(I recei ve {
r epeat
}

16.2.1 Invoking altsteps

Theinvocation of an atstep is always related to anal t statement. The invocation may be done either implicitly by the
default mechanism (see clause 20.5.) or explicitly by adirect call withinanal t statement (see clause 20.2).

Syntactical Structure
Al tstepRef "(" [{ ActualPar [","] }] ")"
Semantic Description

Theinvocation of an atstep causes no new snapshot and the evaluation of the top alternatives of an atstep is done by
using the actual snapshot of theal t statement from which the altstep was called.

ETSI

137 ETSI ES 201 873-1 V4.5.1 (2013-04)

NOTE 1. A new snapshot within an altstep will of course be taken, if within a selected top aternativeanew al t
statement is specified and entered.

For an implicit invocation of an altstep by means of the default mechanism, the altstep shall be activated as a default by
means of anact i vat e statement before the place of the invocation is reached.

Anexplicit cal of an altstep withinan al t statement looks syntactically like a function invocation as an alternative.
When an altstep is called explicitly withinan al t statement, the next alternative to be checked is the first alternative of
theal t st ep. Theaternatives of theal t st ep are checked and executed the same way as alternatives of anal t
statement (see clause 20.1) with the exception that no new snapshot is taken when entering theal t st ep. An
unsuccessful termination of the altstep (i.e. al top aternatives of theal t st ep have been checked and no matching
branch is found) causes the evaluation of the next alternative or invocation of the default mechanism (if the explicit call
isthe last aternative of theal t statement). A successful termination may cause either the termination of the test
component, i.e. the altstep ends with ast op statement, or a new snapshot and re-evaluation of theal t statement,

i.e. the altstep endswith r epeat (see clause 20.2) or acontinuation immediately after theal t statement, i.e. the
execution of the selected top alternative of the altstep ends with abr eak statement (see clause 19.12) or without
explicitr epeat or st op.

NOTE 2: Dueto the possibility of defining dynamic test configurations, an alternative in an explicitly invoked
altstep may refer to a disconnected or unmapped port at the time of its evaluation. In TTCN-3, ports
belong to the receiving component and matching is related to the top elementsin the port queues.
Dynamically unmapped and disconnected ports contribute to a snapshot in the same manner as mapped
and connected ports. This means, an explicitly invoked al t st ep may execute receiving operations that
empty the queues of unmapped and disconnected ports without causing atest case error.

Anal t st ep can aso be called as a stand-alone statement in a TTCN-3 behaviour description. In this case, the call of
theal t st ep can beinterpreted as shorthand for an al t statement with only one alternative describing the explicit call
of theal t st ep.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Wheninvoking an atstep, the compatibility of the test component type of the invoking test component and of
the altstep runs on clause (as described in clause 6.3.3) need to be fulfilled.

b) Further restrictions on invoking altsteps in the activate statement are given in clause 20.5.2.
Examples

EXAMPLE 1: Implicit invocation of an altstep via a default activation

vér default MyDefVarTwo : = activate(M/SecondAltStep()); // Activation of an altstep as default

EXAMPLE 2: Explicit invocation of an atstep within an alt statement

aI:t {
[] PC3X®.receive {

}
[1 AnotherAltStep(); Il explicit call of altstep AnotherAltStep as an alternative
/1 of an alt statenent
[T MyTiner.tineout {}

}
EXAMPLE 3: Explicit, stand-alone invocation of an altstep

/1 The statenent
Another Al tStep(); // AnotherAltStep is assuned to be a correctly defined altstep

/lis a shorthand for

alt {
[1 AnotherAltStep();
}

ETSI

138 ETSI ES 201 873-1 V4.5.1 (2013-04)

16.3 Test cases

A test case is complete and independent specification of the actions required to achieve a specific test purpose. It
typicaly startsin a stable testing state and ends in a stable testing state. It may involve one or more consecutive or
concurrent connectionsto the SUT. The test case shall be complete in the sense that it is sufficient to enable atest
verdict to be assigned unambiguously to each potentially observable test outcome (i.e. sequence of test events). The test
case shall be independent in the sense that it shall be possible to execute the derived executabl e test case in isolation
from other such test cases.

In TTCN-3, test cases are a special kind of function. Test cases define the behaviours, which have to be executed to
check whether the SUT passes atest or not. This behaviour is performed by the MTC which is automatically created
when atest case is being executed.

Syntactical Structure

testcase Testcaseldentifier

(" [{ (Formal Val uePar | Fornal TenplatePar) [","] }] ")"
runs on Conponent Type

[system Conponent Type]

St at enent Bl ock

Semantic Description

A test case is considered to be a self-contained and compl ete specification that checks atest purpose. The result of atest
case execution isatest verdict.

A test case header has two parts:

a) interface part (mandatory): denoted by the keyword r uns on which references the required component type
for the MTC and makes the associated port names visible within the MTC behaviour; and

b) test system part (optional): denoted by the keyword sy st emwhich references the component type which
defines the required ports for the test system interface. The test system part shall only be omitted if, during test
execution, only the MTC isinstantiated. In this case, the MTC type defines the test system interface ports
implicitly.

The behaviour of atest case can be defined by using the program statements and operations described in clause 18.

Test cases may be parameterized as described in clause 5.4. Test cases can be executed in the control part of a module
(see clause 26).

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Therulesfor formal parameter lists shall be followed as defined in clause 5.4.

b) Test cases may only be invoked with an execute statement in a module control part as defined in clause 26.

Examples
testcase MyTest CaseOne()
runs on MyM cTypel /1 defines the type of the MIC
system MyTest Syst enilype /1 makes the port nanes of the TSI visible to the MIC

/1 The behavi our defined here executes on the ntc when the test case invoked

}

/1 or, a test case where only the MIC is instantiated
testcase MyTest CaseTwo() runs on MyM cType2

/1 The behavi our defined here executes on the nmc when the test case invoked

ETSI

139

ETSI ES 201 873-1 V4.5.1 (2013-04)

17 Void

18

Overview of program statements and operations

The fundamental program elements of test cases, functions, altsteps and the control part of TTCN-3 modules are
expressions, basic program statements such as assignments, loop constructs etc., behavioural statements such as
sequential behaviour, alternative behaviour, interleaving, defaults, etc., and operations such assend, r ecei ve,

creat e, etc.

Statements can be either single statements (which do not include other program statements) or compound statements
(which may include other statements and statement blocks).

Statements shall be executed in the order of their appearance, i.e. sequentialy, asillustrated in figure 8.

S1

S2

S3

—

S1; S2; S3;

Theindividual statements in the sequence shall be separated by the delimiter ";".

EXAMPLE:

MyPort . send(Mynessage) ;

MyTi mer. start;

| og(" Done!");

Figure 8: Illustration of sequential behaviour

The specification of an empty statement block, i.e. { } , may be found in compound statements, e.g. abranchinan al t
statement, and implies that no actions are taken.

Table 15 gives an overview of the TTCN 3 expressions, statements and operations and restrictions on their usage.

Table 15: Overview of TTCN-3 expressions, statements and operations

Statement

Associated keyword or
symbol

Can be used
in module

Can be used in
functions, test

Can be used in
functions called

control cases and from templates,
altsteps Boolean guards,
or from
initialization of
altstep local
definitions
Expressions (...) Yes Yes Yes
Basic program statements
Assignments = Yes Yes Yes (see note 3)
If-else if (..){.}else{...} Yes Yes Yes
Select case select case (...) { case Yes Yes Yes
(...){.}caseelse{..}}
For loop for (..){...} Yes Yes Yes
While loop while (...) {...} Yes Yes Yes
Do while loop do {...} while (...) Yes Yes Yes
Label and Goto label / goto Yes Yes Yes
Stop execution stop Yes Yes
Returning control return Yes (see note 4) Yes
Leaving a loop, alt, altstep or break Yes Yes Yes
interleave
Next iteration of a loop continue Yes Yes Yes
Logging log Yes Yes Yes

ETSI

140 ETSI ES 201 873-1 V4.5.1 (2013-04)
Statement Associated keyword or | Can be used | Can beused in | Can be used in
symbol in module functions, test | functions called
control cases and from templates,
altsteps Boolean guards,
or from
initialization of
altstep local
definitions
Statements and operations for alternative behaviours
Alternative behaviour alt{...} Yes Yes
(see note 1)
Re-evaluation of alternative behaviour |[repeat Yes Yes
(see note 1)
Interleaved behaviour interleave {...} Yes Yes
(see note 1)
Activate a default activate Yes Yes
(see note 1)
Deactivate a default deactivate Yes Yes
(see note 1)
Configuration operations
Create parallel test component create Yes
Connect component port to connect Yes
component port
Disconnect two component ports disconnect Yes
Map port to test interface map Yes
Unmap port from test system interface|lunmap Yes
Get MTC component reference value |mtc Yes Yes
Get test system interface component |system Yes Yes
reference value
Get own component reference value |self Yes Yes
Start execution of test component start Yes
behaviour
Stop execution of test component stop Yes
behaviour
Terminating the testcase with an error |testcase.stop Yes Yes
verdict
Remove a test component from the |kill Yes
system
Check termination of a PTC behaviour|running Yes
Check if a PTC exists in the test alive Yes
system
Wait for termination of a PTC done Yes
behaviour
Wait a PTC cease to exist killed Yes
Communication operations
Send message send Yes
Invoke procedure call call Yes
Reply to procedure call from remote |reply Yes
entity
Raise exception (to an accepted call) |raise Yes
Receive message receive Yes
Trigger on message trigger Yes
Accept procedure call from remote getcall Yes
entity
Handle response from a previous call |getreply Yes
Catch exception (from called entity) |catch Yes
Check (current) message/call check Yes
received
Clear port queue clear Yes
Clear queue and enable sending & start Yes
receiving at a to port
Disable sending and disallow stop Yes
receiving operations to match at a port
Disable sending and disallow halt Yes
receiving operations to match new
messages/calls
Check the state of a port checkstate Yes

ETSI

141 ETSI ES 201 873-1 V4.5.1 (2013-04)
Statement Associated keyword or | Can be used | Can beused in | Can be used in
symbol in module functions, test | functions called
control cases and from templates,
altsteps Boolean guards,
or from
initialization of
altstep local
definitions
Timer operations
Start timer start Yes Yes
Stop timer stop Yes Yes
Read elapsed time read Yes Yes
Check if timer running running Yes Yes
Timeout event timeout Yes Yes
Verdict operations
Set local verdict setverdict Yes
Get local verdict getverdict Yes Yes
External actions
Stimulate an (SUT) action externally [action | Yes | Yes |
Execution of test cases
Execute test case execute Yes Yes

(see note 2)

NOTE 1:
NOTE 2:
NOTE 3:
NOTE 4:

Can be used to control timer operations only.

Can only be used in functions and altsteps that are used in module control.
Changing of component variables is disallowed.

Can be used in functions and altsteps but not in test cases.

19

Basic program statements

The basic program statements presented in table 16 can be used in the control part of a module and in TTCN-3
functions, altsteps and test cases.

Table 16: Overview of TTCN-3 basic program statements

Basic program statements
Statement Associated keyword or symbol
Assignments =
If-else if (..){.}else{...}
Select case select case (...) { case (...) {...} case
else{...}}
For loop for (..){...}
While loop while (...) {...}
Do while loop do{...} while (...)
Label and Goto label / goto
Stop execution stop
Returning control return
Leaving a loop, alt, altstep or |break
interleave
Next iteration of a loop continue
Logging log

ETSI

142 ETSI ES 201 873-1 V4.5.1 (2013-04)

19.1 Assignments

Values or templates may be assigned to variables or template variables (see clause 11). Thisisindicated by the symbol

Syntactical Structure
Variabl eRef ":=" (Expression | Tenpl at eBody)
Semantic Description

During execution of an assignment, the right-hand side of the assignment shall evaluate to a value or template. The
effect of an assignment isto bind the variable to the value of the expression or to atemplate. The expression shall
contain no unbound variables. Assignments are processed from left to right, i.e. expressionsin the left-hand-side are
evaluated before those in the right-hand-side. The evaluations obey the operator precedence defined in table 6. The
right-hand-side is evaluated completely before the resulting value or template is bound to the evaluated |eft-hand side of
the assignment. Whenever assignments are used within the right-hand-side of an assignment (due to assignment
notation), these rules apply recursively.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Theright-hand side of an assignment shall evaluate to a value or template, which is type compatible with the
variable at the left-hand side of the assignment.

b) When the right-hand side of the assignment eval uates to atemplate (global or local template, in-line template
or template variable), the variable at the |eft hand side shall be atemplate variable.

Examples

M/Variable := (x + y - increnent(z))*3;

19.2 The If-else statement
Thei f - el se statement, also known as the conditional statement, is used to denote branching in the control flow.

Syntactical Structure
if "(" Bool eanExpression ")" StatemnentBl ock

{ else if "(" Bool eanExpression ")" StatenentBl ock }
[el se StatenentBl ock]

NOTE: else if "("BooleanExpression")" SatementBlock [else SatementBlock] is a shorthand notation for
el se "{"if "("BooleanExpression")" StatementBlock [€lse StatementBlock] "}".

Semantic Description

The branching of the control flow is decided upon the value of the Boolean expressions - the condition. A statement
block - and only one - will be executed, if its condition evaluates to true. The optional else specifies a statement block
that will be executed if all the "if" and "else if" conditions before are false.

Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

Examples
if (date == "1.1.2005") { return (fail); }

if (MVar < 10) { MyVar := MyVar * 10; log ("MVar < 10"); }
else { MVar := MVar/5; }

ETSI

143 ETSI ES 201 873-1 V4.5.1 (2013-04)

19.3 The Select case statement

Thesel ect case statement isan aternative syntactic form of thei f - el se statement.

Syntactical Structure

select "(" SingleExpression ")" "{"
{ case "(" { SingleExpression [","] } ")" StatenentBlock }
[case el se StatenentBl ock]

"y
Semantic Description

Thesel ect case statementisan dternativetousingi f ..el sei f .. el se statements when comparing avalue to
one or several other values. The statement contains a header part and zero or more branches. Never more than one of the
branchesis executed.

In the header part of thesel ect case statement an expression shall be given. Each branch starts with the case
keyword followed by alist of templatel nstance (alist branch, which may also contain a single element) or theel se
keyword (an else branch) and a statement block.

All templatel nstancein al list branches shall be of atype compatible with the type of the expression in the header.

A list branch is selected and the statement block of the selected branch is executed only, if any of the templatel nstance
matches the value of the expression in the header of the statement. On executing the statement block of the selected
branch (i.e. not jumping out by a go to statement), execution continues with the statement following the select case
Statement.

The statement block of an else branch is always executed if no other branch textually preceding the el se branch has
been selected.

Branches are evaluated in their textual order. If none of the templatel nstance-s matches the value of the expressionin
the header and the statement contains no else branch, execution continues without executing any of thesel ect case
branches.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Thesel ect SngleExpression and the case SingleExpression-s shall be type compatible.

Examples
sel ect (MyModul ePar) // where MyMddul ePar is of charstring type
case ("firstVal ue")

{
log ("The first branch is selected");
}

case (MyCharVar, MChar Const)

{
log ("The second branch is selected");
}

case el se

{
log ("The val ue of the nodul e paraneter MyModul ePar is selected");

}

}

/'l the above select statenment is equivalent to the follow ng nested if-else statenent.
/1 Note: the followi ng textual replacenent of the select-case statenent is described in
/1 the operational senantics of TTCN 3.

{
var charstring nyTenpVar := MyModul ePar ;

if (match(nyTenmpVar, "firstValue")
log ("The first branch is selected");
}

else if (match(nmyTenmpVar, MyCharVar) or match(nyTenpVar, M/Char Const))
{

log ("The second branch is selected");

}

ETSI

144 ETSI ES 201 873-1 V4.5.1 (2013-04)

el se

log ("The val ue of the nodul e paranmeter MyMddul ePar is selected");

19.4 The For statement

Thef or statement defines a counter loop.

Syntactical Structure

for "(" (Varlnstance | Assignnment) ";" Bool eanExpression ";" Assignnment ")"
St at emrent Bl ock

Semantic Description

Thef or statement contains two assignments and abool ean expression. The first assignment is necessary to initialize
the index (or counter) variable of the loop. The bool ean expression terminates the loop and the second assignment is
used to manipulate the index variable.

The value of the index variableisincreased, decreased or manipulated in such a manner that after a certain number of
execution loops a termination criteriais reached.

The termination criterion of the loop shall be expressed by abool ean expression. It is checked at the beginning of
each new loop iteration. If it evaluatesto t r ue, the execution continues with the statement block in the f or statement,
if it evaluatesto f al se, the execution continues with the statement which immediately followsthef or loop. If a

br eak statement is executed that is not within the body of an enclosed loop, al t , alststep or i nt er | eave, then the
loop is terminated, too.

Theindex variable of af or loop can be declared before being used inthe f or statement or can be declared and
initialized inthef or statement header. If theindex variable is declared and initialized in thef or statement header, the
scope of theindex variable islimited to the loop body, i.e. it isonly visible inside the loop body.

Restrictions

No specific restrictions in addition to the genera static rules of TTCN-3 given in clause 5.

Examples
var integer j; /1 Declaration of integer variable j
for (j:=1; j<=10; j:=j+1) { ..} /1 Usage of variable j as index variable of the for Ioop
for (var float i:=1.0; i<7.9; i:=1i*1.35) { ...} // Index variable i is declared and initialized

/1 in the for |oop header. Variable i only is
/1 visible in the | oop body.

19.5 The While statement

A whi | e statement defines aloop that is executed as long as the loop condition holds.

Syntactical Structure
while "(" Bool eanExpression ")" StatenentBl ock
Semantic Description

The loop condition shall be checked at the beginning of each new loop iteration. If the loop condition does not hold,
then the loop is exited and execution shall continue with the statement, which immediately follows the whi | e loop. If a
br eak statement is executed that is not within the body of an enclosed loop, al t , aststep ori nt er | eave, thenthe
loop is terminated, too.

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

ETSI

145 ETSI ES 201 873-1 V4.5.1 (2013-04)

Examples

while (j<10){ ..}

19.6 The Do-while statement

A do- whi | e statement defines aloop that is executed up until the loop condition does not hold.
Syntactical Structure

do StatenentBl ock while "(" Bool eanExpression ")"
Semantic Description

Thedo- whi | e loop isidentical to awhi | e loop with the exception that the loop condition shall be checked at the end
of each loop iteration. This means when using ado- whi | e loop the behaviour is executed at least once before the loop
condition is evaluated for the first time. If abr eak statement is executed that is not within the body of an enclosed
loop, al t, alststep ori nt er | eave, then the loop is terminated, too.

Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 givenin clause 5.

Examples

do { ...} while (j<10);

19.7 The Label statement

Thel abel statement allows the specification of labelsin test cases, functions, atsteps and the control part of a
module.

Syntactical Structure

| abel Label I dentifier
Semantic Description

Al abel marksastatement. Thelabel isused by the got o statement (see clause 19.8) to transfer control to alabelled
statement.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Al abel statement can be used freely like other TTCN-3 behavioural program statements according to the
syntax rules defined in annex A. It can be used before or after a TTCN-3 statement but not as the first
statement of an aternative or top alternativeinan al t statement, i nt er | eave statement or al t st ep.

b) Labelsused followingthel abel keyword shall be unique among all labels defined in the same test case,
function, altstep or control part.

Examples
| abel MyLabel ; /1 Defines the | abel MyLabel
/1 The labels L1, L2 and L3 are defined in the following TTCN-3 code fragment

| abel L1, /1 Definition of |abel L1
al t {
[T PCOL. receive(MSigl)
{ | abel L2; /1 Definition of |abel L2
PCOL. send(M/Si g2) ;
PCOL. r ecei ve(MySi g3)

ETSI

146 ETSI ES 201 873-1 V4.5.1 (2013-04)

[1 PCO.receive(MSig4)
{ PCX2. send(MySi g5) ;
PCO2. send(M/Si g6) ;
| abel L3; /1 Definition of Iabel L3
PCQ2. recei ve(MW/Si g7) ;

19.8 The Goto statement

A got o statement performsajumpto al abel .

Syntactical Structure

goto Label I dentifier
Semantic Description

The got o statement can be used in functions, test cases, atsteps and the control part of a TTCN-3 module to transfer
control to alabelled statement.

The got o statement provides the possibility to jump freely, i.e. forwards and backwards, within a sequence of
statements, to jump out of a single compound statement (e.g. awhi | e loop) and to jump over severa levels out of
nested compound statements (e.g. nested alternatives).

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Itisnot allowed to jump out of or into functions, test cases, altsteps and the control part of a TTCN-3 module.

b) Itisnot allowed to jJump into a sequence of statements defined in a compound statement (i.e. al t statement,
whi | e loop, for loop, i f -el se statement, do- whi | e loop and thei nt er | eave statement).

c) Itisnot alowed to usethe got o statement withinani nt er | eave statement.

Examples

/1 The followi ng TTCN-3 code fragnent includes

iabel L1, [/l ...the definition of label L1,
MyVar = 2 * MyVar;
if (MyVar < 2000) { goto L1; } /1 ...a junp backward to L1,

MyVar2 = Myfunction(MyVar);
if (MVar2 > MyVar) { goto L2; } /1 ..a junmp forward to L2,
PCOL. send(MyVar) ;
PCOL. r ecei ve;
| abel L2; /1 ...the definition of |abel L2,
PCO2. send(i nteger: 21);
alt {
[] PCOL.receive { }
[] PC®2.receive(integer: 67) {
| abel L3; /1 ..the definition of |abel L3,
PC2. send(MyVar) ;
alt {
[T PCOL.receive { }
[T PCR2.receive(integer: 90) {
PCO2. send(i nteger: 33);
PCO2. receive(integer: 13);
goto L4; /1 ..a junmp forward out of two nested alt statenents,

}
[T PCR.receive(MError) {
goto L3; /1 ...a junp backward out of the current alt statenent,

[T any port.receive {
goto L2; /1 ...a junp backward out of two nested alt statenents,

}
}

[1 any port.receive {
goto L2; // ...and a long junp backward out of an alt statenent.

ETSI

147 ETSI ES 201 873-1 V4.5.1 (2013-04)

}

}
| abel L4;

19.9 The Stop execution statement
The st op statement terminates execution of test components, atest case or atest control.
Syntactical Structure
stop
Semantic Description

The st op statement terminates execution in different ways depending on the context in which it is used. When used in
the control part of a module or in afunction used by the control part of a module, it terminates the execution of the
module control part. When used in atest case, altstep or function that are executed on atest component, it terminates
the relevant test component.

NOTE: Thesemanticsof ast op statement that terminates atest component isidentical to the stop component
operationsel f . st op (seeclause 21.3.3).

Restrictions
No specific restrictions in addition to the genera static rules of TTCN-3 given in clause 5.

Examples

nodul e MyModul e {
: [/ Modul e definitions
testcase MyTest Case() runs on MyMICType system M/Syst enilype{
var MyPTCType ptc: = My/PTCType. create; /1 PTC creation

ptc.start (M/Function()); /1 start PTC execution
: /] test case behaviour continued
st op // stops the MIC, all PTCs and the whol e test case

}
function MyFunction() runs on M/PTCType {
st op /'l stops the PTC only, the test case continues
control {
/1 test execution
st op /] stops the test canpaign

} // end control
} /1 end nodul e

19.10 The Return statement

Ther et ur n statement terminates execution of functions or atsteps.

Syntactical Structure

return [Expression | Tenpl atel nstance]
Semantic Description

Ther et ur n statement terminates execution of a function or altstep and returns control to the point from which the
function or altstep was called. When used in functions, ar et ur n statement may be optionally associated with areturn
value or template.

TTCN-3 alows optional statement blocks that may follow altstep calls withinal t statements. If there is a statement
block, ther et ur n statement returns control to the beginning of this statement block and the statement block is
executed beforethe al t statement isleft. If there is no statement block, test execution continues with the first statement
following theal t statement.

ETSI

Restrictions

148

ETSI ES 201 873-1 V4.5.1 (2013-04)

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a)

The return statement shall not be used in the statement block of atestcase.

Examples

function MyFunction() return bool ean {

}

if (date == "1.1.2005") {
/] execution stops on the 1.1.2000 and returns the bool ean fal se

return fal se;

)

return true;

/Il true is returned

functi on MyTenpl at eFunction() return tenplate charstring {

}

if (date == "1.1.2005") {
return "2005";

}

.ret urn ?;

functi on MyBehavi our() return verdicttype {

if (MFunction()) {

setverdi ct (pass);

}
el se {

setverdi ct (i nconc);
}

return getverdict;

Il explicit

19.11 The Log statement

Thel og statement provides the means to write logging information to some logging device. The information that can

be logged is summarized in table 17.

/1 the string of the year is returned

/1 the any tenplate is returned

/1 use of MyFunction in an if statenent

return of the verdict

Table 17: TTCN-3 language elements that can be logged

Used in a log statement What is logged Comment
module parameter identifier actual value
literal value value This includes also free text.
data constant identifier actual value

template instance

actual template or field
values and matching
symbols

data type variable identifier

actual value
or "UNINITIALIZED"

See notes 3 and 4.

sel f,ntc, systemor
component type variable
identifier

actual value and if
assigned the component
instance name
or "UNINITIALIZED"

On logging actual values see notes 2 to
4. Actual component states shall be
logged according to note 5.

running operation
(component or timer)

return value

true or f al se. In case of component or
timer arrays, array element specification
shall be included.

alive operation
(component)

return value

true or f al se. In case of arrays, array
element specifications shall be included.

port instance

actual state

Port states shall be logged according to
note 6.

default type variable identifier

actual state
or "UNINITIALIZED"

Default states shall be logged according
to note 7. See also notes 2 to 4.

timer name

actual state

Timer states shall be logged according to
note 8.

read operation

return value

See clause 24.3.

ETSI

149 ETSI ES 201 873-1 V4.5.1 (2013-04)

Used in a log statement What is logged Comment

match operation return value

getverdict operation return value none, pass, i nconc, or f ai |

predefined functions return value See annex C.

function instance return value Only functions with return clause are
allowed.

external function instance return value Only external functions with return clause
are allowed.

formal parameter identifier see comment column Logging of actual parameters shall follow

rules specified for the language elements

they are substituting. In case of value

parameters the actual parameter value,

in case of template-type parameters the

actual template or field values and

matching symbols, in case of component

type parameters the actual component

reference etc. shall be logged. For timer

parameters also the use of the read

operation and for component type and

timer parameters the use of the running

operation are allowed.

NOTE 1: Actual value/actual template is the value/template at the moment of the execution of the log
statement.

NOTE 2: The type of the logged value is tool dependent.

NOTE 3: In case of array identifiers without array element specification, actual values and for
component references names of all array elements shall be logged.

NOTE 4: The string "UNINITIALIZED" is logged only if the log item is unbound (uninitialized).

NOTE 5: Component states that can be logged are: Inactive, Running, Stopped and Killed (for further
details see annex F).

NOTE 6: Port states that can be logged are: Started and Stopped (for further details see annex F).

NOTE 7: Default states that can be logged are: Activated and Deactivated.

NOTE 8: Timer states that can be logged are: Inactive, Running and Expired (for further details see
annex F).

Syntactical Structure

log "(" { (FreeText | Tenplatelnstance) [","] } ")"
Semantic Description

Thel og statement provides the means to write one or more log items to some logging device associated with the test
control or the test component in which the statement is used. Items to be logged shall be identified by a
comma-separated list in the argument of the log statement. Log items may be individual language elements specified in
table 17 or expressions composed of such log items.

It is strongly recommended that the execution of the | og statement has no effect on the test behaviour. In particular,
functions used in alog statement should not (explicitly or implicitly) change component variable values, port or timer
status, and should not change the value of any of itsinout or out parameters.

NOTE: Itisoutside the scope of the present document to define complex logging and trace capabilities which
may be tool dependent.

Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

Examples

var integer nyVar:= 1;

log("Line 248 in PTC_ A ", nyVar, " (actual value of nyVar)");

// The string "Line 248 in PTC_A: 1 (actual value of nyVar)" is witten to sone |og device
/1 of the test system

ETSI

150 ETSI ES 201 873-1 V4.5.1 (2013-04)

19.12 The Break statement

A br eak statement causes the exit from aloop, from an atstep or fromanal t ori nt er | eave statement.
Syntactical Structure

br eak
Semantic Description

On executing abr eak statement the innermost, currently executed loop, al t statement or i nt er | eave statement is
left. Execution continues with the statement following the construct which isleft. Using br eak outside the body of a
loop (f or , whi | e, do-whi | e) or an alternativeof anal t ori nt er| eave statement shall cause an error.

Altsteps are aways executed within a surrounding al t statement. If the execution of atop aternative of an altstep (see
clause 16.2) endswith abr eak statement, the altstep and the surrounding al t statement are left. Execution continues
with the statement following the surrounding al t statement.

NOTE: TTCN-3 alows optional statement blocks that may follow altstep callswithinal t statements. These
statement blocks are not executed when the altstep isleft by executing abr eak statement. Ar et ur n
statement has to be used, if such an optional statement block has to be executed (see clause 19.10).

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 givenin clause 5.

Examples
do {
if (condl) {
br eak; /1 the do-while loop is left
}
flér (var integer j:=1; j<=10; j:=j+1) {
if (cond2) {
br eak; /'l the for-loop is left but the do-while loop is continued
}
}
oo
whil e (j<10);

19.13 The Continue statement

A cont i nue statement causes the start of the next iteration of aloop.

Syntactical Structure

continue
Semantic Description

On executing acont i nue statement, the subsequent statements of the body of the innermost, currently executed loop
are skipped and the next iteration starts. Using cont i nue outside the body of aloop (f or , whi | e, do-whi | e) shall
cause an error.

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

ETSI

151 ETSI ES 201 873-1 V4.5.1 (2013-04)

Examples
do {
if (cond) {
conti nue; /] execution continues with the next iteration of the do-while-Ioop
}
flcl)r (var integer j:=1; j<=10; j:=j+1) {
it (cond2) {
conti nue; // continues with the next iteration of the for-Ioop
}
}
oo
while (j<10);

19.14 Statement block

Statement blocks can be used like basic program statements to introduce alocal scope in the flow of control of TTCN-3
behaviour. The declarations and statements in a statement block are executed in the order of their appearance,
i.e. sequentially.

Syntactical Structure
"{" { LocalDefinition | Statenment } "}"
Semantic Description
A statement block defines alocal scope unit. Scoping rules for TTCN-3 are defined in clause 5.2.
Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 givenin clause 5.

Examples
var integer aVar:= 0; /1 aVar is declared
{ /1 start of a statenent bl ock
var integer nyVar:= 2; /1 nyVar is declared
aVar := 5 + nyVar; /1 nyVar is used in an assignnent
} /1 end of statenent bl ock
/1 after leaving the statenent block aVar is still known, but myVar is not known anynore.

20 Statement and operations for alternative behaviours
Test behaviour cannot only be expressed sequentially, but also as a set of alternatives or combinations of both. An
interleaving operator allows the specification of interleaved sequences or alternatives. Table 18 summarizesthe
statements and operations for alternative behaviours.

Table 18: Overview of TTCN-3 statements and operations for alternative behaviours

Statements and operations for alternative behaviours
Statement/Operation Associated keyword or symbol
Alternative behaviour alt{...}
Re-evaluation of alt statements [repeat
Interleaved behaviour interleave { ... }
Activate a default activate
Deactivate a default deactivate

ETSI

152 ETSI ES 201 873-1 V4.5.1 (2013-04)

20.1 The snapshot mechanism

A more complex form of behaviour is where sequences of statements are expressed as sets of possible aternatives to
form atree of execution paths, asillustrated in figure 9.

s1 alt {

Figure 9: lllustration of alternative behaviour

Thisisdonewiththeal t statement.

When entering an al t statement, a snapshot istaken. A snapshot is considered to be a partial state of atest component
that includes al information necessary to evaluate the Boolean conditions that guard alternative branches, all relevant
stopped test components, all relevant timeout events and the top messages, calls, replies and exceptionsin the relevant
incoming port queues. Any test component, timer and port which isreferenced in at least one alternativeinthe al t
statement, or in atop alternative of an atstep that isinvoked as an alternativeintheal t statement or activated as
default is considered to be relevant. A detailed description of the snapshot semanticsis given in the operational
semantics of TTCN-3 (part 4 of the TTCN-3 standard - ES 201 873-4 [1]).

NOTE 1: Snapshots are only a conceptual means for describing the behaviour of theal t statement. The concrete
algorithms for the snapshot handling can be found in part 4 of the TTCN-3 standard (ES 201 873-4 [1]).

NOTE 2: The TTCN-3 semantics assumes that taking a snapshot is instantaneous, i.e. has no duration. In areal
implementation, taking a snapshot may take some time and race conditions may occur. The handling of
such race conditionsis outside the scope of the present document.

20.2 The Alt statement

An at statement expresses sets of possible alternatives that form atree of possible execution paths.

Syntactical Structure
alt "{"

"[" [Bool eanExpression] "]"
((TinmeoutStatenent |
Recei veSt at enent |
Tri gger St at ement |
Get Cal | St at enent |
Cat chSt at enent |
CheckSt at ement |
Get Repl ySt at ement |
DoneSt at enent |
Kill edStatenent) StatenentBl ock)

|
(Altsteplnstance [StatementBlock])

["[" else "]" StatenentBl ock]

ETSI

153 ETSI ES 201 873-1 V4.5.1 (2013-04)

Semantic Description

Theal t statement denotes branching of test behaviour due to the reception and handling of communication and/or
timer events and/or the termination of parallel test components, i.e. it isrelated to the use of the TTCN-3 operations
recei ve,trigger,getcall,getreply,catch,check,tinmeout, doneandkilled.Thealt statement
denotes a set of possible events that are to be matched against a particular snapshot.

Execution of alter native behaviour:
When entering an al t statement, a snapshot is taken.

The aternative branchesin theal t statement and the top alternatives of invoked altsteps and altsteps that are activated
as defaults are processed in the order of their appearance. If several defaults are active, the reverse order of their
activation determines the evaluation order of the top alternatives in the defaults. The alternative branchesin active
defaults are reached by the default mechanism described in clause 20.5.

Theindividual alternative branches are either branches that may be guarded by a Boolean expression or else-branches,
i.e. alternative branches starting with [el se] .

Else-branches are always chosen and executed when they are reached (see below).

Branches that may be guarded by a Boolean expressions either invoke an altstep (altstep-branch), or start withadone
operation (done-branch), aki | | ed operation (killed-branch), t i meout operation (timeout-branch) or areceiving
operation (receiving-branch), i.e.r ecei ve, trigger,getcall,getreply, catch oracheck operation. The
evaluation of the Boolean guards shall be based on the snapshot. The Boolean guard is considered to be fulfilled if no
Boolean guard is defined, or if the Boolean guard evaluatesto t r ue. The branches are processed and executed in the
following manner.

An altstep-branch is selected if the Boolean guard is fulfilled. The selection of an altstep-branch causes the invocation
of the referenced atstep, i.e. the altstep isinvoked and the evaluation of the snapshot continues within the altstep.
Altstep-branches may contain an optional statement block. The optional statement block shall be executed only, if an
alternative of the atstep referenced in the altstep-branch has been selected and executed.

A done-branch is selected if the Boolean guard is fulfilled and if the specified test component isin the list of stopped
components of the snapshot. The selection causes the execution of the statement block following the done operation.
The done operation itself has no further effect.

A killed-branch is selected if the Boolean guard is fulfilled and if the specified test component isin thelist of killed
components of the snapshot. The selection causes the execution of the statement block following theki | | ed
operation. Theki | | ed operation itself has no further effect.

A timeout-branch is selected if the Boolean guard is fulfilled and if the specified timeout event isin the timeout-list of
the snapshot. The selection causes execution of the specified t i neout operation, i.e. removal of the timeout event
from the timeout-list, and the execution of the statement block following thet i meout operation.

A receiving-branch is selected if the Boolean guard is fulfilled and if the matching criteria of receiving operation is
fulfilled by one of the messages, calls, replies or exceptions in the snapshot. The selection causes execution of the
receiving operation, i.e. removal of the matching message, call, reply or exception from the port queue, maybe an
assignment of the received information to a variable and the execution of the statement block following the receiving
operation. In the case of thet ri gger operation the top message of the queueis aso removed if the Boolean guard is
fulfilled but the matching criteriais not. In this case the statement block of the given alternative is not executed.

NOTE 1: The TTCN-3 semantics describe the evaluation of a snapshot as a series of indivisible actions of atest
component. The semantics do not assume that the evaluation of a snapshot has no duration. During the
evaluation of a snapshot, test components may stop, timers may timeout and new messages, calls, replies
or exceptions may enter the port queues of the component However, these events do not change the actual
snapshot and thus, are not considered for the snapshot eval uation.

NOTE 2: Due to the possibility of defining dynamic test configurations, a receiving branch may refer to a
disconnected or unmapped port at the time of its evaluation. In TTCN-3, ports belong to the receiving
component and matching is related to the top elements in the port queues. Dynamically unmapped and
disconnected ports contribute to a snapshot in the same manner as mapped and connected ports. This
means, the execution of receiving operations may empty the queues of unmapped and disconnected ports
without causing atest case error.

ETSI

154 ETSI ES 201 873-1 V4.5.1 (2013-04)

If none of the alternative branchesintheal t statement and top alternatives in the invoked altsteps and active defaults
can be selected and executed, theal t statement shall be executed again, i.e. a new snapshot is taken and the evaluation
of the alternative branches is repeated with the new snapshot. This repetitive procedure shall continue until either an
aternative branch is selected and executed, or the test case is stopped by another component or by the test system

(e.g. because the MTC is stopped) or with a dynamic error.

The test case shall stop and indicate a dynamic error if atest component is completely blocked. This means none of the
aternatives can be chosen, no relevant test component is running, no relevant timer is running and all relevant ports
contain at least one message, call, reply or exception that do not match.

NOTE 3: The repetitive procedure of taking a complete snapshot and re-evaluate al alternativesisonly a
conceptual means for describing the semantics of theal t statement. The concrete algorithm that
implements this semantics is outside the scope of the present document.

Selecting/deselecting an alter native:

If necessary, it is possible to enable/disable an alternative by means of a Boolean expression placed between the
("[...]") brackets of the alternative.

Else branch in alternatives:

Any branchinanal t statement can be defined as an el se branch by including the el se keyword between the opening
and closing brackets at the beginning of the alternative. The statement block of the else branch is always executed if no
other alternative textually preceding the else branch has proceeded.

Default mechanism:

It should be noted that the default mechanism (see clause 20.5) is always invoked at the end of al alternatives. If an
el se branch is defined, the default mechanism will never be called, i.e. active defaults will never be entered.

NOTE 4: Itisalso possibleto use el se in altsteps.
NOTEDS: Itisallowedtousear epeat statement withinan el se branch.

NOTE 6: It isalowed to define more than one else branch in an alt statement or in an altstep, however aways only
the first else branch is executed.

Re-evaluation of alt statements:
There-evauation of anal t statement can be specified by using ar epeat statement (see clause 20.3).
Invocation of altsteps as alter natives:

TTCN-3 alowsthe invocation of atsteps as dternativesinal t statements (see clause 16.2.1). When an altstep is
explicitly invoked as an alternative, the optional statement block following the altstep call shall aso be executed.

Continue execution after the alt statement:

Behaviour execution continues with the statement following the al t statement when one of the branches of theal t or
invoked defaultsis selected and completely executed, or abranch of anal t st ep used in an atsteps-branch is selected
and the branch and the optional statement block following the invoked altstep are completely executed.

Execution also continues with the statement following theal t statement if abr eak statement isreached in the
statement block of the selected branch of anal t statement, of anal t st ep used in an atstep-branch, or of an
al t st ep invoked as default.

Theal t statement can also be left by using agot o statement in the selected branch of theal t (i.e. no branches of
atsteps and defaults can be considered in this case), and execution continues with the statement following the label,
got o ispointing to.

ETSI

155 ETSI ES 201 873-1 V4.5.1 (2013-04)

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Theopen and close square brackets ("[...]") shall be present at the start of each alternative, even if they are
empty. This not only aids readability but also is necessary to syntactically distinguish one alternative from
another.

b) The evaluation of a Boolean expression guarding an alternative may have side-effects. To avoid side effects
that cause an inconsistency between the actual snapshot and the state of the component, the same restrictions
astherestrictions for the initialization of local definitions within atsteps shall apply (clause 16.2).

¢) Theelsebranch shall not contain any of the actions allowed in branches guarded by a boolean expression
(i.e.anal t st ep call oradone, aki | | ed, ati meout or areceiving operation).

d) Analt statement used within the module control part shall only containthet i meout statements.

Examples

EXAMPLE 1: Nested alternatives

alt {

}

[T MyPort.receive (M/Message) {
setverdi ct (pass);
M/Tiner.start;
alt {
[T MyPort.receive (MySecondMessage) {
M/ Ti mer . st op;
setverdict (pass);

}
[T MyTiner.tineout {
MyPort.send (M/Repeat);
M/Ti mer. start;
alt {
[T MyPort.receive (MySecondMessage) {
M/ Ti mer . st op;
setverdi ct (pass)

[T MyTinmer.timeout { setverdict (inconc) }
[T MyPort.receive { setverdict (fail) }
}

[T MyPort.receive { setverdict (fail) }
}

}
[T MyTimer.timeout { setverdict (inconc) }
[T MyPort.receive { setverdict (fail) }

EXAMPLE 2: Alt statement with guards

alt {
[x>1] L2.receive { /1 Bool ean guar d/ expression
setverdi ct (pass);
[x<=1] L2.receive { /1 Bool ean guard/ expression
setverdi ct (i nconc);
}
}

EXAMPLE 3: Alt statement with else branch

/] Use of alternative with Bool ean expressions (or guard) and el se branch

alt {
[el se] { /'l else branch
MyEr ror Handl i ng() ;
setverdict(fail);
st op;
}
}

EXAMPLE 4: Re-evaluation with repeat

ETSI

156 ETSI ES 201 873-1 V4.5.1 (2013-04)

alt {
[] PC3X.receive {
count := count + 1,
repeat /1 usage of repeat

}
[] T1.timeout { }
[1 any port.receive {
setverdict(fail);

st op;
}
}
EXAMPLES: Alt statement with explicitly invoked atstep
alt {
[T PC3.receive { }
[1 AnotherAltStep() { /1 Explicit call of altstep AnotherAltStep as alternative.

setverdict(inconc) // Statement bl ock executed if an alternative within
/1 altstep Another AltStep has been sel ected and execut ed.

}
[T MTinmer.timout { }

20.3 The Repeat statement

Ther epeat statement isused for are-evaluation of anal t statement.

Syntactical Structure

repeat
Semantic Description

Ther epeat statement, when used in the statement block of alternativesof al t statements, causes the re-eval uation of
theal t statement, i.e. a new snapshot is taken and the alternatives of theal t statement are evaluated in the order of
their specification.

When used in statement blocks of the response and exception handling parts of blocking procedure calls, the repeat
statement causes the re-eval uation of the response and exception handling part of the call (see clause 22.3.1).

If ar epeat statement isused in atop aternative in an altstep definition, it causes a new snapshot and the
re-evaluation of theal t statement from which the altstep has been called. The call of the altstep may either be done
implicitly by the default mechanism (see clause 20.5.1) or explicitly intheal t statement (see clause 20.2).

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Therepeat statement shall only be used withinal t statements, cal | statements or altsteps.
Examples

EXAMPLE 1: Usage of repeat in an alt statement

alt {
[] PC3®.receive {
count := count + 1,
repeat /'l usage of repeat

}
[1] Ti.tineout { }
[1 any port.receive {
setverdict(fail);
st op;

}
}
EXAMPLE 2: Usage of repeat in an altstep
al tstep AnotherAl tStep() runs on MyConponent Type {
[1 PCOL.receive{

setverdi ct (i nconc);
repeat /'l usage of repeat

ETSI

157 ETSI ES 201 873-1 V4.5.1 (2013-04)

[1 LCOZ receive {}

20.4 The Interleave statement

Thei nt er | eave statement allows to specify the interleaved occurrence and handling of receiving eventsincluding
done,kill ed,ti meout,receive,trigger,getcall,getreply,catchandcheck.

Syntactical Structure

interleave "{"

{ "[1" (TineoutStatenent |
Recei veSt at enent |
Trigger St at ement |
Get Cal | St at ement |
Cat chSt at ement |
CheckSt at enent |
Get Repl ySt at emrent |
DoneSt at enent |
Ki |l edStatenent) StatenentBl ock

"y
Semantic Description

Thei nt er | eave statement allows to specify the interleaved occurrence and handling of the statementsdone,
killed,timeout,receive,trigger,getcall,getreply,catchandcheck.

Interleaved behaviour can always be replaced by an equivalent set of nested al t statements. The procedures for this
replacement and the operational semantics of interleaving are described in part 4 of the TTCN-3 standard
(ES 201 873-4 [1]).

The rules for the evaluation of an interleaving statement are the following:

a) Whenever areception statement is executed, the following non-reception statements are subsequently executed
until the next reception statement isreached, abr eak statement is reached, or the interleaved sequence ends.

NOTE 1. Reception statements are TTCN-3 statements which may occur in sets of alternatives, i.e.r ecei ve,
check,trigger,getcall,getreply,catch,done, killedandti meout.Non-reception
statements denote all other non-control-transfer statements which can be used withinthei nt er | eave
statement.

b) If none of the alternatives of thei nt er | eave statement can be executed, the default mechanism will be
invoked. This means, according to the semantics of the default mechanism, the actual snapshot will be used to
evaluate those altsteps that have been activated before entering thei nt er | eave statement.

NOTE 2: The complete semantics of the default mechanism withinani nt er | eave statement is given by
replacing thei nt er | eave statement by an eguivalent set of nested al t statements. The default
mechanism applies for each of theseal t statements.

¢) Theevauation then continues by taking the next snapshot if no br eak statement was encountered.
d) Theevauation of thei nt er | eave statement isterminated if abr eak statement is executed.

The operational semantics of interleaving are fully defined in part 4 of the TTCN-3 standard (ES 201 873-4 [1]).

ETSI

158 ETSI ES 201 873-1 V4.5.1 (2013-04)

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Control transfer statementsf or , whi | e, do- whi | e, got 0, acti vat e,deacti vat e, st op, repeat,
r et ur n, direct call of altsteps as alternatives and (direct and indirect) calls of user-defined functions, which
include reception statements, shall not beusedini nt er | eave statements.

b) Inaddition, itisnot alowed to guard branches of ani nt er | eave statement with Boolean expressions
(i.e. the T]' shall always be empty). It isaso not alowed to specify el se branchesin interleaved behaviour.

Examples

/1 The following TTCN-3 code fragnment
interleave {
[1] PCOL.receive(MSigl) {

PCOL. send(MySi g2) ;

PCOL. recei ve(M/Si g3) ;

}
[PCR.receive(MSig4) {
PCX2. send(MySi g5) ;
PCO2. send(M/Si g6) ;
PCQ2. recei ve(M/Si g7) ;

}
}
/1 is a shorthand for
alt {

[PCOL.receive(MySigl) {
PCOL. send(M/Si g2) ;
alt {
[1] PCOL.receive(MSig3) {
alt {
[T PCR.receive(MSig4) {
PC®2. send(M/Si g5) ;
PC®2. send(MySi g6) ;
PC2. recei ve(MSi g7)

}

}
[T PCXR.receive(MSigd) {
PC®2. send(M/Si g5) ;
PC2. send(M/Si g6) ;
alt {
[PCOL.receive(MSig3) {
PC2. recei ve(M/Si g7) ;

}
[T PCR.receive(MSig7) {
PCOL. recei ve(M/Si g3) ;
}

}

}
[PCR.receive(MSig4) {
PCX2. send(MySi g5) ;
PCO2. send(M/Si g6) ;
alt {
[1 PCOL.receive(MSigl) {
PCOL. send(MySi g2) ;
alt {
[1] PCOL.receive(MSig3) {
PC2. recei ve(M/Si g7) ;
}

[T PCR.receive(MSig7) {
PCOL. recei ve(M/Si g3) ;
}

}

}
[T PCR.receive(MSig7) {
alt {
[T PCOL. receive(MSigl) {
PCOL. send(M/Si g2) ;
PCOL. recei ve(M/Si g3) ;

ETSI

159 ETSI ES 201 873-1 V4.5.1 (2013-04)

20.5 Default Handling

TTCN-3 alows the activation of altsteps (see clause 16.2) as defaults. For each test component the defaults,

i.e. activated altsteps, are stored as an ordered list. The defaults are listed in the reversed order of their activationi.e. the
last activated default isthe first element in the list of active defaults. The TTCN-3 operationsact i vat e

(see clause 20.5.2) and deact i vat e (see clause 20.5.3) operate on the list of defaults. Anact i vat e putsanew
default asthe first element into thelist and adeact i vat e removes adefault fromthe list. A default in the default list
can be identified by means of default reference that is generated as a result of the corresponding act i vat e operation.

20.5.1 The default mechanism

The default mechanism is evoked at the end of each al t statement, if due to the actual snapshot none of the specified
alternatives could be executed. An evoked default mechanism invokes the first altstep in the list of defaults, i.e. the last
activated default, and waits for the result of its termination. The termination can be successful or unsuccessful.
Unsuccessful means that none of the top alternatives of the al t st ep (see clause 16.2) defining the default behaviour
could be selected, successful means that one of the top alternatives of the default has been selected and executed.

NOTE 1: Ani nt er| eave statement is semantically equivalent to a nested set of al t statements and the default
mechanism also appliesto each of theseal t statements. This means, the default mechanism also applies
toi nt er | eave statements. Furthermore, the restrictionsimposed on interleave statementsin
clause 20.4 do not apply to atsteps that are activated as default behaviour for interleave statements.

NOTE 2: Dueto the possibility of defining dynamic test configurations, an alternative in an altstep activated as
default may refer to a disconnected or unmapped port at the time of its evaluation. In TTCN-3, ports
belong to the receiving component and matching is related to the top elementsin the port queues.
Dynamically unmapped and disconnected ports contribute to a snapshot in the same manner as mapped
and connected ports. Thismeans, an al t st ep invoked as default may execute receiving operations that
empty the queues of unmapped and disconnected ports without causing atest case error.

In the case of an unsuccessful termination, the default mechanism invokes the next default in the list. If the last default
inthe list has terminated unsuccessfully, the default mechanism will return to the place inthe al t statement in which it
has been invoked, i.e. at theend of theal t statement, and indicate an unsuccessful default execution. An unsuccessful
default execution will also be indicated if the list of defaults is empty.

An unsuccessful default execution may cause a new snapshot or a dynamic error if the test component is blocked
(see clause 20.1).

In the case of a successful termination, the default may either stop the test component by means of ast op statement, or
the main control flow of the test component will continue immediately after theal t statement from which the default
mechanism was called or the test component will take new snapshot and re-evaluatethe al t statement. The latter has
to be specified by means of ar epeat statement (see clause 20.3). If the execution of the selected top aternative of the
default ends with abr eak statement or without ar epeat statement the control flow of the test component will
continue immediately after theal t statement.

NOTE 3: TTCN-3 does not restrict the implementation of the default mechanism. It may for example be
implemented in form of a process that isimplicitly called at the end of each al t statement or in form of a
separate thread that is only responsible for the default handling. The only requirement is that defaults are
called in the reverse order of their activation when the default mechanism has been invoked.

20.5.2 The Activate operation
Theact i vat e operation is used to activate atsteps as defaults.

Syntactical Structure

activate "(" AltstepRef "(" [{ ActualPar [","] }] ")" ")"

ETSI

160 ETSI ES 201 873-1 V4.5.1 (2013-04)

Semantic Description

Anact i vat e operation will put the referenced altstep as the first element into the list of defaults and return a default
reference. The default reference is a unique identifier for the default and may be used inadeact i vat e operation for
the deactivation of the default.

The effect of anact i vat e operation islocal to the test component in which it is called. This means, atest component
cannot activate a default in another test component.

Theact i vat e operation can be called without saving the returned default reference. Thisform is useful in test cases
which do not require explicit deactivation of the activated default, i.e. deactivation of adefault is done implicitly at
MTC termination.

The actual parameters of a parameterized altstep (see clause 16.2.1) that should be activated as a default, shall be
provided in the corresponding act i vat e statement. This means the actual parameters are bound to the default at the
time of its activation (and not e.g. at the time of its invocation by the default mechanism).

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) All timer instances in the actual parameter list shall be declared as component type local timers
(see clause 6.2.10.1).

b) Analtstep that is activated as a default shall only have i n parameters, port parameters, or timer parameters.
Examples

EXAMPLE 1. Activation where the default reference is kept

Il Declaration of a variable for the handling of defaults
var default MyDefaultVar := null;

/) Decl aration of a default reference variable and activation of an altstep as default
var default MyDefVarTwo : = activate(M/SecondAltStep());

/) Activation of altstep MJAItStep as a defaul t
MyDef aul t Var := activate(MAItStep()); // MAtStep is activated as default

/) Usage of MyDefaultVar for the deactivation of default My/DefAltStep
deact i vat e(MyDef aul t Var) ;

EXAMPLE 2: Simple activation

/1 Activation of an altstep as a default, without assignnent of default reference
activat e(MyCommonDef aul t ());

EXAMPLE 3: Activation of a parameterized altstep

altstep MYAltStep2 (integer par _val uel, MyType par_val ue2,
My/Por t Type par _port, timer par_tinmer)
{

}
function MyFunc () runs on MyConpType
{:
var default MyDefaultVar := null;
MyDef aul t Var : = activate(MAltStep2(5, nyVar, nyConpPort, nyConpTi ner);
/1 MYAltStep2 is activated as default with the actual paraneters 5 and

/1 the value of nmyVar. A change of nyVar before a call of M/AtStep2 by
/1 the default nechanismwi |l not change the actual paraneters of the call.

ETSI

161 ETSI ES 201 873-1 V4.5.1 (2013-04)

20.5.3 The Deactivate operation
Thedeact i vat e operation is used to deactivate defaults, i.e. previously activated altsteps.
Syntactical Structure
deactivate ["(" VariableRef | Functionlnstance ")"]
Semantic Description
A deact i vat e operation will remove the referenced default from the list of defaults.

The effect of adeact i vat e operation islocal to the test component in which it is called. This means, atest
component cannot deactivate a default in another test component.

A deact i vat e operation without parameter deactivates all defaults of atest component.

Callingadeact i vat e operation with the specia value nul | has no effect. Calling adeact i vat e operation with
an undefined default reference, e.g. an old reference to a default that has already been deactivated or an uninitialized
default reference variable, shall cause aruntime error.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Thevariable associated with VariableRef (being a component type variable, a component type parameter, etc.)
or the return type associated with Functionlnstance shall be of default type.

Examples
var default MyDefaultVar := null;
var default MyDefVarTwo := activate(M/SecondAltStep());
var default MyDefVarThree : = activate(M/ThirdAltStep());
M/DefauItVar := activate(MA tStep());
déact ivate(MyDefaultVar); // deactivates M/AltStep

déactivate; /'l deactivates all other defaults, i.e. in this case MySecondAlt Step
/1 and MyThirdAlt Step

21 Configuration Operations

Configuration operations are used to set up and control test components. They are summarized in table 19. These
operations shall only be used in TTCN-3 test cases, functions and altsteps (i.e. not in the module control part).

Table 19: Overview of TTCN-3 configuration operations

Operation | Explanation | Syntax Examples
Connection Operations
connect Connects the port of one test connect (ptcl:pl, ptc2:p2);
component to the port of another test
component
disconnect Disconnects two or more connected di sconnect (ptcl: pl, ptc2:p2);
ports
map Maps the port of one test component to |Mp(ptcliq, systemsutPortl);
the port of the test system interface
unmap Unmaps two or more mapped ports unmap(ptcl:q, systemsutPortl);
Test Component Operations
create Creation of a normal or alive test Non-alive test components:
component, the distinction between var PTCType c := PTCType. create;
normal and alive test components is |Alive test components: _
made during creation var PTCType c := PTCType.create alive;
(MTC behaves as a normal test
component)

ETSI

162 ETSI ES 201 873-1 V4.5.1 (2013-04)

Operation Explanation Syntax Examples

start Starting test behaviour on a test c.start(PTCBehaviour());
component, starting a behaviour does
not affect the status of component
variables, timers or ports

stop Stopping test behaviour on a test c.stop;
component

kill Causes a test component to ceaseto |C. kil
exist

alive Returns true if the test component has |if (c.alive)

been created and is ready to execute or
is executing already a behaviour;
otherwise returns false

running Returns true as long as the test if (c.running)
component is executing a behaviour;
otherwise returns false

done Checks whether the function running on |c. done;
a test component has terminated _
killed Checks whether a test component has [c- killed { ...}

ceased to exist

Test Case Operations

stop Terminates the test case with the test [testcase. stop (...);
verdict error

Reference Operations

mtc Gets the reference to the MTC connect(nmtc:p, ptc:p);

system Gets the reference to the test system [map(c:p, systemsutPort);
interface

self Gets the reference to the test sel f. stop;

component that executes this operation

21.1 Connection Operations

The ports of atest component can be connected to other components or to the ports of the test system interface
(seefigure 10). In the case of connections between two test components, the connect operation shall be used. When
connecting atest component to atest system interface the map operation shall be used. The connect operation
directly connects one port to another with the i n side connected to the out side and vice versa. The map operation on
the other hand can be seen purely as a name trandation defining how communications streams can be referenced.

Test system Connected Ports

| N

>
out I'N
aut I'N
Mapped Ports
Abstract Test System Interface auTt ¢ | I'N
O—CO——

Real Test System Interface

SUT

Figure 10: lllustration of the connect and map operations

ETSI

163 ETSI ES 201 873-1 V4.5.1 (2013-04)

21.1.1 The Connect and Map operations
Theconnect operation and the map operation are used to setup connections to the SUT or between test components.

Syntactical Structure

connect "(" ConponentRef ":" Port "," ConponentRef ":" Port ")"
map " (" ConponentRef ":" Port "," ConponentRef ":" Port ")"
[param " (" [{ ActualPar [","] }+ 1 ")" 1]

Semantic Description

With both the connect operation and the map operation, the ports to be connected are identified by the component
references of the components to be connected and the names of the ports to be connected.

The operation nt ¢ identifiesthe MTC, the operation sy st emidentifies the test system interface and the operation
sel f identifiesthe test component in which sel f has been called (see clause 6.2.11). All these operations can be used
for identifying and connecting ports.

Both theconnect and map operations can be called from any behaviour definition except for the control part of a
module. However before either operation is called, the components to be connected shall have been created and their
component references shall be known together with the names of the relevant ports.

Both the map and connect operations allow the connection of a port to more than one other port. It is not alowed to
connect to a mapped port or to map to a connected port.

The map operation provides an optional parameter list for configuration purposes. This allows to pass values needed for
dynamic runtime configuration. If a parameter list is present, the actual parameters shall conform to the map param
clause of the port type declaration of the system port used.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) For boththeconnect and map operations, only consistent connections are allowed.
Assuming the following:
1) ports PORT1 and PORT2 are the ports to be connected;
2) inlist-PORT1 defines the messages or procedures of the in-direction of PORT1;
3) outlist-PORT 1defines the messages or procedures of the out-direction of PORT1;
4) inlist-PORT2 defines the messages or procedures of the in-direction of PORTZ2; and
5) outlist-PORT2 defines the messages or procedures of the out-direction of PORT2.
b) Theconnect operationisallowed if and only if:
outlist-PORT1 c inlist-PORT2 and outlist-PORT2 c inlist-PORT 1.
¢) Thenap operation (assuming PORT2 isthe test system interface port) isalowed if and only if:
outlist-PORT1 c outlist-PORT2 and inlist-PORT2 c inlist-PORT1.
d) Inall other cases, the operations shall not be allowed.

€) Since TTCN-3 allows dynamic configurations and addresses, not all of these consistency checks can be made
statically at compile-time. All checks, which could not be made at compile-time, shall be made at run-time and
shall lead to atest case error when failing.

f) Inaddition, the restrictions on allowed and disallowed connections described in clause 9.1 apply.

g) Inmap operations, par amclauses are optional. If in amap operation apar amclauseis present, the actual
parameters shall conform to the map param clause of the port type declaration of the system port used.

ETSI

164 ETSI ES 201 873-1 V4.5.1 (2013-04)

Examples

EXAMPLE 1: Simple map and connect

/1 It is assuned that the ports Portl, Port2, Port3 and PCOL are properly defined and decl ared
/1 in the corresponding port type and conponent type definitions

v;ar My Conponent Type M/NewPTC;
M/NewPTC : = MyConponent Type. cr eat e;

cbnnect (MyNewPTC: Port1, ntc:Port3);
map(MyNewPTC: Port 2, system PCOL);

/1 I'n this exanple a new conponent of type MyConponent Type is created and its reference stored
/1 in variable MyNewPTC. Afterwards in the connect operation, Portl of this new conponent

/1 is connected with Port3 of the MIC. By neans of the map operation, Port2 of the new conponent
/1 is then connected to port PCOL of the test systeminterface

EXAMPLE 2: Parameterized map

vér MyConfi gType MyConfig := { option := 1, lock := fal se};
rTﬁp(ntc: Port4, system PCO2) param (M/Config);

/1 In this exanple by neans of the nap operation, Port4 of the MIC is connected to the port PCO2
/1 of the test systeminterface, and additionally a paraneter containing configuration options
// for the connection is passed.

21.1.2 The Disconnect and Unmap operations
Thedi sconnect and unnap operations are the opposite operations of connect and map.

Syntactical Structure

di sconnect [("(" ConponentRef ":" Port "," ConponentRef ":" Port ")") |
("(" PortRef ")") |
("(" ConponentRef ":" all port ")") |
("(" all conmponent ":" all port ")")]

unmap [("(" ConponentRef ":" Port "," ConponentRef ":" Port ")"

[param”(" [{ ActualPar [","] }+])" 1) |

("(" PortRef ")" [param"(" [{ ActualPar [","] }+] ")" 1) |
("(" ComponentRef ":" all port ")") |
("(" all conponent ":" all port ")")]

Semantic Description

Thedi sconnect and unnap operations perform the disconnection (of previously connected) ports of test
components and the unmapping of (previously mapped) ports of test components and ports in the test system interface.

Both, the di sconnect and unnmap operations can be called from any component if the relevant component references
together with the names of the relevant ports are known. A di sconnect or unmap operation has only an effect if the
connection or mapping to be removed has been created beforehand.

Toeasedi sconnect and unmap operations related to all connections and mappings of a component or aport, it is
allowed to use di sconnect and unmap operations with one argument only. This one argument specifies one side of
the connections to be disconnected or unmapped. Theal | port keyword can be used to denote al ports of a
component.

Theusage of adi sconnect or unnap operation without any parameters is a shorthand form for using the operation
with the parameter sel f: al | port . It disconnects or unmaps all ports of the component that calls the operation.

Theal | conponent keyword shall only be used in combination withtheal | port keyword,i.e. al |
component :al | port, and shal only be used by the MTC. Furthermore, theal | conponent: all port
argument shall be used as the one and only argument of adi sconnect or unmap operation and it allowsto release
all connections and mappings of the test configuration.

ETSI

165 ETSI ES 201 873-1 V4.5.1 (2013-04)

Similar to the map operation, unmap provides an optional parameter list for configuration purposes. If a parameter list
is present, the actual parameters shall conform to the unmap param clause of the port type declaration of the system
port used. It allows to pass values needed for dynamic runtime configuration.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Inanunmap operation, apar amclause shall only be present if the system port to which the par amclause
belongsto is explicitly referenced.

b) Inunmap operations, par amclauses are optional. If in an unmap operation apar amclauseis present, the
actual parameters shall conform to the unmap param clause of the port type declaration of the system port
used.

Examples

EXAMPLE 1: Disconnect/unmap for specific connections

connect (MyNewConponent : Port1, ntc:Port3);
map(MyNewConponent : Port 2, system PCOL) ;

di sconnect (MyNewConponent: Port1, mntc:Port3); /] disconnect previously nade connection
unmap(MyNewConponent : Port 2, system PCOL); /1 unmap previously nade napping

EXAMPLE 2: Disconnect/unmap for a component

di sconnect (MyNewConponent : Port 1) ; /1 disconnects all connections of Portl, which
/1 is owned by conponent MyNewConponent .
unmap(MyNewConponent: al | port); /1 unmaps all ports of conponent MyNewConponent

EXAMPLE 3: Disconnect/unmap for "self"

di sconnect; /1 is a shorthand formfor ..

di sconnect (self:all port); /1 which disconnects all ports of the conponent
/1 that called the operation

uhmap; /1 is a shorthand formfor ...

unmap(sel f:all port); /1 which unmaps all ports of the conponent
/1 that called the operation

EXAMPLE 4: Disconnect/unmap for "all component”

di sconnect (all component:all port); /1 the MIC di sconnects all ports of all
/] conponents in the test configuration.

uhmap(all conmponent:all port); /1 the MIC unnmaps all ports of all
/] conponents in the test configuration.

21.2 Test case operations

Test case operations address the entire test case by using the keyword testcase. Currently, the test case stop operation is
the only test case operation. It specifies an immediate stop of the test case behaviour with an error verdict.

21.2.1 Test case stop operation

The testcase stop operation defines a user defined immediate termination of atest case with the test verdict er r or and
an (optional) associated reason for the termination. Such an immediate stop of atest case isrequired for cases where a
user defined behaviour that does not contribute to the test outcome behaves in an unexpected manner which leadsto a
situation where the continuation of the test case makes no more sense.

Syntactical Structure

testcase "." stop ["(" { (FreeText | Tenplatelnstance) [","] } ")"]

ETSI

166 ETSI ES 201 873-1 V4.5.1 (2013-04)

Semantic Description

The test case stop operation causes an immediate stop of the entire test case behaviour with the verdict er r or . In
addition, the test case stop operation provides the means to specify the reason for the immediate termination of atest
case by writing one or more items to some logging device associated with the test control or the test component in
which the operation is used. Items to be logged shall be identified by a comma-separated list in the argument of the test
case stop operation. The argument of the test case stop operation shall follow the same restrictions as the argument of
the log statement (see clause 19.11).

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Thetest case stop operation shall not be used in the module control part or functions invoked directly or
indirectly by the module control part.

Examples

t est case. st op(" Unexpected Term nation");
/1 The test case stops the an error verdict and the string "Unexpected Termni nation"
I/l is witten to sone |og device of the test system

21.3 Test Component Operations

Test component operations are used to create, start, stop and kill test components. They can aso be used to check if test
components are alive, running, done or killed.

21.3.1 The Create operation
The cr eat e operation is used to create test components.

Syntactical Structure

Conmponent Type "." create ["(" Expression ["," Expression] ")"] [alive]
Semantic Description

The MTC isthe only test component, which is automatically created when atest case starts. All other test components
(the PTCs) shall be created explicitly during test execution by cr eat e operations. A component is created with its full
set of ports of which the input queues are empty and with its full set of constants, variables and timers. Furthermore, if a
port is defined to be of thetypei n or i nout it shall bein alistening state ready to receive traffic over the connection.

All component variables and timers are reset to their initial value (if any) and all component constants are reset to their
assigned values when the component is explicitly or implicitly created.

Two types of PTCs are distinguished: a PTC that can execute a behaviour function only once and a PTC that is kept
alive after termination of a behaviour function and can be therefore reused to execute another function. The latter is
created using the additional al i ve keyword. An alive-type PTC shall be destroyed explicitly using the ki | | operation
(see clause 21.3.4), whereas a non-alive PTC is destroyed implicitly after its behaviour function terminates. Termination
of atest casg, i.e. the MTC, terminates all PTCsthat still exist, if any.

Since al test components and ports are implicitly destroyed at the termination of each test case, each test case shall
completely create its required configuration of components and connections when it is invoked.

Thecr eat e operation shall return the unique component reference of the newly created instance. The unique
reference to the component will typically be stored in avariable (see clause 6.2.10.1) and can be used for connecting
instances and for communication purposes such as sending and receiving.

Optionally, a name can be associated with the newly created component instance. The test system shall associate the
names 'MTC' to the MTC and 'SY STEM' to the test system interface automatically at creation. Associated component
names are not required to be unique.

The component instance name is used for logging purposes (see clause 19.11) only and shall not be used to refer to the
component instance (the component reference shall be used for this purpose) and has no effect on matching.

ETSI

167 ETSI ES 201 873-1 V4.5.1 (2013-04)

Also optionally, a host id can be associated with the newly created component instance. If ahost id is provided, the
cr eat e operation shall cause atest case error, if the component cannot be deployed on the specified host.

Components can be created at any point in a behaviour definition providing full flexibility with regard to dynamic
configurations (i.e. any component can create any other PTC). The visibility of component references shall follow the
same scope rules as that of variables and in order to reference components outside their scope of creation the component
reference shall be passed as a parameter or asafield in a message.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Thename given by the first Expression shall be acharstring value and when assigned it shall appear asthe
first argument of the cr eat e function.

b) Thehostid given by the second Expression shall be a char string value and, when assigned, it shall appear as
the second argument of the cr eat e function.

Examples

/1 This exanple declares variables of type MyConponent Type, which is used to store the

Il references of newy created conponent instances of type MyConponent Type which is the

/1 result of the create operations. An associated nane is allocated to sone of the created
/1 conponent instances.

var MyConponent Type MyNewConponent;

var MyConponent Type MyNewest Conponent ;

var MyConponent Type M/Al i veConponent ;

var MyConponent Type MyAnot her Al i veConponent ;
var MyConponent Type MyDepl oyedConponent ;

MyNewConponent : = MyConponent Type. create;

M/Newest Conponent : = MyConponent Type. creat e(" Newest");

M/Al i veConponent : = MyConponent Type. create alive;

MyAnot her Al i veConponent : = MyConponent Type. creat e(" Anot her Alive") alive;
MyDepl oyedConponent := MyConponent Type.create(-, "Host4");

21.3.2 The Start test component operation

The start operation is used to associate a test behaviour to atest component, which is then being executed by that test
component.

Syntactical Structure

(Variabl eRef | Functionlnstance) "." start "(" Functionlnstance ")"
Semantic Description

Once a PTC has been created and connected, behaviour has to be bound to this PTC and the execution of its behaviour
hasto be started. Thisisdone by usingthest ar t operation (as PTC creation does not start execution of the
component behaviour). The reason for the distinction between cr eat e and st ar t isto alow connection operations to
be done before actually running the test component.

Thest art operation shall bind the required behaviour to the test component. This behaviour is defined by reference to
an aready defined function.

An alive-type PTC may perform several behaviour functions in sequential order. Starting a second behaviour function
on anon-alive PTC or starting afunction on a PTC that is still running resultsin atest case error. If afunction is started
on an alive-type PTC after termination of a previous function, it uses variable values, timers, ports, and the local verdict
asthey were left after termination of the previous function. In particular, if atimer was started in the previous function,
the subsequent function should be enabled to handle a possible timeout event. In contrast to that, all active defaults are
deactivated when the behaviour of an alive-type PTC is stopped. This means no default is activated when a new
behaviour is started on an aive-type PTC.

ETSI

168 ETSI ES 201 873-1 V4.5.1 (2013-04)

NOTE 1. Thelifetime of variables and timersis bound to the scope in which they are declared. When an aive-type
component is stopped, only the component scope is left. This means only variable values and timers
declared in the component type definition of an alive-type PTC can be accessed by afunction with a
corresponding r uns on-clause that is started on an alive-type PTC.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Thevariable associated with VariableRef (being a component type variable, a component type parameter, etc.)
or the return type associated with Functionlnstance shall be of component type.

b) Thefollowing restrictions apply to afunction invoked inast ar t test component operation:

e Thisfunction shall have ar uns on definition referencing a component type that is compatible with the
newly created component (see clause 6.3.3).

e Portsand timers shall not be passed into this function.

NOTE 2: Possible return values of afunctioninvoked inast art test component operation, i.e. templates denoted
by r et ur n keyword or i nout and out parameters, have no effect when the started test component
terminates.

NOTE 3: Asi nandi nout ports starts listening when the component is created, at the moment, when it starts
execution there may be messages in the incoming queues of such ports already waiting to be processed.

Examples

function MyFirstBehaviour() runs on MyConponent Type { ...}
function MySecondBehavi our() runs on MyConponent Type { ...}

;/ar MyConponent Type MyNewPTC;
var MyConponent Type M/Al i vePTC;

M/NewPTC : = MyConponent Type. cr eat €; I/l Creation of a new non-alive test conponent.

M/Al'i vePTC : = MyConponent Type.create alive; // Creation of a new alive-type test conponent
M/NewPTC. start (MyFirstBehaviour()); /] Start of the non-alive conponent.

M/NewPTC. done; /1 Wait for termnation

M/NewPTC. st art (MySecondBehavi our ()); /1 Test case error

M/AI i vePTC. start (MyFi rst Behavi our()); /1 Start of the alive-type conponent

M/Al i vePTC. done; /1 Wit for termination

M/Al'i vePTC. st art (MySecondBehavi our ()); // Start of the next function on the sanme conponent

21.3.3 The Stop test behaviour operation

The stop test behaviour operation is used to stop the execution of atest component by itself or by another test
component.

Syntactical Structure

stop |
((VariableRef | Functionlnstance | ntc | self) "." stop) |
(all conponent "." stop)

Semantic Description

By using the st op test component statement a test component can stop the execution of its own currently running test
behaviour or the execution of the test behaviour running on another test component. If a component does not stop its
own behaviour, but the behaviour running on another test component in the test system, the component to be stopped
has to be identified by using its component reference. A component can stop its own behaviour by using asimple st op
execution statement (see clause 19.9) or by addressing itself in the st op operation, e.g. by usingthesel f operation.

NOTE 1: Whilethecreate,start,runni ng, done andki | | ed operations can be used for PTC(s) only, the
st op operation can also be applied to the MTC.

ETSI

169 ETSI ES 201 873-1 V4.5.1 (2013-04)

Stopping atest component is the explicit form of terminating the execution of the currently running behaviour. A test
component behaviour terminates also by completing its execution upon reaching the end of the testcase or function that
is started on this component or by an explicit r et ur n statement. This termination is also called implicit stop. The
implicit stop has the same effects as an explicit stop, i.e. the global verdict is updated with the local verdict of the
stopped test component (see clause 24).

If the stopped test component isthe MTC, resources of al existing PTCs shall be released, the PTCs shall be removed
from the test system and the test case shall terminate (see clause 26.1).

Stopping a non-alive-type test component (implicitly or explicitly) shall destroy it and all resources associated with the
test component shall be released.

Stopping an alive-type component shall stop the currently running behaviour only but the component continues to exist
and can execute new behaviour (started on it using the st ar t operation). Stopping an alive-type component means that
all variables, timers and ports declared in the component type definition of the alive-type component keep their value,
contents or state. Furthermore, the local verdict of the component keeps its value. In contrast to that, all active defaults
are automatically deactivated when the alive-type component is stopped. The component shall be left in a consistent
state after stopping its behaviour.

For example, if the behaviour of an alive-type component is stopped during assigning a new value to an already bound
variable, the variable shall remain bound after the component is stopped (with the old or the new value). Similarly, if
the component is stopped during re-starting an aready running timer, the timer shall be left in the running state after
termination of the behaviour.

Theal | keyword can be used by the MTC only in order to stop al running PTCs but the MTC itself.
NOTE 2: A PTC can stop the test case execution by stopping the MTC.
NOTE 3: The concrete mechanism for stopping PTCs is outside the scope of the present document.
Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Thevariable associated with VariableRef (being a component type variable, a component type parameter, etc.)
or the return type associated with Functionlnstance shall be of component type.

Examples

EXAMPLE 1: Stopping another test component and a test component by itself

var MyConponent Type MyConp : = MyConponent Type. cr eat €; /1 A new test conponent is created

MyConp. st art (ConpBehavi our ()); /1 The new conponent is started
if (date == "1.1.2005") {
My Conp. st op; /1 The conponent "MConp" is stopped
}
if (a<b) {
sélf.stop; /1 The test conponent that is currently executing stops its own behavi our
}
étop /1 The test conponent stops its own behavi our

EXAMPLE 2. Stopping al PTCsby the MTC

al | component . st op /1l The MIC stops all PTCs of the test case but not itself.

21.3.4 The Kill test component operation

Theki | | test component operation is used to destroy atest component by itself or by another test component. Kill and
stop on a non-alive component have the same results, while they differ for alive components. stopping an aive
components stops the test behaviour only, the test component continues to exist. Killing a test component destroys the
test component.

ETSI

170 ETSI ES 201 873-1 V4.5.1 (2013-04)

Syntactical Structure

kill |
((VariableRef | Functionlnstance | ntc | self) "." kill) |
(all component "." kill)

Semantic Description

Theki | | operation applied on atest component stops the execution of the currently running behaviour - if any - of

that component and frees all resources associated to it (including al port connections of the killed component) and
removes the component from the test system. The ki | | operation can be applied on the current test component itself

by asimpleki | | statement or by addressing itself using the sel f operation in conjunction with the kill operation. The
ki I | operation can aso be applied to another test component. In this case the component to be killed shall be
addressed using its component reference. If theki | | operationisapplied onthe MTC, eg. nt c. ki | | , it terminates
the test case.

Theal | keyword can be used by the MTC only in order to stop and kill all running PTCs but the MTC itself.
Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Thevariable associated with VariableRef (being a component type variable, a component type parameter, etc.)
or the return type associated with Functionlnstance shall be of component type.

Examples

EXAMPLE 1: Killing another test component and atest component by itself

var PTCType MyAliveConp := PTCType.create alive; /]l Create an alive-type test conponent
M/Al i veConp. st art (MyFi r st Behavi our ()); /1 The new conponent is started

M/Al i veConp. done; /1 Wait for term nation

M/Al i veConp. st art (MySecondBehavi or()); // Start the conponent a 2™ tine

M/Al i veConp. done; /1 Wit for termination

M/Al'i veConp. ki I I ; /] Free its resources

EXAMPLE 2: Killingal PTCsby the MTC

all component.kill; /1 The MIC stops all (alive-type and normal) PTCs of the test case first
/1 and frees their resources.

21.3.5 The Alive operation

Theal i ve operation isaBaoolean operation that checks whether atest component has been created and is ready to
execute or is executing already a behaviour function.

Syntactical Structure
(Vari abl eRef |
Functi onl nst ance |

any conponent |
all component) "." alive

Semantic Description

Applied on anormal test component, theal i ve operation returnstrue if the component isinactive or running a
function and false otherwise. Applied on an aive-type test component, the operation returns true if the component is
inactive, running or stopped. It returns false if the component has been killed.

Theal i ve operation can be used similar to ther unni ng operation on PTCSs only (see clause 21.3.6). In particular,
in combination with theal | keyword it returnstrue if al (alive-type or normal) PTCs are alive.

Theal i ve operation used in combination with the any keyword returnstrue if at least one PTC is alive.

ETSI

171 ETSI ES 201 873-1 V4.5.1 (2013-04)

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Thevariable associated with VariableRef (being a component type variable, a component type parameter, etc.)
or the return type associated with Functionlnstance shall be of component type.

Examples
PTCL. done; /1 Wiits for termnation of the conponent
if (PTCL.alive) { /1 If the conponent is still alive ...
PTC1. st art (Anot her Function()); /] ...execute another function on it.

}

21.3.6 The Running operation

Ther unni ng operation is a Boolean operation that checks whether atest component is executing already a behaviour
function.
Syntactical Structure

(Vari abl eRef |
Functi onl nst ance |
any conponent |
all conmponent) "." running

Semantic Description

Ther unni ng operation alows behaviour executing on a test component to ascertain whether behaviour running on a
different test component has completed. Ther unni ng operation can be used for PTCs only. The running operation
returnst r ue for PTCsthat have been started but not yet terminated or stopped. It returnsf al se otherwise. The
runni ng operation is considered to be abool ean expression and, thus, returnsabool ean vaueto indicate
whether the specified test component (or all test components) has terminated. In contrast to the done operation, the
runni ng operation can be used freely inbool ean expressions.

Whentheal | keyword isused with ther unni ng operation, it will returnt r ue if all PTCs started but not stopped
explicitly by another component are executing their behaviour. Otherwise it returnsf al se.

When the any keyword is used with ther unni ng operation, it will returnt r ue if at least one PTC is executing its
behaviour. Otherwise it returnsf al se.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Thevariable associated with VariableRef (being a component type variable, a component type parameter, etc.)
or the return type associated with Functionlnstance shall be of component type.

Examples
i f (PTCL. running) /1 usage of running in an if statenent

/1 do sonet hi ng!

}

while (all conponent.running != true) { // usage of running in a |oop condition
MySpeci al Functi on()

21.3.7 The Done operation

The done operation allows behaviour executing on atest component to ascertain whether the behaviour running on a
different test component has completed.

Syntactical Structure
(Variabl eRef |

Functi onl nst ance |
any conponent |

ETSI

172 ETSI ES 201 873-1 V4.5.1 (2013-04)

all component) "." done
Semantic Description

The done operation shall be used in the same manner as areceiving operation or at i neout operation. This meansit
shall not beused in abool ean expression, but it can be used to determine an aternativeinan al t statement or as
stand-alone statement in a behaviour description. In the latter case adone operation is considered to be a shorthand for
anal t statement with the done operation asthe only alternative.

When the done operation is applied to a PTC, it matches only if the behaviour of that PTC has been stopped (implicitly
or explicitly) or the PTC has been killed. Otherwise, the match is unsuccessful.

NOTE 1: The execution of adone operation does not change the state of the test component. Consecutive done
operations applied to the same test component will give the same result aslong as the test component
does not change its state (see clause F.1.2).

Whentheal | keyword is used with the done operation, it matchesif no one PTC is executing its behaviour. It also
matches if no PTC has been created.

When the any keyword is used with the done operation, it matches if at least the behaviour of one PTC has been
stopped or killed. Otherwise, the match is unsuccessful.

NOTE 2: Stopping the behaviour of a non-alive component also resultsin removing that component from the test
system, while stopping an alive-type component |eaves the component alive in the test system. In both
cases the done operation matches.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Thedone operation can be used for PTCs only.

b) The variable associated with VariableRef (being a component type variable, a component type parameter, etc.)
or the return type associated with Functionlnstance shall be of component type.

Examples

/1 Use of done in alternatives
alt {
[T MPTC done {
set verdi ct (pass)
}

[1 any port.receive {
r epeat
}

}

var MyConp ¢ := MyConp.create alive;
c.start (M/PTCBehavi our());

;:. done;

/1 matches as soon as the functi on MyPTCBehavi our (or function/altstep called by it) stops
c. done;

/1 matches the end of MyPTCBehavi our (or function/altstep called by it) too
if(c.running) {c.done}

/1 done here matches the end of the next behaviour only

/1 the followi ng done as stand-al one statenent:
al | conponent. done;

/1 has the foll ow ng neaning:
alt {
[T all conponent.done {}

/1 and thus, blocks the execution until all parallel test conponents have term nated

ETSI

173 ETSI ES 201 873-1 V4.5.1 (2013-04)

21.3.8 The Killed operation

Theki | | ed operation allows to ascertain whether a different test component is alive or has been removed from the
test system.

Syntactical Structure

(Variabl eRef |
Functi onl nst ance |
any conponent |
all component) "." killed

Semantic Description

Theki | | ed operation shall be used in the same manner as receiving operations. This meansit shall not be used in
bool ean expressions, but it can be used to determine an alternativeinan al t statement or as a stand-alone statement
in a behaviour description. In the latter case aki | | ed operation is considered to be a shorthand for anal t statement
withtheki | | ed operation as the only alternative.

NOTE 1: When checking normal test components a killed operation matches if it stopped (implicitly or explicitly)
the execution of its behaviour or hasbeen ki | | ed explicitly, i.e. the operation is equivalent to the done
operation (see clause 21.3.7). When checking alive-type test components, however, theki | | ed
operation matches only if the component has been killed using theki | | operation. Otherwise the
ki | | ed operation is unsuccessful.

NOTE 2: The execution of aki | | ed operation does not change the state of the test component. Consecutive
ki | | ed operations applied to the same test component will give the same result as long as the test
component does not change its state (see clause F.1.2).

Whentheal | keyword is used with theki | | ed operation, it matchesif all PTCs of the test case have ceased to exist.
It also matchesif no PTC has been created.

When the any keyword is used with the ki | | ed operation, it matches if at least one PTC ceased to exist. Otherwise,
the match is unsuccessful.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a Thekil | ed operation can be used for PTCsonly.

Examples
var MyPTCType ptc := M/PTCType.create alive; /] create an alive-type test conponent
timer T:= 10.0; /] create a tiner
T.start; /1 start the tiner
ptc.start (MTest Behavior()); /] start executing a function on the PTC
alt {
[T ptc.killed { /1 if the PTC was killed during execution ...
T. st op; /1 ..stop the tinmer and ...
setverdi ct (i nconc); /1 ...set the verdict to 'inconclusive'
}
[T ptc.done { /1 if the PTC term nated regularly ...
T. st op; /] ...stop the tinmer and ...
ptc.start (Anot her Function()); /1 ...start another function on the PTC
}
[T T.timeout { /1 if the timeout occurs before the PTC stopped
ptc.kill; /1 ...kill the PTC and ...
setverdict(fail); /1 ..set the verdict to 'fail’
}

}

ETSI

174

ETSI ES 201 873-1 V4.5.1 (2013-04)

21.3.9 Summary of the use of any and all with components

The keywordsany and al | may be used with configuration operations as indicated in table 20.

Table 20: Any and All with components

Operation Allowed Example Comment
any (see note) | al | (see note)
create
start
runni ng Yes but from |Yes but from any conponent . running; |Is there any PTC performing test
MTC only MTC only behaviour?
al | conponent. running; |Are all PTCs performing test
behaviour?
alive Yes but from |Yes but from any conponent. alive, Is there any alive PTC?
MTC only MTC only all conponent.alive; |Areall PTCs alive?
done Yes but from |Yes but from any conponent. done; Is there any PTC that completed
MTC only MTC only execution?
al | component . done; Did all PTCs complete their execution?
killed Yes but from |Yes but from any conponent. killed; |[Isthere any PTC that ceased to exist?
MTC only MTC only all conponent.killed; |Didall PTCs cease to exist?
stop Yes but from al'l conponent. st op; Stop the behaviour on all PTCs.
MTC only
kill Yes but from all component.kill; Kill all PTCs, i.e. they cease to exist.
MTC only
NOTE: any andal | referto PTCs only, i.e. the MTC is not considered.

22

Communication operations

TTCN-3 supports message-based and procedure-based unicast, multicast and broadcast communication. Furthermore,
TTCN-3 alows to examine the top element of incoming port queues and to control the access to ports by means of
controlling operations. The communication operations and restrictions on their usage are summarized in table 21.

Table 21: Overview of TTCN-3 communication operations

Communication operations
Communication operation Keyword Can be used at Can be used at
message-based ports | procedure-based ports
Message-based communication
Send message send Yes
Receive message receive Yes
Trigger on message trigger Yes
Procedure-based communication
Invoke procedure call call Yes
Accept procedure call from remote entity getcall Yes
Reply to procedure call from remote entity |reply Yes
Raise exception (to an accepted call) raise Yes
Handle response from a previous call getreply Yes
Catch exception (from called entity) catch Yes
Examine top element of incoming port queues
Check msg/call/exception/reply received [check Yes Yes
Controlling operations
Clear port queue clear Yes Yes
Clear queue and enable sending and start Yes Yes
receiving at a port
Disable sending and disallow receiving stop Yes Yes
operations to match at a port
Disable sending and disallow receiving halt Yes Yes
operations to match new messages/calls
Check the state of a port checkstate Yes Yes

ETSI

175 ETSI ES 201 873-1 V4.5.1 (2013-04)

22.1 The communication mechanisms

This clause explains the principles of TTCN-3 communication for message-based communication (see clause 22.1.1),
for procedure-based communication (see clause 22.1.2), for unicast, multicast, and broadcast communication
(see clause 22.1.3), aswell as the general format of sending and receiving operations (see clause 22.1.4).

22.1.1 Principles of message-based communication

M essage-based communication is communication based on an asynchronous message exchange. M essage-based
communication is non-blocking on the send operation, asillustrated in figure 11, where processing in the SENDER
continues immediately after the send operation occurs. The RECEIVER isblocked onther ecei ve operation until it
processes the received message.

In additionto ther ecei ve operation, TTCN-3 providesat r i gger operation that filters messages with certain
matching criteria from a stream of received messages on a given incoming port. Messages at the top of the queue that
do not fulfil the matching criteria are removed from the port without any further action.

send receive or trigger

SENDER » RECEIVER

Figure 11: lllustration of the asynchronous send and receive

22.1.2 Principles of procedure-based communication

The principle of procedure-based communication isto call procedures in remote entities. TTCN-3 supports blocking
and non-blocking procedure-based communication. Blocking procedure-based communication is blocking on the calling
and the called side, whereas non-blocking procedure-based communication is only blocking on the called side.
Signatures of procedures that are used for non-blocking procedure-based communication shall be specified according to
therulesin clause 13.

The communication scheme of blocking procedure-based communication is shown in figure 12. The CALLER callsa
remote procedure in the CALLEE by using the cal | operation. The CALLEE accepts the call by means of a

get cal | operation and reacts by either using ar epl y operation to answer the call or by raising (r ai se operation)
an exception. The CALLER handles the reply or exception by using get r epl y or cat ch operations. In figure 12, the
blocking of CALLER and CALLEE isindicated by means of dashed lines.

call getcall
; >
CALLER || i | CALLEE
:4 :
getreply or reply or
cat ch exception r ai se exception

Figure 12: Illustration of blocking procedure-based communication

The communication scheme of non-blocking procedure-based communication is shown in figure 13. The CALLER
calls aremote procedure in the CALLEE by using the cal | operation and continues its execution, i.e. does not wait for
areply or exception. The CALLEE accepts the call by means of aget cal | operation and executes the requested
procedure. If the execution is not successful, the CALLEE may raise an exception to inform the CALLER. The
CALLER may handle the exception by using acat ch operationinanal t statement. In figure 13, the blocking of the
CALLEE until the end of the call handling and possible raise of an exception isindicated by means of a dashed line.

ETSI

176 ETSI ES 201 873-1 V4.5.1 (2013-04)

cal | get cal |
>
CALLER | | CALLEE
< H
cat ch exception rai se exception

Figure 13: lllustration of non-blocking procedure-based communication

22.1.3 Principles of unicast, multicast and broadcast communication
TTCN-3 supports unicast, multicast and broadcast communication:

J Unicast communication means one sender to one receiver.

J Multicast communication is from one sender to alist of receivers.

. Broadcast communication is from one sender to all receivers (being connected or mapped to the sender).

The terms unicast, multicast and broadcast communication are related to port communication. This means, it isonly
possible to address one, several or al test components that are connected to the specified port. Unicast, multicast and
broadcast can also be used for mapped ports. In this case, one, several or al entities within the SUT can be reached via
the specified mapped port.

22.1.4 General format of communication operations

Operations such assend and cal | are used for the exchange of information among test components and between an
SUT and test components. For explaining the general format of these operations, they can be structured into two groups:

a) atest component sends a message (send operation), calls aprocedure (cal | operation), or repliesto an
accepted call (r epl y operation) or raises an exception (r ai se operation). These actions are collectively
referred to as sending operations,

b) acomponent receives amessage (r ecei ve operation), awaitsamessage (t ri gger operation),accepts a
procedure call (get cal | operation), receives areply for apreviously called procedure (get r epl y
operation) or catches an exception (cat ch operation). These actions are collectively referred to asreceiving
operations.

22.1.4.1 General format of the sending operations

Sending operations consist of a send part and, in the case of a blocking procedure-based cal | operation, aresponse
and exception handling part.

The send part:
. specifies the port at which the specified operation shall take place;
. defines the message or procedure call to be transmitted;

e givesan (optional) address part that uniquely identifies one or more communication partnersto which a
message, call, reply or exception shall be send.

The port name, operation name and value shall be present in all sending operations. The address part (denoted by thet o
keyword) is optional and need only be specified in cases of one-to-many connections where;

. unicast communication is used and one receiving entity shall be explicitly identified;
. multicast communication is used and a set of receiving entities has to be explicitly identified;

. broadcast communication is used and all entities connected to the specified port have to be addressed.

ETSI

177 ETSI ES 201 873-1 V4.5.1 (2013-04)
EXAMPLE 1:
Send part (Optional) response
and exception
Port and operation Value part (Optional) address part handling part

M/P1. send (MyVariabl e + YourVariable - 2) to MyPartner;

Response and exception handling is only needed in cases of procedure-based communication. The response and
exception handling part of the cal | operation isoptional and is required for cases where the called procedure returns a
value or hasout ori nout parameters whose values are needed within the calling component and for cases where the
called procedure may raise exceptions which need to be handled by the calling component.

The response and exception handling part of the call operation makes use of get r epl y and cat ch operations to
provide the required functionality.

EXAMPLE 2:
Send part (Optional) response and exception handling part
Port and Value part (Optional)
operation address part
MyP1. cal | (MyProc: { MyVar 1})

[T MWP1.getreply(MProc: {M/Var2}) {}
[T MyP1l.catch(MProc, ExceptionOne) {}

}

22.1.4.2 General format of the receiving operations

A receiving operation consists of areceive part and an (optional) assignment part.
The receive part:
a) specifiesthe port at which the operation shall take place;
b) defines amatching part which specifies the acceptable input which will match the statement;

c) givesan (optional) address expression that uniquely identifies the communication partner (in case of
one-to-many connections).

The port name, operation name and value part of all receiving operations shall be present. The identification of the
communication partner (denoted by the f r omkeyword) is optional and need only be specified in cases of one-to-many
connections where the receiving entity needsto be explicitly identified.

The assignment part in areceiving operation is optional. For message-based portsit is used when it is required to store
received messages. In the case of procedure-based portsit isused for storing thei n andi nout parameters of an
accepted call, for storing the return value or for storing exceptions. For the assignment part strong typing is required,
e.g. the variable used for storing a message shall have the same type as the incoming message.

In addition, the assignment part may also be used to assign the sender address of a message, exception, r epl y or
cal | toavariable. Thisis useful for one-to-many connections where, for example, the same message or call can be
received from different components, but the message, reply or exception shall be sent back to the original sending
component.

EXAMPLE:
Receive part (Optional) assignment part
Port and operation Matching part (Optional) (Optional) (Optional) (Optional) sender
address value parameter |value assignment
expression assignment value
assignment
M/P1. getreply (AProc: {?} val ue 5) -> param (V1) sender APeer

ETSI

178 ETSI ES 201 873-1 V4.5.1 (2013-04)

Receive part (Optional) assignment part
Port and operation Matching part (Optional) (Optional) value (Optional) (Optional)
address assignment parameter |sender value
expression value assignment
assignment
MyP2.recei ve (MyTenpl ate(5, 7)) from APeer -> |val ue MyVar

22.2 Message-based communication

The operations for message-based communication via asynchronous ports are summarized in table 22.

Table 22: Overview of TTCN-3 message-based communication

Communication operation Keyword
Send message send
Receive message receive
Trigger on message trigger
Check message received check

22.2.1 The Send operation

The send operation is used to place a message on an outgoing message port.

Syntactical Structure

Port "." send "(" Tenplatelnstance ")"
[to Address]

NOTE: Address may be an AddressRef, alist of AddressRef-s or "all component”.
Semantic Description

The send operation places a message on an outgoing message port. The message may be specified by referencing a
defined template or can be defined as an in-line template.

Sending unicast, multicast or broadcast

Unicast, multicast and broadcast communication can be determined by the optional t o clauseinthe send operation. A
t o clause can be omitted in case of a one-to-one connection where unicast communication is used and the message
receiver is uniquely determined by the test system structure.

Unicast communication is specified, if thet o clause addresses one communication partner only. Multicast
communication isused, if thet o clause includes alist of communication partners. Broadcast is defined by using thet o
clausewithal | conponent keyword.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) The Templatel nstance (and all parts of it) shall have a specific valuei.e. the use of matching mechanisms such
as AnyValue is not alowed.

b) When defining the message in-line, the optional type part shall be used if there is ambiguity of the type of the
message being sent.

¢) Thesend operation shall only be used on message-based ports and the type of the template to be sent shall be
in the list of outgoing types of the port type definition.

d) At o clauseshal be present in case of one-to-many connections.

€) AddressRef shal be of typeaddr ess, component or of the type provided in the address declaration of the
port type of the port instance referenced in the send operation.

ETSI

179 ETSI ES 201 873-1 V4.5.1 (2013-04)

f) Applying asend operation to an unmapped or disconnected port shall cause atest case error.

Examples

EXAMPLE 1: Simple send (receiver is determined from the test configuration)

My/Port. send(MyTenpl at e(5, MyVar)); /1 Sends the tenplate MyTenplate with the actual
[/ paraneters 5 and MyVar via MyPort.

MyPort . send(5); /1 Sends the integer value 5 (which is an in-line tenplate)

EXAMPLE 2 Sending with explicit to clause

M/Port.send(charstring:"My string") to MyPartner;
/1 Sends the string "My string" to a conponent with a
/1 conponent reference stored in variable MyPartner

M/PCO. send(MyVari abl e + YourVariable - 2) to MyPartner;
/1 Sends the result of the arithnetic expression to MyPartner.

M/PC2. send(MyTenpl ate) to (M/Peer One, M/Peer Two) ;
/1 Specifies a nulticast comunication, where the val ue of
/!l MyTenplate is sent to the two conponent references stored
/1 in the variables M/PeerOne and MyPeer Two.

M/PCC3. send(My Tenpl ate) to all conponent;
/'l Broadcast communication: the value of Mtenplate is send to
/1 all conponents which can be addressed via this port. If
/1 MPCO3 is a mapped port, the conponents may reside inside
/1 the SUT.

22.2.2 The Receive operation
Ther ecei ve operationis used to receive a message from an incoming message port queue.

Syntactical Structure

(Port | any port) "." receive
["(" Tenplatelnstance ")"]
[from Address]
["->" [value (Variabl eRef |

("(" { VariableRef [":=" FieldO TypeReference J[","] } ")")

[sender Variabl eRef]]
NOTE 1. Address may be an AddressRef, alist of AddressRef-s or "any component”.
Semantic Description

Ther ecei ve operationis used to receive a message from an incoming message port queue. The message may be
specified by referencing a defined template or can be defined as an in-line template.

Ther ecei ve operation removes the top message from the associated incoming port queue if, and only if, that top
message satisfies all the matching criteria associated with ther ecei ve operation.

If the match is not successful, the top message shall not be removed from the port queuei.e. if ther ecei ve operation
isused as an alternative of an al t statement and it is not successful, the execution of the test case shall continue with
the next dternative of theal t statement.

Matching criteria

The matching criteria are related to the type and value of the message to be received. The type and val ue of the message
to be received are determined by the argument of ther ecei ve operation, i.e. may either be derived from the defined
template or be specified in-line. An optional type field in the matching criteriato ther ecei ve operation shall be used
to avoid any ambiguity of the type of the value being received.

NOTE 2: Encoding attributes also participate in matching in an implicit way, by preventing the decoder to produce
an abstract value from the received message encoded in a different way than specified by the attributes.

ETSI

180 ETSI ES 201 873-1 V4.5.1 (2013-04)

Receiving from a specific sender

In the case of one-to-many connectionsthe r ecei ve operation may be restricted to a certain communication partner.
Thisrestriction shall be denoted using the f r omkeyword.

Storing the received message and parts of the received message

If the match is successful, the value removed from the port queue and/or parts of this value can be stored in variables or
formal parameters. Thisis denoted by the symbol '->' and the keyword val ue.

When the keyword val ue isfollowed by a name of avariable or formal parameter, the whole received message shall
be stored in the variable or formal parameter. The variable or formal parameter shall be type compatible with the
received message.

When the keyword val ue isfollowed by an assignment list enframed by a pair of parentheses, the whole received
message and/or one or more parts of it can be stored. In a single assignment within the list, on the left hand side of the
assignment symbol (":=") afield of the template type shall be referenced, on the right hand side the name of the variable
or aformal parameter, in which the value shall be stored. The variable or formal parameter shall be type compatible
with the type on the left hand side of the assignment symbol. As a specia case the field reference can be absent to
indicate that the whole message shall be stored in avariable.

Storing the sender

It isalso possible to retrieve and store the component reference or address of the sender of a message. Thisis denoted
by the keyword sender .

When the message is received on a connected port, only the component referenceis stored in the following the sender
keyword, but the test system shall internally store the component name too, if any (to be used in logging).

Receive any message

A r ecei ve operation with no argument list for the type and value matching criteria of the message to be received shall
remove the message on the top of the incoming port queue (if any) if al other matching criteriaare fulfilled.

Receive on any port
Tor ecei ve amessage on any port, usetheany port keywords.
Stand-alonereceive

Ther ecei ve operation can be used as a stand-al one statement in a behaviour description. In this latter case the
r ecei ve operation is considered to be shorthand for anal t statement with ther ecei ve operation as the only
aternative.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) When defining the message in-line, the optional type part shall be present whenever the type of the message
being received is ambiguous.

b) Therecei ve operation shall only be used on message-based ports and the type of the value to be received
shall be included in the list of incoming types of the port type definition.

¢) No binding of the incoming values to the terms of the expression or to the template shall occur.
d) A message received by receive any message shall not be stored, i.e. the value clause shall not be present.

€) Typemismatch at storing the received value or parts of the received value and storing the sender shall cause an
error.

f) AddressRef for retrieving the sending entity shall be of type addr ess, conponent or of the type provided
in the address declaration of the port type of the port instance referenced inther ecei ve operation.

ETSI

181 ETSI ES 201 873-1 V4.5.1 (2013-04)

Examples

EXAMPLE 1: Basicreceive

M/Port.recei ve(M/Tenpl ate(5, MyVar)); /1 Matches a nessage that fulfils the conditions
/1 defined by tenplate MyTenpl ate at port MyPort.

M/Port . recei ve(A<B); /1 Matches a Bool ean val ue that depends on the outcone of A<B

M/Port.receive(integer: MVar); [/ Mtches an integer value with the value of MyVar
/1 at port MyPort

MyPort.receive(M/Var); /1 I's an alternative to the previous exanple

EXAMPLE 2: Receiving from a sender, storing the message, parts of the message or the sender
M/Port.receive(charstring:"Hello")from M/Peer; // Matches charstring "Hello" from MyPeer

MyPort.receive(M/Type: ?) -> value MyVar; /1 The val ue of the received nessage is
/'l assigned to MyVar.

M/Port.recei ve(M/Type: ?) -> value (M/Var, M/Messagel dVar:= MyType. nessagel d)
/1 The value of the received nessage is stored in the variable
/1 MyVar and the value of the nessageld field of the received
/'l message is stored in the variable M/Messagel dVar.

MyPort.recei ve(anytype: ?) -> value (M ntegerVar := integer)

/Il 1f the received value is an integer, it is stored in the variable

/1 MylntegerVar, a test case error otherwise.
MyPort.receive(charstring:?) -> value (M/CharstringVar)

/1 The received value is stored in the variable M/CharstringVar;

/'l Note that it is the sane as to wite "value MyCharstringVar"
MyPort.recei ve(A<B) -> sender MyPeer; /1 The address of the sender is assigned to MyPeer

MyPort.recei ve(M/Tenpl ate: {5, MyVarOne}) -> value MyVar Two sender M/Peer;
/'l The received nessage value is stored in M/VarTwo and the sender address is stored in MyPeer.

EXAMPLE 3: Receive any message

My/Port . receive; /1 Renoves the top value from MyPort.

M/Port.receive from MyPeer; /1 Renoves the top nessage from M/Port if its sender is
My Peer

MyPort.receive -> sender MySender Var; /1 Renoves the top nessage from MyPort and assigns

/1 the sender address to MySender Var

EXAMPLE 4: Receive on any port

any port.recei ve(MyMessage) ;

22.2.3 The Trigger operation
Thetri gger operationis used to await a specific message on an incoming port queue.

Syntactical Structure
(Port | any port) "." trigger
["(" Tenplatelnstance ")"]
[from Address]
["->" [value (VariableRef |
("(" { VariableRef [":=" FieldO TypeReference 1[","] } ")")

) 1
[sender Variabl eRef]]

NOTE: Address may be an AddressRef, alist of AddressRef-s or "any component”.

ETSI

182 ETSI ES 201 873-1 V4.5.1 (2013-04)

Semantic Description

Thet ri gger operation removes the top message from the associated incoming port queue. If that top message meets
the matching criteria, thet r i gger operation behavesin the same manner asar ecei ve operation. If that top
message does not fulfil the matching criteria, it shall be removed from the queue without any further action.

Thetri gger operation requiresthe port name, matching criteria for type and value, an optional f r omrestriction
(i.e. selection of communication partner) and an optional assignment of the matching message and sender component to
variables.

Matching criteria
The matching criteria as defined in clause 22.2.2 apply also to thet r i gger operation.
Trigger on any message

Atri gger operation with no argument list shall trigger on the receipt of any message. Thus, its meaning is identical
to the meaning of receive any message.

Trigger on any port
Totrigger onamessage at any port, usetheany port keywords.
Stand-alone trigger

Thetri gger operation can be used as a stand-alone statement in a behaviour description. In this latter case the

tri gger operation isconsidered to be shorthand for an al t statement with two alternatives (one alternative expecting
the message and another alternative consuming all other messages and repeating the alt statement, see

ES 201 873-4[1]).

Storing the received message, parts of the received message or the sender

Rulesin clause 22.2.2 shall apply.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Thetrigger operation shall only be used on message-based ports and the type of the value to be received
shall beincluded in the list of incoming types of the port type definition.

b) A message received by TriggerOnAnyMessage shall not be assigned to a variable.

c) Typemismatch at storing the received value or parts of the received value and storing the sender shall cause an
error.

d) AddressRef for retrieving the sending entity shall be of type addr ess, conmponent or of the type provided
in the address declaration of the port type of the port instance referenced inthet r i gger operation.

Examples
EXAMPLE 1. Basictrigger
MyPort.trigger(MType: ?);

/Il Specifies that the operation will trigger on the reception of the first nessage observed of
/1 the type MyType with an arbitrary value at port MyPort.

EXAMPLE 2: Trigger from a sender and with storing message or sender

MyPort.trigger(MType:?) from MyPartner;
/1 Triggers on the reception of the first nmessage of type MyType at port MyPort
/1 received from MyPartnner.

MyPort.trigger(MType:?) from M/Partner -> val ue M/RecMessage;

/1 This exanple is alnpst identical to the previous exanple. In addition, the nessage which
/1 triggers i.e. all matching criteria are met, is stored in the variable M/RecMessage.

ETSI

183 ETSI ES 201 873-1 V4.5.1 (2013-04)

MyPort.trigger(MType:?) -> sender MyPartner;

/1 This exanple is alnost identical to the first exanple. In addition, the reference of the
/1 sender conponent will be retrieved and stored in variable M/Partner.
MyPort.trigger(integer:?) -> value MyVar sender M/Partnner;

/1 Trigger on the reception of an arbitrary integer value which afterwards is stored in
/'l variable MyVar. The reference of the sender conponent will be stored in variable M/Partner.

EXAMPLE 3: Trigger on any message
MyPort.trigger;
MyPort.trigger from MyPartner;

MyPort.trigger -> sender MySender Var;

EXAMPLE 4: Trigger on any port

any port.trigger

22.3 Procedure-based communication

The operations for procedure-based communication via synchronous ports are summarized in table 23.

Table 23: Overview of procedure-based communication

Communication operation Keyword
Invoke procedure call call
Accept procedure call from remote entity getcall
Reply to procedure call from remote entity |reply
Raise exception (to an accepted call) raise
Handle response from a previous call getreply
Catch exception (from called entity) catch
Check call/lexception/reply received check

22.3.1 The Call operation

Thecal | operation specifies the call of aremote operation on another test component or within the SUT.

Syntactical Structure

Port "." call "(" Tenplatelnstance ["," CallTinervalue] ")"
[to Address]

NOTE 1: Address may be an AddressRef, alist of AddressRef-sor "all component”.
Semantic Description
Thecal | operationis used to specify that atest component calls a procedure in the SUT or in another test component.

The information to be transmitted in the send part of thecal | operation is asignature that may either be defined in the
form of a signature template or be defined in-line.

Handling responses and exceptionsto a call

In case of non-blocking procedure-based communication the handling of exceptionsto cal | operationsis done by
using cat ch (see clause 22.3.6) operations as aternativesinal t statements.

If the nowai t option is used, the handling of responses or exceptionsto cal | operationsisdone by using get r epl y
(see clause 22.3.4) and cat ch (see clause 22.3.6) operations as alternativesinal t statements.

In case of blocking procedure-based communication, the handling of responses or exceptionsto acall isdonein the
response and exception handling part of the cal | operation by means of get r epl y (see clause 22.3.4) and cat ch
(see clause 22.3.6) operations.

ETSI

184 ETSI ES 201 873-1 V4.5.1 (2013-04)

The response and exception handling part of acal | operation looks similar to the body of anal t statement. It defines
aset of aternatives, describing the possible responses and exceptions to the call.

If necessary, it is possible to enable/disable an alternative by means of abool ean expression placed between the "[1"
brackets of the alternative.

The response and exception handling part of a call operation is executed likean al t statement without any active
default. This means a corresponding snapshot includes all information necessary to evaluate the (optional) Boolean
guards, may include the top element (if any) of the port over which the procedure has been called and may include a
timeout exception generated by the (optional) timer that supervises the call.

Handling timeout exceptionsto a call

Thecal | operation may optionally include atimeout. Thisis defined as an explicit value or constant of f | oat type
and defines the length of time after thecal | operation has started that at i meout exception shall be generated by the
test system. If no timeout value part is present inthecal | operation, not i meout exception shall be generated.

Nowait calls of blocking procedures

Using the keyword nowai t instead of atimeout exception valueinacal | operation allows calling a procedure to
continue without waiting either for a response or an exception raised by the called procedure or atimeout exception.

If thenowai t keyword is used, a possible response or exception of the called procedure has to be removed from the
port queue by usingaget r epl y or acat ch operation in asubsequent al t statement.

Calling blocking procedureswithout return value, out parameters, inout parameter s and exceptions

A blocking procedure may have no return values, no out and inout parameters and may raise no exception. The call
operation for such a procedure shall also have aresponse and exception handling part to handle the blocking in a
uniform manner.

Calling non-blocking procedures

A non-blocking procedure has no out and inout parameters, no return value and the non-blocking property is indicated
in the corresponding signature definition by means of anobl ock keyword.

Possible exceptions raised by non-blocking procedures have to be removed from the port queue by using cat ch
operationsin subsequent al t ori nt er | eave statements.

Unicast, multicast and broadcast calls of procedures

Like for the send operation, TTCN-3 aso supports unicast, multicast and broadcast calls of procedures. This can be
done in the same manner as described in clause 22.2.1, i.e. the argument of thet o clause of acal | operationisfor
unicast callsthe address of one receiving entity (or can be omitted in case of one-to-one connections), for multicast calls
alist of addresses of a set of receivers and for broadcast callstheal | conponent keyword. In case of one-to-one
connections, thet o clause may be omitted, because the receiving entity is uniquely identified by the system structure.

The handling of responses and exceptions for a blocking or non-blocking unicast cal | operation has been explained in
this clause under "Handling timeout exceptionsto acall". A multicast or broadcast cal | operation may cause several
responses and exceptions from different communication partners.

In case of amulticast or broadcast cal | operation of a non-blocking procedure, all exceptions which may be raised
from the different communication partners can be handled in subsequent cat ch, al t ori nt er| eave statements.

In case of amulticast or broadcast cal | operation of a blocking procedure, two options exist. Either, only one response
or exception is handled in the response and exception handling part of the cal | operation. Then, further responses and
exceptions can be handled in subsequent al t ori nt er | eave statements. Or, several responses or exceptions are
handled by the use of repeat statements in one or more of the statement blocks of the response and exception handling
part of the call operation: the execution of arepeat statement causes the re-evaluation of the call body.

NOTE 2: Inthe second case, the user needs to handle the number of repetitions.

ETSI

185 ETSI ES 201 873-1 V4.5.1 (2013-04)

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a Thecal | operation shall only be used on procedure-based ports. The type definition of the port at which the
call operation takes place shall include the procedure nameinitsout ori nout listi.e. it shall be allowed to
call this procedure at this port.

b) Allinandi nout parameters of the signature shall have a specific valuei.e. the use of matching mechanisms
such as AnyValue is not allowed.

c¢) Only out parameters may be omitted or specified with a matching attribute.

d) Thesignature argumentsof thecal | operation are not used to retrieve variable namesfor out andi nout
parameters. The actual assignment of the procedure return value and out andi nout parameter valuesto
variables shall explicitly be made in the response and exception handling part of the cal | operation by means
of get r epl y and cat ch operations. This allows the use of signature templatesincal | operationsin the
same manner as templates can be used for types.

€) At o clauseshall be present in case of one-to-many connections.

f) AddressRef shall be of type addr ess, conponent or of the type provided in the address declaration of the
port type of the port instance referenced inthe cal | operation.

g) CallTimerValue shal be of type float.

h) The sdlection of the aternativesto acall shall only be based on get r epl y and cat ch operations for the
called procedure. Unqualified get r epl y and cat ch operations shall only treat replies from and exceptions
raised by the called procedure. The use of el se branches and the invocation of altstepsis not allowed.

i) The evaluation of the Boolean expressions guarding the alternatives in the response and exception handling
part may have side effects. In order to avoid unexpected side effects, the same rules as for the Boolean guards
inal t statements shall be applied (see clause 20.2).

i) Thecall operation for ablocking procedures without return value, out parameters, inout parameters and
exceptions shall also have aresponse and exception handling part to handle the blocking in a uniform manner.

K) Incaseof amulticast or broadcast cal | operation of ablocking procedure, where the nowai t keyword is
used, all responses and exceptions have to be handled in subsequent al t ori nt er | eave statements.

) Thecal | operation for a non-blocking procedure shall have no response and exception handling part, shall
raise no timeout exception and shall not use the nowai t keyword.

m) Applyingacal | operation to an unmapped or disconnected port shall cause atest case error.

Examples

EXAMPLE 1: Blocking call with getreply

/Il Gven ..
signature MyProc (out integer MyParl, inout bool ean MyPar?2);

/) a call of MyProc
MyPort.call (MProc:{ -, MyVar2}) { I/l in-line signature tenplate for the call of M/Proc

/1

[T MyPort.getreply(MProc:{?, ?}) { }

...and another call of M/Proc

MyPort.cal | (MProcTenpl ate) { /1 using signature tenplate for the call of M/Proc

[T MyPort.getreply(MProc:{?, ?}) { }

MyPort.call (MyProcTenpl ate) to MyPeer { /1 calling MyProc at MyPeer

[T MyPort.getreply(MProc:{?, ?}) { }

ETSI

186 ETSI ES 201 873-1 V4.5.1 (2013-04)

EXAMPLE 2: Blocking call with getreply and catch
/1 Gven

signature MyProc3 (out integer MyParl, inout bool ean MyPar2) return MyResultType
exception (Excepti onTypeOne, Excepti onTypeTwo);

/1 Call of MyProc3
MyPort.call (MProc3:{ -, true }) to MPartner {

[T MyPort.getreply(MProc3:{?, ?}) -> value MyResult param (M/Par 1Var, MyPar2Var) { }
[T MyPort.catch(M/Proc3, M/ExceptionOne) {

setverdict(fail);

st op;

}
[T MyPort.catch(MProc3, ExceptionTypeTwo : ?) {
setverdi ct (inconc);

}
[MyCondi tion] MyPort.catch(M/Proc3, MyExceptionThree) { }
}

EXAMPLE 3: Blocking call with timeout exception
MyPort.cal | (MyProc: {5, M/Var}, 20E-3) {

[T MyPort.getreply(MProc:{?, ?}) { }

[T MyPort.catch(tineout) { /] timeout exception after 20ns
setverdict(fail);
st op;
}

}
EXAMPLE 4: Nowait call

MyPort.call (MProc: {5 MVar}, nowait); /1 The calling test conponent will continue
/] its execution without waiting for the
// term nation of MyProc

EXAMPLES5: Blocking call without return value, out parameters, inout parameters and exceptions

/Il Gven ..
si gnature MyBl ockingProc (in integer MyParl, in bool ean MyPar?2);

/) a call of MBI ocki ngProc
MyPort.cal | (MyBl ockingProc:{ 7, false }) {

[T MyPort.getreply(MyBlockingProc:{ -, - }) { }
}

EXAMPLE 6: Broadcast call

var bool ean first:= true;
MyPort.cal |l (MyProc: {5, M/Var}, 20E-3) to all conponent { // Broadcast call of M/Proc
/1 Handl es the response from MyPeer One
[first] MyPort.getreply(MyProc:{?, ?}) from MyPeerOne {
if (first) { first := false; repeat; }

/1 Handl es the response from MyPeer Two
[first] MyPort.getreply(MProc:{?, ?}) from MyPeer Two {

if (first) { first := false; repeat; }
[T MyPort.catch(tineout) { /1 timeout exception after 20ns
setverdict(fail);
st op;
}
}
alt {
[T MyPort.getreply(MProc:{?, ?}) { /1 Handles all other responses to the broadcast call
r epeat
}
}

ETSI

187 ETSI ES 201 873-1 V4.5.1 (2013-04)

EXAMPLE 7: Multicast call
MyPort.call (MyProc: {5 M/Var}, nowait) to (M/Peerl, MPeer?2); /1 Multicast call of MyProc
interl eave {

[T MyPort.getreply(MyProc:{?, ?}) from WPeerl { } /1 Handl es the response of MyPeerl
[T MyPort.getreply(MProc:{?, ?}) fromMPeer2 { } /1 Handl es the response of MyPeer2

}

22.3.2 The Getcall operation
Theget cal | operation is used to accept calls.

Syntactical Structure

(Port | any port) "." getcall
["(" Tenplatelnstance ")"]
[from Address]
["->" [param"(" { (VariableRef ":=" Paraneterldentifier) "," } |
{ (VariableRef | "-") "," }
"
[sender Variabl eRef]]

NOTE: Address may be an AddressRef, alist of AddressRef-s or "any component”.
Semantic Description

Theget cal | operation isused to specify that atest component accepts a call from the SUT, or another test
component.

Theget cal | operation shall remove the top call from the incoming port queue, if, and only if, the matching criteria
associated to the get cal | operation are fulfilled. These matching criteria are related to the signature of the call to be
processed and the communication partner. The matching criteria for the signature may either be specified in-line or be
derived from a signature templ ate.

The assignment of i n and i nout parameter values to variables shall be made in the assignment part of the get cal |
operation. This alows the use of signature templatesin get cal | operationsin the same manner as templates are used
for types.

A get cal | operation may be restricted to a certain communication partner in case of one-to-many connections. This
restriction shall be denoted by using the f r omkeyword.

The (optional) assignment part of theget cal | operation comprises the assignment of i n and i nout parameter
values to variables and the retrieval of the address of the calling component. The keyword par amis used to retrieve the
parameter values of acall.

The keyword sender isused when it isrequired to retrieve the address of the sender (e.g. for addressingar epl y or
exception to the calling party in a one-to-many configuration).

Accepting any call

A get cal | operation with no argument list for the signature matching criteriawill remove the call on the top of the
incoming port queue (if any) if al other matching criteria are fulfilled.

Getcall on any port

Toget cal | onany port isdenoted by the any keyword.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Thegetcal | operation shall only be used on procedure-based ports and the signature of the procedure call to
be accepted shall be included in the list of allowed incoming procedures of the port type definition.

b) The signature argument of the get cal | operation shall not be used to passin variable namesfor i n and
i nout parameters.

ETSI

188 ETSI ES 201 873-1 V4.5.1 (2013-04)

¢) TheParameterldentifiers shall be from the corresponding signature definition.
d) Thevaueassignment part shall not be used with the getcall operation.

€) Parameters of calls accepted by accepting any call shall not be assigned to avariable, i.e. the param clause
shall not be present.

f) AddressRef for retrieving the sending entity shall be of type addr ess, conponent or of the type provided
in the address declaration of the port type of the port instance referenced inthe get cal | operation.

Examples

EXAMPLE 1. Basic getcal
MyPort . getcal | (M/Proc: MyProcTenpl ate(5, MyVar)); /1 accepts a call of MyProc at MyPort

MyPort.getcal | (MProc: {5, MyVar}) from MPeer; // accepts a call of MyProc at MyPort from MyPeer

EXAMPLE 2: Getcall with matching and assignments of parameter values to variables

M/Port.getcal | (MProc:{?, ?}) from MyPartner -> param (M/Par1Var, M/Par2Var);
/1 The in or inout paraneter values of M/Proc are assigned to MyPar1Var and MyPar2Var.

M/Port.getcal | (MProc: {5, MVar}) -> sender MySender Var;
/'l Accepts a call of MyProc at M/Port with the in or inout paraneters 5 and MyVar.
/1 The address of the calling party is retrieved and stored in MySender Var.

/1l The followi ng getcall exanples show the possibilities to use matching attributes
/1 and omit optional parts, which nay be of no inportance for the test specification.

MyPort.getcal | (M/Proc: {5, M/Var}) -> param MyVarl, MVar?2) sender M/Sender Var;
M/Port.getcal | (MProc: {5, ?}) -> paran{M/Varl, MVar2);

MyPort.getcal | (M/Proc:{?, MyVar}) -> param - , M/Var2);
/1 The value of the first inout parameter is not inmportant or not used

/1 The foll owi ng exanpl es shall explain the possibilities to assign in and inout paraneter
/1 values to variables. The followi ng signature is assunmed for the procedure to be call ed:

signature MyProc2(in integer A integer B, integer C, out integer D, inout integer E);
MyPort.getcal | (M/Proc2:{?, ?, 3, - , ?}) -> param (My/VarA, MVarB, - , -, M\VarE);

/'l The parameters A, B, and E are assigned to the variables MyVarA, MVarB, and

/1 MyVarE. The out paraneter D needs not to be considered.

MyPort.getcal | (M/Proc2:{?, ?, 3, -, ?}) -> param (MyVarA:= A, MyVarB:= B, M/VarE: = E);

/1 Alternative notation for the val ue assignment of in and inout parameter to variables. Note,
/1 the names in the assignnent list refer to the nanes used in the signature of MyProc2

MyPort.getcal | (M/Proc2:{1, 2, 3, -, *}) -> param (MyVarE: = E);
/1 Only the inout parameter value is needed for the further test case execution

EXAMPLE 3: Accepting any call
MyPort . getcall; /'l Renoves the top call from MyPort.
M/Port.getcall from M/Partner; // Renoves a call from MyPartner from port MPort

MyPort.getcall -> sender MySender Var; /!l Rermoves a call from MyPort and retrieves
/'l the address of the calling entity

EXAMPLE 4: Getcall on any port

any port.getcall (M/Proc:?)

22.3.3 The Reply operation
Ther epl y operation isused to reply to acall.

Syntactical Structure

Port "." reply "(" Tenpl atelnstance [value Expression] ")"

ETSI

189 ETSI ES 201 873-1 V4.5.1 (2013-04)

[to Address]
NOTE 1: Address may be an AddressRef, alist of AddressRef-sor "all component”.
Semantic Description
Ther epl y operation is used to reply to a previously accepted call according to the procedure signature.

NOTE 2: The relation between an accepted call and ar epl y operation cannot always be checked statically. For
testing it is allowed to specify ar epl y operation without an associated get cal | operation.

The value part of ther epl y operation consists of a signature reference with an associated actual parameter list and
(optional) return value. The signature may either be defined in the form of a signature template or it may be defined
in-line.

Responses to one or more cal | operations may be sent to one, several or all peer entities connected to the addressed
port. This can be specified in the same manner as described in clause 22.2.1. This means, the argument of thet o clause
of ar epl y operation isfor unicast responses the address of one receiving entity, for multicast responses a list of
addresses of a set of receivers and for broadcast responsestheal | conponent keywords.

In case of one-to-one connections, thet o clause may be omitted, because the receiving entity is uniquely identified by
the system structure.

A return value shall be explicitly stated with the val ue keyword.
Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a Areply operation shall only be used at a procedure-based port. The type definition of the port shall include
the name of the procedure to which ther epl y operation belongs.

b) Allout andi nout parameters of the signature shall have a specific valuei.e. the use of matching
mechanisms such as AnyValue is not allowed.

¢) At o clauseshal be present in case of one-to-many connections.

d) AddressRef shal be of typeaddr ess, conmponent or of the type provided in the address declaration of the
port type of the port instance referenced inther epl y operation.

e) If avalueisto bereturned to the calling party, this shall be explicitly stated using theval ue keyword.
f) Applying ar epl y operation to an unmapped or disconnected port shall cause atest case error.

Examples
M/Port.reply(MProc2:{ - ,5}); /! Replies to an accepted call of MProc2.
MyPort.reply(MyProc2:{ - ,5}) to MyPeer; // Replies to an accepted call of MyProc2 from MyPeer
M/Port.reply(MProc2:{ - ,5}) to (M/Peerl, MyPeer2); // Milticast reply to M/Peerl and MyPeer2

MyPort.reply(MyProc2:{ - ,5}) to all conponent; // Broadcast reply to all entities connected
/1 to MyPort

MyPort.repl y(M/Proc3: {5, MyVar} val ue 20); /'l Replies to an accepted call of M/Proc3.

ETSI

190 ETSI ES 201 873-1 V4.5.1 (2013-04)

22.3.4 The Getreply operation
Theget r epl y operation is used to handle replies from a previously called procedure.

Syntactical Structure

(Port | any port) "." getreply

["(" Tenplatelnstance [val ue Tenplatelnstance]")"]
[from Address]

[

"->" [value Variabl eRef]
[param”(" { (VariableRef ":=" Paraneterldentifier) "," } |
{ (VariableRef | "-") "," }

[sender " {/ar? abl eRef]]
NOTE: Address may be an AddressRef, alist of AddressRef-s or "any component”.
Semantic Description
Theget r epl y operation is used to handle replies from a previously called procedure.

Theget r epl y operation shall remove the top reply from the incoming port queue, if, and only if, the matching
criteriaassociated to the get r epl y operation are fulfilled. These matching criteria are related to the signature of the
procedure to be processed and the communication partner. The matching criteria for the signature may either be
specified in-line or be derived from a signature template.

Matching against a received return value can be specified by using theval ue keyword.

A get r epl y operation may be restricted to a certain communication partner in case of one-to-many connections. This
restriction shall be denoted by using the f r omkeyword.

The assignment of out and i nout parameter valuesto variables shall be made in the assignment part of the
get r epl y operation. This alows the use of signature templatesin get r epl y operations in the same manner as
templates are used for types.

The (optional) assignment part of theget r epl y operation comprises the assignment of out and i nout parameter
values to variables and the retrieval of the address of the sender of the reply. The keyword val ue is used to retrieve
return values and the keyword par amis used to retrieve the parameter values of areply. The keyword sender is used
when it isrequired to retrieve the address of the sender.

Get any reply

A get r epl y operation with no argument list for the signature matching criteria shall remove the reply message on the
top of the incoming port queue (if any) if al other matching criteria are fulfilled.

If GetAnyReply is used in the response and exception handling part of acal | operation, it shall only treat replies from
the procedure invoked by the cal | operation.

Get areply on any port

To get areply on any port, usetheany port keywords.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Agetreply operation shall only be used at a procedure-based port. The type definition of the port shall
include the name of the procedure to which the get r epl y operation belongs.

b) Thesignature argument of the get r epl y operation shall not be used to pass in variable names for out and
i nout parameters.

c) Parameters or return values of responses accepted by get any reply shall not be assigned to avariable, i.e. the
param and value clause shall not be present.

ETSI

191 ETSI ES 201 873-1 V4.5.1 (2013-04)

d) AddressRef for retrieving the sending entity shall be of type addr ess, conponent or of the type provided
in the address declaration of the port type of the port instance referenced in the get r epl y operation.

Examples

EXAMPLE 1: Basic getreply

M/Port. getreply(MProc: {5, ?} value 20); /1 Accepts a reply of M/Proc with two out or
/1 inout paraneters and a return value of 20

MyPort.getreply(MyProc2:{ - , 5}) from MPeer; // Accepts a reply of MyProc2 from MyPeer

EXAMPLE 2: Getreply with storing inout/out parameters and return values in variables

M/Port. getreply(MProcl: {?, ?} value ?) -> value M/RetVal ue paran{M/Par 1, MyPar 2);

/] The returned value is assigned to variable M/RetVal ue and the val ue

/1 of the two out or inout paraneters are assigned to the variables M/Parl and MyPar 2.
MyPort.getreply(M/Procl:{?, ?} value ?) -> value MyRetVal ue paran(- , M/Par2) sender M/Sender;
/1 The value of the first paranmeter is not considered for the further test execution and

/'l the address of the sender conponent is retrieved and stored in the variable M/Sender.

/1 The followi ng exanpl es describe some possibilities to assign out and inout paraneter val ues
/1 to variables. The following signature is assunmed for the procedure which has been called

signature MyProc2(in integer A integer B, integer C, out integer D, inout integer E);
MyPort. getrepl y(ATenpl ate) -> paran(- , - , - , M/VarQutl, M/Varlnoutl);

M/Port. getrepl y(ATenpl ate) -> paran{M/VarCQut 1: =D, MyVar Qut 2: =E) ;

MyPort.getreply(MyProc2:{ - , -, -, 3, ?}) -> paran(M/Varlnoutl: =E);
EXAMPLE 3: Get any reply

MyPort. getreply; /1l Rermoves the top reply from MyPort.

M/Port.getreply from MyPeer; /1 Renoves the top reply received from M/Peer from M/Port.

M/Port.getreply -> sender MySenderVar; // Renoves the top reply from M/Port and retrieves the
/] address of the sender entity

EXAMPLE 4: Get areply on any port

any port.getreply(Mproc:?)

22.3.5 The Raise operation
Exceptions are raised with ther ai se operation.

Syntactical Structure

Port "." raise "(" Signature "," Tenpl atel nstance ")"
[to Address]

NOTE 1. Address may be an AddressRef, alist of AddressRef-s or "all component”.
Semantic Description
Ther ai se operation is used to raise an exception.

NOTE 2: The relation between an accepted call and ar ai se operation cannot always be checked statically. For
testing it is allowed to specify ar ai se operation without an associated get cal | operation.

The value part of ther ai se operation consists of the signature reference followed by the exception value.

Exceptions are specified as types. Therefore the exception value may either be derived from atemplate or be the value
resulting from an expression (which of course can be an explicit value). The optional type field in the value
specification to ther ai se operation shall be used in cases where it is necessary to avoid any ambiguity of the type of
the value being sent.

ETSI

192 ETSI ES 201 873-1 V4.5.1 (2013-04)

Exceptionsto one or more cal | operations may be sent to one, several or al peer entities connected to the addressed
port. This can be specified in the same manner as described in clause 22.2.1. This means, the argument of thet o clause
of ar ai se operation isfor unicast exceptions the address of one receiving entity, for multicast exceptions alist of
addresses of a set of receivers and for broadcast exceptionstheal | conponent keywords.

In case of one-to-one connections, thet o clause may be omitted, because the receiving entity is uniquely identified by
the system structure.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Anexception shall only be raised at a procedure-based port. An exception is a reaction to an accepted
procedure call the result of which leads to an exceptional event.

b) Thetype of the exception shall be specified in the signature of the called procedure. The type definition of the
port shall includeinitslist of accepted procedure calls the name of the procedure to which the exception
belongs.

c¢) At o clauseshal bepresent in case of one-to-many connections.

d) AddressRef shal be of typeaddr ess, conponent or of the type provided in the address declaration of the
port type of the port instance referenced in ther ai se operation.

€) Applyingar ai se operation to an unmapped or disconnected port shall cause atest case error.

Examples
MyPort.raise(M/Signature, MyVariable + YourVariable - 2);
/] Raises an exception with a value which is the result of the arithnetic expression
/1 at MyPort
MyPort.raise(MProc, integer:5}); /'l Raises an exception with the integer value 5 for M/Proc
MyPort.raise(MySignature, "My string") to MyPartner;
/! Raises an exception with the value "My string" at MyPort for MSignature and
/1 send it to MyPartner
MyPort.raise(MySignature, "My string") to (M/PartnerOne, M/PartnerTwo);
/] Raises an exception with the value "My string" at MyPort and sends it to MyPartnerOne and
/1 MyPartnerTwo (i.e. multicast communication)
MyPort.raise(MSignature, "My string") to all conponent;

/] Raises an exception with the value "My string" at MyPort for MySignature and sends it
/1l to all entites connected to MyPort (i.e. broadcast comuni cation)

22.3.6 The Catch operation

The cat ch operation is used to catch exceptions.

Syntactical Structure

(Port | any port) "." catch

["(" (Signature "," Tenplatelnstance) | Ti meoutKeyword ")"]
[from Address]

["->" [value (Variabl eRef |

("(" { VariableRef [":=" FieldOrTypeReference 1[","] } ")")

)]
[sender Variabl eRef]]
NOTE: Address may be an AddressRef, alist of AddressRef-s or "any component”.
Semantic Description

The cat ch operation is used to catch exceptions raised by a test component or the SUT as a reaction to a procedure
call. Exceptions are specified as types and thus, can be treated like messages, e.g. templates can be used to distinguish
between different values of the same exception type.

ETSI

193 ETSI ES 201 873-1 V4.5.1 (2013-04)
The cat ch operation removes the top exception from the associated incoming port queue if, and only if, that top
exception satisfies all the matching criteria associated with the cat ch operation.

A cat ch operation may be restricted to a certain communication partner in case of one-to-many connections. This
restriction shall be denoted by using the f r omkeyword.

The (optional) redirection part of the cat ch operation comprises of storing the exception value and/or one or more
parts of it and the retrieval of the address of the calling component. The keyword val ue isused to retrieve the val ue of
an exception and/or the parts of it and the keyword sender isused when it is required to retrieve the address of the
sender.

The cat ch operation may be part of the response and exception handling part of acal | operation or be used to
determine an aternativeinan al t statement. If the cat ch operation is used in the accepting part of acal | operation,
the information about port name and signature reference to indicate the procedure that raised the exception is redundant,
because this information follows fromthe cal | operation. However, for readability reasons (e.g. in case of complex
cal | statements) thisinformation shall be repeated.

The Timeout exception

Thereisone specia t i neout exception that can be caught by the cat ch operation. Thet i neout exceptionisan
emergency exit for cases where a called procedure neither replies nor raises an exception within a predetermined time
(see clause 22.3.1).

Catch any exception

A cat ch operation with no argument list allows any valid exception to be caught. The most general case is without
using the f r omkeyword. CatchAnyException will also catchthet i meout exception.

Catch on any port

To cat ch an exception on any port use the any keyword.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Thecat ch operation shall only be used at procedure-based ports. The type of the caught exception shall be
specified in the signature of the procedure that raised the exception.

b) No binding of theincoming valuesto the terms of the expression or to the template shall occur. The
assignment of the exception values to variables shall be made in the assignment part of the cat ch operation.

c) Cachingti meout exceptionsshall be restricted to the exception handling part of acall. No further matching
criteria (including af r ompart) and no assignment part is allowed for acat ch operation that handles a
ti meout exception.

d) Exception values accepted by catch any exception shall not be assigned to avariable, i.e. the value clause shall
not be present.

€) |If CatchAnyException isused in the response and exception handling part of acal | operation, it shall only
treat exceptions raised by the procedure invoked by thecal | operation.

f) AddressRef for retrieving the sending entity shall be of type addr ess, conponent or of the type provided
in the address declaration of the port type of the port instance referenced in the cat ch operation.

Examples

EXAMPLE 1: Basic catch

MyPort . catch(M/Proc, integer: MyVar); /] Catches an integer exception of value

/'l MyVar raised by MyProc at port M/Port.
MyPort. catch(M/Proc, MVar); /1 I's an alternative to the previous exanple.
MyPort . cat ch(M/Proc, A<B); /] Catches a bool ean exception

ETSI

194 ETSI ES 201 873-1 V4.5.1 (2013-04)

M/Port . catch(M/Proc, MyType: {5, MVar}); // In-line tenplate definition of an exception val ue.

MyPort . catch(M/Proc, charstring:"Hello")from MyPeer; /] Catches "Hello" exception from MyPeer

EXAMPLE 2: Catch with storing value and/or sender in variables

MyPort . catch(M/Proc, MyType:?) from MyPartner -> value MyVar;
/] Catches an exception from M/Partner and assigns its value to MyVar.

M/Port. catch(M/Proc, MyTenpl ate(5)) -> value MyVar Two sender MyPeer;
/] Catches an exception, assigns its value to MyVarTwo and retrieves the
/] address of the sender.

MyPort . catch(M/Proc, MyTenpl ate(5)) -> value (M/VarThree:= f1)

sender MyPeer;
/] Catches an exception, assigns the value of its field f1 to MyVarThree and retrieves the
/] address of the sender.

EXAMPLE 3: The Timeout exception

MyPort.cal | (MyProc: {5, M/Var}, 20E-3) {
[T MyPort.getreply(MProc:{?, ?}) { }

[T MyPort.catch(tineout) { /] timeout exception after 20ns
setverdict(fail);
st op;
}

}

EXAMPLE 4: Catch any exception
MyPort . cat ch;
M/Port.catch from MyPart ner;

M/Port.catch -> sender MySender Var;

EXAMPLES5: Catch on any port

any port.catch;

22.4 The Check operation

The check operation allows reading the top element of a message-based or procedure-based incoming port queue.

Syntactical Structure

(Port | any port) "." check

[
(PortReceiveOp | PortGetCallOp | PortGetReplyOp | PortCatchCp) |

([fromAddress] ["->" sender VariableRef])

")l
NOTE 1: Address may be an AddressRef, alist of AddressRef-s or "any component".
Semantic Description

The check operation is ageneric operation that allows read access to the top element of message-based and
procedure-based incoming port queues without removing the top element from the queue. The check operation hasto
handle values of a certain type at message-based ports and to distinguish between calls to be accepted, exceptionsto be
caught and replies from previous calls at procedure-based ports.

Thereceiving operationsr ecei ve, get cal | , getr epl y and cat ch together with their matching and value, sender
or parameter storing parts, are used by the check operation to define the conditions that have to be checked and the
information to be optionally extracted.

ETSI

195 ETSI ES 201 873-1 V4.5.1 (2013-04)

It isthe top element of an incoming port queue that shall be checked (it is not possible to look into the queue). If the
gueue is empty the check operation fails. If the queue is not empty, a copy of the top element is taken and the
receiving operation specified in the check operation is performed on the copy. The check operation failsif the
receiving operation failsi.e. the matching criteriaare not fulfilled. In this case the copy of the top element of the queue
is discarded and test execution continues in the normal manner, i.e. the statement or alternative next to the check
operation is evaluated. The check operation is successful if the receiving operation is successful. In this case, the
value, sender or parameter storing parts of the receiving operation, if any, are executed, i.e. the message and/or a part of
it, the sender's address or component reference, the parameter(s) of the call or reply or the value of the exception are
stored in the associated variables.

If check isused as a stand-alone statement, it is considered to be a shorthand for an al t statement with thecheck
operation as the only alternative.

Check any operation

A check operation with no argument list allows checking whether something waits for processing in an incoming port
queue. The check any operation alows to distinguish between different senders (in case of one-to-many connections)
by using af r omclause and to retrieve the sender by using a shorthand assignment part with asender clause.

NOTE 2: Information related to the message-based input queue of a mixed port can be retrieved easily by using the
check operation in combination with ar ecei ve any operation, e.g.
MyPort . check(receive) -> sender Mysender.

Check on any port

Tocheck onany port, usetheany port keywords.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Usingthecheck operation in awrong manner, e.g. check for an exception at a message-based port shall
cause atest case error.

b) AddressRef for retrieving the sending entity shall be of type addr ess, conponent or of the type provided
in the address declaration of the port type of the port instance referenced in the check operation.

NOTE 3: In most cases the correct usage of the check operation can be checked statically, i.e. before/during
compilation.

Examples
EXAMPLE 1: Basic check

M/Port 1. check(receive(5)); [/ Checks for an integer nessage of val ue 5.

MyPort 1. check(recei ve(charstring:?) -> value M/CharVar);
/1 Checks for a charstring nessage and stores the nessage if the nessage type is charstring

MyPort 2. check(getcal | (MProc: {5, MyVar}) from M/Partner);
/1 Checks for a call of MyProc at port MyPort2 from MyPartnner

MyPort 2. check(getrepl y(MProc: {5, MyVar} value 20));

/1 Checks for a reply fromprocedure M/Proc at MyPort2 where the returned value is 20 and
// the values of the two out or inout paraneters are 5 and the value of MVar.

MyPor t 2. check(cat ch(M/Proc, MyTenpl ate(5, MVar)));

MyPort 2. check(getrepl y(MProcl: {?, MyVar} value *) -> value M/ReturnVal ue paran{MParl,-));
MyPort. check(getcal | (MProc: {5, MVar}) from MyPartner -> param (M/Par1Var, MPar2Var));

MyPort. check(getcal | (MProc: {5, MyVar}) -> sender MySender Var);

ETSI

196 ETSI ES 201 873-1 V4.5.1 (2013-04)

EXAMPLE 2: Check any operation
MyPort . check;
MyPort . check(from MyPart ner);

MyPort . check(-> sender MySender Var);

EXAMPLE 3: Check on any port

any port.check;

22.5 Controlling communication ports

TTCN-3 operations for controlling message-based and procedure-based ports are presented in table 24.

Table 24: Overview of TTCN-3 port operations

Port operations
Statement Associated keyword or symbol
Clear port clear
Start port start
Stop port stop
Halt port halt
Check the state of a port checkstate

22.5.1 The Clear port operation
Thecl ear port operation emptiesincoming port queues.

Syntactical Structure

(Port | (all port)) "." clear
Semantic Description

Thecl ear operation removes the contents of the incoming queue of the specified port or of all ports of the test
component performing the cl ear operation.

If aport queue is already empty then this operation shall have no action on that port.
Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

Examples

MyPort . cl ear; /'l clears port MyPort

22.5.2 The Start port operation
Thest art operation enables sending and receiving operations on the port(s).

Syntactical Structure

(Port | (all port)) "." start
Semantic Description

If aport is defined as allowing receiving operationssuch asr ecei ve, get cal | etc., thest art operation clearsthe
incoming queue of the named port and starts listening for traffic over the port. If the port is defined to allow sending
operations then the operations such assend, cal | , r ai se etc., are also allowed to be performed at that port.

ETSI

197 ETSI ES 201 873-1 V4.5.1 (2013-04)

By default, al ports of acomponent shall be started implicitly when a component is created. The start port operation
will cause unstopped ports to be restarted by removing all messages waiting in the incoming queue.

Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

Examples

M/Port.start; /] starts MyPort

22.5.3 The Stop port operation
The st op operation disables sending and disallow receiving operations to match at the port(s).

Syntactical Structure

(Port | (all port)) "." stop
Semantic Description

If aport is defined as allowing receiving operationssuch asr ecei ve and get cal | , thest op operation causes
listening at the named port to cease. If the port is defined to allow sending operations then st op port disallows the
operationssuch assend, cal | , r ai se etc., to be performed.

To cease listening at the port meansthat all receiving operations defined before the stop operation shall be completely
performed before the working of the port is suspended.

Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 givenin clause 5.

Examples

M/Port.receive (M/Tenpl atel) -> val ue RecPDU,
/1 the received value is decoded, matched agai nst
/'l MyTenpl atel and the natching value is stored
/1 in the variable RecPDU
MyPort. st op; /1 No receiving operation defined followi ng the stop
/] operation is executed (unless the port is restarted
/1 by a subsequent start operation)
M/Port.receive (M/Tenpl ate2); /1 This operation does not natch and will block (assuning
/1 that no default is activated)

22.5.4 The Halt port operation

Thehal t operationis comparableto the st op operation, but allows entries being aready in the queue to be processed
with receiving operations.

Syntactical Structure

(Port | (all port)) "." halt
Semantic Description

If aport allows receiving operationssuch asr ecei ve, tri gger andget cal | ,thehal t operation disallows
receiving operations to succeed for messages and procedure call elements that enter the port queue after performing the
hal t operation at that port. Messages and procedure call elements that were already in the queue before the hal t
operation can still be processed with receiving operations. If the port allows sending operations then hal t port
immediately disallows sending operations such assend, cal | , r ai se etc. to be performed. Subsequent halt
operations have no effect on the state of the port or its queue.

NOTE 1. Theport hal t operation virtually puts a marker after the last entry in the queue received when the
operation is performed. Entries ahead of the marker can be processed normally. After al entriesin the
queue ahead of the marker have been processed, the state of the port is equivalent to the stopped state.

ETSI

198 ETSI ES 201 873-1 V4.5.1 (2013-04)

NOTE 2: If aport st op operation is performed on a halted port before al entries in the queue ahead of the marker
have been processed, further receive operations are disallowed immediately (i.e. the marker isvirtually
moved to the top of the queue).

NOTE 3: A portst art operation on ahalted port clears al entriesin the queue irrespectively if they arrived
before or after performing the port hal t operation. It aso removes the marker.

NOTE 4: A port cl ear operation on ahalted port clears all entriesin the queue irrespectively if they arrived
before or after performing the port hal t operation. It also virtually puts the marker at the top of the
queue.

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

Examples
M/Port . hal t; /1 No sending allowed on Myport fromthis nonent on;
/] processing of nmessages in the queue still possible.
M/Port.receive (MyTenpl atel); /1 1f a nessage was already in the queue before the halt

/] operation and it natches MyTenplatel, it is processed;
/'l otherw se the receive operation bl ocks.

22.5.5 The Checkstate port operation
Thecheckst at e port operation allows to check the state of a port.
Syntactical Structure
(Port | (all port) | (any port)) "." checkstate "(" SingleExpression ")"
Semantic Description

Thecheckst at e port operation allows to examine the state of a port. If aport isin the state specified by the
parameter, the checkst at e operation returns the Boolean valuet r ue. If the port is not in the specified state, the
checkst at e operation returns the Boolean value f al se. Calling the checkst at e operation with an invalid
argument leads to an error.

The checkstate operation alows to check for different dimensions of a port state. It allows to check if aport is Started,
Halted or Stopped, but also if a port is Connected, Mapped or Linked (i.e. Connected or Mapped).

NOTE 1. The states Started, Halted and Stopped refer to the port states defined in the clauses F.3.1 and F.3.2. The
states Connected, Mapped and Linked are related to the application of the connection operations
connect, di sconnect, map and unnmap asdefined in clause 21.1.

Thecheckst at e port operation can beused withal | port andany port.Usingthecheckst at e operation
withany port alowsto testif at least one port of atest component isin the specified state. Using the checkst at e
operationwithal | port alowsto check if al ports of acomponent are in the specified state.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Theparameter of thecheckst at e operation shall be of type char st ri ng and shall have one of the
following values:

a "Started”

b) "Halted"

c) "Stopped"
d) "Connected"
® "Mapped

ETSI

199 ETSI ES 201 873-1 V4.5.1 (2013-04)

f) “Linked"

NOTE 2: Clause E.2.2.4 includes the type definition obj St at e and the constant definitions STARTED, HAL TED,
STOPPED, CONNECTED, MAPPED, and L1 NKED. It is recommended to usethecheckst at e operation
in combination with this type and these constants to ease the checking of correct usage and to improve the
readability of test specs.

b) Cadlingthecheckst at e operation withachar st ri ng parameter not listed in a) shall lead to an error.

Examples
type conponent MyMICType // Conponent type definition for an MIC

port MyPortType PCOL, PCO2
}

type conponent MyTest Systemi nterface // Conponent type definition for a test systeminterface
port MyPort Type PC33, PCO4, PCOb;
/1 Test case definition
testcase MyTestcasel () runs on MyMICType system MyTest Systeni nterface {
var bool ean nyPort St ate;
myPortState := all port.checkstate("Started"); // checkstate returns true, because all
/] ports of a conponent are started after

/] conponent creation and start

myPort State := any port.checkstate("Linked"); /1 checkstate returns false, no port is
/] either connected nor mapped

map(ntc: PCOL, system PCO3);

myPort State : = PCOL. checkst at e("Li nked") ; /'l checkstate returns true, PCOL is mapped
myPort State : = PCOL. checkst at e(" Mapped") ; /'l checkstate returns true, PCOL is napped
myPort State : = PCOL. checkst at e(" Connected") ; /'l checkstate returns false, PCOL is mapped

/1 and not connected
nmyPort State := any port.checkstate("Mpped"); /'l checkstate returns true, PCOL is nmapped
all port.stop;

myPortState := all port.checkstate("Started"); // checkstate returns false, all ports
/] are stopped

myPort State : = PCOL. checkst at e(" St opped") ; Il checkstate returns true, PCOL is stopped

/1 further testcase behavi our
/1

22.6 Use of any and all with ports

The keywordsany and al | may be used with configuration and communication operations as indicated in table 25.

Table 25: Any and All with ports

Operation Allowed Example
any all
receive, trigger, getcall, getreply, catch, check) |yes any port.receive
connect / map
di sconnect / unmap yes unmap(self : all port)
start, stop, clear, halt yes all port.start
checkstate yes yes any port.checkstate("Started")
al | port.checkstate("Connected")

ETSI

200 ETSI ES 201 873-1 V4.5.1 (2013-04)

NOTE: Portsare owned by test components and instantiated when a component is created. The keywords any
port andal I port addressall ports owned by atest component and not only the ports known in the
scope of the function or altstep that is executed on the component.

23 Timer operations

TTCN-3 supports a number of timer operations as given in table 26. These operations may be used in test cases,
functions, altsteps and module control.

Table 26: Overview of TTCN-3 timer operations

Timer operations
Statement Associated keyword or symbol
Start timer start
Stop timer stop
Read elapsed time read
Check if timer running running
Timeout event timeout

23.1 The timer mechanism

It isassumed that each test component and the module control maintain their own running-timers list and timeout-list,
i.e. alist of al timersthat are actually running and alist of all timersthat have timed out. The timeout-lists are part of
the snapshots that are taken when atest case is executed. The running-timerslist and timeout-list of a component or
module control are updated if atimer of the component or module control is started, is stopped, times out or the
component or module control executesat i meout operation.

NOTE 1: The running-timers list and the timeout-list are only a conceptual lists and do not restrict the
implementation of timers. Other data structures like a set, where the access to timeout eventsis not
restricted by, e.g. the order in which the timeout events have happened, may also be used.

NOTE 2: Conceptually, each test component and module control maintain one running-timers list and one timeout-
list only. However, within a given scope unit only timers known in the scope unit can be accessed
individualy, i.e. timersthat are declared in the scope unit, passed in as parameters to the scope unit or
known viaaruns-on clause. In some special cases (e.g. for re-establishing a test component during atest
run), it can be necessary to stop timerslocal to other scope units or to check if timerslocal to other scope
units are running or have aready timed out. This can be done by using the keywordsal | and any in
combination with the timer operations st op, t i meout andr unni ng. Allowed combinations are
defined in clause 23.7.

When atimer expires, the timer becomesimmediately inactive. A timeout event is placed in the timeout-list and the
timer is removed from the running-timer list of the test component or module control for which the timer has been
declared. Only one entry for any particular timer may appear in the timeout-list and running-timer list of the test
component or module control for which the timer has been declared.

All running timers shall automatically be cancelled when atest component is explicitly or implicitly stopped.

23.2 The Start timer operation
Thest art timer operation is used to indicate that atimer shall start running.

Syntactical Structure

((Timerldentifier | TimerParldentifier) { "[" SingleExpression "]" })
" start ["(" TimerValue ")"]

ETSI

201 ETSI ES 201 873-1 V4.5.1 (2013-04)

Semantic Description
When atimer is started, its name is added to the list of running timers (for the given scope unit).

The optional timer value parameter shall be used if no default duration is given, or if it is desired to override the default
value specified in the timer declaration. When atimer duration is overridden, the new value applies only to the current
instance of the timer, any later st art operations for this timer, which do not specify a duration, shall use the default
duration.

Starting atimer with the timer value 0.0 means that the timer times out immediately. Starting a timer with a negative
timer value, e.g. the timer valueis the result of an expression, or without a specified timer value shall cause aruntime
error.

The timer clock runs from the float value zero (0.0) up to maximum stated by the duration parameter.

Thest art operation may be applied to arunning timer, in which case the timer is stopped and re-started. Any entry in
atimeout-list for thistimer shall be removed from the timeout-list.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Timer value shall be anon-negative numerical f | oat number (i.e. the value shall be greater or equal 0.0,
infinity and not_a_number are disallowed).

Examples

M/Tinerl.start; /'l MyTinmerl is started with the default duration
M/Tiner2.start(20E-3); // MTiner2 is started with a duration of 20 ns

// Elenments of tiner arrays nay also be started in a |oop, for exanple
timer t_Mytiner [5];
var float v_tinerValues [5];

for (var integer i := 0; i<=4; i:=i+1)
{ v_tinerValues [i] := 1.0}
for (var integer i := 0; i<=4; i:=i+1)

{t_Mytiner [i].start (v_tinerValues [i])}

23.3 The Stop timer operation
The st op operation is used to stop a running timer.

Syntactical Structure

(((Timerldentifier | TimerParldentifier) { "[" SingleExpression "]" }) |
all timer)
' stop

Semantic Description

A st op operation removes a running timer from the list of running timers. A stopped timer becomes inactive and its
elapsed time is set to the float value zero (0.0).

Stopping an inactive timer is a valid operation, although it does not have any effect. Stopping an expired timer causes
the entry for this timer in the timeout-list to be removed.

Theal | keyword may be used to stop all timers that have been started on a component or module control.
Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

ETSI

202 ETSI ES 201 873-1 V4.5.1 (2013-04)

Examples
M/Ti ner 1. st op; /] stops MyTinerl
all timer.stop; /1 stops all running tiners

23.4 The Read timer operation

Ther ead operation is used to retrieve the time that has elapsed since the specified timer was started.

Syntactical Structure

((Timerldentifier | TimerParldentifier) { "[" SingleExpression "]" })
"." read

Semantic Description

Ther ead operation returns the time that has elapsed since the specified timer was started. The returned value shall be
of typef | oat .

Applying the r ead operation on an inactive timer, i.e. on atimer not listed on the running-timer list, will return the
float value zero (0.0).

Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

Examples

var float Myvar;
MyVar := MyTinerl.read; // assign to MyVar the tine that has el apsed since MyTinerl was started

23.5 The Running timer operation
Ther unni ng timer operation is used to check whether atimer isin the running-timer list.

Syntactical Structure

(((Timerldentifier | TimerParldentifier) { "[" SingleExpression "]" }) |
any tinmer)
" runni ng
Semantic Description

Ther unni ng timer operation is used to check whether a specific timer visible in the given scope unit islisted on the
running-timer list or not (i.e. that it has been started and has neither timed out nor been stopped). The operation returns
thevaluet r ue if thetimer islisted onthelist, f al se otherwise.

The any keyword may be used to check if any timer started on a component or module control is running.
Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

Examples

EXAMPLE 1: Checking if a specific timer isrunning

if (MTinmerl.running) { ...}

EXAMPLE 2: Checking if an arbitrary timer isrunning

if (any tinmer.running) { ...}

ETSI

203 ETSI ES 201 873-1 V4.5.1 (2013-04)

23.6 The Timeout operation

Thet i neout operation alows to check the expiration of timers.

Syntactical Structure

(((Timerldentifier | TinmerParldentifier) { "[" SingleExpression "]" }) |
any timer)
' tineout

Semantic Description

Theti meout operation allows to check the expiration of a specific timer in the scope unit of atest component or
module control in which the timeout operation has been called or of any timer that has been started on a test component
or module control before entering the scopein which thet i meout operation has been called.

When at i meout operationis processed, if atimer name isindicated, the timeout-list is searched according to the
TTCN-3 scope rules. If there isatimeout event matching the timer name, that event is removed from the timeout-list,
and thet i meout operation succeeds.

Thet i meout can beused to determine an aternativein an al t statement or as stand-alone statement in a behaviour
description. Inthe latter caseat i neout operation is considered to be shorthand for anal t statement with the
ti meout operation asthe only alternative.

Theany keyword used with thet i meout operation succeeds if the timeout-list is not empty.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a Theti meout shal not beusedinabool ean expression.

Examples

EXAMPLE 1. Timeout of a specific timer

M/Ti ner 1. ti neout ; /'l checks for the tineout of the previously started tiner M/Tinerl

EXAMPLE 2: Timeout of an arbitrary timer

any timer.timeout; // checks for the tinmeout of any previously started tiner

23.7 Summary of use of any and all with timers

The keywordsany and al | may be used with timer operations as indicated in table 27.

Table 27: Any and All with Timers

Operation Allowed Example
any all
start
stop yes all timer.stop
read
running yes if (any timer.running) {...}
timeout yes any timer.timeout

ETSI

204 ETSI ES 201 873-1 V4.5.1 (2013-04)

24 Test verdict operations

Verdict operations given in table 28 allow to set and retrieve verdicts. These operations shall only be used in test cases,
altsteps and functions.

Table 28: Overview of TTCN-3 test verdict operations

Test verdict operations
Statement Associated keyword or symbol
Set local verdict setverdict
Get local verdict getverdict

24.1 The Verdict mechanism

Each test component of the active configuration shall maintain its own local verdict. The local verdict is an object
which is created for each test component at the time of its creation. It is used to track the individual verdict in each test
component (i.e. inthe MTC and in each and every PTC).

Additionally, there is aglobal test case verdict instantiated and handled by the test system that is updated when each test
component (i.e. the MTC and each and every PTC) terminates execution (see figure 14). This verdict is not accessible
totheget ver di ct andset ver di ct operations. The value of this verdict shall be returned by the test case when it
terminates execution. If the returned verdict is not explicitly saved in the control part (e.g. assigned to avariable) then it
islost.

Verdict returned y :
by the test case
when it terminates
MIC PTCL [y PTGh [y

Figure 14: lllustration of the relationship between verdicts

NOTE 1: TTCN-3 does not specify the actual mechanisms that perform the updating of the local and test case
verdicts. These mechanisms are implementation dependent.

The verdict can have five different values: pass, fai | ,i nconc, none ander r or, i.e. the distinguished val ues of
theverdi ctt ype (seeclause6.1).

NOTE 2: i nconc means an inconclusive verdict.
When atest component isinstantiated, itslocal verdict object is created and set to the value none.

When changing the value of the local verdict (i.e. using the set ver di ct operation) the effect of this change shall
follow the overwriting ruleslisted in table 29. The test case verdict isimplicitly updated on the termination of atest
component. The effect of thisimplicit operation shall also follow the overwriting rules listed in table 29.

Table 29: Overwriting rules for the verdict

Current value of New verdict assignment value
Verdict pass inconc fail none
None pass inconc fail none
Pass pass inconc fail pass
Inconc inconc inconc fail inconc
Fail fail fail fail fail

ETSI

205 ETSI ES 201 873-1 V4.5.1 (2013-04)

Theerror verdict isspecia inthat it is set by the test system to indicate that atest case (i.e. run-time) error has
occurred. It shall not be set by theset ver di ct operation and will not be returned by the getverdict operation. No
other verdict value can override an er r or verdict. This meansthat an er r or verdict can only be aresult of an
execut e test case operation.

Together with the local test verdict, each test component shall also maintain animplicit char st ri ng variable to store
information about the reasons for assigning the verdict. Theimplicit char st ri ng variable shall have no effect on the
overwriting rules and on the calculation of the final test case verdict. On the termination of the test component, the local
verdict of the test component shall be logged together with the implicit char st ri ng variable. The implicit

char st ri ng variable cannot be retrieved and read by any TTCN-3 function, it only provides additional information
for logging.

24.2 The Setverdict operation
Thelocal verdict isset withtheset ver di ct operation.

Syntactical Structure
setverdict "(" SingleExpression { "," (FreeText | Tenplatelnstance) } ")"
Semantic Description

The value of the local verdict is changed with theset ver di ct operation. The effect of this change shall follow the
overwriting ruleslisted in table 29.

The optional parameters alow to provide information that explain the reasons for assigning the verdict. This
information is composed to a string and stored in animplicit char st r i ng variable. On termination of the test
component, the actual local verdict islogged together with the implicit char st ri ng variable. Since the optional
parameters can be seen as log information, the same rules and restrictions as for the parameters of the log statement
(clause 19.11) apply.

Asthe result of the setverdict operation, theimplicit char st ri ng variable is overwritten whenever the local verdict
of atest component is overwritten. A set ver di ct operation with averdict only that overwrites the current local
verdict, will aso clear theimplicit char st ri ng variable. This means previously stored information gets lost.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Thesetverdi ct operation shall only be used with the valuespass, f ai | ,i nconc and none. It shall not
be used to assign the value err or, thisis set by the test system only to indicate run-time errors.

b) SngleExpression shall resolve to avalue of type verdict.

¢) For FreeText and Templatel nstance, the same rules and restrictions apply as for the parameters of thel og
statement. Table 17 lists al language elements that can be used in a setverdict operation.

Examples
EXAMPLE 1:
setverdi ct (pass); // the local verdict is set to pass
éetverdict(fail); /] until this line is executed, which will result in the value
/1 of the local verdict being overwitten to fail
/1 When the ptc terminates the test case verdict is set to fail
EXAMPLE 2:

var integer nyVar:= 1,

MyPort.receive(integer: MVar); [/ Matches an integer value with the value of MyVar
// at port MyPort

setverdict(pass, "Value received: ", nyVar); // Provided the actual test conmponent verdict is
/1 none: local verdict is set to pass, the inplicit
/Il charstring variable is set to "Value received: 5"

ETSI

206 ETSI ES 201 873-1 V4.5.1 (2013-04)

st op; /'l The test conponent terminates. The local test verdict and
[l inplicit charstring variable are | ogged

24.3 The Getverdict operation
The value of the local verdict may be retrieved using the get ver di ct operation.

Syntactical Structure

getverdi ct
Semantic Description
Theget verdi ct operation returns the actual value of the local verdict.
Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

Examples

M/Result := getverdict; // Were M/Result is a variable of type verdicttype

25 External actions

In some testing situations some interface(s) to the SUT may be missing or unknown a priori (e.g. management
interface) but it may be necessary that the SUT is stimulated to carry out certain actions (e.g. send a message to the test
system). Also certain actions may be required from the test executing personnel (e.g. to change the environmental
conditions of testing like the temperature, voltage of the power feeding, etc.).

The required action may be described as a string expression, i.e. the use of litera strings, string typed variables and
parameters, etc. and any concatenation thereof are allowed.

Syntactical Structure

action "(" { (FreeText | Expression) ["&'] } ")"
Semantic Description
External actions can be used in test cases, functions, atsteps and module control.

Thereis no specification of what is done to or by the SUT to trigger this action, only an informal description of the
required action itself.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Expression shall have the base type charstring or universal charstring.

Examples
var charstring nyString:=" now."

action("Send MyTenpl ate on | ower PCO'" & nyString); // Informal description of the
/] external action

ETSI

207 ETSI ES 201 873-1 V4.5.1 (2013-04)

26 Module control

Test cases are defined in the module definitions part while the module control part manages their execution. The
statements and operations that can be used in the module control are summarized in table 30.

Table 30: Overview of TTCN-3 statements and operations in module control

Statement Associated keyword or symbol
Assignments =
If-else if (..){.}else{..}
Select case select case (...) { case (...){...}
caseelse {...}}
For loop for (..){...}
While loop while (...) {...}
Do while loop do {...} while (...)
Label and Goto label / goto
Stop execution stop
Leaving a loop, alt or interleave break
Next iteration of a loop continue
Logging log
Alternative behaviour (see note) alt {...}
Re-evaluation of alternative behaviour |repeat
(see note)
Interleaved behaviour (see note) interleave {...}
Activate a default (see note) activate
Deactivate a default (see note) deactivate
Start timer start
Stop timer stop
Read elapsed time read
Check if timer running running
Timeout event timeout
Stimulate an (SUT) action externally action
Execute test case execute
NOTE: Can be used to control timer operations only.

26.1 The Execute statement

Test cases are executed with an execut e statement in the module control.

Syntactical Structure
execute "(" TestcaseRef "(" [{ ActualPar [","] }] "™)" ["," TimerValue ["," Hostld]] ")"
Semantic Description

In the module control part the execut e statement is used to start test cases (see clause 27.1). The result of an executed
test caseisawaysavaue of typever di ct t ype. Every test case shall contain one and only one MTC the type of
which isreferenced in the header of the test case definition. The behaviour defined in the test case body is the behaviour
of the MTC.

When atest case isinvoked the MTC is created, the ports of the MTC and the test system interface are instantiated and
the behaviour specified in the test case definition is started on the MTC. All these actions shall be performed implicitly
i.e. without explicit cr eat e and st ar t operations.

Test case start

A test caseis called using an execut e statement. Asthe result of the execution of atest case, atest case verdict of
either none, pass, i nconc,fail orerror shal bereturned and may be assigned to a variable for further
processing.

Optionaly, the execut e statement allows supervision of atest case by means of atimer duration.

ETSI

208 ETSI ES 201 873-1 V4.5.1 (2013-04)

Also optionally, the execute statement allows deployment of the MTC to a specific host before starting the execution.
The host isidentified by means of ahost id.

Test case parameterization and configuration

All variables (if any) defined in the control part of a module shall be passed into the test case by parameterization if
they are to be used in the behaviour definition of that test case, i.e. TTCN-3 does not support global variables of any
kind.

At the start of each test case, the test configuration shall be reset. This meansthat all components and ports conducted
by cr eat e, connect , etc. operationsin a previous test case were destroyed when that test case was stopped (hence
arenot "visible" to the new test case).

Test case ter mination

A test case terminates with the termination of the MTC. On termination of the MTC (explicitly or implicitly), all
running parallel test components shall be removed by the test system.

NOTE 1: The concrete mechanism for stopping al PTCsistool specific and therefore outside the scope of the
present document.

The final verdict of atest case is calculated based on the final local verdicts of the different test components according
to the rules defined in clause 24.1. The actual local verdict of atest component becomesitsfinal local verdict when the
test component terminates itself or is stopped by itself, another test component or by the test system.

NOTE 2: To avoid race conditions for the calculation of test verdicts due to the delayed stopping of PTCs, the
MTC should ensure that all PTCs have stopped (by means of the done or ki | | ed statement) before it
stopsitself.

Test casetimer

Timer may be used to supervise the execution of atest case. This may be done using an explicit timeout in the
execut e statement. If the test case does not end within this duration, the result of the test case execution shall be an
error verdict and the test system shall terminate the test case. The timer used for test case supervision is a system timer
and need not be declared or started.

Host id

A host id can be used to give a specific deployment location to the test system where the MTC shall be started and
execute its behaviour. If ahost id is provided, the execute statement shall end with atest case error if the MTC cannot
be deployed on the specified host.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) The TimerValue shall resolve to a non-negative numerical float value (i.e. the value shall be greater or
equal 0.0, infinity and not_a number are disallowed).

b) When the corresponding formal parameter is not of template type Templatel nstance shall resolve to an
Expression.

c) The execute statement shall not be called from within an existing executing testcase or function chain called
from atest case, i.e. test cases can only be executed from the control part or from functions directly called
from the control part.

d) TheHostld parameter shall resolve to achar string value.
Examples

EXAMPLE 1. Test case execution without keeping the test case verdict
execut e(MyTest Casel()); /] executes MyTestCasel, without storing the

/'l returned test verdict and w thout tine
/] supervision

ETSI

209 ETSI ES 201 873-1 V4.5.1 (2013-04)

EXAMPLE 2: Test case execution with keeping the test case verdict

My/Ver dict := execute(MTest Case2()); /] executes MyTestCase2 and stores the resulting
/1 verdict in variable My/Verdict

EXAMPLE 3: Test casetimer

MyVer di ct : = execute(MTest Case3(), 5E-3); /] executes MyTestCase3 and stores the resulting
/1 verdict in variable M/Verdict. If the test case
/] does not terminate within 5ns, MyVerdict will
/1 get the value 'error'

M/ReturnVal := execute (M/TestCase(), 7E-3);

/1 \Where the return verdict will be error if MyTestCase does not conpl ete execution
/1 within 7ns

EXAMPLE 4. Hostid

My Verdict := execute(MTestCase3(), -, "Host1l");
/] executes MyTestCase3 with unlinited tine
/1 with MIC depl oyed to 'Host1'

26.2 The Control part

The control part defines, in which order, sequence, loop, under which preconditions, and with which parameters test
cases are to be executed.

Syntactical Structure

control "{"
{ (ConstDef |
Tenpl at eDef |

Var | nst ance |

Ti mer | nstance |

Ti mer St atenents |
Basi cStatenents |
Behavi our St at enent s |
SUTSt at emrent s |

g stop) [":"])
[WthStatenment] [";"]

Semantic Description
Sequence of test cases

Program statements specify such things like the order in which test cases are to be executed or the number of times a
test case should run.

If no programming statements are used then, by default, the test cases are executed in the sequential order in which they
appear in the module control.

NOTE: Thisdoes not preclude the possibility that certain tools may wish to override this default ordering to allow
auser or tool to select a different execution order.

Timer operations may also be used explicitly to control test case execution.
Selection/deselection of test cases
The selection and desel ection of test cases can also be used to control the execution of test cases.

There are different waysin TTCN-3 to select and deselect test cases. For example, boolean expressions may be used to
select and deselect which test cases are to be executed. Thisincludes, of course, the use of functions that return a
bool ean vaue.

Another way to execute test cases as a group is to collect them in a function and execute that function from the module
control.

ETSI

210 ETSI ES 201 873-1 V4.5.1 (2013-04)

Asatest case returns asingle value of typever di ct t ype, itisaso possible to control the order of test case

execution depending on the outcome of atest case. The use of the TTCN-3 verdicttype is another way to select test
Cases.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Configuration statements such as connect and map (with the exception of stop execution, which is allowed),
communication statements such as send and receive and verdict statements such as setverdict shall not be used
in the control part.

b) Statementsfor aternative behaviours shall only be used to control timer behaviours.
¢) Theredtrictions on the use of statementsin the control part are givenin table 15.
Examples

EXAMPLE 1. Test case execution in aloop
modul e MyTestSuite () {
control {

/!l Do this test 10 tines

count : =0;

whil e (count < 10)

{ execute (M/Si npl eTest Casel());
count := count+1;

}

}
EXAMPLE 2: Test case execution controlled by atimer and a counter

/'l Exanple of the use of the running tiner operation
while (T1l.running or x<10) // Wiere Tl is a previously started tiner
{ execut e(MyTest Case());
X 1= X+1;
}

/'l Exanple of the use of the start and tineout operations
timer T1 := 1.0;

execut e(MyTest Casel());

Tl.start;

T1.timeout; // Pause before executing the next test case
execut e(MyTest Case2());

EXAMPLE 3: Selection/deselection of test cases with Boolean expressions
nodul e MyTestSuite () {
cbnt rol {

if (MySel ectionExpressionl()) {
execut e(MySi npl eTest Casel());
execut e(MySi npl eTest Case?2()
execut e(M/Si npl eTest Case3()

}

if (MySel ectionExpression2())
execut e(MySi npl eTest Cased
execut e(MySi npl eTest Case5
execut e(MySi npl eTest Case6

—~—~—

ETSI

211 ETSI ES 201 873-1 V4.5.1 (2013-04)

EXAMPLE 4. Selection/desel ection of test cases with functions

functi on MyTest CaseG oupl()

{ execut e(MySi npl eTest Casel());
execut e(MySi npl eTest Case2());
execut e(MySi npl eTest Case3());

}

functi on MyTest CaseG oup2()

{ execut e(MySi npl eTest Case4());
execut e(MySi npl eTest Case5());
execut e(MySi npl eTest Case6());

} .

cbntrol
{ if (MySel ectionExpressionl()) { MyTestCaseG oupl(); }
if (MySel ectionExpression2()) { MyTest CaseG oup2(); }

}
EXAMPLES: Selection/deselection of test cases based on test case verdicts
if (execute (M/Si npl eTestCase()) == pass)
{ execute (MyGoOnTest Case()) }

el se
{ execute (MErrorRecoveryTestCase()) };

27 Specifying attributes

TTCN-3 uses attributes to give special characterization/meaning to language elements such as specific presentation
format, specific encoding and encoding variants, and user-defined properties.

27.1 The Attribute mechanism

Attributes can be associated with TTCN-3 language elements by means of the with statement. The with statement can
be applied to modules, global module definitions and to local definitionsin control, test cases, functions, altsteps,
statement blocks, and in component type definitions.

27.1.1 Scope of attributes

A wi t h statement may associate attributes to a single language element or to elements or fields of structured types (in a
recursive way) or to members of component or port types, the same way as specified in clauses 6.2.1.1 and 6.2.3.2. It is
also possible to associate attributes to a number of language elements by, e.g. listing fields of a structured typein an
attribute statement associated with a single type definition or associating awi t h statement to the surrounding scope
unit or gr oup of language elements. A wi t h statement can follow any module, any global definition inside module
and group declarations as well as any local definition in component types and statement blocks inside behaviour
definitions or the control part.

EXAMPLE 1. // attributes for single language elements and groups

/1 MyPDUL will be displayed as PDU
type record MPDUL { ...} with { display "PDU"'}

/1 MyPDU2 will be displayed as PDU with the application specific extension attribute M/Rul e
type record WPDW2 { ...}
w th
di splay "PDU';
extensi on "M/Rul e"
}
/1 The followi ng group definition ...
group MyPDUs {
type record WPDU3 { ...}
type record WPDW { ...}
}
with {display "PDU'} /1 Al types of group MyPDUs wi || be displayed as PDU

/1 is identical to

ETSI

212 ETSI ES 201 873-1 V4.5.1 (2013-04)

group MyPDUs {
type record WPDU3 { ...} with { display "PDU"'}
type record WPDW { ...} with { display "PDU"'}
}

EXAMPLE 2: [/ attributes for fields and elements

type record MyRec {
integer fieldl,
record {
i nteger eFieldl,
bool ean eFi el d2
} field2

}
with { display (field2.eFieldl) "colour blue" }
/1 the enbedded field eFieldl is displayed blue

type record of integer M/RecOf I nt eger
with { display ([-]) "colour green"
/1 all integer elenments are displayed green

type record of integer M/RecOf I nt eger 2
with { display ([-]) "colour red" }
/'l integer elenents are displayed red

const MyRecOf I nteger ¢c_MRecordO'Int := {0, 1, 2, 3}
with { display ([0]) "col our blue" }
/1 the first element is displayed blue, the other elenents are displayed red

27.1.2 Overwriting rules for attributes

An attribute definition in alower scope unit will override a general attribute definition in a higher scope. Additional
overwriting rules for variant attributes are defined in clause 27.1.2.1.

EXAMPLE 1:

type record MyRecordA
{

} with { encode "Rul eA" }

/1 In the follow ng, M/RecordA is encoded according to Rul eA and not according to Rul eB
type record MyRecordB

WRecordA field
} with { encode "Rul eB" }

A wi t h statement that is placed inside the scope of another wi t h statement shall override the outermost wi t h. This
shall also apply to the use of thewi t h statement with groups. Care should be taken when the overwriting schemeis
used in combination with references to single definitions. The general rule isthat attributes shall be assigned and
overwritten according to the order of their occurrence.

/] Exanple of the use of the overwiting schene of the with statenent
group MyPDUs
{

type record MyPDUL { ...}

type record WPDW2 { ...}

group MySpeci al PDUs

{
type record WPDU3 { ...}
type record WPDW { ...}

}
wi th {extension "MSpecial Rul e"} /1 MyPDU3 and MyPDUW wi |l have the application
/'l specific extension attribute M/Special Rul e

}

with

{
di splay "PDU'; /1 Al types of group MyPDUs wi |l be displayed as PDU and
extension "MyRule"; // (if not overwitten) have the extension attribute M/Rule

}

/1 is identical to ..

group MyPDUs

ETSI

213 ETSI ES 201 873-1 V4.5.1 (2013-04)

{
type record MPDUL { ...} with {display "PDU'; extension "MRule" }
type record WPDU2 { ...} with {display "PDU'; extension "MRule" }
group MySpeci al PDUs {
type record MWPDU3 { ...} with {display "PDU'; extension "M/Special Rule" }
type record MPDW { ...} with {display "PDU'; extension "MSpecial Rul e" }
}

An attribute definition in alower scope can be overwritten in a higher scope by using the over ri de directive.

EXAMPLE 2:

type record MyRecordA
{

} with { encode "Rul eA" }

/1 In the followi ng, M/RecordA is encoded according to Rul eB
type record MyRecordB

{

M/RecordA fiel dA
} with { encode override "RuleB" }

Theoverri de directive forces al contained types at al lower scopes to be forced to the specified attribute.

An attribute definition for afield or element of a structured type overrides the corresponding attribute of the structured
type, asregards the identified field or element. The attribute definition for afield or element of a structured type can
however be overridden with the override directive in the attribute definition of the structured type.

27.1.2.1 Additional overwriting rules for variant attributes

A vari ant attribute is always related to an encode attribute. Whereas a variant of an encoding may change, an
encoding shall not change without overwriting all current variant attributes.

The present document defines the default rules for variant attributes. Extension packages of TTCN-3, for example
specifying language mappings, may define their own overwriting rules for variant attributes. For variant attributes the
following default overwriting rules apply:

e avari ant attribute overwrites an current var i ant attribute according to the rules defined in clause 27.1.2;

. an encodi ng attribute, which overwrites a current encodi ng attribute according to the rules defined in
clause 27.1.2, also overwrites a corresponding current var i ant attribute, i.e. nonew var i ant attributeis
provided, but the current var i ant attribute becomes inactive;

. anencodi ng attribute, which changes a current encodi ng attribute of an imported language element
according to the rules defined in clause 27.1.3, aso changes a corresponding current var i ant attribute,
i.e.nonewvari ant attributeis provided, but the current var i ant attribute becomes inactive.

EXAMPLE:

nmodul e MyVar i ant Encodi nghbdul e {
iype charstring MyType; // Normally encoded according to "Encoding 1"
;;roup MyVari ant sOne {

iype record MyPDUone

i nt eger fieldl, // fieldl will be encoded according to "Encoding 2" only.
/1 "Encoding 2" overwites "Encoding 1" and variant "Variant 1"
M/ Type field3 // field3 will be encoded according to "Encoding 1" with

/!l variant "Variant 1".

}
with { encoding (fieldl) "Encoding 2" }

with { variant "Variant 1" }

ETSI

214 ETSI ES 201 873-1 V4.5.1 (2013-04)

group MyVari ant sTwo

iype record MyPDUt wo
{

i nt eger fieldl, // fieldl will be encoded according to "Encoding 3"
/1 using encoding variant "Variant 3"
M/ Type field3 // field3 will be encoded according to "Encoding 3"

/'l using encoding variant "Variant 2"

}
with { variant (fieldl) "Variant 3" }
with { encode "Encoding 3"; variant "Variant 2"}

with { encode "Encoding 1" }

27.1.3 Changing attributes of imported language elements

In general, alanguage element is imported together with its attributes. In some cases these attributes may have to be
changed when importing the language element, e.g. a type may be displayed in one module as ASP, then it isimported
by another module where it should be displayed as PDU. For such casesit is allowed to change attributes on the

i mport statement.

NOTE: If awi t h statement isadded to an import of a definition where alocal definition also hasawi t h
statement, the local definition’s attributes overwrite the attributes added to the import statement in the
normal way. Thus, if the attributes of alocal definition shall be changed via the import statement, the
override directive needs to be used.

EXAMPLE:
import from MyModul e {
type My/Type
with { display "ASP" } /1 MyType will be displayed as ASP

import from MyMddul e {
group MyG oup

with {
di splay "PDU'; /1 By default all types will be displayed as PDU
extensi on "M/Rul "

27.2 The With statement

The with statement is used to associate attributes to TTCN-3 language elements (and sets thereof).

Syntactical Structure

with
{ (encode | variant | display | extension | optional)
[override]
["(" DefinitionRef | FieldReference | AllRef ")"]
FreeText [";"] }
"y
Semantic Description
There are five kinds of attributes that can be associated to language elements:
a) di spl ay: alowsthe specification of display attributes related to specific presentation formats;
b) encode: alowsreferencesto specific encoding rules;
c¢) vari ant: alowsreferencesto specific encoding variants;

d) extension: alowsthe specification of user-defined attributes;

ETSI

215 ETSI ES 201 873-1 V4.5.1 (2013-04)

€) optional: alowstheimplicit setting of optional fieldsin records and sets to omit.
The syntax for the argument of thewi t h statement (i.e. the actual attributes) is defined as a free text string.
Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) DefinitionRef and FieldReference shall refer to a definition or field respectively which is within the module,
group or definition to which the with statement is associated.

Examples

type record MyService {
integer i,
float f

}
with { display "ServiceCall" } /1 MyRecord will be displayed as a ServiceCall

27.3 Display attributes

Display attributes allow the specification of display attributes related to specific presentation formats.
Syntactical Structure

di spl ay
Semantic Description

All TTCN-3 language elements can have di spl ay attributes to specify how particular language elements shall be
displayed in, for example, a tabular format.

Specia attribute strings related to the display attributes for the tabular (conformance) presentation format can be found
in ES 201 873-2[i.1].

Specia attribute strings related to the display attributes for the graphical presentation format can be found in
ES 201 873-3[i.2].

Other di spl ay attributes may be defined by the user.

NOTE: Because user-defined attributes are not standardized, the interpretation of these attributes may differ
between tools or even may not be supported.

Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 givenin clause 5.

Examples

type record MyService {
integer i,
float f

}
with { display "ServiceCall" } /1 MyRecord will be displayed as a ServiceCall

27.4 Encoding attributes

In TTCN-3, general or particular encoding rules can be specified by using encode and var i ant attributes. Encoding
attributes allow references to specific encoding rules.

Syntactical Structure

encode

ETSI

216 ETSI ES 201 873-1 V4.5.1 (2013-04)

Semantic Description

Encoding rules define how a particular value, template, etc. shall be encoded and transmitted over a communication
port and how received signals shall be decoded. TTCN-3 does not have a default encoding mechanism. This means
that encoding rules or encoding directives are defined in some external manner to TTCN-3.

The encode attribute allows the association of some referenced encoding rule or encoding directive to be made to a
TTCN-3 definition.

The manner in which the actual encoding rules are defined (e.g. prose, functions, etc.) is outside the scope of the present
document. If no specific rules are referenced then encoding shall be a matter for individual implementation.

In most cases encoding attributes will be used in a hierarchical manner. The top-level isthe entire module, the next
level isagroup and the lowest isan individual type or definition:

a nodul e: encoding appliesto all types defined in the module, including TTCN-3 types (built-in types);
b) group: encoding appliesto a group of user-defined type definitions;
c) type or definition: encoding appliesto asingle user-defined type or definition;
d) field:encodingappliestoafieldinarecord or set typeort enpl at e.
Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

Examples
modul e MyFi rst nodul e
{ :
i mport from MySecondMbdul e {
type MyRecord

with { encode "MyRule 1" } // Instances of MyRecord will be encoded according to M/Rule 1

iype charstring MyType; // Normally encoded according to the 'd obal encoding rule
Qroup MyRecor ds

iype record MyPDUL
{

i nt eger fieldl, /1 fieldl will be encoded according to "Rule 3"
bool ean field2, // field2 will be encoded according to "Rule 3"
M/t ype field3 /] field3 will be encoded according to "Rule 2"

with { encode (fieldl, field2) "Rule 3" }
b
with { encode "Rule 2" }

with { encode "d obal encoding rule" }

27.5 Variant attributes

In TTCN-3, genera or particular encoding rules can be specified by using encode and var i ant attributes. Variant
attributes allow references to specific encoding variants.

Syntactical Structure

vari ant
Semantic Description

To specify arefinement of the currently specified encoding scheme instead of its replacement, thevar i ant attribute
shall be used. The variant attributes are different from other attributes, because they are closely related to encode
attributes. Therefore, for variant attributes, additional overwriting rules apply (see clause 27.1.2.1).

ETSI

217 ETSI ES 201 873-1 V4.5.1 (2013-04)

Special variant strings.
The following strings are the predefined (standardized) var i ant attributes for simple basic types (see clause E.2.1):

a "8 bit"and"unsi gned 8 bit" mean, when applied to integer and enumerated types, that the integer
value or the integer numbers associated with enumerated values shall be handled as it was represented on
8-bits (single byte) within the system.

b) "16 bit"and"unsi gned 16 bit" mean, when applied to integer and enumerated types, that the integer
value or the integer numbers associated with enumerated val ues shall be handled as it was represented on
16-bits (two bytes) within the system.

c) "32 bit"and"unsi gned 32 bit" mean, when applied to integer and enumerated types, that the integer
value or the integer numbers associated with enumerated values shall be handled asit was represented on
32-bits (four bytes) within the system.

d "64 bit"and"unsi gned 64 bit" mean, when applied to integer and enumerated types, that the integer
value or the integer numbers associated with enumerated values shall be handled as it was represented on
64-bits (eight bytes) within the system.

e) "I EEE754 float", "l EEE7T54 doubl e", "I EEE754 extended fl oat" and
"I EEE754 ext ended doubl e" mean, when applied to afloat type, that the value shall be encoded and
decoded according to the standard |EEE 754 [6] (see annex E).

The following strings are the predefined (standardized) var i ant attributesfor char stri ng and uni ver sal
charstring (seeclauseE.2.2):

a) "UTF- 8" means, when applied to the universal charstring type, that each character of the value shall be
individually encoded and decoded according to the UCS Transformation Format 8 (UTF-8) as defined in
annex R of ISO/IEC 10646 [2].

b) "UCS- 2" means, when applied to the universal charstring type, that each character of the value shall be
individually encoded and decoded according to the UCS-2 coded representation form (see clause 14.1 of
ISO/IEC 10646 [2]).

¢) "UTF- 16" means, when applied to the universal charstring type, that each character of the value shall be
individually encoded and decoded according to the UCS Transformation Format 16 (UTF-16) as defined in
annex Q of 1SO/IEC 10646 [2].

d) "8 bit" means, when applied to charstring and universal charstring types, that each character of the value
shall be individually encoded and decoded according to the coded representation as specified in
ISO/IEC 10646 [2] (an 8-bit coding).

The following strings are the predefined (standardized) var i ant attributes for structured types (see clause E.2.2.4):

a "IDL:fixed FORVAL/O01l-12-01 v.2.6" means, when applied to arecord type, that the value shall be
handled as an IDL fixed point decimal value (see annex E).

These variant attributes can be used in combination with the more general encode attributes specified at a higher level.
For exampleauni ver sal char stri ng specified withthevari ant attribute "UTF-8" within a module which
itself has aglobal encoding attribute "BER:1997" (see clause 12.2 of ES 201 873-7 [i.5]) will cause each character of
the values within the string to first be encoded following the UTF-8 rules and then this UTF-8 value will be encoded
following the more global BER rules.

Invalid encodings

If itisdesired to specify invalid encoding rules then these shall be specified in areferenceable source external to the
module in the same way that valid encoding rules are referenced.

Restrictions

No specific restrictions in addition to the genera static rules of TTCN-3 given in clause 5.

ETSI

218 ETSI ES 201 873-1 V4.5.1 (2013-04)

Examples

EXAMPLE:

nodul e MyTTCNnodul el
{ éype charstring MyType; // Normally encoded according to the "d obal encoding rule"
:group MyRecor ds

iype record MyPDUL

{
i nt eger fieldl, /1 fieldl will be encoded according to "Rule 2"
/'l using encoding variant "length form 3"
M/t ype field3 /1 field3 will be encoded according to "Rule 2"

/1 using any possible |l ength encodi ng format

with { variant (fieldl) "length form3" }
}.
with { encode "Rule 2" }

with { encode "d obal encoding rule" }

27.6 Extension attributes

Extension attributes can be used for proprietary extensionsto TTCN-3.

Syntactical Structure

ext ensi on
Semantic Description
All TTCN-3 language elements can have ext ensi on attributes specified by the user.

NOTE: Because user-defined attributes are not standardized the interpretation of these attributes between tools
supplied by different vendors may differ or even not be supported.

Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

Examples

testcase MyTestcase() runs on MICType {

with { extension "Test Purpose: This test case is used to check .." }

27.7 Optional attributes

Theopt i onal attribute can be used to indicate that optional fields of constants, module parameters or templates of
record and set types areimplicitly settoom t .

Syntactical Structure
opti onal
Semantic Description

TTCN-3 constants, module parameters, and templates can have an opt i onal attribute. Also, TTCN-3 language
elements that contain such definitions, i.e. module, group, function, altstep, test case, control, and component type
definitions can have an opt i onal attribute. When an opt i onal attribute is associated to a function, altstep, test
case, control or component type definitions, it shall have effect on all the constants, modul e parameters, and templates
declared within these definitions and not on the enframing definition itself.

ETSI

219 ETSI ES 201 873-1 V4.5.1 (2013-04)

Special optional strings:
The following strings are the predefined (standardized) opt i onal attributes.

a "inmplicit om t" meansthat al optional fields, that have no assigned value definition in the statement on
which the attribute operates, are set to omit. This applies recursively to the optional fields of the entity and to
subfields of the mandatory fields.

b) "explicit omt" meansthat al optional fields, that have no assigned value definition in the statement on
which the attribute operates, are left undefined. This applies recursively to the optiona fields of the entity and
to subfields of the mandatory fields.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Datatype, port type, procedure signature and variable definitions and import statements shall not have an
opti onal attribute associated to them directly. When an opt i onal attributeis associated to module,
group, function, atstep, test case, control or component type containing such definitions, it shall not have any
effect on the included data type, port type, procedure signature, variable or import statement.

Examples

type record MyRecordl {
i nteger a,
bool ean b opti onal

}

type record M/Record2 {
MyRecordl m

}

Il reference tenplates with expli
tenpl ate MyRecordl MyTenpl atel : =

citly se
tenpl ate MyRecord2 MyTenpl ate2 : =

i
{ a:
{ m:
Il reference tenplates

tenpl ate MyRecordl MyTenpl atela :
tenpl ate MyRecordl MyTenpl atelb :

? } // b is undefined
?} with {optional "explicit omt"} // b is undefined

a .
a:

tenpl ate MyRecord2 MyTenpl at e2a :
tenpl ate MyRecord2 MyTenpl ate2b :

} // mand its subfields are undefined
m:={ a:=7?}}; // mb is undefined

/] tenplates with attribute

tenpl ate MyRecordl MyTenplatell :={ a :=? } with {optional "inplicit omt"}
/1l same as MyTenplatel, b is set to onit

tenpl ate MyRecord2 MyTenplate2l := { m:={ a := ?}} with {optional "inplicit omt"}
/'l same as MyTenpl ate2, by recursive application of the attribute

templ ate MyRecord2 MyTenpl ate22 := { m:= MyTenplatela } with {optional "inplicit omt"}
/1l same as MyTenpl ate2, by recursive application of the attribute

tenpl ate MyRecord2 MyTenpl ate23 := {} with {optional "inplicit omt"}
/1 same as MyTenpl ate2a, mremnai ns undefi ned

tenpl ate MyRecord2 MyTenpl ate24 := { m:= MyTenplatelb } with {optional "inplicit omt"}
/1 sanme as MyTenpl ate2b, the attribute on the | ower scope is not overwitten

tenpl ate MyRecord2 MyTenpl ate25 := { m:= MyTenpl atelb }
with {optional override "inplicit omt"}
/1 same as MyTenpl ate2, the attribute on the | ower scope is overwitten

ETSI

220 ETSI ES 201 873-1 V4.5.1 (2013-04)

Annex A (normative):
BNF and static semantics

A.l TTCN-3 BNF

This annex defines the syntax of TTCN-3 using extended BNF (henceforth just called BNF).

A.1.1 Conventions for the syntax description

Table A.1 defines the metanotation used to specify the extended BNF grammar for TTCN-3.

Table A.1l: The syntactic metanotation

= is defined to be definition of non-terminal
abc xyz abc followed by xyz concatenation

| alternative alternative

[abc] 0 or 1 instances of abc optional

{abc} 0 or more instances of abc repetition 1
{abc}+ 1 or more instances of abc repetition 2

() textual grouping grouping
Abc the non-terminal symbol abc |non-terminal
"abc" a terminal symbol abc terminal

NOTE: The metanotation defined in table A.1 is parsed from left to right. The metanotation operators have the
following precedence, from highest (binding tightest) at the top, to lowest (loosest) at the bottom:

- Repetition, Optional
- Grouping

- Concatenation

- Alternative

- Definition

A.1l.2 Statement terminator symbols
In general all TTCN-3 language constructs (i.e. definitions, declarations, statements and operations) are terminated with

asemi-colon (;). The semi-colon isoptiona if the language construct ends with aright-hand curly brace (}) or the
following symbol is aright-hand curly brace (}), i.e. the language construct is the last statement in a statement block.

A.1.3 Identifiers

TTCN-3 identifiers are case sensitive and may only contain lowercase letters (a-z) uppercase letters (A-Z) and numeric
digits (0-9). Use of the underscore (_) symbol isaso alowed. An identifier shall begin with aletter (i.e. not with a
number and not an underscore).

A.1.4 Comments

Comments written in free text may appear anywhere in a TTCN-3 specification. Comments may contain any graphical
character defined in ISO/IEC 10646 [2]. Block comments shall be opened by the symbol pair /* and closed by the
symbol pair */.

ETSI

221

EXAMPLE 1.

/* This is a block conment
spread over two lines */

Block comments shall not be nested.

/* This is not /* a legal */ coment */

ETSI ES 201 873-1 V4.5.1 (2013-04)

Line comments shall be opened by the symbol pair // and closed by a <newline>.

EXAMPLE 2:

/1 This is a line conment
/] spread over two |ines

EXAMPLE 3:

/1 The following is not I|egal

const // This is MyConst integer MyConst := 1;

/1 A block comment shoul d have been used i nstead
const /* This is MyConst */ integer MyConst := 1;

/1 Aline comment like this works as well
const // This is MConst
i nteger MyConst := 1;

A.1.5 TTCN-3 terminals

TTCN-3 terminal symbols and reserved words are listed in tables A.2 and A.3.

Table A.2: List of TTCN-3 special terminal

symbols

Begin/end block symbols

}

Begin/end list symbols

)

Element specifier symbols

— |~

]

Range symbol

Line and block comments

Statement separator symbol

Arithmetic operator symbols

Concatenation operator symbol

Relational operator symbols

Shift operator symbols

Rotate operator symbols

String enclosure symbols

Wildcard/matching symbols

Assignment symbol

Communication operation assignment

Bitstring, hexstring and Octetstring values

Float exponent

List element separator symbol

The predefined function identifiers defined in table 14 and described in annex C shall also be treated as reserved words.

ETSI

222

ETSI ES 201 873-1 V4.5.1 (2013-04)

Table A.3: List of TTCN-3 terminals which are reserved words

action
activate
addr ess
alive
al |

alt

al tstep
and
and4b
any
anyt ype

bitstring
bool ean
br eak

case
cal

catch

char
charstring
check

cl ear

conpl ement
conponent
connect
const

conti nue
control
create

deactivate
def aul t

di sconnect
di spl ay

do

done

el se
encode
enuner at ed
error
except
exception
execut e
ext ends
ext ensi on
ext erna

fail

fal se

fl oat
for
friend
from
function

getverdi ct
get cal
getreply
goto

group

hal t
hexstring

i f

i fpresent
i mport

in

i nconc
infinity
i nout

i nt eger

i nterl eave

kill
killed

| abel

| anguage
I ength

| og

mep

mat ch
nessage
m xed
nod
nodi fi es
nodul e
nodul epar
nc

nobl ock
none
not

not 4b
nowai t
nul |

octetstring
of

om t

on

opti ona

or

or4b

out

override

par am
pass
pattern
pernutation
port

present
private
procedure
public

rai se
read
receive
record

recursive
rem

r epeat
reply
return
runni ng
runs

sel ect
sel f

send
sender
set
setverdi ct
si gnature
start

st op
subset
super set
system

tenpl ate
t est case
ti meout
timer

to
trigger
true

type

uni on
uni ver sal
unnap

val ue

val ueof

var

vari ant
verdicttype

whi | e
wi th

xor
xor 4b

The TTCN-3 terminaslisted in table A.3 shall not be used asidentifiersin a TTCN-3 module. These terminals shall be
written in al lowercase letters.

A.1.5.1 Use of whitespaces and newlines

The elements of the TTCN-3 syntax (reserved words, identifiers, terminal symbols and literal values) shall be separated
by whitespace or by special terminal symbolslisted in table A.2 according to the TTCN-3 syntax.

ETSI

223 ETSI ES 201 873-1 V4.5.1 (2013-04)

In representing whitespace, any one or more of the following characters of the CO set of
Recommendation ITU-T T.50 [4] and of annex A of Recommendation ITU-T T.50 [4] may be used in any combination:

e HT-HORIZONTAL TABULATION (9)
e LF-LINEFEED (10)

e VT-VERTICAL TABULATION (11)

e FF-FORM FEED (12)

e CR-CARRIAGE RETURN (13)

e SP-SPACE(32)

The characters of the CO set of Recommendation ITU-T T.50 [4] and of annex A of Recommendation ITU-T T.50 [4]
below are denoting newline (end of ling). A single CR(13) character directly followed by an LF(10) character denote a
single end of line (i.e. the sequence CRLFCRLFVT denotes 3 lines):

e LF-LINEFEED (10)
. VT - VERTICAL TABULATION (11)
e FF-FORM FEED (12)
. CR - CARRIAGE RETURN (13)
Any character or character sequence that isavalid newlineis also avalid whitespace.

NOTE: Itisrecommended that for newline only the CR and LF and for whitespace only the HT, LF, CR and SP
control characters are used asthe VT and FF characters may cause problems with some conventional text
editors.

A.1.6 TTCN-3 syntax BNF productions

A.1.6.0 TTCN-3 module

1. TTCN3Modul e :: = TTCN3Mbdul eKeyword Modul eld "{" [Mdul eDefinitionsList]
[Modul eControl Part] "}" [WthStatenent] [Seni Col on]

2. TTCN3Modul eKeyword :: = "nodul e"

3. Mduleld ::= Identifier [LanguageSpec]

4. LanguageSpec ::= LanguageKeyword FreeText {"," FreeText}

5. LanguageKeyword ::= "Il anguage"

A.1.6.1 Module definitions part

A.1.6.1.0 General

6. Modul eDefini tionsList ::= {Mdul eDefinition [Sem Col on]}+
7. Modul eDefinition ::= (([Visibility] (TypeDef |
Const Def |
Tenpl at eDef |
Modul ePar Def |
Functi onDef |
Si gnat ur eDef |
Test caseDef |
Al tstepDef |
| nport Def |
Ext Functi onDef |
Ext Const Def

)) |
(["public"] G oupDef) |
(["private"] FriendMbdul eDef)
) [WthStatenent
8.Visibility ::= "public" |
"friend" |
"private"

ETSI

224 ETSI ES 201 873-1 V4.5.1 (2013-04)

A.1.6.1.1 Typedef definitions

9. TypeDef ::= TypeDef Keyword TypeDef Body
10. TypeDef Body ::= StructuredTypeDef | SubTypeDef
11. TypeDef Keyword ::= "type"
12. StructuredTypeDef ::= RecordDef |
Uni onDef |
Set Def |
Recor dOf Def |
Set Of Def |
EnunDef |
Por t Def |
Conponent Def
13. Recor dDef ::= RecordKeyword Struct Def Body
14. Recor dKeyword ::= "record"
15. StructDef Body ::= (ldentifier | AddressKeyword) "{" [StructFi el dDef
{"," StructFiel dDef}]
nye —_—

16. Struct Fi el dDef ::= (Type | NestedTypeDef) ldentifier [ArrayDef] [SubTypeSpec]
[Opti onal Keywor d]
17. Nest edTypeDef ::= Nest edRecordDef |
Nest edUni onDef |
Nest edSet Def |
Nest edRecor dOf Def |
Nest edSet Of Def |
Nest edEnunDef

18. Nest edRecor dDef ::= RecordKeyword "{" [StructFieldDef {"," StructFiel dDef}]
DY
19. Nest edUni onDef ::= Uni onKeyword “{" UnionFi el dDef {"," UnionFiel dDef}
e
20. Nest edSet Def ::= SetKeyword "{" [StructFieldDef {"," StructFiel dDef}]
21. Nest edRecor dOf Def ::= RecordKeyword [StringlLength] O Keyword (Type |
Nest edTypeDef)
22. Nest edSet O Def ::= SetKeyword [StringLength] O Keyword (Type | NestedTypeDef)
23. Nest edEnunDef ::= EnunKeyword "{" EnunerationList "}"
24. Optional Keyword ::= "optional"
25. Uni onDef ::= Uni onKeyword Uni onDef Body
26. Uni onKeyword ::= "union"
27. Uni onDefBody ::= (ldentifier | AddressKeyword) "{" UnionFieldDef {","
Uni onFi el dDef }
ny —
28. Uni onFi el dDef ::= (Type | NestedTypeDef) ldentifier [ArrayDef] [SubTypeSpec]
29. Set Def ::= Set Keyword Struct Def Body
30. Set Keyword ::= "set"
31. RecordOf Def ::= RecordKeyword [StringlLength] O Keyword Struct O Def Body
32. O Keyword ::= "of"
33.Struct O Def Body ::= (Type | NestedTypeDef) (ldentifier | AddressKeyword)
[SubTypeSpec
34. Set O Def ::= SetKeyword [StringLength] O Keyword Struct O Def Body
35. EnunDef ::= EnunKeyword (ldentifier | AddressKeyword) "{" EnunerationLi st
e
36. Enunkeywor d :: = "enurer at ed”
37. Enurrer ationList ::= Enuneration {"," Enuneration}
38. Enuneration ::= ldentifier ["(" [Mnus] Number ")"]
39. SubTypeDef ::= Type (ldentifier | AddressKeyword) [ArrayDef] [SubTypeSpec]
40. SubTypeSpec ::= Al | owedVal uesSpec [StringlLength] | StringlLength

/* STATI C SEMANTICS - Al |l owedVal ues shall be of the sanme type as the field being subtyped */
41. Al | onedVal uesSpec ::= "(" ((TenplateOrRange {"," TenplateOrRange }) | CharStringhMatch)
my
42. Tenpl at eOr Range :: = RangeDef |

Tenpl at eBody |

Type

/* STATI C SEMANTI CS - RangeDef production shall only be used with integer, charstring, universal
charstring or float based types */

/* STATI C SEMANTI CS - When subtyping charstring or universal charstring range and val ues shall not
be mixed in the sane SubTypeSpec */

43. RangeDef ::= Bound ".." Bound

44. Stringlength ::= LengthKeyword " (" SingleExpression [".." Bound] ")"

/* STATI C SEMANTICS - StringLength shall only be used with String types or to lint set of and
record of. SingleExpression and Bound shall evaluate to non-negative integer values (in case of
Bound including infinity) */

45. Lengt hKeyword ::= "l engt h"
46. Port Def ::= PortKeyword Port Def Body
47. PortDefBody ::= ldentifier PortDefAttribs

ETSI

225 ETSI ES 201 873-1 V4.5.1 (2013-04)

48. Port Keyword ::= "port"

49. PortDef Attribs ::= MessageAttribs |
ProcedureAttribs |
M xedAttri bs

50. MessageAttribs ::= MessageKeyword "{" {(AddressDecl | Messagelist | Confi gParanDef)
[Seni Col on] } +
ny
51. Confi gPar anDef ::= MapParanDef | UnmapPar anDef
52. MapPar anDef = MapKeyword Par anKeyword " (" Fornmal Val uePar{ "," Fornal Val uePar}")"
53. UnmapPar anDef ::= UnmapKeyword ParanKeyword " (" Fornal Val uePar{ "," Fornal Val uePar}")"
54. Addr essDecl = Addr essKeyword Type
55. MessagelList ::= Direction Al O Typeli st
|

56.Direction ::= | nParKeyword |

Qut Par Keywor d |
| nQut Par Keywor d
57. MessageKeyword ::= "message"
58. ALl O TypeList ::= Al Keyword | Typeli st

/* NOTE: The use of AllKeyword in port definitions is deprecated */

59. Al | Keyword ::= "all"
60. TypelLi st = Type {"," Type}
61. ProcedureAttribs ::= ProcedureKeyword "{" {(AddressDecl | ProcedurelList | ConfigParanDef)
[Seni Col on] } +
ny
62. Procedur eKeyword ::= "procedure"
63. ProcedureList ::= Direction All O Signatureli st
64. All O SignatureList ::= Al Keyword | Signatureli st
65. Si gnatureList ::= Signature {"," Signature}
66. M xedAttribs ::= M xedKeyword "{" {(AddressDecl | M xedList | ConfigParanDef) [Seni Col on]}+
Ty
67. M xedKeyword ::= "m xed"
68. M xedLi st ::= Direction ProcO Typeli st
69. ProcOr TypeList ::= Al Keyword | (ProcOrType {"," ProcO Type})
70. ProcOr Type ::= Signature | Type
71. Conponent Def ::= Conponent Keyword |dentifier [ExtendsKeyword Conponent Type
{"," Component Type}] "{"
[Conponent Def Li st] "} "

72. Component Keyword ::= "conmponent"
73. Ext endsKeyword ::= "extends"
74. Component Type ::= Extendedldentifier
75. Conponent Def Li st ::= {Conponent El ement Def [WthStatenment] [Seni Col on]}
76. Conponent El ement Def ::= Portlnstance |

Var | nst ance |

Ti mer | nst ance |

Const Def
77.Portlnstance ::= PortKeyword Extendedldentifier PortElenment {"," PortEl enment}
78.PortEl ement ::= ldentifier [ArrayDef]
A.1.6.1.2 Constant definitions
79. Const Def ::= ConstKeyword Type ConstLi st
80. Const List ::= SingleConstDef {"," SingleConstDef}
81. Si ngl eConstDef ::= ldentifier [ArrayDef] AssignmentChar Constant Expression
82. Const Keyword ::= "const"

A.1.6.1.3 Template definitions

83. Tenpl at eDef ::= Tenpl at eKeyword [Tenpl at eRestri cti on] BaseTenpl ate
[DerivedDef] Assignnent Char Tenpl at eBody
84. BaseTenpl ate ::= (Type | Signature) ldentifier ["(" Tenpl at eO Val ueFor nal Par Li st
my

85. Tenpl at eKeyword ::= "tenpl ate"

86. DerivedDef ::= MdifiesKeyword Extendedldentifier

87. Modi fi esKeyword ::= "nodifies"

88. Tenpl at eOr Val ueFor mal Par Li st ::= Tenpl at eOr Val ueFormal Par {"," Tenpl at eOr Val ueFor mal Par }
89. Tenpl at eOr Val ueFor mal Par :: = Fornal Val uePar | Fornal Tenpl at ePar

/* STATI C SEMANTI CS - Formal Val uePar shall resolve to an in paranmeter */
90. Tenpl at eBody ::= (Sinpl eSpec |
Fi el dSpeclLi st |
ArrayVal ueOrAttrib
) [ExtraMatchingAttri butes]

/* STATIC SEMANTICS - Wthin Tepl ateBody the ArrayVal ueOrAttrib can be used for array, record,
record of and set of types. */

91. Si npl eSpec ::= (Singl eExpression ["&" Sinpl eTenpl ateSpec]) | Sinpl eTenpl at eSpec

92. Si npl eTenpl at eSpec :: = Singl eTenpl at eExpression ["&" Si npl eSpec]

ETSI

226 ETSI ES 201 873-1 V4.5.1 (2013-04)

93. Si ngl eTenpl at eExpressi on ::= Matchi ngSynbol | (Tenpl at eRef Wt hPar Li st
[Ext endedFi el dRef er ence])

94. Fi el dSpecList ::= "{" FieldSpec {"," FieldSpec} "}"
95. Fi el dSpec ::= Fi el dRef erence Assi gnnment Char (Tenpl at eBody | M nus)
96. Fi el dRef erence ::= StructFi el dRef |

ArrayOrBit Ref |

Par Ref
97. StructFieldRef ::= Identifier |

Predefi nedType |
TypeRef er ence

/* STATI C SEMANTI CS - PredefinedType and TypeReference shall be used for anytype val ue notation
only. PredefinedType shall not be AnyTypeKeyword. */
98. ParRef ::= Identifier

/* STATIC SEMANTICS - Identifier in ParRef shall be a fornal paraneter identifier fromthe
associ ated signature definition */
99. ArrayOrBitRef ::="[" FieldOBitNunber "]"

/* STATI C SEMANTICS - ArrayRef shall be optionally used for array types and TTCN-3 record of and set
of . The same notation can be used for a Bit reference inside an TTCN-3 charstring, universal
charstring, bitstring, octetstring and hexstring type */

100. Fi el dOr Bi t Nunber ::= Si ngl eExpression

/* STATI C SEMANTICS - Singl eExpression will resolve to a value of integer type */
101. ArrayVal ueOrAttrib ::= "{" [ArrayEl enent SpecLi st] "}"

102. Arr ayEl enent SpecLi st ::= ArrayEl enent Spec {"," ArrayEl enent Spec}

103. ArrayEl ement Spec ::= Mnus |

Per nut ati onMat ch |
Tenpl at eBody
104. Mat chi ngSynbol ::= Conpl ement |
(AnyVal ue [W | dcardLengt hMatch]) |
(AnyOrOnit [WIdcardLengt hMatch]) |
Li st O Tenpl ates |
Range |

BitStringhvatch |
HexStringhvatch |

Cctet StringMatch |
Char Stri nghat ch |
Subset Mat ch |

Super set Mat ch

[* STATI C SEMANTI C — W dcardLengt hMat ch shal |l be used when Matchi ngSynbol is used in fractions of a
concatenated string or list (see clause 15.11) and shall not be used in other cases. In this case,
the Conpl enent, Tenpl ateList, Range, BitStringMvatch, HexStringMatch, CctetStringhatch,
Char Stri nghvat ch, Subset Match and Superset Match productions shall not be used. */
105. ExtraMat chingAttributes ::= StringlLength |
| f Present Keyword |
(StringLength |fPresent Keyword)
B"

106.BitStringMatch ::= """ {BinO Match} """ "
107.BinOrMatch ::= Bin |

AnyVal ue |

AnyOr Oni t
108. HexStringMatch ::= """ {HexOrMatch} "'" "H'
109. HexOr Match @ : = Hex |

AnyVal ue |

AnyOr Oni t
110. Cctet Stringvatch ::= """ {Cct O Match} "' "O
111. Cct Orvatch @ := Cct |

AnyVal ue |

AnyOr Oni t

112. Char Stringhatch ::
113. PatternParticle ::

Patt ernKeyword PatternParticle {"&" PatternParticle}
Pattern | ReferencedVal ue

114. PatternKeyword ::= "pattern"
115. Pattern ::= """ {PatternEl enent} """
116. PatternEl enent ::= (("\" ("2" | "*" | "\" | "[(" | "1 "{" | "}" |
S G D T - A S B« B
wpottt) "n"] "r"] "s" | "b"
))
(2] e])
("[" ["~"] [{PatternC assChar ["-" PatternC assChar]}]"]") |
("{" ["\"] Referencedvalue "}") |
("\" "N "{" (ReferencedValue | Type) "}") |
(mmmemtty
("(" PatternElenment ")") |
("# (Num |
)§|(Num ™, " [Nunj ")") | ("(" "." Num™)")

ETSI

227 ETSI ES 201 873-1 V4.5.1 (2013-04)

Pat t er nChar

117. PatternChar ::= NonSpeci al PatternChar | PatternQJadrupI e
/* STATIC SEI\/AI\FI'ICS Characters "?2", "*" U\"_ UMttty tRt,otttLOott, ot)M, tHY, e,
“d", "~A", "N' have special senmantics - they are rret acharacters for the definition of pattern

elements — only if they follow the BNF as defined above, if not they are interpreted |ike normal
characters */

118. NonSpeci al Patt ernChar ::= Char
118. Patternd assChar ::= NonSpeci al Patternd assChar |

Pat t er nQuadrupl e |

"\" EscapedPatt er nC assChar
119. NonSpeci al Patt ernd assChar ::= Char
/* STATI C SEMANTI CS: Characters "[", "-", "A" "1", "\", "q", "have special senmantics — they are
net acharacters for the definition of pattern cI ass characters — onIy if they follow the BNF as
defined above, if not they are interpreted |like normal characters */

120. EscapedPatternd assChar ::= "[" | "-" | "~" | "]"

120. PatternQuadruple ::= "\" "qg" "(" Nunber "," Nunber "," Nunber ","
Nunber)"

121. Conpl enent ::= Conpl enent Keyword Li st Of Tenpl at es

122. Conpl enent Keyword ::= "conpl enent "

123. ListOf Tenpl ates ::= "(" TenplatelListltem{"," TenplatelListlten} ")"

124. Tenpl atelLi stltem ::= Tenpl ateBody | AllEl enentsFrom

125. Al El enent sFrom :: = Al | Keyword FronKeyword Tenpl at eBody

126. Subset Mat ch :: = Subset Keyword Li st Of Tenpl at es

127. Subset Keyword ::= "subset"

128. Super set Mat ch :: = Superset Keyword Li st Of Tenpl at es

129. Super set Keyword ::= "superset"

130. Permut ati onMat ch ::= Pernutati onKeyword ListOf Tenpl ates

/* STATI C SEMANTICS: Restrictions on the content of Tenpl ateBody within the ListOf Tenpl ates are
given in clause B.1.3.3. */

131. Permut at i onKeyword ::= "pernutation"

132. AnyVval ue ::= "?"

133. AnyOrQmt .= "*"

134. Tenpl ateList ::= "(" Tenpl ateBody {"," Tenpl at eBody}+ ")"

135. Wl dcardLengt hMat ch ::= Lengt hKeyword " (" Singl eExpression ")"

/* STATI C SEMANTI CS: Singl eExpression shall evaluate to type integer */
136. | f Present Keyword ::= "ifpresent"

137. Present Keyword ::= "present"

138. Range ::= "(" Bound ".." Bound ")"

139.Bound ::= (["!"] SingleExpression) | ([Mnus] |nfinityKeyword)

/* STATI C SEMANTI CS - Bounds shall evaluate to types integer, charstring, universal charstring or
float. In case they evaluate to types charstring or universal charstring, the string I ength shall be
1. infinity as |lower bound and —infinity as upper bound are allowed for float types only. */

140. InfinityKeyword ::= "infinity"

141. Tenpl at el nst anceAssignnment ::= ldentifier ":=" |nLineTenplate

/* STATIC SEMANTICS — if a value paraneter is used, the inline tenplate shall evaluate to a value */
142. Tenpl at eRef Wt hPar Li st ::= Extendedldentifier [TenplateActual ParlList]

143. I nLi neTenpl ate ::= [(Type | Signature) Colon] [DerivedRef WthParLi st

Assi gnnent Char] Tenpl at eBody
Modi fi esKeyword Tenpl at eRef Wt hPar Li st

144, Deri vedRef Wt hPar Li st

145. Tenpl at eAct ual Par Li st "(" [(Tenpl at el nst anceActual Par {"," Tenpl at el nst anceActual Par}) |
(Tenpl at el nst anceAssi gnnent {"," Tenpl at el nst anceAssi gnnent})]
146. Tenpl at el nst anceActual Par ::= InLineTenplate | M nus

/* STATI C SEMANTI CS - When the corresponding fornal paraneter is not of tenplate type the
Tenpl at el nstance production shall resolve to one or nore Singl eExpressions */

147. Tenpl ateCps ::= MatchOp | Val ueof Op

148. Mat chOp ::= MatchKeyword " (" Expression "," |InLineTenplate ")"
149. Mat chKeyword ::= "match"

150. Val ueof Op ::= Val ueof Keyword " (" InLi neTenplate ")"

151. Val ueof Keyword ::= "val ueof"

A.16.1.4 Function definitions

152. FunctionDef ::= FunctionKeyword ldentifier "(" [FunctionFornal ParlList]
")" [RunsOnSpec] [ReturnType] StatenentBl ock

153. Functi onKeyword ::= "function"

154. Functi onFor mal Par Li st ::= FunctionFornal Par {"," Functi onFor nal Par}

ETSI

228 ETSI ES 201 873-1 V4.5.1 (2013-04)

155. Functi onFor mal Par ::= For mal Val uePar |
For nal Ti ner Par |
For mal Tenpl at ePar |
For nal Port Par

156. Ret urnType ::= ReturnKeyword [Tenpl at eKeyword | RestrictedTenpl at e]
Type

157. ReturnKeyword ::= "return"

158. RunsOnSpec :: = RunsKeyword OnKeyword Conponent Type

159. RunsKeyword ::= "runs"

160. OnKeyword ::= "on"

161. MTCKeyword ::= "ntc"

162. Statenment Bl ock ::= "{" [FunctionDeflList] [FunctionStatenentlList] "}"

163. Functi onDef Li st ::= {(FunctionLocal Def | FunctionLocallnst) [WthStatenent] [Seni Colon]}+

164. FunctionStatenentLi st ::= {FunctionStatenent [Seni Colon]}+

165. Functi onLocal I nst ::= Varlnstance | Tinerlnstance

166. Functi onLocal Def ::= ConstDef | Tenpl at eDef

167. FunctionStatenment ::= ConfigurationStatenents |

Timer St atenents |

Conmuni cati onStatenents |
Basi cSt atenents |

Behavi our St at enent s |

Set Local Verdi ct |

SUTSt at enent s |

Test caseQperation

168. Functi onl nstance ::= FunctionRef "(" [FunctionActual ParlList] ")"
169. FunctionRef ::= [ldentifier Dot] (ldentifier | PreDefFunctionldentifier)
170. PreDef Functionldentifier ::= ldentifier

/* STATIC SEMANTICS - The Identifier shall be one of the pre-defined TTCN-3 Function Identifiers
from Annex C of ES 201 873-1 */

171. Functi onAct ual ParLi st ::= (FunctionActual Par {"," FunctionActual Par}) |
(Functi onAct ual Par Assi gnnent {"," Functi onAct ual Par Assi gnnent})
172. Functi onActual Par ::= ArrayldentifierRef |

I nLi neTenpl ate |

Conponent Ref |
M nus

[* STATI C SEMANTI CS - When the corresponding fornal paraneter is not of tenplate type the
Tenpl at el nstance production shall resolve to one or nore Singl eExpressions i.e. equivalent to the
Expr essi on production */
173. Functi onAct ual Par Assi gnnment :: = Tenpl at el nst anceAssi gnnent |
Conponent Ref Assi gnnent |
Arrayl dentifi er Ref Assi gnnent
174. Arrayl dentifierRef Assignment ::= ldentifier ":=" ArrayldentifierRef

A.1.6.1.5 Signature definitions

175. Si gnatureDef ::= SignatureKeyword ldentifier "(" [SignatureFornal ParlList]
")" [ReturnType | NoBl ockKeyword] [ExceptionSpec]
176. Si gnat ur eKeyword ::= "signature"
177. Si gnat ur eFor mal Par Li st ::= Fornal Val uePar {"," Fornal Val uePar}
178. Excepti onSpec ::= ExceptionKeyword "(" TypeList ")"
179. Excepti onKeyword ::= "exception"
180. Signature ::= Extendedldentifier
181. NoBl ockKeyword :: = "nobl ock"
A.1.6.1.6 Testcase definitions
182. Test caseDef ::= TestcaseKeyword ldentifier "(" [TenplateO Val ueFormal ParLi st]
")" ConfigSpec StatenentBl ock
183. Test caseKeyword ::= "testcase"
184. Confi gSpec ::= RunsOnSpec [Syst enfSpec]
185. Syst enfSpec :: = Syst enKeyword Conponent Type
186. Syst enKeyword ::= "systent
187. Test casel nstance ::= ExecuteKeyword " (" Extendedldentifier "(" [TestcaseActual ParlList]
"Y' ["," (Expression | Mnus) ["," SingleExpression]]
ny
188. Execut eKeyword :: = "execute"
189. Test caseAct ual Par Li st ::= (Tenpl at el nst anceAct ual Par {"," Tenpl at el nst anceAct ual Par}) |

(Tenpl at el nst anceAssi gnnent {"," Tenpl at el nst anceAssi gnnent })

/* STATI C SEMANTI CS - When the corresponding fornal paraneter is not of tenplate type the
Tenpl at el nst ance production shall resolve to one or nore Singl eExpressions i.e. equivalent to the
Expressi on production */

ETSI

229 ETSI ES 201 873-1 V4.5.1 (2013-04)

A.1.6.1.7 Altstep definitions

190. Al tstepDef ::= AltstepKeyword ldentifier "(" [FunctionFornal ParlList]
")" [RunsOnSpec] "{" AltstepLocal DefList AltGuardLi st

}
191. Al t stepKeyword ::= "al tstep"

192. Al tstepLocal DefList ::= {Al tstepLocal Def [WthStatenent] [Sen Col on]}
193. Al t st epLocal Def ::= Varlnstance |
Ti mer | nst ance |
Const Def |
Tenpl at eDef
194. Al tstepl nstance ::= Extendedldentifier "(" [FunctionActual ParlList]
DE
A.1.6.1.8 Import definitions
195. I nportDef ::= |nportKeyword |nportFronSpec (A |IWthExcepts | ("{"
| npor t Spec
1))
196. | mpor t Keyword ::= "inport"
197. A I WthExcepts ::= Al Keyword [Except sDef]
198. Except sDef ::= Except Keyword "{" Except Spec "}"
199. Except Keyword ::= "except"
200. Except Spec ::= {Except El enent [Seni Col on]}
201. Except El ement :: = Except G oupSpec |

Except TypeDef Spec |
Except Tenpl at eSpec |
Except Const Spec |
Except Test caseSpec |
Except Al t st epSpec |
Except Functi onSpec |
Except Si gnat ur eSpec |
Except Modul ePar Spec

202. Except GroupSpec ::= G oupKeyword (QualifiedldentifierList | AllKeyword)
203.1dentifierListOOA Il ::=IldentifierList | AlKeyword

204. Except TypeDef Spec :: = TypeDef Keyword IdentifierListOAll
205. Except Tenpl at eSpec :: = Tenpl at eKeyword | dentifierListOAll
206. Except Const Spec ::= ConstKeyword ldentifierListOAllI

207. Except Test caseSpec ::= TestcaseKeyword ldentifierListOAllI
208. Except Al t stepSpec ::= Al tstepKeyword IdentifierListOAll
209. Except Functi onSpec ::= Functi onKeyword | dentifierListOAll
210. Except Si gnat ureSpec ::= SignatureKeyword ldentifierListOAll
211. Except Modul ePar Spec :: = Mdul ePar Keyword | dentifierListOAll
212. I mport Spec ::= {lnportEl enent [Sem Col on]}

213. I mport El ement ::= | nport G oupSpec |

| npor t TypeDef Spec |

| npor t Tenpl at eSpec |

| npor t Const Spec |

| npor t Test caseSpec |
| nport Al t st epSpec |

| npor t Functi onSpec |

| npor t Si gnat ur eSpec |
| npor t Modul ePar Spec |
| mpor t | nport Spec

214. 1 mport FronmBpec ::= FronKeyword Mdul el d [Recur si veKeywor d]

215. Recur si veKeyword ::= "recursive"

216. | mport GroupSpec ::= G oupKeyword (G oupRefListWthExcept | All G oupsWthExcept)
217. GroupRef Li st Wt hExcept ::= QualifiedldentifierWthExcept {"," QualifiedldentifierWthExcept}
218. Al l GroupsW t hExcept ::= Al Keyword [Except Keyword Qualifiedl dentifierlList]

219. QualifiedldentifierWthExcept ::= Qualifiedldentifier [ExceptsDef]
220.ldentifierListOrAll WthExcept ::= ldentifierList | AlWthExcept

221. | mport TypeDef Spec ::= TypeDef Keyword ldentifierListO Al WthExcept

222. A I WthExcept ::= Al Keyword [Except Keyword | dentifierlList]

223. I mport Tenpl at eSpec ::= Tenpl at eKeyword | dentifierListO A | WthExcept

224. | mport Const Spec ::= ConstKeyword ldentifierListO A |WthExcept

225. I mport Al tstepSpec ::= Al tstepKeyword ldentifierListO Al |lWthExcept

226. 1 mport Test caseSpec ::
227. | mport Functi onSpec ::
228. | mport Si gnat ur eSpec ::
229. | mpor t Modul ePar Spec ::

Test caseKeyword | dentifierListOAlWthExcept
Functi onKeyword I dentifierListO Al WthExcept
Si gnat ur eKeyword ldentifierListO AllWthExcept
Modul ePar Keyword | dentifierListO Al Wt hExcept

230. I mport | nmport Spec ::= | nportKeyword Al | Keyword

A.1.6.1.9 Group definitions

231. GroupDef ::= G oupKeyword ldentifier "{" [Mdul eDefinitionsList] "}"
232. G oupKeyword ::= "group"

ETSI

230 ETSI ES 201 873-1 V4.5.1 (2013-04)

A.1.6.1.10 External function definitions

233. Ext Functi onDef ::= Ext Keyword Functi onKeyword Identifier "(" [FunctionFormal ParList]
")" [ReturnType
234. Ext Keyword ::= "external"

A.1.6.1.11 External constant definitions

235. Ext Const Def ::= Ext Keyword Const Keyword Type |dentifierlList

A.1.6.1.12 Module parameter definitions

236. Modul ePar Def ::= Mdul ePar Keyword (Mdul ePar | ("{" MiltitypedMdul eParLi st
1))
237. Modul ePar Keyword :: = "nodul epar”
238. Mul titypedModul ePar Li st ::= {Mdul ePar [Seni Col on]}
239. Modul ePar ::= Type Mdul ePar Li st
240. Modul ePar Li st ::= ldentifier [AssignnentChar ConstantExpression] {","
| dentifier

[Assi gnnent Char
Const ant Expr essi on] }

A.1.6.1.13 Friend module definitions

241. Fri endModul eDef ::= "friend" "nodul e" IdentifierList [Sem Col on]

A.1.6.2 Control part

242. Modul eControl Part ::= Control Keyword "{" Modul eControl Body "}" [WthStatenent]
[Seni Col on

243. Control Keyword ::= "control"

244. Modul eControl Body ::= [Control Statement O Def Li st]

245. Control Statenent O DefLi st ::= {Control Statenent O Def [Semn Col on]}+

246. Control Statement Or Def ::= (FunctionLocal Def |

FunctionLocal Inst) [WthStatenent] |
Cont r ol St at enment
247.Control Statenent ::= TinerStatenents |
Basi cStatenents |
Behavi our St at enent s |
SUTSt at enent s |
St opKeywor d

A.1.6.3 Local definitions

A.1.6.3.1 Variable instantiation

248. Var I nstance ::= VarKeyword ((Type VarList) | ((TenplateKeyword | RestrictedTenpl ate)
Type TenpVarList))

249. VarList ::= SingleVarlnstance {"," SingleVarlnstance}

250. Singl eVarlnstance ::= |dentifier [ArrayDef] [AssignmentChar Expression]

251. Var Keyword ::= "var"

252. TenpVar Li st ::= Singl eTenpVar| nstance {"," Singl eTenpVar | nstance}

253. Si ngl eTenpVar I nstance ::= ldentifier [ArrayDef] [Assignnment Char Tenpl at eBody]

254. Vari abl eRef ::= ldentifier [ExtendedFi el dRef erence]

A.1.6.3.2 Timer instantiation

255. Timerl nstance ::= Tiner Keyword VarLi st
256. Ti mer Keyword ::= "timer"
257. ArrayldentifierRef ::= ldentifier {ArrayOrBitRef}

A.1.6.4 Operations

A.1.6.4.1 Component operations

258. Configurati onStatenents ::= Connect St atenent |
MapSt at enent |
Di sconnect St at enent |
UnmapsSt at enent |
DoneSt at enent |
Ki |l edSt at enent |
Start TCSt at enent |
St opTCSt at enent |

ETSI

231 ETSI ES 201 873-1 V4.5.1 (2013-04)

Ki | | TCSt at enent
259. ConfigurationOps ::= CreateQp |

Sel fOp |
Syst enKeyword |
MICKeyword |
Runni ngQ |
AliveOp
260. CreateQp ::= Conponent Type Dot CreateKeyword ["(" (SingleExpression |
Mnus) ["," SingleExpression]
")"] [AliveKeyword
261.Sel fQp ::= "sel f"
262. DoneSt at emrent :: = Conponent | d Dot DoneKeyword
263.Kil |l edStatenent ::= Conponentld Dot KilledKeyword
264. Conponent | d :: = Conponent O Def aul t Ref erence | (AnyKeyword | Al | Keywor d)
Conponent Keywor d
265. DoneKeyword :: = "done"
266. Ki | | edKeyword ::= "killed"
267. Runni ngOp ::= Conmponent|d Dot Runni ngKeywor d
268. Runni ngKeyword ::= "runni ng"
269. AliveQp ::= Conponentld Dot AliveKeyword
270. Creat eKeyword ::= "create"
271. Al iveKeyword ::= "alive"
272. Connect St at ement :: = Connect Keyword Si ngl eConnecti onSpec
273. Connect Keyword ::= "connect"
274. Si ngl eConnectionSpec ::= "(" PortRef "," PortRef ")"
275. Port Ref ::= ConponentRef Colon ArrayldentifierRef
276. Conmponent Ref :: = Conponent O Def aul t Ref erence |
Syst enKeyword |
Sel fOp |
MICKeywor d
277. Conponent Ref Assi gnnment ::= ldentifier ":=" Conponent Ref
278. Di sconnect Statenment ::= D sconnect Keyword [Si ngl eConnecti onSpec |
Al | Connecti onsSpec |
Al | Port sSpec |
Al | ConpsAl | Port sSpec]
279. Al | ConnectionsSpec ::= "(" PortRef ")"
280. Al | PortsSpec ::= "(" ConponentRef ":" Al Keyword PortKeyword ")"
281. Al |l ConpsAl | PortsSpec ::= "(" Al Keyword Conponent Keyword ":" Al |l Keyword
Port Keyword ")"
282. Di sconnect Keyword ::= "di sconnect"
283. MapSt at emrent :: = MapKeyword Si ngl eConnecti onSpec [ParanC ause]
284. Par anC ause ::= ParanKeyword Functi onActual ParLi st
285. MapKeyword ::= "map"
286. UnmapSt at emrent @ : = UnmapKeywor d [Si ngl eConnecti onSpec [ParanC ause] |
Al | Connecti onsSpec [ParanC ause] |
Al | Port sSpec |
Al | ConpsAl | Port sSpec]
287. UnmapKeyword ::= "unmap"
288. Start TCStatement :: = Conponent Or Def aul t Ref erence Dot St art Keywor d
"(" Functionlnstance ")"
289. StartKeyword ::= "start"
290. St opTCSt at ement :: = St opKeyword | (Conponent ReferenceO Literal | Al Keyword
Conmponent Keywor d) Dot St opKeywor d
291. Conmponent Ref erenceOrLiteral ::= Conponent O Def aul t Ref erence |
MICKeywor d |
Sel fOp
292. Kill TCStatement ::= Kill Keyword | ((ConponentReferenceO lLiteral |
Al | Keywor d Conponent Keywor d) Dot
Ki I | Keywor d)
293. Conmponent O Def aul t Ref erence ::= Vari abl eRef | Functionl nstance
294.Ki |l | Keyword ::= "kill"
A.1.6.4.2 Port operations
295. Conmuni cationStatements :: = SendSt at ement |

Cal | St atenment |
Repl ySt at enent |
Rai seSt at enent |
Recei veSt at enent |
Trigger St atement |
CGet Cal | St at ement |
Cet Repl ySt at ement |
Cat chSt at enent |
CheckSt at enent |

Cl ear Statenent |
Start Statenent |

St opSt at enent |

Hal t St at enent |

ETSI

296.
297.
298.
299.

300.
301.
302.
303.
304.
305.
306.
307.
308.
. Cal | BodySt at enent Li st

309

310.
311.
312.
313.
314.
315.
316.
317.
318.

319.
320.
321.
322.

323.
324.

325.
326.
327.
328.

329.

[* STATI C SEMANTI CS — Fi el dRef erence shal |

232 ETSI ES 201 873-1 V4.5.1 (2013-04)
ChecksSt at eSt at enent
SendStaterment ::= ArrayldentifierRef Dot PortSendQp
Port SendQp ::= SendOpKeyword "(" InLineTenplate ")" [Tod ause]
SendOpKeyword ::= "send"
ToCl ause ::= ToKeyword (InLineTenplate |

Addr essRef Li st

Addr essRef Li st |

Al | Keywor d Conponent Keywor d

)
"(" InLineTenplate {"," InLineTenplate} ")"

ToKeyword ::= "to"

Cal | St at enent = ArrayldentifierRef Dot PortCall Qp [Port Cal | Body]
PortCal I Op ::= Call OpKeyword "(" CallParaneters ")" [Tod ause]

Cal | OpKeyword ::= "cal I "

Cal | Paraneters ::= |InLineTenplate ["," CallTi merVal ue]

Cal | Ti mer Val ue ::
Nowai t Keyword :: =
Port Cal | Body :: =

Cal | BodySt at enent

"{" Cal | BodySt at enent Li st
;.= {Cal | BodySt at enent [Semi Col on] } +
;.= Cal | BodyGQuard St at enent Bl ock

Expression | Nowai t Keywor

d

"nowai t "

"y

Cal | BodyGuard ::= Al t GuardChar Cal | BodyQps
Cal | BodyOps ::= CGetReplyStatenent | CatchStatenent

Repl ySt at enent

c:= ArrayldentifierRef Dot PortReplyQOp

Port Repl yOp :: = ReplyKeyword "(" |InLineTenplate [ReplyValue] ")" [Tod ause
Repl yKeyword ::= "reply"
Repl yVal ue ::= Val ueKeyword Expression

Rai seSt at enent

= ArrayldentifierRef Dot PortRai seOp

Port Rai seQp ::= Rai seKeyword "(" Signature "

," I nLineTenpl ate ")"

[

Tod ause]

Rai seKeyword ::= "raise"
::= PortOr Any Dot Port Recei
PortOrAny ::= ArrayldentifierRef | AnyKeyword Port Keyword

Recei veSt at enent

veOp

Port Recei veQp :: =

Recei veOpKeyword :
FronC ause ::= FronKeyword (InLineTenplate |

Recei veQpKeyword ["(" InLineTenplate ")"] [FronC ause

[Port Redirect]
;= "receive"

Addr essRef Li st

AnyKeywor d Conponent Keywor d

FronKeyword ::= "front

PortRedirect ::=

Por t Redi r ect Synbol

(Val ueSpec [Sender Spec] | Sender Spec)

Port Redi rect Synbol ::= "->"
Val ueSpec ::= Val ueKeyword (VariableRef | ("(" SingleVal ueSpec {","
Si ngl eVal ueSpec}
“)"))
Si ngl eVal ueSpec ::= Variabl eRef [Assignnent Char Fi el dRef erence Ext endedFi el dRef er ence]

TypeDef | dentifier*/

330.
331.
332.

333

335.
336.

337

338.
339.
340.
341.
342.
343.
344,
345.
346.
347.

348

349.

350.
351.

352.
353.
354,

Val ueKeyword ::

n

val ue"
der Keywor d Vari abl eRef

Sender Spec ::= Se
Sender Keyword :: =

. Tri gger St at enent
334.

Tri gger OpKeyword :: =
::= PortOrAny Dot Port GetCal | Op
.PortGetCall Op ::= GetCall OpKeyword ["(" InLineTenplate ")"] [FronC ause

Cet Cal | St at enent

"sender"

::= PortOrAny Dot PortTrigg
PortTriggerQp ::= Trigger QpKeyword ["(" InLineTenplate ")"] [FronC ause

erOp

[PortRedirect]
;= "trigger"

[Port Redi rect Wt hPar ani

not be Par Ref and Ext endedFi el dRef erence shall not be

Get Cal | OpKeyword ::= "getcal "

Port Redi rect Wt hParam : : = Port Redirect Synbol Redirect Wt hParanfSpec
Redi rect Wt hPar anSpec ::= ParanfSpec [Sender Spec] | Sender Spec

Par amSpec ::= ParanKeyword ParamAssi gnnent Li st

Par anKeyword :: = "parant

Par amAssi gnnent Li st ::= "(" (AssignnentList | VariableList) ")"
Assi gnnent Li st = Vari abl eAssi gnnent {"," Vari abl eAssi gnnent }

Var i abl eAssi gnnen

VariableList ::= VariableEntry {","

t

;1= Vari abl eRef Assi gnnent Char

Identifier

Vari abl eEntry ::= Variabl eRef | M nus

. Get Repl ySt at enent
Port Get Repl yOp :: = Cet Repl yOpKeyword [" ("

Por t Redi rect Wt hVal ueAndPar am : :
Redi r ect W t hVal ueAndPar anfSpec : :

CGet Repl yOpKeyword :

Val ueMat chSpec ::
CheckSt at enent

::= PortOrAny Dot Port Get Repl yOp

Vari abl eEntry}

I nLi neTenpl at e [Val ueMat chSpec]

)"

[FronCl ause] [PortRedirect Wt hVal ueAndPar ani

Por t Redi r ect Synbol Redirect Wt hVal ueAndPar anfSpec

Val ueSpec [Parantpec] [Sender Spec] |

Redi r ect W t hPar anSpec

:= "getreply"

Val ueKeyword | nLi neTenpl at e

Port Or Any Dot Port CheckOp

ETSI

233 ETSI ES 201 873-1 V4.5.1 (2013-04)

355. Port CheckQp ::= CheckOpKeyword ["(" CheckParaneter ")"]
356. CheckOpKeyword ::= "check"
357. CheckPar anet er CheckPort OpsPresent |

FronC ausePresent |

Redi r ect Present

358. FronCl ausePresent ::= FronC ause [Port Redirect Synbol Sender Spec]
359. Redirect Present ::= PortRedirectSynbol Sender Spec
360. CheckPort OpsPresent ::= PortReceiveQ |
Port Get Cal | Op |
Port Get Repl yOp |
Port Cat chOp
361. CatchStatement ::= PortOrAny Dot Port Cat chQp
362. Port CatchQp ::= CatchOpKeyword ["(" CatchQpParaneter ")"] [FronC ause]
[Port Redi r ect
363. Cat chOpKeyword ::= "catch"
364. Cat chQpParaneter ::= Signature "," |nLineTenplate | TinmeoutKeyword
365. G earStatenent ::= Port O All Dot O ear OQpKeyword
366. Port O All ::= ArrayldentifierRef | Al Keyword PortKeyword
367. Cl ear OpKeyword ::= "clear"
368. Start St at ement = Port O All Dot StartKeyword
369. StopStatement ::= PortOr All Dot StopKeyword
370. St opKeyword ::= "stop"
371. HaltStatement ::= PortOrAll Dot HaltKeyword
372. Hal t Keyword ::= "halt"
373. AnyKeyword ::= "any"
374. CheckStateStatenent ::= PortOrAll Any Dot CheckStateKeyword " (" SingleExpression)"
375.Port O All Any ::= Port O Al | AnyKeyword Port Keyword
376. CheckSt at eKeyword :: = "checkstate"

A.1.6.4.3 Timer operations

377. TimerStatenments ::= StartTi mer St atement |
St opTi ner St at ement |
Ti neout St at ement

378. Timer Ops ::= ReadTinmerQ | Runni ngTi mer O

379.StartTimerStatement ::= ArrayldentifierRef Dot StartKeyword ["(" Expression
S

380. StopTimerStatenent ::= TinerRef O All Dot StopKeyword

381. TimerRef O All ::= ArrayldentifierRef | Al Keyword Ti mer Keywor d

382. ReadTimerQ ::= ArrayldentifierRef Dot ReadKeyword

383. ReadKeyword ::= "read"

384. Runni ngTimer @ ::= Ti ner Ref O Any Dot Runni ngKeywor d

385. Ti meout Statement ::= Timer Ref O Any Dot Ti meout Keyword

386. TimerRef OrAny ::= ArrayldentifierRef | (AnyKeyword Ti mer Keywor d)

387. Ti meout Keyword ::= "tinmeout"

A.1.6.4.4 Testcase operation

388. Test caseQperation ::= TestcaseKeyword "." StopKeyword ["(" {(FreeText |
I nLi neTenpl at e)

(" "1}

")

A.1.6.5 Type

389. Type ::= PredefinedType | ReferencedType

390. PredefinedType ::= BitStri ngkeyword |
Bool eanKeyword |
Char St ri ngKeyword |
Uni versal CharString |
I nt eger Keyword |
Cctet StringKeyword |
HexSt ri ngKeyword |
Ver di ct TypeKeyword |
Fl oat Keyword |
Addr essKeyword |
Def aul t Keyword |
AnyTypeKeywor d

391.BitStringKeyword ::= "bitstring"

392. Bool eanKeyword :: = "bool ean"

393. I ntegerKeyword ::= "integer"

394. Cctet StringKeyword ::= "octetstring”

395. HexStringKeyword ::= "hexstring"

396. Verdi ct TypeKeyword ::= "verdicttype"

397. Fl oat Keyword ::= "float"

398. Addr essKeyword ::= "address"

ETSI

234 ETSI ES 201 873-1 V4.5.1 (2013-04)

399. Def aul t Keyword ::= "defaul t"

400. AnyTypeKeyword ::= "anytype"

401. Char StringKeyword ::= "charstring"

402. Uni versal CharString ::= Universal Keyword Char Stri ngKeywor d

403. Uni ver sal Keyword ::= "universal"

404. Ref erencedType :: = Extendedl dentifier [ExtendedFi el dRef erence]
405. TypeReference ::= ldentifier

406. ArrayDef ::= {"[" SingleExpression [".." Singl eExpression] "]"}+

/* STATI C SEMANTICS - ArrayBounds will resolve to a non negative value of integer type */

A.1.6.6 Value

407. Val ue ::= PredefinedVal ue | ReferencedVal ue
408. PredefinedVal ue ::= Bstring |

Bool eanVal ue |

Char Stri ngVal ue |

Nunber | /* IntegerValue */
Gstring |

Hstring |

Ver di ct TypeVal ue |

Identifier | /* EnuneratedVal ue */
Fl oat Val ue |

Addr essVal ue |

Oni t Keywor d
409. Bool eanVal ue ::= "true" | "fal se"
410. Verdi ct TypeVal ue ::= "pass" |
"fail" |
"inconc" |
"none" |
"error"
411. Char StringValue ::= Cstring | Quadruple
412. Quadrupl e ::= CharKeyword " (" Nunber "," Nunber "," Nunber "," Nunber
413. Char Keyword ::= "char"
414. Fl oat Val ue :: = Fl oat Dot Not ati on |
Fl oat ENot ati on |
NaNKeywor d
415. NaNKeyword ::= "not _a_nunber"
416. Fl oat Dot Not ation ::= Nurmber Dot Deci mal Nunber
417. Fl oat ENot ati on ::= Nunber [Dot Deci nal Nunber] Exponential [M nus]
Nurber
418. Exponential ::="E"
419. Ref erencedVal ue :: = Extendedl dentifier [ExtendedFi el dRef erence]
420. Nurmber ::= (NonZeroNum {Nun}) | "0"
421.NonZeroNum::= "1™ | "2" ["3" | "4" | "5" | "6" | "7" | "8" | "9
422. Deci mal Nurber ::= {Nun}+
423. Num ::= "0" | NonZer oNum
424.Bstring ::= """ {Bin} "'" "B"
425.Bin ::="0" "1
426. Hstring ::= """ {Hex} "'" "H
427.Hex ::= Num| "A" | "B" | "C" | "D" | "E' | "F" | "a" | "b" | "c" |
tdt] "e" | "f"
428.Cstring ::= """ {Cct} "'" "O
429. Cct ::= Hex Hex
430.Cstring ::= """ {Char}
431. Char ::=/* REFERENCE - A character defined by the relevant CharacterString type. For charstring

a character fromthe character set defined in ITUT T.50. For universal charstring a character from
any character set defined in | SO |EC 10646 */

432. 1 dentifier ::= A pha {A phaNum | Underscore}
433. Al pha ::= Upper Al pha | LowerAl pha
434. Al phaNum ::= Al pha | Num
435. Upper Al pha ::= "A" | "B" | "C" | "D'" | "E'" | "F" | "G | "H | "I" |
S UK L MO NG O] P] Q] R
ST UtV W X Y | "2
436. Lower Al pha ::= "a" | "b" | "c" | "d" | "e" | “f" | "g" | "h" | "i" |
0T L T B O O O T B
s" | "t" | "u" VA VA I G A "z"
ical character fromthe BASIC LATIN or fromthe

437. Ext endedAl phaNum :: = /* REFERENCE - A graphi

LATI N1 SUPPLEMENT character sets defined in | SO |EC 10646 (characters fromchar (0,0,0,32) to char
(0,0,0,126), fromchar (0,0,0,161) to char (0,0,0,172) and fromchar (0,0,0,174) to char (0,0,0, 255)
*/

438. FreeText ::= """ {ExtendedA phaNun} """
439. AddressValue ::= "nul | "
440. Omi t Keyword ::= "omt"

ETSI

235 ETSI ES 201 873-1 V4.5.1 (2013-04)

A.1.6.7 Parameterization

441. | nPar Keyword ::= "in"
442. Qut Par Keyword ::= "out"
443. | nQut Par Keyword ::= "inout"
444, For mal Val uePar ::= [(lnParKeyword |

| nQut Par Keyword |

Qut Par Keywor d

)] Type ldentifier [":=" (Expression | Mnus)]

445. Formal Port Par ::= [l nQutPar Keyword] ldentifier ldentifier

/* The first Identifier refers to the port type. The second Identifier refers to the port paraneter
identifier */

446. Formal Ti mer Par ::= [| nQut Par Keyword] Ti ner Keyword |dentifier
447. For mal Tenpl atePar ::= [(| nParKeyword |

Qut Par Keyword |
| nQut Par Keywor d
)] (Tenpl ateKeyword | RestrictedTenpl ate) Type

Identifier [":=" (lnLineTenplate | Mnus)]
448. RestrictedTenplate ::= OritKeyword | (Tenpl ateKeyword Tenpl at eRestriction)
449. Tenpl ateRestriction ::= "(" (OnitKeyword |

Val ueKeyword |
Pr esent Keywor d

)"
A.1.6.8 Statements
A.1.6.8.1 With statement
450. WthStatenment ::= WthKeyword WthAttriblList
451. Wt hKeyword ::= "with"
452, WthAttribList ::="{" MiltiWthAttrib "}"
453. Multi WthAttrib ::= {SingleWthAttrib [Sem Col on]}
454.Singl eWthAttrib ::= Attri bKeyword [Overri deKeyword] [AttribQualifier]
FreeText
455. Attri bKeyword :: = EncodeKeyword |

Var i ant Keyword |

Di spl ayKeyword |
Ext ensi onKeyword |

Opt i onal Keywor d
456. EncodeKeyword :: = "encode"

457. Vari ant Keyword ::= "variant"

458. Di spl ayKeyword ::= "displ ay"

459. Ext ensi onKeyword ::= "extension"

460. Overri deKeyword ::= "override"

461. AttribQualifier ::="(" DefOFieldRefList ")"

462. Def O Fiel dRef List ::= Def O FieldRef {"," Def O Fi el dRef}

463. Def O Fiel dRef ::= Qualifiedldentifier |
((FieldReference | "[" Mnus "]1") [ExtendedFiel dReference]) |
Al | Ref

464. Qualifiedldentifier ::={ Identifier Dot } ldentifier

465. Al Ref ::= (G oupKeyword Al | Keyword [Except Keyword "{" QualifiedldentifierlList

"1"1) | ((TypeDefKeyword |

Tenpl at eKeywor d |

Const Keyword |

Al t st epKeyword |

Test caseKeyword |

Functi onKeyword |

Si gnat ur eKeywor d |

Mbdul ePar Keywor d

) Al Keyword [Except Keyword

"{" ldentifierlList
"'

A.1.6.8.2 Behaviour statements

466. Behavi our St at enment s :: = Test casel nstance |
Functi onl nst ance |
Ret ur nSt at enent |
Al t Construct |
Interl eavedConstruct |
Label St at enent |
Cot oSt at ement |
Repeat St at enent |

ETSI

236 ETSI ES 201 873-1 V4.5.1 (2013-04)

Deacti vat eSt at enent |
Al t st epl nst ance |
ActivateOp |

Br eakSt at enent |
Cont i nueSt at enent

467. Set Local Verdict ::= SetVerdictKeyword "(" SingleExpression {"," Loglten}
DE
468. Set Verdi ct Keyword ::= "setverdict"
469. Get Local Verdict ::= "getverdict"
470. SUTSt atenments :: = ActionKeyword " (" ActionText {StringQOp ActionText}
DE
471. ActionKeyword ::= "action"
472. ActionText ::= FreeText | Expression
473. ReturnStatenment ::= ReturnKeyword [Expression | InLineTenplate]

/* STATI C SEMANTI CS - Expression shall evaluate to a value of a type conpatible with the return type

for functions returning a value. It shall evaluate to a value, tenplate (literal or tenplate
instance), or a matching nmechani smconpatible with the return type for functions returning a

tenpl ate. */
474. Al tConstruct ::= Al tKeyword "{" Al tGuardList "}"
475. Al t Keyword ::= "alt"
476. Al t GuardLi st ::= {CQuardStatenent | El seStatenent [Seni Col on]}
477. GuardStatenment ::= Al tGuardChar (Altsteplnstance [StatenentBl ock] |
GuardOp St at enent Bl ock)
478. El seStatement ::= "[" ElseKeyword "]" StatenentBl ock
479. Al t GuardChar ::= "[" [Bool eanExpression] "]"
480. GuardQp :: = Ti neout St at ement |
Recei veSt at enent |
Trigger St atenment |
Cet Cal | St at ement |
Cat chSt at enent |
CheckSt at enent |
Cet Repl ySt at enent |
DoneSt at enent |
Ki | | edSt at enent
481. I nterl eavedConstruct ::= Interl eavedKeyword "{" |nterl eavedGuardLi st
482. I nterl eavedKeyword ::= "interl eave"
483. I nterl eavedGuardLi st ::= {Interl eavedGuar dEl ement [Sem Col on] }+
484. 1 nterl eavedGuar dEl enent ::= Interl eavedGuard Statenent Bl ock
485. I nterl eavedGuard ::= "[" "]" QuardOp
486. Label Statenment ::= Label Keyword |dentifier
487. Label Keyword ::= "l abel "
488. Got oSt at ement :: = CGotoKeyword ldentifier
489. Got oKeyword ::= "goto"
490. Repeat Statenent ::= "repeat"
491. ActivateQp ::= ActivateKeyword "(" Altsteplnstance ")"
492. ActivateKeyword ::= "activate"
493. DeactivateStatenment ::= DeactivateKeyword ["(" Conponent O Def aul t Ref erence
494. Deacti vat eKeyword ::= "deactivate"
495, BreakSt atement ::= "break"
496. Conti nueStatenent ::= "continue"

A.1.6.8.3 Basic statements

497. Basi cStatenments ::= Assignnment |
LogSt at enent |
LoopConstruct |
Condi ti onal Construct |
Sel ect CaseConstruct |
St at ement Bl ock
498. Expression ::= Singl eExpression | ConpoundExpressi on
499. ConmpoundExpressi on ::= Fi el dExpressionList | ArrayExpression

/* STATI C SEMANTI CS - W thin ConpoundExpression the ArrayExpression can be used for Arrays,
record of and set of types. */

500. Fi el dExpressionList ::= "{" Fiel dExpressionSpec {"," Fi el dExpressi onSpec}
501. Fi el dExpressi onSpec :: = Fi el dRef erence Assi gnnment Char Not UsedOr Expr essi on
502. ArrayExpression ::= "{" [ArrayEl enent ExpressionList] "}"

503. ArrayEl ement Expressi onLi st ::= Not UsedOr Expression {"," Not UsedOr Expressi on}
504. Not UsedOr Expression ::= Expression | M nus

505. Const ant Expressi on :: = Singl eExpressi on | ConpoundConst Expr essi on

506. Bool eanExpressi on :: = Singl eExpression

/* STATI C SEMANTI CS - Bool eanExpression shall resolve to a Value of type Bool ean */

ETSI

record,

237 ETSI ES 201 873-1 V4.5.1 (2013-04)

507. ConpoundConst Expressi on :: = Fi el dConst Expressi onLi st | ArrayConst Expressi on

/* STATI C SEMANTICS - W thin ConpoundConst Expressi on the ArrayConst Expression can be used for
arrays, record, record of and set of types. */

508. Fi el dConst ExpressionList ::= "{" Fi el dConst Expressi onSpec {"," Fi el dConst Expressi onSpec}
509. Fi el dConst Expressi onSpec :: = Fi el dRef erence Assi gnnment Char Const ant Expr essi on

510. ArrayConst Expression ::= "{" [ArrayEl ement Const ExpressionList] "}"

511. ArrayEl ement Const Expr essi onLi st ::= Const ant Expression {"," Constant Expressi on}

512. Assi gnnment ::= Variabl eRef Assignnent Char (Expression | Tenpl at eBody)

/* STATI C SEMANTICS - The Expression on the right hand side of Assignnent shall evaluate to an
explicit value of a type conpatible with the type of the left hand side for value variables and
shall evaluate to an explicit value, tenplate (literal or a tenplate instance) or a matching
nmechani sm conpatible with the type of the left hand side for tenplate variables. */

513. Si ngl eExpression ::= Xor Expression {"or" XorExpression}

/* STATIC SEMANTICS - If nore than one Xor Expression exists, then the Xor Expressions shall eval uate
to specific values of conpatible types */
514. Xor Expressi on ::= AndExpression {"xor" AndExpression}

/* STATIC SEMANTICS - If nore than one AndExpression exists, then the AndExpressions shall eval uate
to specific values of conpatible types */
515. AndExpression :: = Not Expression {"and" Not Expression}

/* STATIC SEMANTICS - If nore than one Not Expression exists, then the Not Expressions shall eval uate
to specific values of conpatible types */
516. Not Expression ::= ["not"] Equal Expressi on

/* STATI C SEMANTI CS - Operands of the not operator shall be of type bool ean or derivatives of type
Bool ean. */
517. Equal Expressi on :: = Rel Expressi on {Equal Op Rel Expression}

/* STATIC SEMANTICS - If nore than one Rel Expression exists, then the Rel Expressions shall eval uate
to specific values of conpatible types. If only one Rel Expression exists, it shall not derive to a
CompoundExpression. */

518. Rel Expression ::= ShiftExpression [Rel O ShiftExpression] | ConpoundExpression

/* STATIC SEMANTICS - If both ShiftExpressions exist, then each ShiftExpression shall evaluate to a
specific integer, Enunerated or float Value or derivatives of these types */
519. Shift Expression ::= Bit O Expression {ShiftQp Bit O Expression}

/* STATI C SEMANTICS - Each Result shall resolve to a specific Value. If nore than one Result exists
the right-hand operand shall be of type integer or derivatives and if the shift opis "<<" or ">>"
then the | eft-hand operand shall resolve to either bitstring, hexstring or octetstring type or
derivatives of these types. If the shift opis " */

520. Bi t Or Expression ::= BitXor Expression {"or4b" Bit Xor Expression}

/* STATIC SEMANTICS - If nore than one Bit Xor Expression exists, then the BitXor Expressions shall
evaluate to specific values of conpatible types */
521. Bi t Xor Expressi on ::= Bi t AndExpressi on {"xor4b" Bit AndExpressi on}

/* STATIC SEMANTICS - If nore than one BitAndExpression exists, then the BitAndExpressions shall
evaluate to specific values of conpatible types */
522. Bi t AndExpression ::= BitNot Expression {"and4b" Bit Not Expression}

/* STATIC SEMANTICS - If nore than one BitNot Expression exists, then the BitNot Expressions shall
evaluate to specific values of conpatible types */
523. Bi t Not Expression ::= ["not4b"] AddExpression

/* STATIC SEMANTICS - If the not4b operator exists, the operand shall be of type bitstring,
octetstring or hexstring or derivatives of these types. */
524. AddExpression ::= Ml Expressi on {AddOp Mil Expressi on}

/* STATI C SEMANTI CS - Each Mul Expression shall resolve to a specific Value. If nore than one

Mul Expression exists and the AddOp resolves to StringOp then the Ml Expressions shall be valid
operands for StringQp. If nore than one Ml Expression exists and the AddOp does not resolve to
StringQp then the Mul Expression shall both resolve to type integer or float or derivatives of these
types. If only one Mul Expression exists, it shall not derive to a ConpoundExpression. */

525. Mul Expression ::= UnaryExpression {MiltiplyQp UnaryExpression} | ConpoundExpression

/* STATI C SEMANTI CS - Each UnaryExpression shall resolve to a specific Value. If nore than one
Unar yExpr essi on exi sts then the UnaryExpressions shall resolve to type integer or float or
derivatives of these types. */

526. UnaryExpression ::= [UnaryQp] Primary

/* STATIC SEMANTICS - Primary shall resolve to a specific Value of type integer or float or
derivatives of these types.*/

ETSI

238 ETSI ES 201 873-1 V4.5.1 (2013-04)

527.Primary ::= QoCall |

Val ue |
"(" Singl eExpression ")"
528. Ext endedFi el dReference ::= {(Dot (ldentifier | PredefinedType)) |

ArrayOrBit Ref |
" Mnus "T")
1+

/* STATIC SEMANTIC - The Identifier refers to a type definition if the type of the Varlnstance or
Ref erencedVal ue in which the ExtendedFi el dReference is used is anytype. ArrayOrBitRef shall be used
when referencing el enents of values or arrays. The square brackets with dash shall be used when
referencing inner types of a record of or set of type. */
529. OpCal | ::= Configurati onOps |

Get Local Verdict |

Ti mer Qps |

Test casel nst ance |

(Functi onl nst ance [Ext endedFi el dRef erence]) |

(Tenpl at eOps [Ext endedFi el dRef erence]) |

Acti vat eQp
530. AddOp ::= "+" |
e
StringQp
/* STATI C SEMANTICS - Operands of the "+" or "-" operators shall be of type integer or float or
derivations of integer or float (i.e. subrange) */
531.MultiplyQo ::="*" | "/" | "mod" | "rent

/* STATI C SEMANTI CS - Operands of the "*", "/", remor nod operators shall be of type integer or
float or derivations of integer or float (i.e. subrange) */

532. UnaryQp ::= "+" | "-

/* STATI C SEMANTICS - Operands of the "+" or "-" operators shall be of type integer or float or
derivations of integer or float (i.e. subrange) */

533.Rel @ ::= "<" | "' | "s=" | "<="

/* STATI C SEMANTICS - the precedence of the operators is defined in Table 6 */
534.Equal Op ::= "==" | "I="
535.StringQp ::= "&"

/* STATI C SEMANTI CS - Operands of the list operator shall be bitstring, hexstring, octetstring,
(universal) character string, record of, set of, or array types, or derivates of these types */
536.ShiftOp ::= "<<" | ">>" | "<@ | "@"

537. LogStatenent ::= LogKeyword "(" Logltem{"," Loglten} ")"
538. LogKeyword ::= "l o0g"

539. Logltem ::= FreeText | InLineTenplate

540. LoopConstruct ::= For Statenent |

Wi | eSt at enent |
DoWhi | eSt at enent

541. For Statement ::= ForKeyword "(" Initial Sem Col on Bool eanExpression
Seni Col on Assignnent ")" StatenentBl ock
542. For Keyword ::= "for"
543.Initial ::= Varlnstance | Assignnent
544. Wil eStatenment ::= Wil eKeyword "(" Bool eanExpression ")" StatenentBl ock
545. Whi | eKeyword ::= "while"
546. DoWi | eSt at ement @ : = DoKeyword Statenent Bl ock Wil eKeyword " (" Bool eanExpressi on
DE
547. DoKeyword ::= "do"
548. Condi tional Construct ::= |fKeyword "(" Bool eanExpression ")" StatenentBl ock
{El sel fd ause} [El sed ause]
549. | f Keyword ::= "if"
550. El sel f O ause ::= El seKeyword | fKeyword "(" Bool eanExpression ")" StatenentBl ock
551. El seKeyword ::= "el se"
552. El seCl ause ::= El seKeyword St at ement Bl ock
553. Sel ect CaseConstruct ::= Sel ect Keyword "(" Singl eExpression ")" Sel ect CaseBody
554. Sel ect Keyword ::= "sel ect"
555. Sel ect CaseBody ::= "{" {Sel ectCase}+ "}"
556. Sel ect Case ::= CaseKeyword (" (" InLineTenplate {"," |nLineTenpl ate}
")" | El seKeyword) StatenentBl ock
557. CaseKeyword ::= "case"
558. Extendedl dentifier ::= [ldentifier Dot] Identifier
559. ldentifierList ::= ldentifier {"," ldentifier}
560. QualifiedldentifierList ::= Qualifiedldentifier {"," Qualifiedldentifier}

ETSI

239 ETSI ES 201 873-1 V4.5.1 (2013-04)

A.1.6.9 Miscellaneous productions

561.Dot ::="."

562.Mnus ::="-"

563. Sem Colon ::=";"
564.Colon ::=":"

565. Under score ::= "

566. Assi gnnent Char ::= ":="

ETSI

240 ETSI ES 201 873-1 V4.5.1 (2013-04)

Annex B (normative):
Matching values

B.1 Template matching mechanisms

This annex specifies the matching mechanisms that may be used in TTCN-3 templates (and only in templates).

B.1.1 Matching specific values

Specific values are the basic matching mechanism of TTCN-3 templates. Specific values in templates are expressions
which do not contain any matching mechanisms or wildcards.

Unless otherwise specified, atemplate field matches the corresponding field value if, and only if, the field value has
exactly the same value as the value to which the expression in the template eval uates.

EXAMPLE:

/1 Gven the nessage type definition
type record MyMessageType

{

i nt eger fieldl,
charstring field2,

bool ean field3 optional,
i nt eger field4[4]

}

/1 A nmessage tenplate using specific values could be
tenpl ate MyMessageType MyTenpl ate: =

fieldl := 3+2, /'l specific value of integer type
field2 := "My string", [/ specific value of charstring type
field3 := true, /'l specific value of bool ean type
fieldd := {1, 2,3, 4} /'l specific value of integer array

B.1.2 Matching mechanisms instead of values

The following matching mechanisms may be used in place of explicit values.

B.1.2.1 Template list

Template lists specify lists of acceptable values. It can be used on values of all types. A template list may also contain
templates.

A template field that uses a template list matches the corresponding field if, and only if, the field value matches any one
of the values or templates in the template list. Each value or template in the template list shall be of the type declared
for the template field in which this mechanism is used.

EXAMPLE 1.
tenpl ate MyMessage MyTenpl ate: =

fieldl :
field2 :

(2,4,6), /1 list of integer values
("Stringl", "String2"), /1 list of charstring val ues

ETSI

241 ETSI ES 201 873-1 V4.5.1 (2013-04)

Besides specifying individual values, it is also possible to add all elements of an existingr ecord of orset of
template into atemplatelist usinganal | fr omclause.

Restrictions

a) Thetype of the template list and the member type of the templateintheal | f r omclause shall be
compatible.

b) Thetemplateintheal | fr omclause asawhole shall not resolve into a matching mechanism (i.e. its
elements may contain any of the matching mechanisms or matching attributes with the exception of those
described in the following restriction).

¢) Individual fields of thetemplateintheal | fr omclause shall not resolve to any of the following matching
mechanisms. AnyElementsOrNone, permutation.

EXAMPLE 2:

type record of integer Rol;
tenplate Rol t_Roll := {1, 2, (6..9)};

tenplate Rol t_Rol2 := {1, *, 3};

template integer t_il := (all fromt_Rol1, 100);
/1 results in (1, 2, (6..9), 100)

tenplate integer t_i2 := (0, all fromt_Rol2);
/] causes an error because t_Rol 2 contains AnyEl ement sO None

tenplate Rol t_Rol3 := (all fromt_Rol1);

/] causes an error because nenber type of t_Rol1 (integer)
/1 is not conpatible with the list tenplate type (Rol)
tenplate Rol t_Rol4 := ?;

tenplate Rol t_Rol5 := (all fromt_Rol4);
/'l causes an error, because t_Rol4 resolves into a matchi ng mechani sm

B.1.2.2 Complemented template list

The keyword conpl enent denotesalist of values that will not be accepted as values (i.e. it is the complement of a
templatelist). It can be used on al values of all types. A complemented value list may also contain templates.

Each value or template in the list shall be of the type declared for the template field in which the complement is used.

A template field that uses complement matches the corresponding field if and only if the field does not match any of the
values or templates listed in the template list. The template list may be a single value, of course.

EXAMPLE 1:
tenpl ate MyMessage MyTenpl ate: =

fieldl := conplenent (1,3,5), /1 list of unacceptable integer val ues

fieIdS: not (true) /1 will match fal se
}

Besides specifying individual values, it is possible to add all elements of an existingr ecord of orset of template
into a complement template list usinganal | f r omclause.

Restrictions

a) Thetype of the complemented template list and the member type of the templateintheal | f r omclause
shall be compatible.

b) Thetemplateintheal | fr omclause asawhole shall not resolve into a matching mechanism (i.e. its
elements may contain any of the matching mechanisms or matching attributes with the exception of those
described in the following restriction).

ETSI

242 ETSI ES 201 873-1 V4.5.1 (2013-04)

¢) Individual fields of thetemplateintheal | fr omclause shall not resolve to any of the following matching
mechanisms: AnyElementsOrNone, permutation.

EXAMPLE 2:

type record of integer Rol;
tenplate Rol t_Roll := {1, 2, (6..9)};

tenplate Rol t_Rol2 := {1, *, 3};

tenplate integer t_il := conplenent(all fromt_Rol1, 100);
I/l results in (1, 2, (6..9), 100)

tenplate integer t_i2 := conplement (0, all fromt_Rol 2);
/] causes an error because t_Rol 2 contains AnyEl ement sO None

tenplate Rol t_Rol3 := conplenent(all fromt_Rol1);

/] causes an error because nenber type of t_Roll (integer) is not conpatible
/1 with the conplenmented list tenplate type (Rol)

tenplate Rol t_Rol4 := ?;

tenplate Rol t_Rol5 := conplenment (all fromt_Rol4);
/] causes an error because t_Rol4 resolves into a matchi ng nechani sm

B.1.2.3 Any value
The matching symbol "?' (AnyValue) matches any value of the specified type. It can be used on values of all types.

A template field that uses the any value mechanism matches the corresponding field if, and only if, the field evaluates to
asingle element of the specified type.

EXAMPLE:

tenpl ate MyMessage MyTenpl ate: =

fieldl := 2, /1 will match any integer

field2 := 2, /1 will match any non-enpty charstring val ue
field3 := 2, /1 will match true or false

fieldd :=7? /1 will match any sequence of integers

B.1.2.4 Any value or none

The matching symbol "*" (AnyValueOrNone) is used to indicate that any valid value and the omission of the given
optional field are acceptable. It can be assigned to templates of any type as a whole or to optional fields of set or
r ecor d templates. At the time of matching, it shall be applied to optional fieldsof r ecor d and set templates only.

A template field that uses this symbol matches the corresponding field if, and only if, either the field evaluates to any
element of the specified type, or if thefield is absent.

EXAMPLE:

type record MyMessage

i nt eger fieldl,
MyRecor dof field2 optional,
bool ean fiel d3 optional

}
tenpl ate MyMessage MyMessageTenpl ate: =

field3:=* /1 matches true or false or omtted field3

}
tenpl ate MyMessage MyMessageTenpl at e2: =

fieldl : = *, /'l causes an error as fieldl is nandatory

ETSI

243 ETSI ES 201 873-1 V4.5.1 (2013-04)
tenpl ate MyRecordof MyRecof Tenplate : = *; /1 this assignnent is allowed
tenpl ate bool ean MyBool Tenpl ate : = *; /1 this assignnent is allowed as well
tenpl ate MyMessage MyMessageTenpl at e3: =
fieldl : = 42,
field2 : = MyRecof Tenpl at e,
/1 matches any valid value allowed by M/Recordof of absent field2

field3 := MyBool Tenpl ate
/1 matches true or false or omtted field3
}

Mybool eanVar := match ({}, MyRecof Tenpl ate);
/] causes an error as a record of tenplate shall not be AnyVal ueO None
/1 at the tinme of matching

Mybool eanVar : = match ({42,onit,true}, MyMessageTenpl at e3) ;
/1 matches and returns true

B.1.2.5 Value range

Ranges indicate a bounded range of acceptable values, including or excluding the boundaries. When used for val ues of
i nt eger orfl oat types(and integer or float subtypes), a boundary value shal be either:

a) infinity or -infinity;
b) anexpression that evaluatesto a specific integer or float value.

The lower boundary shall be put on the left side of the range, the upper boundary at the right side. The lower boundary
shall be less than the upper boundary.

A template field that uses a range matches the corresponding field if, and only if, the field value is equal to one of the
valuesin the range.

When used in templates or template fieldsof char st ri ng oruni versal charstring types, the boundaries
shall evaluate to valid character positions according to the coded character set table(s) of the type (e.g. the given
position shall not be empty). Empty positions between the lower and the upper boundaries are not considered to be valid
values of the specified range.

EXAMPLE:
tenpl ate MyMessage MyTenpl ate: =

fieldl := (1 .. !6), /1 range of integer type from1l to 5

}
/1 other entries for fieldl mght be (-infinity to 8) or (/12 to infinity)

B.1.2.6 SuperSet

SuperSet is an operation for matching that shall be used only on valuesof set of types. SuperSet is denoted by the
keyword super set . SuperSet matches a set of valuesif, and only if, the set of values contains at least all of the
elements defined within the SuperSet, and may contain more. This argument may contain templates (including template
variables) and matching mechanisms with the restrictions given below. However, the length matching attribute may be
attached to the SuperSet itself, in which case the minimal length allowed by the length attribute shall not be less than
the number of the elements in the SuperSet.

EXAMPLE 1:
type set of integer MySetOf Type (0 .. 10);
tenpl ate MySet O Type MyTenpl atel : = superset (1, 2, 3);

/1 matches any sequence of integers which contains at |east one occurrences of the nunbers
/1 1, 2 and 3 in any order and position

ETSI

244 ETSI ES 201 873-1 V4.5.1 (2013-04)

tenpl ate MySet Of Type MyTenpl at e2_AnyVal ue : = superset (1, 2, ?);

/'l matches any sequence of integers which contains at |east one occurrences of the nunbers

/1 1, 2 and at |east one nore valid integer value (i.e. between 0 and 10, inclusively), in any
/1 order and position

tenpl ate MySet Of Type MyTenpl ate3 : = superset (1, 2, (3, 4));
/'l matches any sequence of integers which contains at |east one occurrences of the nunbers
/1 1, 2 and a nunber with the value 3 or 4, in any order and position

tenpl ate MySet Of Type MyTenpl ate4 : = superset (1, 2, conplenent(3, 4));
/1 any sequence of integers natches which contains at |east one occurrences of the nunbers
/1 1, 2 and a valid integer value which is not 3 or 4, in any order and position

tenpl ate MySet O0f Type MyTenpl ate6 : = superset (1, 2, 3) length (7);
/'l matches any sequence of 7 integers which contains at |east one occurrences of the nunbers
/1 1, 2 and 3 in any order and position

tenpl ate MySet O0f Type MyTenpl ate7 : = superset (1, 2, ?) length (7 .. infinity);
/'l matches any sequence of at least 7 integers which contains at |east one occurrences of the
/1 nunmbers 1, 2 and 3 in any order and position

tenpl ate MySet O0f Type MyTenpl ate8 : = superset (1, 2, 3) length (2 .. 7);
/1 causes an error, the |ower bound of the length attribute contradicts to the m ni num nunber
/1 of elements inposed by the superset argument

Besides specifying individual values, it ispossible to add all elementsof ar ecord of orset of templateinto
SuperSetsusinganal | fromclause.

Restrictions
a) Individual members of the SuperSet's argument shall be of the type replicated by theset of .

b) The member type of the set of associated with the SuperSet template and the member type of the templatein
theal | fr omclause shall be compatible.

c¢) Thetemplateintheal | fr omclause asawhole shall not resolve into a matching mechanism (i.e. its
elements may contain any of the matching mechanisms or matching attributes with the exception of those
described in the following restriction).

d) Theindividua members of the SuperSet's argument and the elements of the templateintheal I f r omclause
shall not be the matching mechanisms omit, SuperSet, SubSet and the matching attributes (Iength restriction
and ifpresent). In addition, the individual members shall not resolve to AnyVaueOrNone and individual
elements of the templateintheal | f r omclause shall not resolve to AnyElementsOrNone or permutation.

EXAMPLE 2:

type record of integer Rol;
type set of integer Sol;
tenplate Rol t_Roll := {1, 2, ?};

tenplate Sol t_Soll := superset(all fromt_Rol1);
/1 results in superset(1, 2, ?)

B.1.2.7 SubSet

SubSet is an operation for matching that can be used only on values of set of types. SubSet is denoted by the
keyword subset . SubSet matches a set of valuesif, and only if, the set of values contains only elements defined
within the SubSet, and may contain less. This argument may contain templates (including template variables) and
matching mechanisms with the restrictions given below. However, the length matching attribute may be attached to the
SubSet itself, in which case the maximum length allowed by the length attribute shall not exceed the number of the
elementsin the SubSet.

EXAMPLE 1.
tenpl ate MySet O0f Type MyTenpl atel: = subset (1, 2, 3);

/1 matches any sequence of integers which contains zero or one occurrences of the nunbers
/1 1, 2 and 3 in any order and position

ETSI

245 ETSI ES 201 873-1 V4.5.1 (2013-04)

tenpl ate MySet O0f Type MyTenpl atel: = subset (1, 2, ?);
/1 matches any sequence of integers which contains zero or one occurrences of the nunbers
/1 1, 2 and a valid integer value (i.e. between 0 and 10, inclusive) in any order and position

tenpl ate MySet O Type MyTenpl atel: = subset (1, 2, (3, 4));
/1 matches any sequence of integers which contains zero or one occurrences of the nunbers
/1 1, 2 and one of the nunbers 3 or 4, in any order and position

tenpl ate MySet O Type MyTenpl atel: = subset (1, 2, conplenment (3, 4));
/1 matches any sequence of integers which contains zero or one occurrences of the nunbers
/1 1, 2 and a valid integer nunber which is not 3 or 4, in any order and position

tenmpl ate MySet O Type MyTenpl atel: = subset (1, 2, 3) length (2);
/1 matches any sequence of two integers which contains zero or one occurrences of
/1 the nunbers 1, 2 and 3, in any order and position

tenpl ate MySet O Type MyTenpl atel: = subset (1, 2, ?) length (0 .. 2);
/1 matches any sequence of zero, one or two integers which contains zero or one occurrences of
/1 the nunbers 1, 2 and of a valid integer value, in any order and position

tenpl ate MySet O Type MyTenpl atel: = subset (1, 2, 3) length (0 .. 4);

/] causes an error, the upper bound of length attribute contradicts to the maxi mum nunber of
/1 elenments inposed by the subset argunent

Besides specifying individual values, it is possible to add all elementsof ar ecord of orset of templateinto
SubSetsusinganal | fromclause.

Restrictions
a) Individual members of the SubSet's argument shall be of the type replicated by theset of .

a The member type of the set of type associated with the SubSet and the member type of the templatein the al |
f r omclause shall be compatible.

b) Thetemplateintheal | fr omclause asawhole shall not resolve into a matching mechanism (i.e. its
elements may contain any of the matching mechanisms or matching attributes with the exception of those
described in the following restriction).

¢) Theindividua members of the SubSet's argument and the elements of the templateintheal | f r omclause
shall not be the matching mechanisms omit, SuperSet, SubSet and the matching attributes (length restriction
and ifpresent). In addition, individual members shall not resolve to AnyVaueOrNone and individual fields of
thetemplateintheal | f r omclause shall not resolve to AnyElementsOrNone or permutation.

EXAMPLE 2:

type record of integer Rol;

type set of integer Sol;
tenplate Rol t_Roll := {1, 2, ?};

tenplate Sol t_Soll := subset(all fromt_Rol1);
Il results in subset(1l, 2, ?)

B.1.2.8 Omitting optional fields

The keyword oni t denotes that an optional field shall be absent. It can be assigned to templates of any type as awhole
or to optional fieldsof set or r ecor d templates, but at the time of matching it shall be applied to optional fields of
record andset templatesonly.

EXAMPLE:

type record MyMessage
{

i nt eger fieldl,
MyRecor dof field2 optional,
bool ean field3 optional

}

tenpl ate MyMessage MyMessageTenpl ate: =

fieldS::om’t /'l omts the optional field field3

ETSI

246 ETSI ES 201 873-1 V4.5.1 (2013-04)

}
tenpl ate MyMessage MyMessageTenpl at e2: =
fieldl := onmit, // causes an error as fieldl is nandatory
} :
tenpl ate MyRecordof MyRecof Tenplate := onit; /1 this assignnent is allowed
tenpl ate bool ean MyBool Tenplate := onit; /1 this assignnent is allowed as well

tenpl ate MyMessage MyMessageTenpl at e3: =
fieldl : = 42,
field2 : = MyRecof Tenpl at e,
/1 matches if field2 is absent

field3 := MyBool Tenpl ate
/1 matches if field3 is absent
}

Mybool eanVar := match ({}, MyRecof Tenpl at e)
// causes an error as a record of tenplate shall not be “onit” at the tine of natching

Mybool eanVar : = match ({42,omt,onit}, MyMessageTenpl at e3)
/1 matches and returns true

B.1.3 Matching mechanisms inside values

The following matching mechanisms may be used inside explicit values of strings, records, records of, sets, sets of and
arrays.
B.1.3.1 Any element

The matching symbol "?" (AnyElement) is used to indicate that it replaces single elements of a string (except character
strings, see table 4 for the lengths of the units being matched by "?" inastring), ar ecord of ,aset of or anarray.
It shall be used only within values of string types, r ecor d of types, set of typesand arrays.

EXAMPLE:

tenpl ate MyMessage MyTenpl ate: =

fiel d2 := "abcxyz",
field3 :='10???' B, /1 where each "?" nay either be 0 or 1
fieldd := {1, 2, 3} /1 where ? nay be any integer val ue

}

NOTE: The"?'infi el d4 can beinterpreted as AnyValue as an integer value, or AnyElement insidear ecor d
of ,set of orarray. Since both interpretations lead to the same match no problem arises.

B.1.3.1.1 Using single character wildcards

If it isrequired to expressthe "?" wildcard in character strings it shall be done using character patterns
(see clause B.1.5). For example: "abcdxyz", "abcexyz”, "abexxyz" etc. will all match pat t er n "abc?xyz". However,
"abexyz", "abedefxyz”, etc. will not.

B.1.3.2 Any number of elements or no element

The matching symbol "*" (AnyElementsOrNone) is used to indicate that it replaces none or any number of consecutive
elements of a string (except character strings), ar ecor d of ,aset of oranarray. The"*" symbol matches the
longest sequence of elements possible, according to the pattern as specified by the symbols surrounding the "*".

EXAMPLE:
tenpl ate Mynmessage MyTenpl ate: =

field2 :
field3 :

"abcxyz",
'10*11' B, /1 where "*" may be any sequence of bits (possibly enpty)

ETSI

247 ETSI ES 201 873-1 V4.5.1 (2013-04)

fieldd : = {*, 2, 3} /1 where "*"may be any nunber of integer values or onitted

}

var charstring MyStrings[4];
M/PCO. recei ve(M/Strings: {"abyz", *, "abc" });

If a"*" appears at the highest level inside astring, ar ecor d of , set of or array, it shal be interpreted as
AnyElementsOrNone.

NOTE: Thisrule prevents the otherwise possible interpretation of "*" as AnyValueOrNone that replaces an
element inside astring, r ecord of , set of or array.

B.1.3.2.1 Using multiple character wildcards

If it isrequired to expressed the "*" wildcard in character stringsit shall be done using character patterns
(seeclause B.1.5). For example: "abexyz", "abedefxyz" "abcabexyz” etc. will all match pat t er n "abc*xyz".

B.1.3.3 Permutation

Permutation is an operation for matching that shall be used only on valuesof r ecor d of types. Permutationis
denoted by the keyword per mut at i on. Expressions, templates and AnyElement and AnyElementsOrNone are
allowed as permutation elements. Permutation elements shall obey the restrictions given below.

A permutation without AnyElementsOrNone in place of a single record of element means that any series of elementsis
acceptable provided that there is a one to one mapping between elements in the record of and in the permutation list
such that each element matches its corresponding element in the permutation list.

AnyElementsOrNone used inside permutation (directly or via reference) replaces none or any number of elements
within the segment of the record of value matched by permutation. The permutation matching is successful, if a subset
of the elements in the record of matches the permutation list without the AnyElementsOrNone. If both permutation and
AnyElementsOrNone are used in arecord of template, they shall be evaluated jointly.

NOTE 1: AnyElementsOrNone used inside permutation has a different effect as AnyElementsOrNone used in
conjunction with permutation as in the latter AnyElementsOrNone replaces consecutive elements only.
For example, {per nut ati on(1,2,*)} isequivdent to ({*,1,*,2,*} {*,2,*,1,*}), while
{per mut ati on(1,2),*} isequivalent to ({1,2,*} {2,1,*}).

NOTE 2: When AnyElementsOrNone is inside a permutation, alength attribute may be applied to
AnyElementsOrNone to restrict the number of elements matched by AnyElementsOrNone (see also
clause B.1.4.1).

EXAMPLE 1:
type record of integer MySequenceO Type;

tenpl ate MySequenceXf Type MyTenpl atel := { pernutation (1, 2, 3), 5 };
/1 matches any of the follow ng sequences of 4 integers: 1,2,3,5; 1,3,2,5; 2,1,3,5;
/1 2,3,15; 3,1,2,5; or 3,2,1,5

tenpl ate MySequenceXf Type MyTenpl ate2 := { pernutation (1, 2, ?), 5 };
/1 matches any sequence of 4 integers that ends with 5 and contains 1 and 2 at |east once in
/] other positions

tenpl ate MySequenceXf Type MyTenpl ate3 := { pernutation (1, 2, 3), * };
/'l matches any sequence of integers starting with 1,2,3; 1,3,2; 2,1,3; 2,3,1; 3,1,2 or 3,2,1

tenpl ate MySequenceXf Type MyTenplate4 := { *, pernutation (1, 2, 3)};
/'l matches any sequence of integers ending with 1,2,3; 1,3,2; 2,1,3; 2,3,1; 3,1,2 or 3,2,1

tenpl ate MySequenceOf Type MyTenplate5 := { *, permutation (1, 2, 3),* };
/'l matches any sequence of integers containing any of the follow ng substrings at any position:
/1 1,2,3; 1,3,2; 2,1,3; 2,3,1; 3,1,2 or 3,2,1

tenpl ate MySequenceOf Type MyTenpl ate6 := { pernutation (1, 2, *), 5 };

/1 matches any sequence of integers that ends with 5 and containing 1 and 2 at | east once in
/'l other positions

ETSI

248 ETSI ES 201 873-1 V4.5.1 (2013-04)

tenpl ate MySequenceXf Type MyTenpl ate7 := { pernutation (1, 2, 3), * length (0..5)};
/1 matches any sequence of three to eight integers starting with 1,2,3; 1,3,2; 2,1,3; 2,3,1;
/1 3,1,20r 3,21

tenplate integer MyIntl :
tenplate integer MyInt2 :
tenplate integer MyInt3 :
tenplate i nteger MyInt4 :

1,2,3);
1,2,?);

(
(
?

tenpl ate MySequenceXf Type MyTenpl atel0 := { pernutation (My/Intl, 2, 3), 51};
/1 matches any of the sequences of 4 integers:

/1 1,3,2,5; 2,1,3,5; 2,3,1,5; 3,1,2,5; or 3,2,1,5;
/1 2,3,2,5 2,2,3,5 2,3,2,5; 3,225, or 3,2,2,5;
/1 3,3,2,5, 2,8,3,5; 2,3,3,5; 3,3,2,5; or 3,2,3,5;

tenpl ate MySequenceOf Type MyTenpl atell := { pernutation (MyInt2, 2, 3), 51};
/1 matches any sequence of 4 integers that ends with 5 and contains 2 and 3 at |east once in
/'l other positions

tenpl ate MySequenceOf Type MyTenpl atel2 := { pernutation (MyInt3, 2,), 51}
/1 matches any sequence of 4 integers that ends with 5 and contains 2 and 3 at |east once in
/1 other positions

w

tenpl ate MySequenceOf Type MyTenpl atel3 := { pernutation (MyInt4, 2, 3), 5 1};

/1 matches any sequence of integers that ends with 5 and containing 2 and 3 at |east once in
/1 other positions

tenpl ate MySequenceOf Type MyTenpl ateld4 := { pernutation (MyInt3, 2, ?), 5 1};

/'l matches any sequence of 4 integers that ends with 5 and contains 2 at |east once in

/] other positions

tenpl ate MySequenceO Type MyTenpl atel5 := { pernutation (MyInt4, 2, *), 5 };

/'l matches any sequence of integers that ends with 5 and contains 2 at |east once in
/1 other positions

Besides specifying al individual values, it is possible to add all elements of ar ecord of orset of templateinto
permutationsusinganal | f r omclause.

Restrictions
a) Eachindividua member listed in the permutation shall be of the type replicated by ther ecor d of type.

a) The member type of the permutation and the member type of the templateintheal | f r omclause shall be
compatible.

b) Thetemplateintheal | fr omclause asawhole shall not resolve into a matching mechanism (i.e. itsfields
may contain any of the matching mechanisms or matching attributes that are allowed by the following
restriction).

¢) Individual members of a permutation and elements of thetemplateintheal | f r omclause shall only be
expressions, templates, and the AnyElement and AnyElementsOrNone matching mechanisms.

EXAMPLE 2:

type record of integer Rol;
tenplate Rol t_Roll := {1, 2, *};

tenplate Rol t_Rol2 := {pernutation(0, all fromt_Rol1l), 4, 5};
I/l results in {pernutation(0, 1, 2, *), 4, 5}

B.1.4 Matching attributes of values

The following attributes may be associated with matching mechanisms.

ETSI

249 ETSI ES 201 873-1 V4.5.1 (2013-04)

B.1.4.1 Length restrictions

Thel engt h restriction attribute is used to restrict the length of string values matching the template or the number of
elementsinaset of ,record of orarray structure. It shall be used only as an attribute of the following matching
mechanisms: template list, complemented template list, AnyValue, AnyValueOrNone, AnyElement,
AnyElementsOrNone, superset, subset, and pattern. It shall not be used directly with templates and template fields
produced by concatenation (see clause 15.11). If the length of atemplate or template field produced by concatenation is
wished to be restricted, the concatenation shall be enclosed into a pair of parentheses.

It can also be used in conjunction with thei f pr esent matching attribute. The syntax for | engt h can be found in
clauses 6.2.3.

NOTE: Whenthel engt h attribute is used with atemplate list, elements of the list may be disabled by the
attribute.

When both the complement and the length restriction matching mechanisms are used for atemplate or template field,
restrictions implied by them shall apply to the template or template field independently.

The units of length are to be interpreted according to table 4 in the main body of the present document in the case of
string values. For set of , record of typesand arraysthe unit of length is the replicated type. The boundaries
shall be denoted by expressions which resolve to specific non-negative i nt eger values. Alternatively, the keyword
i nfinity canbeused asavalue for the upper boundary in order to indicate that there is no upper limit of length.

The length specifications for the template shall not conflict with the length for restrictions (if any) of the corresponding
type.

A template field that uses length as an attribute of a symbol matches the corresponding field if, and only if, the field
matches both the symbol and its associated attribute. The length attribute matches if the length of the field is greater
than or equal to the specified lower bound and less than or equal to the upper bound. In the case of a single length value
the length attribute matches only if the length of the received field is exactly the specified value.

It isallowed to use alength restriction in conjunction with the special valueom t , however in this case the length
attribute has no effect (i.e. with omi t it isredundant). With AnyValueOrNoneand i f pr esent it placesarestriction
on the value, if any.

EXAMPLE:

tenpl ate Mynmessage MyTenpl ate: =

fieldl := conplenent ({4,5},{1,4,8,9}) length (1 .. 6), // any value containing 1, 2, 3, 4,
/1 5 or 6 elements is accepted provided it is not {4,5} or {1,4,8,9}
field2 := "ab*ab" |ength(5), /1 matches the character string "ab*ab" only
field3 := "ab*ab" length(13), // never natches as the specific value is of length 5
/1 and not of length 13
field4 := pattern "ab*ab" | ength(13),

/1 max | ength of the AnyEl enentsOrNone string is 9 characters

B.1.4.2 The IfPresent indicator

Thei f present indicates that a match may be made if an optional field is present (i.e. not omitted). This attribute
may be used with all the matching mechanismsin templates of any type as awhole or for optiona fields of set or
r ecor d templates. At the time of matching, it shall be applied to optional fieldsof r ecor d and set templates only.

A template field that usesi f pr esent matches the corresponding field if, and only if, the field matches according to
the associated matching mechanism, or if the field is absent.

EXAMPLE:

type record MyMessage
{

i nt eger fieldl,
MyRecor dof field2 optional,
bool ean field3 optional

}

ETSI

250 ETSI ES 201 873-1 V4.5.1 (2013-04)

tenpl ate MyMessage MyMessageTenpl ate: =
{

%ieldz ={ 1, 2, 3} ifpresent, // matches { 1, 2, 3} if not onitted
} :
tenpl ate MyMessage MyMessageTenpl at e2: =
fieldl := 1 ifpresent, // causes an error as fieldl is nandatory
} :
tenpl ate MyRecordof MyRecof Tenplate := { 1, 2, 3 } ifpresent; // this assignnent is allowed
tenpl at e bool ean MyBool Tenplate := true ifpresent; // this assignnent is also allowed
tenpl ate MyMessage MyMessageTenpl at e3: =
fieldl := 42,
field2 : = MyRecof Tenpl at e,
/1 if field2 is not absent, it matches the value { 1, 2, 3}

field3 := MyBool Tenpl ate
/1 if field3 is not absent, it matches the val ue true
}

Mybool eanVar : = match ({}, MyRecof Tenpl ate) ;
/'l causes an error as a record of tenplate shall not contain ifpresent
/1 at the tinme of matching

Mybool eanVar := match ({42,onmit,true}, MyMessageTenpl at e3) ;
/! matches and returns true

NOTE: AnyValueOrNone has exactly the same meaningas? i f present.

B.1.5 Matching character pattern

Character patterns can be used in templates to define the format of arequired character string to be received. Character
patterns can be used to match char st ri ng and uni ver sal char st ri ng vaues. In addition to literal characters,
character patterns allow the use of meta-characters (e.g. ? and * within a character pattern means matching any
character and any number of any character respectively).

EXAMPLE 1:
tenpl ate charstring My/Tenpl ate: = pattern "ab??xyz*0";

This template would match any character string that consists of the characters "ab", followed by any two characters,
followed by the characters "xyz", followed by any number of any characters (including any number of "0"-s) before the
closing character "0".

If it isrequired to interpret any metacharacter literally it shall be preceded with the metacharacter "\".
EXAMPLE 2:

tenpl ate charstring My/Tenpl ate: = pattern "ab?\ ?xyz*";

This template would match any character string which consists of the characters "ab", followed by any character,
followed by the characters " ?xyz", followed by any number of any characters.

Thelist of meta characters for TTCN-3 patternsis shown in table B.1. Metacharacters shall not contain whitespaces
except a whitespace preceded by a newline character before or inside a set expression.

Table B.1: List of TTCN-3 pattern metacharacters

Metacharacter Description
? Match any character (see notes 1 and 2)
* Match any character zero or more times; shall match the longest possible number of
characters (see example 1 above) (see notes 1 and 2)
\ Cause the following metacharacter to be interpreted as a literal (see note 3). When

ETSI

251 ETSI ES 201 873-1 V4.5.1 (2013-04)

Metacharacter Description

preceding a character without defined metacharacter meaning "\" and the character
together match the character following the "\" (see note 4)

[] Match any character within the specified set, see clause B.1.5.1 for more details

- Has a metacharacter meaning in a set expression. It allows to specify a range of
characters; see clause B.1.5.1 for more details

N Has a metacharacter meaning in a set expression. It causes to match any character
complementing the set of characters following this metacharacter;

see clause B.1.5.1for more details

\g{group,plane,row,cell} |Match the Universal character specified by the quadruple

{reference} Insert the referenced user defined string and interpret it as a regular expression.
See clause B.1.5.2 for more details
{\reference} Insert the referenced user defined string and interpret it as a set of literals.
See clause B.1.5.2 for more details
\ N{reference} Matches a single character from the (sub)set of characters denoted; see clause B.1.5.4
for more details
\d Match any numerical digit (equivalent to [0-9])
\w Match any alphanumeric character (equivalent to [0-9a-zA-Z])
\t Match the CO control character HT(9) (see Recommendation ITU-T T.50 [4])
\n Match any of the following CO control characters: LF(10), VT(11), FF(12), CR(13) (see
Recommendation ITU-T T.50 [4]) (jointly called newline characters, see clause A.1.5.1)
\r Match the CO control character CR (see Recommendation ITU-T T.50 [4])
\s Match any one of the following CO control characters: HT(9), LF(10), VT(11), FF(12),

CR(13), SP(32) (see Recommendation ITU-T T.50 [4]) (jointly called white-space
characters, see clause A.1.5.1)

\b Match a word boundary (any graphical character except SP or DEL is preceded or
followed by any of the whitespace or newline characters)

\" Match the double guote character

Match the double quote character

| Used to denote two alternative expressions

@) Used to group an expression
#(n, m) Match the preceding expression at least n times but no more than m times (postfix).
See clause B.1.5.3 for more details
#n Match the previous expression exactly n times (where n is a single digit) (postfix); the
same as #(n)
+ Match the preceding expression one or several times (postfix); the same as #(1,)

NOTE 1: Metacharacters ? and * are able to match any characters of the character set of the root type of the
template or template field in which they are used (i.e. not considering type constraints applied). However,
it shall not be forgotten, that receiving operations require type checking of the received message before
attempting to match it. Therefore received values not complying with the subtype specification of the
template or template field are never provided for matching.

NOTE 2: In some other languages/notations ? and * has different meaning as metacharacters. However in TTCN
these characters are traditionally used for matching in the sense as specified in this table.

NOTE 3: Consequently the backslash character can be matched by a pair of backslash characters without space
between them (\\), e.g. the pattern "\\d" will match the string "\d"; opening or closing square brackets can
be matched by "\[" and "\]" respectively, etc.

NOTE 4: Such use of the metacharacter "\" is deprecated as further metacharacters can be defined later.

The symbols that can appear as |exical marks in metacharacter definitions are called metacharacter symbols.They
include the following characters: "#", "(",")", "*", "+", =", "2, "[", "\", "1, ", “{".)"['."}". When any of the
metacharacter symbols are present in a pattern, but do not form a valid metacharacter, they retain their literal value.

NOTE: Thisrule assuresthat no format error can occur during pattern template instantiation. However, errors
caused by invalid references can still appear (see clause B.1.5.2and B.1.5.4 for more details)

Character patterns may be composed from several fragments using the concatenation operation. The fragments of the
pattern shall be concatenated before any evaluation of the pattern expression. See also the shorthand notation for
referenced definitions at concatenation in clause B.1.5.2.

EXAMPLE 3:

tenpl ate charstring M/Tenpl ate: = pattern "ab?\?" & "xyz*"; // results in the sane pattern as
/1 in exanple2

ETSI

252 ETSI ES 201 873-1 V4.5.1 (2013-04)

B.1.5.1 Set expression

A list of characters enclosed by apair of "[" and "]" matches any single character in that list. The set expression is
delimited by the "[" "]" symbols. In addition to character literals, it is possible to specify character ranges using the
hyphen "-" as separator. The range consist of the character immediately before the separator, the character immediately
after it and al characters with a character code between the codes of the two bordering characters. A hyphen character
"-" inside the list but without preceding or following character |oses its special meaning.

The set expression can aso be negated by placing the caret " character asthe first character after the opening square
bracket. Negation takes precedence over character ranges. Therefore a hyphen "-" immediately following a negating
caret "' shall be processed as aliteral character.

An empty list and an empty negated list are not allowed. Therefore a closing square bracket "]" immediately following
an opening square bracket "[" or a caret following the opening square bracket "[" and immediately followed by a
closing square bracket "]" shall be processed as literal characters.

All metacharacters, except those listed below, lose their special meaning inside the list:
. "1" not at the first position and not immediately following a"" at the first position;
. "-" not at thefirst or last positionsin thelist;
. "N at the first position in the list except when immediately followed by a closing square bracket;
o M\, M, M, M, M, s and M\b";
o "\g{group,planerow,cell}";
o "\N{ reference}".

NOTE 1: Embedded lists are not allowed. For example in pattern "[ab[r-Z]]" the second "[" denotes aliteral "[", the
first"]" closesthelist and the second "]" retainsits literal value as no related opening bracket precedes it
in the pattern. The pattern will match character strings containing two elements, with the first element
equal to "a", "b", "[" or anything in the range "r"-"Zz" and the second character equal to "]".

NOTE 2: Toinclude aliteral caret character "~", place it anywhere except in the first position or precede it with a
backslash. To include alitera hyphen "-", placeit first or last in the list, or precede it with a backslash.
Toinclude aliteral closing square bracket "1 ", place it first or precede it with a backsash. If the first
character inthelist isthe caret "~", then the characters - " and "] " also match themselves when they
immediately follow that caret.

EXAMPLE:
tenpl ate charstring RegExpl:= pattern "[a-z]"; [// this will natch any character froma to z
tenpl ate charstring RegExp2: = pattern "["a-z]"; [/ this will natch any character except a to z

tenpl ate charstring RegExp3: = pattern "[AC E][0-9][0-9][0-9] YKE";

/1 RegExp3 will match a string which starts with the letter A or a letter between
/1 Cand E (but not e.g. B) then has three digits and the letters YKE

B.1.5.2 Reference expression

In addition to direct string values, it is aso possible within the pattern to use references to templates, constants,
variables, formal parameters, module parameters, or to their fields, containing either a character string value or pattern
matching. The reference shall be enclosed within the"{" "}" characters and reference shall resolve a compatible
character string type. The opening bracket can be optionally followed by a backs ash.

If the backslash character is missing, the referenced character string or pattern shall be inserted into the pattern being
constructed and shall be handled as aregular expression. Each expression shall be dereferenced only once, before the
insertion (i.e. the expression dereferenced and inserted into the referencing pattern shall not be dereferenced again).

ETSI

253 ETSI ES 201 873-1 V4.5.1 (2013-04)

If the backslash character is present, the referenced item shall contain a character string value in this case. The character
string isinserted into the pattern being constructed so that it al characters contained in it can keep their literal value
(i.e. al metacharacter symbols are automatically escaped).

If the reference cannot be resolved or if the referenced symbol does not fulfil the requirements set by this clause, an
error shall be generated.

EXAMPLE 1:
const charstring MyString: = "ab?";

tenpl ate charstring M/Tenpl ate: = pattern "{M/String}";
/I matches any character string that consists of the characters "ab" foll owed by any character

tenpl atecharstring MyTenpl ate2: = pattern "{\M/String}";
/lresolves into pattern "ab\?" and matches the string"ab?" only

tenpl ate universal charstring MyTenpl ate3: = pattern "{MString}de\qg{1, 1, 13, 7}";

/I matches any character string which consists of the characters "ab", followed by any
//character, followed by the characters "de", followed by the character in |1S0OL0646-1 with
/1 group=1, plane=1, row=13 and cell =7.

If areferenced definition or field of a definition contains one or more reference expressions, then these references shall
recursively be dereferenced before inserting their contentsinto the referencing pattern.

If afragment of a pattern contains a single reference only, it is allowed, as a shorthand notation, to reference the
definition or the field of the definition directly, i.e. leave out double quotes (" ') and the pair of curly brackets ({ }).

EXAMPLE 2:

const charstring MyConst2 : = "ab";

tenpl ate charstring RegExpl := pattern "{M/Const2}";
/1 matches the string "ab"

tenpl ate charstring RegExpla := pattern MyConst 2;
/1 the sane as above, matches the string "ab"

tenpl ate charstring RegExp2 : = pattern "{RegExpl}{RegExpl}";
/1 matches the string "abab"

tenpl ate charstring RegExp2a := pattern "{RegExpl}" & "{RegExpl}";
/1 the sane as above, matches the string "abab"

tenpl ate charstring RegExp2b : = pattern RegExpl & RegExpl;
/1 the same as above, matches the string "abab"

tenpl ate charstring RegExp3 : = pattern "c{RegExp2}d";
/1 matches the string "cababd"

tenpl ate charstring RegExp4 := pattern "{Reg";

tenpl ate charstring RegExp5 := pattern "Expl}";

tenpl ate charstring RegExp6 := pattern "{RegExp4}{RegExp5}";
/1 matches the string "{RegExpl}" only (i.e. shall not be handled as a reference expression
/1 after insertion)

tenpl ate charstring RegExp7 : = pattern "{Reg" & "Expl}";
/1 note the difference to the previous exanple; in this case the fragnents of the

/] pattern are joined before any evaluation, i.e. this tenplate will natch the string "ab"
EXAMPLE 3:
tenplate charstring RefO:= "My String";
tenpl ate charstring Refl:= "{Re";
tenpl ate charstring Ref2:= "f0}";

tenplate charstring Ref3:= "{Ref 1}{Ref 2}";
//this matches "{Ref0O}"
/li.e. there is no further dereferencing

/las Refl and Ref2 do not contain a reference

tenpl ate charstring Ref4:
tenpl ate charstring Ref5: ;
tenmpl ate charstring Ref6:= "{Ref4}{Ref5}";
//this matches "My String" — here RefO is dereferenced, because Ref4 contains
//the reference expression {Ref0} with the reference RefO

"{Ref0}";

EXAMPLE 4.
type record MyRecord {

integer i,
charstring ¢

ETSI

254 ETSI ES 201 873-1 V4.5.1 (2013-04)

const MyRecord referencedRecord: = {1,"this"}

const charstring referencedConstant := referencedRecord.c;

tenpl ate charstring referencingPattern := pattern "{referencedConstant}"
//this matches "this" as the referencedConstant is dereferenced

B.1.5.3 Match expression n times

To specify that the preceding expression should be matched a number of times one of the following syntaxes shall be
used: "#(n, m)", "#(n,)", "#(, m)", "#(n)", "#n" or "+".. The form "#(n, m)" specifies that the preceding expression shall
be matched at least n times but not more than m times. The metacharacter postfix "#(n,)" specifies that the preceding
expression shall be matched at least n times while "#(, m)" indicates that the preceding expression shall be matched not
more than m times. Metacharacters (postfixes) "#(n)" and "#n" specify that the preceding expression shall be matched
exactly n times (they are equivalent to "#(n, n)"). In the form "#n" n shall be asingle digit. The metacharacter postfix
"+" denotes that the preceding expression shall be matched at least 1 time (equivalent to "#(1,)").

EXAMPLE:

tenpl ate charstring RegExp4: = pattern "[a-z]#(9, 11)"; // nmatch at least 9 but no nore than 11
/1l characters froma to z

tenpl ate charstring RegExp5a: = pattern "[a-z]#(9)"; /1 match exactly 9
/1 characters froma to z
tenpl ate charstring RegExp5b: = pattern "[a-z] #9"; /1 match exactly 9

/1 characters froma to z
tenpl ate charstring RegExp6:= pattern "[a-z]#(9,)"; [/ match at least 9

/1l characters froma to z
tenpl ate charstring RegExp7:= pattern "[a-z]#(, 11)"; // nmatch no nore than 11

/1 characters froma to z
tenpl ate charstring RegExp8: = pattern "[a-z]+"; /1 match at least 1

/1l characters froma to z,

B.1.5.4 Match a referenced character set

A notation of the form "\ N{ reference} ", where reference is denoting a one-character-length template, constant,
variable, formal parameter or module parameter, matches the character in the referenced value or template.

If the reference cannot be resolved or if the referenced symbol is anything else than atemplate, constant, variable,
formal parameter or module parameter containing a character string of length 1, an error shall be generated.

A notation of the form "\ N{ typereference} " , where "typereference” isareferencetoachar stri ng or uni ver sal
char st ri ng type, matches any character of the character set denoted by the referenced type.

NOTE 1: Cases when the referenced set of charactersis not a subset of values allowed by the type definition of the
template or template field for which the character pattern is used, are not be treated as an error (but e.g.
matching never can occur if the two sets do not overlap).

NOTE 2: \N{char st ri ng} isequivalent to ? when the latter is applied to atemplate or template field of
charstring typeand\N{uni versal charstri ng} isequivaentto ?when the latter is applied to
atemplate or template field of uni ver sal char st ri ng type (but causes an error if applied to a
template or template field of char st ri ng type).

EXAMPLE:
type charstring MyChar Range ("a".."z");
type charstring MyCharlList ("a", "z");
const MyChar Range nyCharR := "r";

tenpl ate charstring nyTenpPattl := pattern "\N{nyCharR}";
/'l nyTenpPattl shall natch the string "r" only

tenpl ate charstring nyTenpPatt2 : = pattern "\ N{ M/Char Range}";
/'l nyTenpPatt2 shall match any string containing a single character froma to z

tenpl ate MyChar Range nyTenpPatt3 := pattern "\N{MyCharlList}";
/1l myTenpPatt3 shall match strings "a" or "z" only

ETSI

255 ETSI ES 201 873-1 V4.5.1 (2013-04)

B.1.5.5 Type compatibility rules for patterns

For the purpose of referenced patterns (see clause B.1.5.2) and references character sets (see clause B.1.5.3) specific
type compatibility rules apply: areferenced type, template, constant, variable or module parameter of the type

char st ri ng always can be used in the pattern specification of atemplate or template field of uni ver sal

char st ri ng type; areferenced type, template or value of thetypeuni ver sal char st ri ng can beusedinthe
pattern specification of atemplate or template field of char st ri ng typeif al characters used in the referenced
template or value and the character set allowed by the referenced type has their corresponding charactersin the

char st ri ng type (see definition of corresponding charactersin clause 6.3.1).

ETSI

256 ETSI ES 201 873-1 V4.5.1 (2013-04)

Annex C (normative):
Pre-defined TTCN-3 functions

This annex defines the TTCN-3 predefined functions.

C.0 General exception handling procedures

When the general restrictions specified in clause 16.1.2 are not met, this shall cause a compile time or runtime error.
Error situations for which no explicit exception-handling rule is defined in the relevant clauses of this annex shall cause
a TTCN-3 compile-time or run-time error. Which error situation causes compile-time and which one run-time error isa
tool implementation option.

C.1 Conversion functions

C.1.1 Integer to character

int2char(in integer invalue) return charstring

Thisfunction convertsani nt eger value in the range of 0 to 127 (8-bit encoding) into a single-character-length
char st ri ng value. Theinteger value describes the 8-bit encoding of the character.

In addition to the general error causesin clause 16.1.2, error causes are;

. i nval ue islessthan O or greater than 127.

C.1.2 Integer to universal character

i nt2uni char (in integer invalue) return universal charstring

Thisfunction convertsani nt eger valuein the range of 0 to 2 147 483 647 (32-bit encoding) into a
single-character-length uni ver sal char st ri ng value. The integer val ue describes the 32-bit encoding of the
character.

In addition to the general error causesin clause 16.1.2, error causes are:

. i nval ue islessthan O or greater than 2147483647.

C.1.3 Integer to bitstring

int2bit(in integer invalue, in integer length) return bitstring

Thisfunction convertsasingle i nt eger valuetoasinglebi t stri ng value. Theresulting stringisl engt h bits
long.

For the purposes of this conversion, abi t st ri ng shall beinterpreted as a positive base 2i nt eger value. The
rightmost bit isleast significant, the leftmost bit isthe most significant. The bits 0 and 1 represent the decimal values 0
and 1 respectively. If the conversion yields a value with fewer bits than specified inthe | engt h parameter, then the
bi t st ri ng shall be padded on the |eft with zeros.

In addition to the general error causesin clause 16.1.2, error causes are:
J i nval ue islessthan zero;

. the conversion yields a return value with more bits than specified by | engt h.

ETSI

257 ETSI ES 201 873-1 V4.5.1 (2013-04)

C.1.4 Integer to enumerated

int2enum (in integer inpar, out Enunerated_type outpar)

This function converts an integer val ue into an enumerated value of a given enumerated type. The integer value shall be
provided asin parameter and the result of the conversion shall be stored in an out parameter. The type of the out
parameter determines the type into which the in parameter is converted.

The general error causesin clause 16.1.2 apply.

EXAMPLE:

type enunerated MyFirstEnunType {
Monday, Tuesday, Wednesday, Thursday, Friday
s

type enunerated MySecondEnuniType {
Saturday(-3), Sunday (0), Monday
b

//wi thin a dynamic | anguage el enent:
var MyFirst EnunType first Enum : = Tuesday;
var MySecondEnunilype secondEnum : = Sunday;

int2enun(0, firstEnun) // firstEnum == Monday
i nt 2enun(1, secondEnun) // secondEnum == Monday

C.1.5 Integer to hexstring

int2hex(in integer invalue, in integer length) return hexstring

Thisfunction convertsasinglei nt eger valueto asinglehexst ri ng value. The resulting string is| engt h
hexadecimal digitslong.

For the purposes of this conversion, ahexst ri ng shall be interpreted as a positive base 16 i nt eger vaue. The
rightmost hexadecimal digit is least significant, the leftmost hexadecimal digit is the most significant. The hexadecimal
digits O to F represent the decimal values 0 to 15 respectively. If the conversion yields a value with fewer hexadecimal
digits than specified in thel engt h parameter, then the hexst ri ng shall be padded on the left with zeros.

In addition to the general error causesin clause 16.1.2, error causes are:
J i nval ue islessthan zero;

. the conversion yields a return value with more hexadecimal characters than specified by | engt h.

C.1.6 Integer to octetstring
int2oct(in integer invalue, in integer length) return octetstring

Thisfunction convertsasinglei nt eger valueto asingleoct et st ri ng value. The resulting stringis| engt h
octets long.

For the purposes of this conversion, an oct et st ri ng shall be interpreted as a positive base 16 i nt eger value. The
rightmost hexadecimal digit is least significant, the leftmost hexadecimal digit is the most significant. The number of
hexadecimal digits provided shall be multiples of 2 since one octet is composed of two hexadecimal digits. The
hexadecimal digits O to F represent the decimal values 0 to 15 respectively. If the conversion yields a value with fewer
hexadecimal digits than specified inthel engt h parameter, then the hexst r i ng shall be padded on the left with
Zeros.

In addition to the general error causesin clause 16.1.2, error causes are:
o i nval ue islessthan zero;

. the conversion yields a return value with more octets than specified by | engt h.

ETSI

258 ETSI ES 201 873-1 V4.5.1 (2013-04)

C.1.7 Integer to charstring

int2str(in integer invalue) return charstring
This function converts the integer value into its string equivalent (the base of the return string is always decimal).

The general error causesin clause 16.1.2 apply.

EXAMPLE:

int2str(66) /1 will return the charstring value "66"
int2str(-66) /1 will return the charstring value "-66"
int2str(0) /1 will return the charstring value "0"

C.1.8 Integer to float

int2float(in integer invalue) return float
Thisfunction convertsani nt eger valueinto af | oat vaue.
The general error causesin clause 16.1.2 apply.

EXAMPLE:

int2float(4) = 4.0

C.1.9 Float to integer

float2int(in float invalue) return integer

Thisfunction convertsaf | oat valueinto ani nt eger value by removing the fractional part of the argument and
returning the resulting i nt eger .

In addition to the general error causesin clause 16.1.2, error causes are:
. i nvalueisinfinity,-infinityornot_a_nunber.

EXAMPLE:

float2int(3.12345E2) = float2int(312.345) = 312

C.1.10 Character to integer

char2int(in charstring invalue) return integer

This function converts a single-character-length char st r i ng value into an integer value in the range of 0 to 127. The
integer val ue describes the 8-bit encoding of the character.

In addition to the general error causesin clause 16.1.2, error causes are;

e lengthof i nval ue doesnot equal 1.

C.1.11 Character to octetstring

char2oct(in charstring invalue) return octetstring

Thisfunction convertsachar stri ngi nval ue toanoct et st ri ng. Each octet of theoct et st ri ng will
contain the Recommendation ITU-T T.50 [4] codes (according to the IRV) of the appropriate charactersof i nval ue.

The general error causesin clause 16.1.2 apply.

ETSI

259 ETSI ES 201 873-1 V4.5.1 (2013-04)

EXAMPLE:

char 2oct (" Tinky-Wnky") = ' 54696E6B792D57696E6B79' O

C.1.12 Universal character to integer

uni char 2i nt (i n uni versal charstring invalue) return integer

This function converts a single-character-length uni ver sal char st ri ng valueinto an integer value in the range of
0to 2 147 483 647. The integer value describes the 32-bit encoding of the character.

In addition to the general error causesin clause 16.1.2, error causes are;

e lengthof i nval ue doesnot equal 1.

C.1.13 Bitstring to integer
bit2int(in bitstring invalue) return integer
Thisfunction convertsasinglebi t st ri ng valueto asinglei nt eger value.

For the purposes of this conversion, abi t st ri ng shall be interpreted as a positivebase 2i nt eger vaue. The
rightmost bit is least significant, the leftmost bit is the most significant. The bits 0 and 1 represent the decimal values 0
and 1 respectively.

NOTE: Onredl test systemstheinteger interpretation of i nval ue may lead to an overflow problem that causes
compile time or run-time error. However, thisis out of the scope of the present document.

The general error causesin clause 16.1.2 apply.

C.1.14 Bitstring to hexstring

bi t 2hex(in bitstring invalue) return hexstring

Thisfunction convertsasinglebi t st ri ng valueto asingle hexst ri ng. Theresulting hexst ri ng represents the
samevaueasthebi t stri ng.

For the purpose of this conversion, abitstring shall be converted into a hexstring, where the bitstring is divided into
groups of four bits beginning with the rightmost bit. Each group of four bitsis converted into a hex digit as follows:

'‘0000B — '0'H, '0001'B — '1'H, '0010B — '2'H, '0011'B — '3'H, '0100'B — '4'H, '0101'B — '5'H,
'0110B — '6'H, '0111'B — '7'H, '1000B — '8'H, '1001'B — '9'H, '1010'B — '‘A'H, '1011'B — 'B'H,
'1100B — 'CH, '1101'B — 'D'H, '1110B — 'E'H, and '1111'B — 'FH.

When the leftmost group of bits does contain less than 4 bits, this group isfilled with '0'B from the left until it contains
exactly 4 bits and is converted afterwards. The consecutive order of hex digits in the resulting hexstring is the same as
the order of groups of 4 bitsin the bitstring.

The general error causesin clause 16.1.2 apply.

EXAMPLE:

bi t 2hex ('111010111'B)= '1D7'H

C.1.15 Bitstring to octetstring

bit2oct(in bitstring invalue) return octetstring

Thisfunction convertsasingle bi t st ri ng valuetoasingleoct et st ri ng. Theresultingoct et stri ng
represents the same value asthe bi t st ri ng.

For the conversion the following holds: bit2oct(val ue)=hex2oct(bit2hex(val ue)).

ETSI

260 ETSI ES 201 873-1 V4.5.1 (2013-04)

The general error causesin clause 16.1.2 apply.

EXAMPLE:

bi t 2oct (' 111010111' B)= ' 01D7' O

C.1.16 Bitstring to charstring

bit2str(in bitstring invalue) return charstring

Thisfunction convertsasinglebi t st ri ng vauetoasinglechar st ri ng. Theresultingchar stri ng hasthe
same length asthebi t st ri ng and contains only the characters'0' and '1'.

For the purpose of thisconversion, abi t st ri ng shall be converted into achar st ri ng. Each bit of the
bi t string isconverted into acharacter '0' or "1' depending on the value 0 or 1 of the bit. The consecutive order of
charactersin theresulting char st ri ng isthe same asthe order of bitsinthebi t stri ng.

The general error causesin clause 16.1.2 apply.

EXAMPLE:

bit2str('1110101'B) will return "1110101"

C.1.17 Hexstring to integer
hex2i nt (i n hexstring invalue) return integer
Thisfunction convertsasingle hexst ri ng valueto asinglei nt eger value.

For the purposes of this conversion, ahexst r i ng shall beinterpreted as a positive base 16 i nt eger value. The
rightmost hexadecimal digit isleast significant, the leftmost hexadecimal digit is the most significant. The hexadecimal
digits O to F represent the decimal values O to 15 respectively.

NOTE: Onreal test systemsthe integer interpretation of i nval ue may lead to an overflow problem that causes
compile time or run-time error. However, thisis out of the scope of the present document.

The general error causesin clause 16.1.2 apply.

C.1.18 Hexstring to bitstring

hex2bit (in hexstring invalue) return bitstring

Thisfunction convertsasingle hexst ri ng valueto asingle bi t st ri ng. Theresulting bi t st ri ng represents the
same value asthe hexst ri ng.

For the purpose of this conversion, ahexst ri ng shall be converted into abi t st ri ng, where the hex digits of the
hexst ri ng are converted in groups of bits as follows:

'0'H — '0000'B, 'I'H — '0001'B, '2'H — '0010'B, '3H — '0011'B, '4'H — '0100'B, '5'H — '0101'B,
'6'H — '0110B, '7H — '0111'B, '8H — '1000B, '9H — '1001'B, 'A'H — '1010'B, 'B'H — '1011'B,
'C'H — '1100B, 'D'H — '1101'B, 'E'H — '1110'B, and 'FH — '1111'B.

The consecutive order of the groups of 4 bitsin the resulting bi t st ri ng isthe same as the order of hex digitsin the
hexstri ng.

The general error causesin clause 16.1.2 apply.

EXAMPLE:

hex2bit('1D7' H = '000111010111'B

ETSI

261 ETSI ES 201 873-1 V4.5.1 (2013-04)

C.1.19 Hexstring to octetstring

hex2oct (i n hexstring invalue) return octetstring

Thisfunction convertsasingle hexst ri ng valueto asingleoct et st ri ng. Theresultingoct et st ri ng
represents the same value asthe hexst ri ng.

For the purpose of this conversion, ahexst ri ng shall be converted into aoct et st ri ng, wherethe

oct et st ri ng contains the same sequence of hex digits asthe hexst r i ng when the length of thehexst ri ng
modulo 2 is 0. Otherwise, the resulting oct et st ri ng contains 0 as leftmost hex digit followed by the same sequence
of hex digitsasinthe hexst ri ng.

The general error causesin clause 16.1.2 apply.

EXAMPLE:

hex2oct (' 1D7' Hy= ' 01D7' O

C.1.20 Hexstring to charstring

hex2str(in hexstring invalue) return charstring

This function converts a single hexstring value to a single charstring. The resulting charstring has the same length as the
hexstring and contains only the characters'0' to '9'and ‘A’ to 'F'.

For the purpose of this conversion, ahexst ri ng shall be converted into achar st ri ng. Each hex digit of the
hexst ri ng isconverted into a character '0' to '9' and 'A' to 'F' depending on the value 0 to 9 or A to F of the hex digit.
The consecutive order of charactersin the resulting char st ri ng isthe same as the order of digitsin the

hexstri ng.

The general error causesin clause 16.1.2 apply.

EXAMPLE:

hex2str (' AB801'H) will return "AB801"

C.1.21 Octetstring to integer

oct2int(in octetstring invalue) return integer
Thisfunction convertsasingleoct et st ri ng valueto asinglei nt eger vaue.

For the purposes of this conversion, an oct et st ri ng shall be interpreted as a positive base 16 i nt eger vaue. The
rightmost hexadecimal digit is least significant, the leftmost hexadecimal digit is the most significant. The number of
hexadecimal digits provided shall be multiples of 2 since one octet is composed of two hexadecimal digits. The
hexadecimal digits O to F represent the decimal values 0 to 15 respectively.

NOTE: Onred test systemstheinteger interpretation of i nval ue may lead to an overflow problem that causes
compile time or run-time error. However, thisis out of the scope of the present document.

The general error causesin clause 16.1.2 apply.

C.1.22 Octetstring to bitstring

oct2bit(in octetstring invalue) return bitstring

Thisfunction convertsasingleoct et st ri ng valuetoasinglebi t st ri ng. Theresulting bi t st ri ng represents
thesamevalueastheoct et st ri ng.

For the conversion the following holds: oct2bit(value)=hex2bit(oct2hex(val ue)).

The general error causesin clause 16.1.2 apply.

ETSI

262 ETSI ES 201 873-1 V4.5.1 (2013-04)

EXAMPLE:

oct2bit ('01D7' O ='0000000111010111' B

C.1.23 Octetstring to hexstring

oct 2hex(in octetstring invalue) return hexstring

Thisfunction convertsasingleoct et st ri ng valueto asingle hexst ri ng. Theresulting hexst r i ng represents
thesamevalueastheoct et st ri ng.

For the purpose of this conversion, aoct et st ri ng shall be converted into ahexst r i ng containing the same
sequence of hex digitsastheoct et st ri ng.

The general error causesin clause 16.1.2 apply.

EXAMPLE:

oct 2hex(' 1D74' O = ' 1D74' H

C.1.24 Octetstring to character string

oct2str(in octetstring invalue) return charstring

Thisfunction convertsanoct et st ri ng i nval ue toanchar st ri ng representing the string equivalent of the
input value. Theresulting char st ri ng shall have the same length asthe incoming oct et stri ng.

For the purpose of this conversion each hex digit of i nval ue isconverted into a character '0', '1', '2', '3, '4', '5', '6', 7/,
'8,'9,'A', 'B','C, 'D’, 'E' or 'F' echoing the value of the hex digit. The consecutive order of charactersin the resulting
charstri ng isthe same asthe order of hex digitsinthe oct et st ri ng.

The general error causesin clause 16.1.2 apply.

EXAMPLE:

oct 2str (' 4469707379' O) = "4469707379"

C.1.25 Octetstring to character string, version Il

oct2char(in octetstring invalue) return charstring

Thisfunction convertsanoct et st ri ng i nval ue toachar st ri ng. Theinput parameter i nval ue shal not
contain octet values higher than 7F. The resulting char st r i ng shall have the same length as the input

oct et st ri ng. The octets are interpreted as Recommendation ITU-T T.50 [4] codes (according to the IRV) and the
resulting characters are appended to the returned val ue.

The general error causesin clause 16.1.2 apply.

EXAMPLE:

oct 2char (' 4469707379' O = "Di psy"

NOTE: The character string returned may contain non-graphical characters, which cannot be presented between
the double quotes.

ETSI

263 ETSI ES 201 873-1 V4.5.1 (2013-04)

C.1.26 Charstring to integer
str2int(in charstring invalue) return integer
Thisfunction convertsachar st ri ng representing ani nt eger valueto the equivaenti nt eger .
In addition to the general error causesin clause 16.1.2, error causes are:
e inval ue contains characters other than "0*, 1%, "2","3", "4","5","6","7","8","9" and "-".
. i nval ue containsthe character "-" at another position than the leftmost one.

NOTE: Onreal test systemsthe integer interpretation of i nval ue may lead to an overflow problem that causes
compile time or run-time error. However, thisis out of the scope of the present document.

EXAMPLE:

str2int("66") /1 will return the integer value 66
str2int("-66") // wll return the integer value -66
str2int("6-6") // wll cause an error
str2int("abc") // wll cause an error

str2int("0") /1l will return the integer value O

C.1.27 Character string to hexstring

str2hex(in charstring invalue) return hexstring
Thisfunction converts a string of thetype char stri ngtoahexstri ng. Thestringi nval ue shal contain the
"o',"1","2","3", "4","5", "6", "7, "8","9", "a", "b", "c", "d", "e" "f*, "A","B", "C", "D", "E" or "F" graphical
characters only. Each character of i nval ue shall be converted to the corresponding hexadecimal digit. The resulting
hexst ri ng will have the same length as theincoming char stri ng.
In addition to the general error causesin clause 16.1.2, error causeis:
. i nval ue contains characters other than specified above.

EXAMPLE:

str2hex("54696E6B792D57696E6B7") = ' 54696E6B792D57696E6B7' H

C.1.28 Character string to octetstring

str2oct(in charstring invalue) return octetstring
Thisfunction converts a string of thetype charstringtoanoctetstring. Thestringi nval ue shall contain
the IIOII, Illll, lI2lI, II3II7 Il4ll, Il5ll1 ll6ll, ll7ll, ll8ll, ll9ll, llall, Ilbll, "C", IIdlI, Ilell IIfII, IIAII, " Bll, IICII, IIDII, IIEII OI’ IIF" graphical
characters only. When the string i nval ue contains even number charactersthe resulting oct et st ri ng contains 0
as leftmost character followed by the same sequence of charactersasinthechar stri ng.

| engt hof (seeclause C.2.1for theresultingoct et st ri ng will return half of | engt hof of theincoming
char st ri ng. In addition to the genera error causesin clause 16.1.2, error causesis.

. i nval ue contains characters other than specified above.

EXAMPLE:

str2oct (" 54696E6B792D57696E6B79") = ' 54696E6B792D57696E6B79' O
str2oct ("1D7")= ' 01D7' O

NOTE: The semantic of the str2oct function cause asymmetric behaviour:

oct2str(str2oct("1D7"))// results the charstring value "01D7"

ETSI

264 ETSI ES 201 873-1 V4.5.1 (2013-04)

C.1.29 Character string to float

str2float(in charstring invalue) return float

Thisfunction convertsachar st ri ng comprising anumber into af | oat value. The format of the number in the
char st ri ng shal follow rulesin clause 6.1.0, items @) or b) with the following exceptions:

. leading zeros are allowed,;

e leading "+" sign before positive valuesiis allowed;

e "-0.0"isallowed;

o no numbers after the dot in the decimal notation are allowed.
In addition to the general error causesin clause 16.1.2, error causes are;

e theformat of invalueis different than defined above.

NOTE: Onred test systemsthe float interpretation of i nval ue may lead to an overflow problem that causes
compile time or run-time error. However, thisis out of the scope of the present document.

EXAMPLE:

str2fl oat("12345.6") /1 is the same as str2float("123. 456E+02")
str2float("1.6") Il returns a float value equal to 1.6
str2fl oat ("+001.") Il returns a float value equal to 1.0
str2fl oat ("+001") I/l returns a float value equal to 1.0
str2float("-0.0") /1 returns a float value equal to -0.0

C.1.30 Enumerated to integer

enun®int (in Enunerated_type inpar) return integer

This function accepts an enumerated value and returnsthei nt eger value associated to the enumerated value (see aso
clause 6.2.4). The actual parameter passed to inpar always shall be atyped object (see clause 6.2.4 and the definition
"type context" in clause 3.1).

The general error causesin clause 16.1.2 apply.

EXAMPLE:

type enunerated MyFirstEnunType {
Monday, Tuesday, Wednesday, Thursday, Friday
b

type enunerated MySecondEnuniype {
Saturday(-3), Sunday (0), Monday
b

//within a dynam c | anguage el ement:
var MyFirst EnunType vl _First Enum : = Monday;
var MySecondEnuniType vl _SecondEnum : = Monday;

enunRint (vl _FirstEnum) // returns O
enun®i nt (vl _SecondEnum // returns 1

vl _First Enum : = Wednesday;

vl _SecondEnum : = Sat ur day;

enunRint (vl _FirstEnum // returns 2
enun®i nt (vl _SecondEnum) // returns -3

vl _First Enum : = Friday;

vl _SecondEnum : = Sunday;

enunRint (vl _FirstEnum) // returns 4
enun®i nt (vl _SecondEnum) // returns O

ETSI

265 ETSI ES 201 873-1 V4.5.1 (2013-04)

C.2 Length/size functions

C.2.1 Length of strings and lists

I engthof (in tenplate (present) any_string_or_list_type inpar) return integer

This function returns the length of avalue or template that is of typebi t st ri ng, hexstri ng,octetstring,
charstring, universal charstring, record of,set of,oraray. Theunitsof length for each string
type are defined in table 4 in the main body of the present document.

For values or templates of r ecor d of or set of type, the valueto be returned is the maximum of the minimal length
restriction value of the type, or O for types with no minimal length restriction, and the index of the last initialized
element plus 1.

The length value returned in case of length restricted string or list type shall be at least the minimum length according to
the type definition. In particular, the length of afixed lengthr ecor d of orset of vauewill dways be the fixed
length according to the type definition. For array values or templates, the value to be returned is the fixed length of the
corresponding r ecor d of type.

NOTE 1. Asi n forma parameters does not allow passing in uninitialized values or templates, even in these cases
i npar will be at least partialy initialized.

Thelength of anuni versal char st ri ng shal be calculated by counting each combining character and hangul
syllable character (including fillers) on its own (see ISO/IEC 10646 [2], clauses 23 and 24).

When the function | engt hof isapplied to string-type templates, i npar shall only contain the following matching
mechanisms: specific value, value list, complemented value list, pattern, "?' (AnyValue instead of value), "*"
(AnyValueOrNone instead of value), "?' (AnyElement inside value) and "*" (AnyElementsOrNone inside value) and the
length restriction matching attribute. In case of string-type templatesi npar shall match values of the same length only.
If i npar contains uninitialized elements, each of them shall be counted as 1 element, i.e. they shall be matched asiif
they contained the "?" (AnyElement inside value) matching character in case of binary strings or asif they werea"?"
(Match any character) character pattern for textual strings.

When the function | engt hof isapplied to templates of record of or set of types, i npar shall only contain the
following matching mechanisms: specific value, value list, complemented value list, "?* (AnyValue instead of value),
"*" (AnyValueOrNone instead of value), SuperSet, SubSet, "?* (AnyElement inside value) and "*"
(AnyElementsOrNone inside value), permutation and the length restriction matching attribute. The parameter i npar
shall only match values, for which thel engt hof function would give the same result. If i npar contains uninitialized
elements, each of them shall be counted as 1 element, i.e. they shall be matched as if they contained the "7
(AnyElement inside value) matching character.

NOTE 2: In case of record ofs and set ofs and arrays only elements of the TTCN-3 object, which is the parameter of
the function are calculated; i.e. no elements of nested types are taken into account when determining the
return value.

In addition to the general error causesin clause 16.1.2, error causes are;

e inpar isastring-type template and it can match string values with different length or the length restriction
matching attribute contradicts the number of string elements in the template body;

. i npar isarecord of or set of type template and it can match values of different lengths or the length
restriction matching attribute contradicts the number of elements in the template body.

NOTE 3: Onreal test systems the length calculation of i npar may lead to an overflow problem that causes
compile time or run-time error. However, thisis out of the scope of the present document.

EXAMPLE 1. Using lengthof for values
| engt hof (' 010' B) /] returns 3

| engt hof (' F3' H) /] returns 2

ETSI

266 ETSI ES 201 873-1 V4.5.1 (2013-04)

| engt hof (' F2' O Il returns 1

I engt hof (universal charstring : "Length_of_Exanple") // returns 17
/1 Gven

type record | ength(0..10) of integer MyList;

var MyList MyListvar :={ 0, 1, -, 2, - };

| engt hof (MyLi st Var) ;
/1 returns 4 without respect to the fact, that the elenent MyListVar[2] is not initialized

EXAMPLE 2: Using lengthof for string-type templates

| engt hof (charstring : "HELLO") /] returns 5

| engt hof (octetstring : ('12°'Q '34'0Q) // returns 1

| engt hof (' 1??1' B) /] returns 4

| engt hof (uni versal charstring : ? length(8)) // returns 8

| engt hof (' 1*F' H) /1 shall cause an error
I engthof (" 1*F' H l ength (8)) /'l returns 8

I engthof (bitstring : ? length(2..infinity)) // shall cause an error

| engt hof (' 00*FF' O | ength(1..2)) /Il returns 2

| engthof (' 1*49'H length(1..2)) /1 shall cause an error

I engthof (" 1' B I ength(3)) /1 shall cause an error

I engt hof (' 1*1' B | engt h(10. . 20)) /1 shall cause an error
EXAMPLE 3:

type record of integer Rol;

template Rol tr_roll : 1, permutation(2, 3), ?}
tenplate Rol tr_rol2 : 1, *, (2, 3) }

tenplate Rol tr_rol3 : 1, *, 10 } length(5)
tenplate Rol tr_rol4 : 1, 2, 3, * } length(1..2)
template Rol tr_rol5 : 1, 2, 3, * } length(1..3)

{
{
{
{
{1

I engthof (tr_roll) // returns 4
I engthof (tr_rol2) // shall cause an error
I engthof (tr_rol3) // returns 5
I engthof (tr_rol4) // shall cause an error

I engthof (tr_rol5) // returns 3

C.2.2 Number of elements in a structured value

sizeof (in tenplate (present) any_record_set_type inpar) return integer
This function returns the actual number of elements of avalue or template of ar ecor d or set type (see note).

Thefunctionsi zeof isapplicable to templates of record and set types. The function is applicable only if thesi zeof
function gives the same result on all values that match the template.

NOTE: Only elements of the TTCN-3 object, which is the parameter of the function are calculated; i.e. no
elements of nested types/values are taken into account at determining the return value.

In addition to the general error causesin clause 16.1.2, error causes are;

e wheni npar isatemplate and it can match values of different sizes.

ETSI

267 ETSI ES 201 873-1 V4.5.1 (2013-04)

EXAMPLE:

/1 Gven
type record MyPDU
{ bool ean fieldl optional,
integer field2

b
tenpl ate MyPDU MyTenpl ate : =
{ fieldl := om t,
field2 :=5
b

si zeof (MyTenpl ate); // returns 1

type set S {
integer f1,
bitstring f2 optional,
charstring f3 optional

}

tenplate Str_S1 :={ f1 :=(0..99), f2 :=onit, f3 :=7?}

tenmplate Str_S2 :={ f3 :=*, f1:=1, f2 :='00'B ifpresent }

template Str_S3 :=({ f1:=1, f2 :=onmt, f3 :="ABC' }, { f1:=2, f3 := onmit, f2 :="'1'B})
=2

template S tr_S4 :

sizeof (tr_S1) // returns 2
sizeof (tr_S2) // shall cause an error
sizeof (tr_S3) // returns 2
sizeof (tr_S4) // shall cause an error

C.3 Presence checking functions

C.3.1 The IsPresent function

ispresent(in tenplate any_ type inpar) return bool ean
Thisfunction is alowed for templates of all datatypes and returns:

. thevaluet r ue if the data object reference fulfils the (present) template restriction as described in clause 15.8;

. thevaluef al se otherwise.

NOTE 1: When the argument of i spresent isasubfield of atemplate field to which the"?" (AnyValue) matching
is assigned, the extension mechanism specified in clause 15.6.2 applies.

NOTE 2: This meansthat whenever i spresent (M/Tenpl at e) returnstr ue:

- M/ Tenpl at e can safely be assigned to a non-optional field of the type of the template in atemplate
variable;

- M/ Tenpl at e can safely be used as an actual template(present) parameter or assigned to a variable of
kind template(present).

The application of thei spr esent function to a semantically correct data object reference shall never result in an
error, even if using the reference would normally cause a runtime error when being used e.g. in an expression.

EXAMPLE:

/1 Gven
type record MyRecord
{

record {
bool ean i nnerFi el d1 optional,
i nteger innerField2 optional,
MyRecord innerFiel d3 optional
} fieldl optional,
integer field2
}

ETSI

268 ETSI ES 201 873-1 V4.5.1 (2013-04)

var M/Record vl _MyRecord := { fieldl := {}, field2 :=5}
/1 type of fieldl is record with fields, therefore fieldl remains uninitialized
/1 after this assignment (no value is assigned to any of the fields of vl_M/Record.fieldl)

i spresent (vl _MyRecord.fieldl) // returns false

vl _M/Record.fieldl := omt

i spresent (vl _MyRecord.fieldl) // returns false
/1 and therefore, vl_MRecord.fieldl.innerFieldl is an inaccessible reference

i spresent (vl _MyRecord.fieldl.innerField3.field2) // shall return false because innerField3 is
/1 unintialized and therefore, vl_MRecord.fieldl.innerField3.field2 is an
/'l inaccessible reference

i spresent (vl _MyRecord.fieldl.innerFieldl) // shall return false because fieldl is omtted
var tenplate MyRecord vlit_MRecord :={ fieldl :=?, field2 :=51}

i spresent (vlt_M/Record.fieldl) // returns true
ispresent(vlit_M/Record.fieldl.innerFieldl) // returns fal se because fieldl is AnyVal ue

/Il (pls. note, that at expansion of fieldl the optional field innerFieldl obtains "*"

/1 that can natch both a present and an onitted field

type record R { integer f1 optional, integer f2 optional }

template Rtl1 := {f1:=1, f2 :=(2 .. 4) }

template Rt2 :={ f1 :=onmit, f2 := (5, 7) ifpresent }
tenplate Rt3 := {f1:=*, f2 :=?}

ispresent(tl1.f1) // returns true
ispresent(t1.f2) // returns true
ispresent(t2.f1) // returns fal se
ispresent(t2.f2) // returns false
ispresent(t3.f1) // returns fal se

ispresent(t3.f2) // returns true

C.3.2 The IsChosen function

i schosen(in tenplate any_union_type inpar) return bool ean
Thisfunction is alowed for templates of all datatypes that are a union-field-reference. This function returns:

e thevaluet r ue if and only if the data object reference specifies the variant of the uni on typethat is actually
selected for a given data object;

° inal other casesf al se.

Thefunctioni schosen isapplicable to templates of union types containing a specific value or avauelist. It returns
t r ue if al the values matched by i npar have the given field selected. The result isf al se if there is another field of
the union type on which i schosen would return true.

The application of thei schosen function to a semantically correct data object reference shall never result in an error,
even if using the reference would normally cause a runtime error when being used e.g. in an expression.

EXAMPLE 1:

type union U { integer f1, octetstring f2 }

tenplate Ut_Ul := {fl1 := 1}

tenplate Ut_W2 := {f2 := ?}

tenplate Ut_U3 := ?

tenplate Ut_W = ({ f1:=21}, {f2:="ABO})

tenplate Ut _U5 := ({ f2 :='12?'0}, { f2 :="'*34'0Olength(2) })

i schosen(t_Ul.f1) // returns true

ETSI

schosen(t_UL. f 2)

schosen(t_U2.f1)

schosen(t _U2.f2)

schosen(t_U3.f1)

schosen(t _U3. f2)

schosen(t_U4.f1)

schosen(t _U4.f2)

schosen(t _U5.f1)

schosen(t _U5. f 2)

/1

/1

/1

/1

/1

/1

/1

/1

/1

returns

returns

returns

returns

returns

returns

returns

returns

returns

type record R { U u optional
template Rt_RL := { omt }

ischosen(t_Rl.u.f1l) //

EXAMPLE 2:

/1 Gven

type uni on MyUni on

{ PDU_t ypel
PDU_t ype2
PDU_t ype

}

p1,
p2,
p3

269 ETSI ES 201 873-1 V4.5.1 (2013-04)

fal se

fal se

true

fal se

fal se

fal se

fal se

fal se

true

}

returns false

/'l and given that M/PDU is a tenplate of MyUnion type
/1 and received_PDU is al so of MyUnion type

/'l then

MyPort. recei ve(MyPDU)

i schosen(recei ved_PDU. p2)

/1 returns true if the actual

-> val ue received_PDU

instance of MyPDU carries a PDU of the type PDU type2

C.3.3 The IsValue function

isvalue(in tenplate any_type inpar) return bool ean;

Thisfunction is alowed for templates of all datatypes. The function shall returnt r ue, if i npar iscompletely
initialized and resolvesto a specific value. If i npar isof r ecor d or set type, omitted optional fields shall be
considered asinitialized, i.e. the function shall also return trueif optional fields of i npar are set to omit. The function
shall return f al se otherwise.

Thenul | vaue assigned to default and component references shall be considered as concrete values.

The application of thei sval ue function to a semantically correct data object reference shall never result in an error,
even if using the reference would normally cause a runtime error when being used e.g. in an expression.

EXAMPLE 1. Simpletypes

tenpl ate charstring
tenpl ate charstring

tenpl ate charstring
tenpl ate charstring
tenpl ate charstring
tenpl ate charstring

i sval ue(ts_char0);
i sval ue(tr_charl);
i sval ue(tr_char?2);
i sval ue(tr_char3);
i sval ue(tr_char4);
i sval ue(tr_char5b);

/
/
/
/
/
/

ts_charO :
tr_charl :

tr_char2 :
tr_char3 :
tr_char4 :
tr_char5 :

/ shall
/ shall
| shall
| shall
| shall
| shall

"ABCD'; //tenplate containing a specific value matching

"AB?D'; //tenplate containing a specific value matching
/Inote, that "?" is not a matching synbol in this case

pattern "ABCD'; //a pattern matching a single value only

pattern "AB?D'; //pattern matching

("ABCD'); /] tenplate containing a specific value (expression)

("ABCD',"EFGH"); //a value list matching a single value only

return true
return true
return fal se
return fal se
return true simlarly to e.g. isvalue((2)) shall return true
return fal se

ETSI

270 ETSI ES 201 873-1 V4.5.1 (2013-04)

EXAMPLE 2: Special types

var default vl _default := null;
i sval ue(vl _default); // shall return true

EXAMPLE 3: Record/set types

type record MyRec {
integer f1 optional,
integer f2 optional

}

var MyRec vl _MyRec;
var tenplate MyRec vlt_MRec;

i sval ue(vl _MyRec) ; /'l shall return fal se
i sval ue(vlt_M/Rec); /1 shall return false
vi_MRec :={ f1:=5, f2 :=onit }
vit_MWRec :={ f1:=7?, f2 :=51}

i sval ue(vl _MyRec); /1 shall return true
isvalue(vl _MyRec.f2); [/ shall return false;
i sval ue(vlt _MyRec); /'l shall return fal se

isvalue(vlt_MyRec.fl); // shall return false
isvalue(vlt_M/Rec.f2); // shall return true

vit_MRec.f2 := onmt;
isvalue(vlt_MyRec.f2); // shall return false
EXAMPLE 4: Uniontypes

type uni on MyUnion {

i nteger chi,

i nteger ch2
}
tenplate MyUnion ts_MyUnion :={ chl :=5}
template MyUnion tr_MyUnion :={ chl :=?}
i sval ue(ts_M/Uni on); /1 shall return true
i sval ue(tr_MyUni on); /1 shall return fal se

i svalue(tr_MyUnion.chl); // shall return fal se

/'l note, this is different fromischosen(tr_M/Union.chl) as isvalue checks the content of the
/1 choice chl, while ischosen is checking if chl has been sel ected or not

i sval ue(tr_MyUnion.ch2); // shall return fal se

EXAMPLE5: Nested types

type record MyRecord {
MyUni on u opti onal

}
tenpl ate MyRecord ts_MyRecord := { u :=ts_M/Union }
tenpl ate MyRecord tr_My/Record := { u :=tr_M/Union }

tenpl ate M/Record ts_MyRecord2 := { u := omt }

i sval ue(ts_MyRecord. u.chl); // shall return true

i sval ue(tr_MyRecord. u.chl); // shall return fal se
i sval ue(tr_M/Record. u.ch2); // shall return false
i sval ue(ts_MyRecord. u.ch2); // shall return false

C.3.4 The IsBound function

i sbound(in tenplate any_type inpar) return bool ean;

Thisfunction is alowed for templates of all datatypes. The function shal returnt r ue, if i npar isat least partially
initialized. If i npar isof arecord or set type, omitted optional fields shall be considered asinitialized, i.e. the
function shall also returnt r ue if at least one optiona field of i npar issettoom t . The function shal returnf al se
otherwise. Inaccessible fields (e.g. non-selected alternatives of uni on types, subfields of omitted record and set types
or subfields of non-selected union fields) shall be considered as uninitialized, i.e. isbound shall return for themf al se.

ETSI

271 ETSI ES 201 873-1 V4.5.1 (2013-04)

Thenul | vaue assigned to default and component references shall be considered as concrete values.

The application of thei sbound function to a semantically correct template reference shall never result in an error,
even if using the reference would normally cause a runtime error when being used e.g. in an expression.

EXAMPLE 1: Simpletypes

var tenplate charstring vlt_char;

i sbound(vlt_char); /1 shall return false as v_char is uninitialized;
vlt_char := "AB?D"; /'l tenplate containing a specific value

i sbound(vlt_char); /1 shall return true

vlt_char := pattern "AB?D'; //tenplate containing a pattern natching

i sbound(vlt_char); /1 shall return true

EXAMPLE 2: Special types

var default vl _default := null;
i sbound(vl _default); /1 shall return true

EXAMPLE 3: Record/set types

type record MyRec {
integer f1,
M/Rec f2 optional
}

var MyRec vl _MyRec;
i sbound(vl _M/Rec); /1 shall return false

vl_M/Rec.f2 := onmt;
i sbound(vl _M/Rec); /1 shall return true as vl_MRec is partially initialized,
/] field f2 is set to omt

vi_MRec :={ f1:=5, f2 :=onmt }

i sbound(vl _M/Rec); /1 shall return true as vl_MRec is conpletely initialized

i sbound(vl _M/Rec.f2.f1); /1 shall return false as vl_MRec.f2.f1 is inaccessible

i sbound(vl _MyRec. f1/0); /1 shall cause an error already during evaluating the argunent

/1 as division by zero is not allowed

type union MyUnion {

i nteger chi,
M/Rec ch2
}
var tenplate MyUnion vlt_M/Union;
i sbound(vl t _MyUni on); /1 shall return false, as vit_MUnion is uninitialized
i sbound(vl t _MyUni on. chl); /1 shall return false, as alternative chl is uninitialized

vit_MyUnion := { chl :=5},;

i sbound(vl t _MyUni on); /1 shall return true
i sbound(vl t _MyUni on. chl); /1 shall return true
i sbound(vlt_MyUni on. ch2); /1 shall return false as the ch2 alternative is not selected

i sbound(vlt_MyUnion.ch2.f1); // shall return false as the field f1 is inaccessible
i sbound(vl t _MyUnion.chl/0); [/ shall cause an error already during evaluating the argunent
/1 as division by zero is not allowed

C.4 String/list handling functions

C.4.1 The Regexp function

regexp(
in tenplate (value) any_character_string_type inpar,
in tenplate (present) any_character_string_type expression,
in integer groupno

) return any_character_string_type

ETSI

272 ETSI ES 201 873-1 V4.5.1 (2013-04)

This function first matches the parameter i npar (or incasei npar isatemplate, its value equivalent)against the
expr essi on in the second parameter according to the pattern matching specified in clause B.1.5. If expr essi on is
not a template containing a pattern matching mechanism, it shall be processed by this predefined function asif it was a
character pattern as described in clause B.1.5.

If this matching is unsuccessful, an empty string shall be returned.

If this matching is successful, the substring of i npar shall be returned, which matched the gr oupno-s group of
expr essi on during the matching. Group numbers are assigned by the order of occurrences of the opening bracket of
agroup and counted starting from 0 by step 1.

The parametersi npar and expr essi on shal be avalue or atemplate of char st ri ng or uni ver sal

char stringtypes. Incasei npar isatemplate, it shall contain the specific value matching mechanism only. The
type of expr essi on shal beuni ver sal char st ri ng only whenthetypeof i npar isuni ver sal

char st ri ng. Whenexpr essi on isatemplateit shall contain the specific value or pattern matching mechanisms
only. The parameter gr oupno shall be a non-negative integer. The type of the character string returned is the root type
of i npar.

NOTE: Thisfunction differs from other well-known regular expression matching implementations in that:
a) It shal match the whole inpar string instead of only a substring.

b) It starts counting groups from 0, while in some other implementations the first group is referenced
by 1 and the whole substring matched by the expression is referenced by 0.

In addition to the general error causesin clause 16.1.2, error causes are:
e wheni npar isatemplate, it contains other matching mechanism than specific value or character pattern;

e whenexpressi on isatemplate, it contains other matching mechanism than specific value or character
pattern;

e inpar isof charstring type and expr essi on is of universal charstring type;
. gr oupno isanegative integer;
. thereisno gr oupno -sgroup inexpr essi on.

EXAMPLE:

/1 Gven
var charstring nylnput :=" sinple text for a regexp exanple
var charstring nyString;

nyString := regexp(nylnput,charstring:"?+(text)?+",0) //will return "text"

nyString := regexp(nylnput,charstring:"?+(text)?+",1) //causes an error as there is
//no group with index 1
myString := regexp(nylnput,charstring:"(?+)(text)(?+)",0) //wll return " sinple "

nyString := regexp(nylnput,charstring:"(?+)(text)(?+)",2) //will return
/1" for a regexp exanple
myString := regexp(nylnput,charstring:"((?+)(text)(?+))",0) //will return the whole inpar,
/Ili.e. ™ sinple text for a regexp exanple

nyString := regexp(nylnput,charstring:"(([]1+)(text)(?+))",0) //will return an enpty string

/las expression does not matches inpar
myString : = regexp(nylnput, universal charstring:"?+(text)?+",0) //wll cause an error as

Il inpar is of type charstring, while

/] expression is of type universal charstring

nylnput :=" date: 2001-10-20 ; msgno: 17; exp

var tenplate charstring nyPattern : = pattern"([/t]#(,)date:[\d\-1#(,);[/t]#(,)msgno: (\d#(1,3)); (exp)#(0,1))"

/I please note, that only the very first opening bracket and the bracket before "\d" denotes

/1 groups; "#(,)", "#(1,3)" and "#(0,1)" denotes matching the precedi ng expression several tine

myString := regexp(nylnput, nyPattern,1) //will return the value "17".

/1 An exanpl e of a wapper function to count groups from1 and return the conplete p_inpar
/1if p_groupno equals O

ETSI

273 ETSI ES 201 873-1 V4.5.1 (2013-04)

function regexp0O(
in tenplate charstring p_inpar,
in tenplate charstring p_expression,
in integer p_groupno)
return charstring {
var tenplate charstring extended_expr := pattern "({p expression})";
return regexp(p inpar, extended_expr, p_groupno)

C.4.2 The Substring function

substr (
in tenplate (present) any_string_or_sequence_type inpar,
in integer index,
in integer count

) return input_string_or_sequence_type

This function returns a substring or subsequence from avalue that is of abinary string type (bi t st ri ng,
hexstring, oct et string), acharacter stringtype (char stri ng, uni ver sal char stri ng), or asequence
type (record of ,set of orarray). Thetype of the substring or subsequence returned is the root type of the input
parameter. The starting point of substring or subsequence to return is defined by the second parameter (i ndex).
Indexing starts from zero. The third input parameter (count) defines the length of the substring or subsequence to be
returned. The units of length for string types are as defined in table 4 of the present document. For sequence types, the
unit of length is element.

NOTE: Please note that the root types of arraysisr ecor d of , thereforeif i npar isan array the returned type
isrecord of. This, in some cases, may lead to different indexingini npar and in the returned value.

When used on templates of character string types, only the inside matching mechanisms AnyElement and
AnyElementsOrNone are allowed ini npar and the function shall return the character representation of the matching
mechanisms, i.e. "?" for AnyElement and "*" for AnyElementsOrNone. When inpar is atemplate of binary string or
sequence type or is an array, only the specific value and AnyElement matching mechanisms are allowed and the
substring or subsequence to be returned shall not contain AnyElement.

In addition to the general error causesin clause 16.1.2, error causes are:
o i ndex islessthan zero;

. count islessthan zero;

. i ndex+count isgreater than| engt hof (i npar);

. i npar isatemplate of acharacter string type and contains a matching mechanism other than AnyElement or
AnyElementsOrNone;

. i npar isatemplate of abinary string or sequence type or array and it contains other matching mechanism as

specific value and AnyElement;

. i npar isatemplate of abinary string or sequence type or array and the substring or subsegquence to be
returned contains the AnyElement matching mechanism.
EXAMPLE:
substr (' 00100110' B, 3, 4) /1 returns '0011'B
substr (' ABCDEF' H, 2, 3) /1 returns 'CDE H
substr (' 01AB23CD O 1, 2) /'l returns ' AB23' O

substr("My nanme is JJ", 11, 2) // returns "JJ"

substr({ 4, 5, 6}, 1, 2) /'l returns {5, 6}

ETSI

274 ETSI ES 201 873-1 V4.5.1 (2013-04)

C.4.3 The Replace function

repl ace(
in any_string_or_sequence_type inpar,
in integer index,
in integer len,
in any_string_or_sequence_type repl
) return any_string_or_sequence type

This function replaces the substring or subsequence of valuei npar atindex i ndex of length | en with the string or
sequence valuer epl and returns the resulting string or sequence. i npar shall not be modified. If | en isO the string
or sequencer epl isinserted. If i ndex isO, repl isinserted at the beginning of i npar . If i ndex is

| engt hof (i npar),repl isinserted at theend of i npar . i npar andr epl , and the returned string or sequence
shall be of the same root type. The function replace can be appliedto bi t st ri ng, hexstri ng,octetstring, or
any character string, r ecord of ,set of, or arrays. Note that indexing in strings starts from zero.

NOTE: Please note that the root types of arraysisr ecor d of , thereforeif i npar or r epl or both arean
array, thereturned typeisr ecord of . This, in some cases, may lead to different indexingini npar
and/or r epl and in the returned value.

In addition to the general error causesin clause 16.1.2, error causes are:

. i npar orrepl arenot of string, record of ,set of, or array type;
. i npar andr epl are of different root type;

e indexislessthanO or greater than| engt hof (i npar) ;

e | enislessthan O or greater than| engt hof (i npar) ;

e index+l enisgreater thanl engt hof (i npar) .

EXAMPLE:

repl ace ('00000110'B, 1, 3, '"111'B) // returns '01110110'B

replace (' ABCDEF' H, 0, 2, '123'H) [l returns '123CDEF H
replace ('01AB23CD O 2, 1, 'FF96' O /1 returns '01ABFF96CD O
replace ("My name is JJ", 11, 1, "xx") [/ returns "My nane is xxJ"

replace ("My nane is JJ", 11, 0, "xx") [/ returns "My nane is xxJJ"

replace ("My name is JJ", 2, 2, "x") /'l returns "Myxame is JJ",

replace ("My nane is JJ", 12, 2, "xx") [/ produces test case error
replace ("My name is JJ", 13, 2, "xx") [/ produces test case error
replace ("My nanme is JJ", 13, 0, "xx") [/ returns "My nane is JJIxx"

C.5 Codec functions

C.5.1 The encoding function

encval ue(in tenplate (value) any_type inpar) return bitstring

Theencval ue function encodes avalue or template into a bitstring. When the actual parameter that is passed to

i npar isatemplate, it shall resolve to a specific value (the same restrictions apply as for the argument of the send
statement). The returned bitstring represents the encoded value of i npar , however, the TTCN-3 test system need not
make any check on its correctness.

ETSI

275 ETSI ES 201 873-1 V4.5.1 (2013-04)

In addition to the general error causesin clause 16.1.2, error causes are:

. Encoding fails due to a runtime system problem (i.e. no encoding function exists for the actual type of
i npar).

C.5.2 The decoding function

decval ue(inout bitstring encoded_val ue, out any_type decoded_val ue) return integer

Thedecval ue function decodes a bitstring into avalue. The test system shall suppose that the bitstring
encoded_val ue represents an encoded instance of the actual type of decoded_val ue.

If the decoding was successful, then the used bits are removed from the parameter encoded_val ue, therestis
returned (in the parameter encoded_val ue), and the decoded value is returned in the parameter decoded_val ue.
If the decoding was unsuccessful, the actual parameters for encoded_val ue and decoded_val ue are not
changed. The function shall return an integer value to indicate success or failure of the decoding below:

e Thereturnvaue 0 indicates that decoding was successful.
. The return value 1 indicates an unspecified cause of decoding failure.

e Thereturn value 2 indicates that decoding could not be completed asencoded_val ue did not contain
enough bits.

Therestrictionsin clause 16.1.2 apply. If any of these restrictionsis applicable, the return value shall be 1.

C.6 Other functions

C.6.1 The random number generator function

rnd([in float seed]) return float

Ther nd function returns a (pseudo) random number less than 1 but greater or equal to 0. The random number
generator isinitialized by means of an optional seed value (a numerical float value). If no new seed is provided, the last
generated number will be used as seed for the next random number. Without a previous initialization a value calcul ated
from the system time will be used as seed value whenr nd isused the first time.

Eachtimether nd functionisinitialized with the same seed value, it shall repeat the same sequence of random
numbers.

To produce a random integers in a given range, the following formula can be used:

f | oat 2i nt (i nt 2f | oat (upper bound - | owerbound +1)*rnd()) + | owerbound
/1 Here, upperbound and | ower bound denote highest and | owest nunber in range.

In addition to the general error causesin clause 16.1.2, error causes are:

. seed isinfinity,-infinityornot_a_nunber.

C.6.2 The testcasename function
testcasename () return charstring
Thet est casenane function shall return the unqualified name of the actually executing test case.
EXAMPLE 1:

nodul e MyTCMVbdul e {

testcase MyTestCasel () runs on MIC system TSI
{

ETSI

276 ETSI ES 201 873-1 V4.5.1 (2013-04)

var charstring v_TCnane : = testcasenane ();
/1 will return the charstring "MTestCasel"

}

t est case M/Test Case2 () runs on MIC system TSI
{

y

}
modul e MyTSMWbdul e {

functi on MySt art APTC() runs on PTC {

var charstring v_TCnane : = testcasenane ();
/1l will return charstring "MTestCasel", if the function is
/1 called by a test conponent during the execution of M/TestCasel
/1 will return charstring "M/Test Case2", if the function is

// called by a test conponent when MyTest Case2 is being executed

}

When the functiont est casenane is called if the control part is being executed but no testcase, it shall return the
empty string.

EXAMPLE 2:
nodul e MyModul e {

control

{
var charstring v_TCnane : = testcasenane () // wll return charstring ""

}

The general error causesin clause 16.1.2 apply.

ETSI

277 ETSI ES 201 873-1 V4.5.1 (2013-04)

Annex D (normative):
Preprocessing macros

This annex defines a set of preprocessing macros. A preprocessing macro isamacro that is replaced by a preprocessor
or acompiler withachar st ri ng ori nt eger value respectively before compilation. Preprocessing macros shall not
be replaced inside literal char st ri ng values and templates and not in TTCN-3 comments. In the TTCN-3 codg, it
can beused likeachar st ri ng or ani nt eger value respectively.

D.1 Preprocessing macro _ MODULE_

The __ MODULE__ preprocessing macro denotes the module name in which the macro is used. A preprocessor or
compiler shall replace al occurrencesof _ MODULE__ with the actual module name in form of achar st ri ng value.

D.2 Preprocessing macro __ FILE__

The __FI LE__ preprocessing macro denotes the canonical (absolute) file name, i.e. the full path and the basic file
name, in which the macro is used. A preprocessor or compiler shall replace al occurrencesof _ FI LE__ with the
actual canonical (absolute) file namein form of achar st ri ng value.

NOTE: Theformat of the canonical file name depends on the operating system and is not specified by the present
document.

EXAMPLE:

const charstring MyConst:= __FILE _;
/I MyConst is for exanple "/honme/ nyhome/ MyTest. ttcn"

D.3 Preprocessing macro _ BFILE

The__ BFI LE__ preprocessing macro denotes the basic (relative) file name, i.e. without path, in which the macrois
used. A preprocessor or compiler shall replace all occurrencesof _ BFI LE__ with the actual basic (relative) file name
informof achar st ri ng value.

NOTE: Theformat of the basic file name depends on the operating system and is not specified by the present
document.

EXAMPLE:

const charstring MyConst:= _ BFILE__;
/1 MyConst is for exanple "MTest.ttcn"

D.4 Preprocessing macro __ LINE__

The LI NE__ preprocessing macro denotes the line number of the file in which the macro is used. A preprocessor or
compiler shall replace each occurrenceof __ LI NE__ with the actual line number in form of ani nt eger value.

A file starts with line number 1. Each newline shall increase the line number by 1 (see clause A.1.5.1). Also newlines
of commented lines shall increase the line number by 1.

ETSI

278 ETSI ES 201 873-1 V4.5.1 (2013-04)

D.5 Preprocessing macro _ SCOPE___

The __ SCOPE__ preprocessing macro denotes the unqualified name of the lowest named basic scope unit in which the
macro is used. According to clause 5.2, basic scope units of TTCN-3 are module definitions part, module control part,
component types, functions, altsteps, test cases, statement blocks, templates and user defined named types. Statement
blocks have no name and therefore, a_ SCOPE__ preprocessing macro used in a statement block refersto the next
higher named basic scope unit.

A preprocessor or compiler shall replace all occurrencesof _ SCOPE__ withachar st ri ng value which includes:
a) the module name, if the lowest named scope unit is the module definitions part;
b) “control ", if thelowest named scope unit is the module control part;
c) acomponent type name, if the lowest named scope unit is a component type definition;
d) atest case name, if the lowest named scope unit is atest case definition;
€) anadtstep name, if the lowest named scope is an altstep definition;
f) afunction name, if the lowest named scope is a function definition;
g) atemplate name, if the lowest named scope is atemplate definition (local or global); or
h) thetype name, if the lowest named scopeis a user defined named type definition.

NOTE: The__ SCOPE__ preprocessing macro cannot be used to retrieve the names of other kinds of definitions,
like for example names of groups of definitions or names of global constants.

EXAMPLE 1. Using _ SCOPE__ in constant and template definitions

modul e MyModul e

{
const charstring MyConst := _ SCOPE__; /1 MyConst contains "MNModul e"

tenpl ate charstring MTenpl ate : = _SCOPE__; /'l MyTenpl ate contains "MTenpl ate"

type record MyRecordl

{
charstring fieldl1,

charstring fieldl2
}

tenpl ate M/Recordl MyTenpl atel (charstring p := _ SCOPE__) :=

fieldll : = p,

fieldl2 := _ SCOPE__ /1 fieldl2 contains "MTenpl atel”
}

function MyFunction() {
var tenplate MyRecordl v_Myvarl := MTenpl at el;
/1 fieldll of MyTenplatel will contain the default value of paraneter p,
/1 i.e. "MyTenpl atel"
b
}

EXAMPLE 2: Using__ SCOPE__inastructured type scope

type record MyRecord2 {
charstring field21,
charstring field22 ("a", "b", _ SCOPE)
[/l list constrained field: a |egal values are "a", "b" or "MRecord2"

}

tenpl ate MyRecord2 MyTenpl ate2 : = {
field2l := "a",
field22 := "M/Record2" /1 a valid specific val ue natching

}

ETSI

279 ETSI ES 201 873-1 V4.5.1 (2013-04)

tenpl ate M/Record2 MyTenpl ate3 : = {
field21 := "a",
field22 := _ SCOPE__
/] Causes an error as _ SCOPE__ is replaced with "MTenpl at e3",
/1 which is violating the list constraint of field22
}
EXAMPLE 3: Using__ SCOPE__ in an embedded structured type scope

type record MyRecord3 {
charstring fiel d31,

record {
charstring field321 ("a", "b", _ SCOPE__
/1 list constrained field: a |egal value shall be "a", "b" or "MRecord3"
} field32
}
tenpl ate MyRecord3 MyTenpl ate4 : =
field31 := "a",
field32 : =
field321 := "M/Record3" /1 a valid specific value natching
}
}
tenpl ate MyRecord3 MyTenpl ate5 : =
{
field31 := "a",
field32 :=
field321 := _ SCOPE

/1 Causes and error as __SCOPE__ is replaced with "M/Tenpl at e5",
/1l which is violating the list constraint of field321

ETSI

280 ETSI ES 201 873-1 V4.5.1 (2013-04)

Annex E (informative):
Library of Useful Types

E.1 Limitations

Names of types added to thislibrary are to be unique within the whole language and within the library (i.e. are not to be
one of the names defined in annex C). Names defined in this library are not to be used by TTCN-3 users as identifiers of
other definitions than given in this annex.

NOTE: Therefore type definitions given in this annex may be repeated in TTCN-3 modules but no type distinct
from the one specified in this annex can be defined with one of the identifiers used in this annex.

E.2 Useful TTCN-3 types

E.2.1 Useful simple basic types

E.2.1.0 Signed and unsigned single byte integers

These types support integer values of the range from -128 to 127 for the signed and from 0 to 255 for the unsigned type.
The value notation for these types is the same as the value notation for the integer type. Values of these types are to be
encoded and decoded as they were represented on a single byte within the system independently from the actual
representation form used.

NOTE: Encoding of values of these types may be the same or may differ from each other and from the encoding
of the integer type (the root type of these useful types) depending on the actual encoding rules used.
Details of encoding rules are out of the scope of the present document.

Type definitions for these types are:
type integer byt e (-128 .. 127) with { variant "8 bit" };

type integer unsi gnedbyt e (0 .. 255) with { variant "unsigned 8 bit" };

E.2.1.1 Signed and unsigned short integers

These types support integer values of the range from -32 768 to 32 767 for the signed and from 0 to 65 535 for the
unsigned type. The value notation for these typesis the same as the value notation for the integer type. Values of these
types are to be encoded and decoded as they were represented on two bytes within the system independently from the
actual representation form used.

NOTE: Encoding of values of these types may be the same or may differ from each other and from the encoding
of the integer type (the root type of these useful types) depending on the actual encoding rules used.
Details of encoding rules are out of the scope of the present document.

Type definitions for these types are:
type integer short (-32768 .. 32767) with { variant "16 bit" };

type integer unsi gnedshort (0 .. 65535) with { variant "unsigned 16 bit" };

ETSI

281 ETSI ES 201 873-1 V4.5.1 (2013-04)

E.2.1.2 Signed and unsigned long integers

These types support integer values of the range from -2 147 483 648 to 2 147 483 647 for the signed and from O to

4 294 967 295 for the unsigned type. The value notation for these typesis the same as the value notation for the integer
type. Values of these types are to be encoded and decoded as they were represented on four bytes within the system
independently from the actual representation form used.

NOTE: Encoding of values of these types may be the same or may differ from each other and from the encoding
of the integer type (the root type of these useful types) depending on the actual encoding rules used.
Details of encoding rules are out of the scope of the present document.

Type definitions for these types are:

type integer | ong (-2147483648 .. 2147483647)
with { variant "32 bit" };

type integer unsi gnedl| ong (0 .. 4294967295)
with { variant "unsigned 32 bit" };

E.2.1.3 Signed and unsigned longlong integers

These types support integer values of the range from -9 223 372 036 854 775 808 to 9 223 372 036 854 775 807 for the
signed and from O to 18 446 744 073 709 551 615 for the unsigned type. The value notation for these typesis the same
as the value notation for the integer type. Va ues of these types are to be encoded and decoded as they were represented
on eight bytes within the system independently from the actual representation form used.

NOTE: Encoding of values of these types may be the same or may differ from each other and from the encoding
of the integer type (the root type of these useful types) depending on the actual encoding rules used.
Details of encoding rules are out of the scope of the present document.

Type definitions for these types are:

type integer | ongl ong (-9223372036854775808 .. 9223372036854775807)
with { variant "64 bit" };

type integer unsi gnedl| ongl ong (0 .. 18446744073709551615)
with { variant "unsigned 64 bit" };

E.2.1.4 I|EEE 754 floats

These types support the ANSI/IEEE 754 [6] for binary floating-point arithmetic. The type IEEE 754 [6] float supports
floating-point numbers with base 10, exponent of size 8, mantissa of size 23 and a sign bit. The type |[EEE 754 [6]
double supports floating-point numbers with base 10, exponent of size 11, mantissa of size 52 and a sign bit. The type
|IEEE 754 [6] ext f | oat supports floating-point numbers with base 10, minimal exponent of size 11, minimal
mantissa of size 32 and asign bit. The type IEEE 754 [6] ext doubl e supports floating-point numbers with base 10,
minimal exponent of size 15, minimal mantissa of size 64 and asign hit.

Values of these types are to be encoded and decoded according to the IEEE 754 [6] definitions. The value notation for
these types is the same as the value notation for the float type (base 10).

NOTE: Precise encoding of values of thistype depends on the actual encoding rules used. Details of encoding
rules are out of the scope of the present document.

Type definitions for these types are:

type fl oat | EEE754f | oat with { variant "|EEE754 float" };

type fl oat | EEE754doubl e with { variant "|EEE754 double" };

type fl oat | EEE754ext f | oat with { variant "|EEE754 extended float" };
type fl oat | EEE754ext doubl e with { variant "|EEE754 extended double" };

ETSI

282 ETSI ES 201 873-1 V4.5.1 (2013-04)

E.2.2 Useful character string types

E.2.2.0 UTF-8 character string "utf8string"

This type supports the whole character set of the TTCN-3type uni ver sal char st ri ng (see paragraph d) of
clause 6.1.1). Its distinguished values are zero, one, or more characters from this set. Values of thistype are entirely
(e.g. each character of the value individually) to be encoded and decoded according to the UCS Transformation Format
8 (UTF-8) as defined in annex R of ISO/IEC 10646 [2]. The value notation for thistype is the same as the value
notation for theuni ver sal charstri ng type.

The type definition for thistypeis:

type universal charstring utf8string with { variant "UTF-8" };

E.2.2.1 BMP character string "bmpstring"

This type supports the Basic Multilingual Plane (BMP) character set of ISO/IEC 10646 [2]. The BMP represents all
characters of plane 00 of group 00 of the Universal Multiple-octet coded Character Set. Its distinguished values are
zero, one, or more characters from the BMP. Values of thistype are entirely (e.g. each character of the value
individually) to be encoded and decoded according to the UCS-2 coded representation form (see clause 14.1 of
ISO/IEC 10646 [2]). The value notation for this type is the same as the val ue notation for the uni ver sal

charstring type.
NOTE: Thetype"bmpstring" supports a subset of the TTCN-3 type uni ver sal charstri ng.

The type definition for thistypeis:

type universal charstring bnpstring (char (0,0,0,0) .. char (0,0, 255,255))
with { variant "UCS-2" };

E.2.2.2 UTF-16 character string "utf16string"

Thistype supports all characters of planes 00 to 16 of group 00 of the Universal Multiple-octet coded Character Set (see
ISO/IEC 10646 [2]). Its distinguished values are zero, one, or more characters from this set. Values of thistype are
entirely (e.g. each character of the value individually) to be encoded and decoded according to the UCS Transformation
Format 16 (UTF-16) as defined in annex Q of ISO/IEC 10646 [2]. The value notation for thistype is the same asthe
value notation for theuni ver sal charstri ng type

NOTE: Thetype"utf16string" supports a subset of the TTCN-3 type uni ver sal charstri ng.

The type definition for thistypeis:

type universal charstring utfl6string (char (0,0,0,0) .. char (O, 16, 255, 255))
with { variant "UTF-16" };

E.2.2.3 ISO/IEC 10646 character string "iso8859string"

Thistype supports al charactersin al aphabets defined in the multiparty standard | SO/IEC 10646 [2]. Its distinguished
values are zero, one, or more characters from the |SO/IEC 10646 [2] character set. Values of thistype are entirely

(e.g. each character of the value individually) to be encoded and decoded according to the coded representation as
specified in ISO/IEC 10646 [2] (an 8-bit coding). The value notation for thistype is the same as the val ue notation for
theuni ver sal charstri ng type.

NOTE 1. Thetype "iso8859string" supports a subset of the TTCN-3typeuni ver sal charstring.

NOTE 2: Ineach ISO/IEC 10646 [2] aphabet the lower part of the character set table (positions 02/00 to 07/14) is
compatible with the Recommendation ITU-T T.50 [4] character set. Hence all extra language specific
characters are defined for the upper part of the character table only (positions 10/00 to 15/15).

ETSI

283 ETSI ES 201 873-1 V4.5.1 (2013-04)

The type definition for thistypeis:

type universal charstring iso8859string (char (0,0,0,0) .. char (0,0,0,255))
with { variant "8 bit" };

E.2.2.4 Status values for TTCN-3 objects

Type and constants defined in this clause support the secure usage of the checkstate port operation defined in
clause 22.5.5.

The type definition for thistypeis:

type charstring objState ("Started", "Halted", "Stopped", "Connected", "Mapped", "Linked");

Useful constant definitions for working with object states are:

const obj State STARTED := "Started";
const obj State HALTED : = "Hal ted";

const obj State STOPPED : = "Stopped";
const obj State CONNECTED : = "Connected";
const obj State MAPPED : = "Mapped";

const obj State LINKED : = "Linked";

E.2.3 Useful structured types

E.2.3.0 Fixed-point decimal literal

This type supports the use of fixed-point decimal literal as defined in the IDL Syntax and Semantics version 2.6 [i.10].
It is specified by an integer part, adecimal point and afraction part. The integer and fraction parts both consist of a
sequence of decimal (base 10) digits. The number of digitsis stored in "digits" and the size of the fraction part is given
in"scale'. Thedigitsitself are stored in "value_". Value notation for this type is the same as the value notation for the
record type. Vaues of thistype are to be encoded and decoded as IDL fixed point decimal values.

NOTE: Precise encoding of values of thistype depends on the actual encoding rules used. Details of encoding
rules are out of the scope of the present document.

The type definition for thistypeis:
type record | DLfixed {
unsi gnedshort digits,
short scal e,
charstring val ue_

}
with { variant "IDL:fixed FORMAL/01-12-01 v.2.6" };

E.2.4 Useful atomic string types

E.2.4.1 Single Recommendation ITU-T T.50 character type

A type whose distinguished values are single characters of the version of Recommendation ITU-T T.50 [4] complying
to the International Reference Version (IRV) as specified in clause 8.2 of Recommendation ITU-T T.50 [4] (see aso
note 1 to clause 6.1.1).

The type definition for thistypeis:

type charstring char646 length (1);

NOTE: The specia string "8 bit" defined in clause 27.5 may be used with this type to specify a given encoding
for its values. Also, other properties of the base type can be changed by using attribute mechanisms.

ETSI

284 ETSI ES 201 873-1 V4.5.1 (2013-04)

E.2.4.2 Single universal character type
A type whose distinguished values are single characters from | SO/IEC 10646 [2].

The type definition for thistypeis:

type universal charstring uchar length (1);

NOTE: Special strings defined in clause 27.5 except "8 bit" may be used with this type to specify a given
encoding for its values. Also, other properties of the base type can be changed by using attribute
mechani sms.

E.2.4.3 Single bit type
A type whose distinguished values are single binary digits.

The type definition for thistypeis:

type bitstring bit length (1);

E.2.4.4 Single hex type
A type whose distinguished values are single hexadecimal digits.

The type definition for thistypeis:

type hexstring hex length (1);

E.2.4.5 Single octet type
A type whose distinguished values are pairs of hexadecimal digits.

The type definition for thistypeis:

type octetstring octet length (1);

ETSI

285 ETSI ES 201 873-1 V4.5.1 (2013-04)

Annex F (informative):
Operations on TTCN-3 active objects

This annex describes in a short form the semantics of operations on active objectsin TTCN-3 being test components,
timers and ports. This dynamic behaviour is written in the form of state machines with:

e the states being named and identified as nodes;
e theinitial state being identified by an incoming arrow;
. transitions between states connecting two states (not necessarily different states) and identified as arrows,

e transitions being marked with the enabling condition for that transition (i.e. operation or statement calls) and
the resulting condition (for example atest case error), both are separated by '/":

- operation and statement calls are the TTCN-3 operations and statements applicable to the object (written
in bold);

- error as aresulting condition means testcase error (written in bold);

- null as aresulting condition means that except of a possible state change no other results apply (written
in bold);

- match/no match refers to the matching result of atransition (written in bold);

- concrete values are boolean or float results (written in bold italics);

- all other resulting conditions are textually described (written in standard font);
. notes are used to explain further details of the state machine.

For further details, please refer to the operational semantics of TTCN-3 [1]. In case of any contradiction between this
annex and the operational semantics of TTCN-3 [1] the latter takes precedence.

F.1 Test components

F.1.1 Test component references

Variables of test component types, the sel f and nt ¢ operations are used to reference test components. Thest art ,
st op, done and r unni ng operations are not directly applied on test components but on component references. The
test system has to decide if the operation requested should affect the component object itself or other actionis
appropriate (e.g. an error occurs when the reference of a stopped PTC is used in a component start operation). The

cr eat e operation used to create PTCs returns a unique reference to the created PTC, which istypically bound to atest
component variable. The behaviour related to test component variables themselvesis shown in figure F.1.

ETSI

286 ETSI ES 201 873-1 V4.5.1 (2013-04)

done/error killed/error

variable running/error alivelerror
declaration stop/error kill/error
start/error
Uninitialized N Error

1

(see note)

/—("assignment of the return value of cr eat e"/"references created test component

"assignment of the return value of cr eat e"/"references created
test component” (and "looses the previous reference”)

Initialized

NOTE: Whenever a test component enters its error state, the error verdict is assigned to its local verdict, the test
case terminates and the overall test case result will be error.

Figure F.1: Handling of test component references

F.1.2 Dynamic behaviour of PTCs

PTCs can be of non-alive type or alive-type. Non-alive type PTCs can bein Inactive, Running and Killed states. Their
dynamic behaviour is shown in figure F.2.

create/creation of anon-alive PTC

e

start/"component executes function” \

done/no match killed/no match
running/false aliveltrue

stop/"component terminates” (se note 2a)

kill/"component terminates” (see note 2b)
done/no match killed/no match

running/true aliveltrue

/—("run-time error"/error |

Error

(see note 3)

stop/"'component terminates” (see note 1a)
kill/"component terminates” (see note 1b)
"return from function"/"component terminates"
"compl etion of function"/"component terminates’

start/error

start/error

stop/null (seenote2a) Kill/null (seenote 2b)
done/match killed/match
running/false alive/false

NOTE 1: (a) Stop can be either a stop, self.stop or a stop from another test component.
(b) Kill can be either a Kill, self kill, a kill from another test component or a kill from the test system
(in error cases).
NOTE 2: (a) Stop can be from another test component only.
(b) Kill can be from another test component or from the test system (in error cases) only.
NOTE 3: Whenever a test component enters its error state, the error verdict is assigned to its local verdict,
the test case terminates and the overall test case result will be error.

Figure F.2: Dynamic behaviour of non-alive type PTCs

ETSI

287 ETSI ES 201 873-1 V4.5.1 (2013-04)

Alive-type PTCs can bein Inactive, Running, Stopped and Killed states. Their dynamic behaviour is shownin
figure F.3.

create alive/creation of an alive PTC

done/no match killed/no match
runningfalse aliveltrue

stop/"component stops'” (see note 2a)
start/"component executes function”

done/no match killed/no match

kill/"component terminates’ (see note 2b) }\
runningtrue aliveltrue

kill/" component terminates’ (see note 1b) run-time error"/error

Error

(see note 3)

start/"component
executes function”

stop/" component stops” (see note 1a)

"return from function"/"component terminates"

"completion of function"/"component terminates’ stop/null (seenote 2a
done/match

killed/no matc

runningfalse

aliveftrue

stop/null (see note 2a)
Kill/null (seenote 2b)

done/match Stopped

killed/match <

running/false \1))

alivelfalse kill/"component terminates” (see note 2b) start/error

NOTE 1: (a) Stop can be either a stop, self.stop or a stop from another test component.
(b) Kill can be either a Kill, self kill, a kill from another test component or a kill from the test system
(in error cases).
NOTE 2: (a) Stop can be from another test component only.
(b) Kill can be from another test component or from the test system (in error cases) only.
NOTE 3: Whenever a test component enters its error state, the error verdict is assigned to its local verdict,
the test case terminates and the overall test case result will be error.

Figure F.3: Dynamic behaviour of alive-type PTCs

ETSI

288 ETSI ES 201 873-1 V4.5.1 (2013-04)

F.1.3 Dynamic behaviour of the MTC
The MTC can bein Running or Killed state. The dynamic behaviour of the MTC is shown in figure F.4.

execute/"createsthe MTC" and "starts the testcase”

Error .
(see note 3)

stop/"component terminates” (see note 1a)
kill/"component terminates” (see note 1b)
"completing of the test case"/"component terminates"

done/no match killed/no match
running/true alive/true

start/error

stopfrom another component/er ror
kill from another component/error
"run-time error"/error

Killed

(seenote 2)

NOTE 1: (a) Stop can be either a stop, self.stop, a stop from another test component.
(b) Kill can be either a Kill, self kill, a kill from another test component or a kill from the test system

(in error cases).
NOTE 2: All remaining PTCs are to be killed as well and the testcase terminates.
NOTE 3: Whenever the MTC enters its error state, the error verdict is assigned to its local verdict,
the test case terminates and the overall test case result will be error.

Figure F.4: Dynamic behaviour of the MTC

ETSI

289 ETSI ES 201 873-1 V4.5.1 (2013-04)

F.2 Timers

Timers can bein Inactive, Running or Expired state. The dynamic behaviour of atimer is shown in figure F.5.

Test component timers: "component created"”;
Other local timers: "testcase, function, altstep,
statement block entered or default activated”

stop/null
running/false
read/0.0
timeout/no match

stop/stop timer

timeout/match
stop/null

start/"timer starts with
non-negative duration”

start/"timer starts with non-negative duration"

N
start/"timer restarts with non-negative duration”

running/true
read/elapsed time
timeout/no match

Running

(see note 1)

(timer expiry)/null

running/false
read/0.0

(see note 3)

(see note 2)

start with negative duration/error

NOTE 1: For any scope unit, all timers in that scope being in Running state constitute the running-timer list.

NOTE 2: For any scope unit, all timers in that scope being in Expired state constitute the timeout-list.

NOTE 3: Whenever a timer enters its error state, the test component it belongs to enters also its error state,
assigns a local error verdict, the test case terminates and the overall test case result will be error.

Figure F.5: Dynamic behaviour of timers

F.3 Ports

Ports can be in Started or Stopped state. As their behaviour is rather complex, the state machine has been split into a
state machine giving the dynamic behaviour of configuration operations (i.e. connect, disconnect, map and unmap), of
port controlling operations (i.e. start, stop and clear) and of communication operations (i.e. send, receive, cal, getcall,
raise, catch, reply, getreply and check). Astrigger is a shorthand for an alt together with receiveit is not considered

here.

F.3.1 Configuration Operations

The port configuration operations (i.e. connect, disconnect, map and unmap) are indifferent to the state of the port. They
show the behaviour shown in figure F.6.

ETSI

290 ETSI ES 201 873-1 V4.5.1 (2013-04)

connect/if ("legal connection™)
then (if ("link not yet established")
then "establish thislink" else null)

disconnect/if ("link established") then "remove thislink" else null
map/if ("legal connection")

then "store link to other port"

(if ("link not yet established")

then "establish thislink" else null)

unmap/if ("link established") then "removethislink" else null

create/"creates

test component”
(see note 1)

connect/if ("illegal connection") then error
map/if ("illegal connection™) then "store link to other port" error

Error
(see note 2)

connect/if ("legal connection™)
then (if ("link not yet established")
then "establish thislink" else null)
disconnect/if ("link established") then "remove thislink" else null
map/if ("legal connection")
then (if ("link not yet established")
then "establish thislink" else null)
unmap/if ("link established") then "remove thislink" else null

NOTE 1: When creating a PTC the ports of that PTC are created and started; when creating the MTC the ports of
the MTC and the ports of the TSI are created and started.

NOTE 2: Whenever a port enters its error state, the test component it belongs to enters also its error state, assigns
a local error verdict, the test case terminates and the overall test case result will be error.

Figure F.6: Dynamic behaviour of ports: port configuration operations

The transitions do not change the main state of the port, i.e. the port remainsin the Started or Stopped state.

F.3.2 Port Controlling Operations

The results of port controlling operations are shown in figure F.7.

create/"creates start/"clears queue”

test component"
(see note)

A clear/"clears queue”

halt/"puts halt marker
at the end of the queue"

ﬂ stop/null

start/"clears queue" and A start/"clears queue”

"removes halt maker"
halt/"puts halt
marker at the

top of the queue”

clear/"clears queue"
stop/null

clear/"clears queue" and
"puts halt marker at the
top of the queue”
halt/null

stop/"removes halt maker"

NOTE: When creating a PTC the ports of that PTC are created and started; when creating the MTC the ports of
the MTC and the ports of the TSI are created and started.

Figure F.7: Dynamic behaviour of ports: port controlling operations

ETSI

291 ETSI ES 201 873-1 V4.5.1 (2013-04)

F.3.3 Communication Operations

The results of the communication operations send, receive, call, getcall, raise, catch, reply, getreply, check are shownin

figure F.8.

receive/if ("top queue element is halt marker")
then no match
elseif ("top queue element matches")
then match & "remove from queuge”
else no match
getcall/if ("top queue element is halt marker")
then no match
elseif ("top queue element matches")
then match & "remove from queuge”
else no match
getreply/if ("top queue element is halt marker")
then no match
elseif ("top queue element matches")
then match & "remove from queuge”
else no match
catch/if ("top queue element is halt marker")
then no match
elseif ("top queue element matches")
then match & "remove from queuge”
else no match
check/if ("top queue element is halt marker")
then no match
elseif ("top queue element matches")
then match
else no match

NOTE 1:

send/if (“unique receiver") then "transmit" (see note 2)
receivelif ("top queue el ement matches')
then match and "remove from queue”
else no match
call/if ("unique receiver") then "transmit" (see note 2)
getcall/if ("top queue element matches")
then match and "remove from queue”
else no match
reply/if ("unique receiver") then "transmit" (see note 2)
getreply/if ("top queue element matches")
then match and "remove from queue’
elseno match
raise/if ("unique receiver") then "transmit" (see note 2)
catch/if ("top queue element matches")
then match and "remove from queue’
else no match
check/if ("top queue element matches")
then match
else no match

create/"creates
test component"
(see note 1)

send/if ("ambiguous" or "no receiver") error (seenote 2)
call/if ("ambiguous" or "no receiver") error (seenote 2)
reply/if ("ambiguous' or "no receiver") error (seenote 2)
raisefif ("ambiguous’ or "no receiver") error (see note2)

Error

(see note 3)

send/error
call/error

reply/error
raiselerror

receive/no match
getcall/no match
getreply/no
match

catch/no match

When creating a PTC the ports of that PTC are created and started; when creating a MTC the ports of the

MTC and the ports of the TSI are created and started.

NOTE 2:

A unique receiver exists if there is only one link for this port or if the to address expression references a

test component whose port is linked to this port (a terminated test component is not a legal receiver).

NOTE 3:

Whenever a port enters its error state, the test component it belongs to enters also its error state, assigns

a local error verdict, the test case terminates and the overall test case result will be error.

NOTE 4:

As trigger is a shorthand for an alt together with receive it is not considered here.

Figure F.8: Dynamic behaviour of ports: communication operations

ETSI

292 ETSI ES 201 873-1 V4.5.1 (2013-04)

Annex G (informative):
Deprecated language features

G.1 Group style definition of module parameters

Previous versions of the present document (up to and including V2.2.1) required to use a group-like syntax shown in the
example below to declare module parameters. The module parameter syntax has been unified with constant and variable
declaration syntax in this version but group-like syntax is not fully removed to leave atime period for tool providers

and users to change from the old syntax to the new one. The group-like syntax of module parameter declarations may be
fully removed in a future edition of the standard.

EXAMPLE (superfluous syntax):
nodul e MyModul eW t hPar anet er s

modul epar { integer TS Par0, TS Parl := 0;
bool ean TS Par2 := true

"}
nodul epar { hexstring TS Par3 };

G.2 Recursive import

Previous versions of the present document (up to and including V2.2.1) allowed to import named definitionsimplicitly,
viaimporting other definitions of the same module using themin ar ecur si ve mode. Thisfeature is deprecated and
may be fully removed in a future edition of the standard.

G.3 Using al | in port type definitions

Previous versions of the present document (up to and including VV2.2.1) allowed to usethe al | keyword in port type
definitions instead of an explicit list of types and signatures allowed via the given port. This feature is deprecated and
may be fully removed in a future edition of the standard.

G.4 sizeof for length of lists

Previous versions of the present document (up to and including V3.2.2) allowed to use the built-in function si zeof to
compute thelength of recor d of ,set of ,andar r ay. Thishasbeen replaced by | engt hof . The use of
si zeof for list liketypesis deprecated and is planned to be fully removed in the next published edition.

G.5 sizeoftype predefined function

The previous version of the present document (up to and including V3.3.1) defined the si zeof t ype predefined
function. This feature is deprecated in this version of the standard and may be fully removed in the next published
edition.

G.6 Mixed ports

Previous versions of the present document (up to and including V3.2.2) allowed to use mi xed ports. Thisfeatureis
deprecated and may be fully removed in a future edition of the standard.

ETSI

293 ETSI ES 201 873-1 V4.5.1 (2013-04)

G.7 External constants

Previous versions of the present document (up to and including 3.4.1) allowed to use ext er nal const ants. This
feature is deprecated and may be fully removed in a future edition of the standard.

G.8 Prefixing enumerated values

Previous versions of the present document (up to and including V4.2.1) did not explicitly specify how to resolve name
conflicts between imported enumerated values and global names defined in the importing or in another TTCN-3
module. Some tool implementations resolved thisissue by allowing prefixing enumerated val ues with the name of the
module in which the given enumerated type is defined. Version 4.3.1 added in clause 8.2.3.1 arule to resolve such
name clashes, therefore prefixing enumerated values is deprecated.

G.9 Record of/arrays not compatible to record; set of not
compatible with set

Previous versions of the present document (up to and including V4.3.1) did define specia cases when record of types
and single-dimension arrays would be compatible with record types. These rules are deprecated.

ETSI

294 ETSI ES 201 873-1 V4.5.1 (2013-04)

Annex H (informative):
Bibliography

. ETSI ES201 873-1 (V1.1.2): "Methods for Testing and Specification (MTS); The Tree and Tabular Combined
Notation version 3; Part 1: TTCN-3 Core Language”, 2001.

. ETSI ES 201 873-1 (V2.2.1): "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 1. TTCN-3 Core Language”, 2003.

o ETSI ES 201 873-1 (V3.1.1): "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 1: TTCN-3 Core Language", 2005.

. ETSI ES201 873-1 (V3.2.1): "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 1: TTCN-3 Core Language", 2007.

. ETSI ES201 873-1 (V3.3.2): "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 1: TTCN-3 Core Language", 2008.

o ETSI ES 201 873-1 (V3.4.1): "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 1: TTCN-3 Core Language", 2008.

. ETSI ES201 873-1 (V4.1.1): "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 1: TTCN-3 Core Language", 2009.

. ETSI ES201 873-1 (V4.2.1): "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 1: TTCN-3 Core Language”, 2010.

o ETSI ES 201 873-1 (V4.3.1): "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 1: TTCN-3 Core Language”, 2011.

. ETSI ES201 873-1 (V4.4.1): "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 1: TTCN-3 Core Language”, 2012.

ETSI

295

ETSI ES 201 873-1 V4.5.1 (2013-04)

History
Document history

V111 March 2001 Publication

V112 June 2001 Publication

V221 February 2003 Publication

V311 June 2005 Publication

v3z21l February 2007 Publication

V3.3.2 April 2008 Publication

Vv34.1 September 2008 | Publication

V4.1.1 June 2009 Publication

V421 July 2010 Publication

V4.3.1 June 2011 Publication

V4.4.1 April 2012 Publication

V451 February 2013 Membership Approval Procedure MV 20130423: 2013-02-22 to 2013-04-23
V45.1 April 2013 Publication

ETSI

	Intellectual Property Rights
	Foreword
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Introduction
	4.1 The core language and presentation formats
	4.2 Unanimity of the specification
	4.3 Conformance

	5 Basic language elements
	5.1 Identifiers and keywords
	5.2 Scope rules
	5.2.1 Scope of formal parameters
	5.2.2 Uniqueness of identifiers

	5.3 Ordering of language elements
	5.4 Parameterization
	5.4.1 Formal parameters
	5.4.1.1 Formal parameters of kind value
	5.4.1.2 Formal parameters of kind template
	5.4.1.3 Formal parameters of kind timer
	5.4.1.4 Formal parameters of kind port

	5.4.2 Actual parameters

	5.5 Cyclic Definitions

	6 Types and values
	6.1 Basic types and values
	6.1.0 Simple basic types and values
	6.1.1 Basic string types and values
	6.1.1.1 Accessing individual string elements

	6.1.2 Subtyping of basic types
	6.1.2.1 Lists of templates
	6.1.2.2 Lists of types
	6.1.2.3 Ranges
	6.1.2.4 String length restrictions
	6.1.2.5 Pattern subtyping of character string types
	6.1.2.6 Mixing subtyping mechanisms
	6.1.2.6.1 Mixing patterns, lists and ranges
	6.1.2.6.2 Using length restriction with other constraints

	6.2 Structured types and values
	6.2.1 Record type and values
	6.2.1.1 Referencing fields of a record type
	6.2.1.2 Optional elements in a record
	6.2.1.3 Nested type definitions for field types

	6.2.2 Set type and values
	6.2.2.1 Referencing fields of a set type
	6.2.2.2 Optional elements in a set
	6.2.2.3 Nested type definition for field types

	6.2.3 Records and sets of single types
	6.2.3.1 Nested type definitions
	6.2.3.2 Referencing elements of record of and set of types

	6.2.4 Enumerated type and values
	6.2.5 Unions
	6.2.5.1 Referencing fields of a union type
	6.2.5.2 Option and union
	6.2.5.3 Nested type definition for field types

	6.2.6 The anytype
	6.2.7 Arrays
	6.2.8 The default type
	6.2.9 Communication port types
	6.2.10 Component types
	6.2.10.1 Component type definition
	6.2.10.2 Reuse of component types

	6.2.11 Component references
	6.2.12 Addressing entities inside the SUT
	6.2.13 Subtyping of structured types
	6.2.13.1 Length subtyping of record ofs and set ofs
	6.2.13.2 List subtyping of structured types and anytype
	6.2.13.3 Subtyping of the iterated type of record ofs and set ofs
	6.2.13.4 Mixing subtyping mechanisms

	6.3 Type compatibility
	6.3.1 Compatibility of non-structured types
	6.3.2 Compatibility of structured types
	6.3.2.1 Compatibility of enumerated types
	6.3.2.2 Compatibility of record and record of types
	6.3.2.3 Compatibility of set and set of types
	6.3.2.4 Compatibility of union types
	6.3.2.5 Compatibility of anytype types
	6.3.2.6 Compatibility between sub-structures

	6.3.3 Compatibility of component types
	6.3.4 Type compatibility of communication operations
	6.3.5 Type conversion

	6.4 Type synonym

	7 Expressions
	7.1 Operators
	7.1.1 Arithmetic operators
	7.1.2 List operator
	7.1.3 Relational operators
	7.1.4 Logical operators
	7.1.5 Bitwise operators
	7.1.6 Shift operators
	7.1.7 Rotate operators

	7.2 Field references and list elements

	8 Modules
	8.1 Definition of a module
	8.2 Module definitions part
	8.2.1 Module parameters
	8.2.2 Groups of definitions
	8.2.3 Importing from modules
	8.2.3.1 General format of import
	8.2.3.2 Importing single definitions
	8.2.3.3 Importing groups
	8.2.3.4 Importing definitions of the same kind
	8.2.3.5 Importing all definitions of a module
	8.2.3.6 Import definitions from other TTCN-3 editions and from non-TTCN-3 modules
	8.2.3.7 Importing of import statements from TTCN-3 modules
	8.2.3.8 Compatibility of language specifications in imports

	8.2.4 Definition of friend modules
	8.2.5 Visibility of definitions

	8.3 Module control part

	9 Port types, component types and test configurations
	9.1 Communication ports
	9.2 Test system interface

	10 Declaring constants
	11 Declaring variables
	11.1 Value variables
	11.2 Template variables

	12 Declaring timers
	13 Declaring messages
	14 Declaring procedure signatures
	15 Declaring templates
	15.1 Declaring message templates
	15.2 Declaring signature templates
	15.3 Global and local templates
	15.4 In-line Templates
	15.5 Modified templates
	15.6 Referencing elements of templates or template fields
	15.6.1 Referencing individual string elements
	15.6.2 Referencing record and set fields
	15.6.3 Referencing record of and set of elements
	15.6.4 Referencing signature parameters

	15.7 Template matching mechanisms
	15.7.1 Specific values
	15.7.2 Special symbols that can be used instead of values
	15.7.3 Special symbols that can be used inside values
	15.7.4 Special symbols which describe attributes of values

	15.8 Template Restrictions
	15.9 Match Operation
	15.10 Valueof Operation
	15.11 Concatenating templates of string and list types

	16 Functions, altsteps and testcases
	16.1 Functions
	16.1.1 Invoking functions
	16.1.2 Predefined functions
	16.1.3 External functions
	16.1.4 Invoking functions from specific places

	16.2 Altsteps
	16.2.1 Invoking altsteps

	16.3 Test cases

	17 Void
	18 Overview of program statements and operations
	19 Basic program statements
	19.1 Assignments
	19.2 The If-else statement
	19.3 The Select case statement
	19.4 The For statement
	19.5 The While statement
	19.6 The Do-while statement
	19.7 The Label statement
	19.8 The Goto statement
	19.9 The Stop execution statement
	19.10 The Return statement
	19.11 The Log statement
	19.12 The Break statement
	19.13 The Continue statement
	19.14 Statement block

	20 Statement and operations for alternative behaviours
	20.1 The snapshot mechanism
	20.2 The Alt statement
	20.3 The Repeat statement
	20.4 The Interleave statement
	20.5 Default Handling
	20.5.1 The default mechanism
	20.5.2 The Activate operation
	20.5.3 The Deactivate operation

	21 Configuration Operations
	21.1 Connection Operations
	21.1.1 The Connect and Map operations
	21.1.2 The Disconnect and Unmap operations

	21.2 Test case operations
	21.2.1 Test case stop operation

	21.3 Test Component Operations
	21.3.1 The Create operation
	21.3.2 The Start test component operation
	21.3.3 The Stop test behaviour operation
	21.3.4 The Kill test component operation
	21.3.5 The Alive operation
	21.3.6 The Running operation
	21.3.7 The Done operation
	21.3.8 The Killed operation
	21.3.9 Summary of the use of any and all with components

	22 Communication operations
	22.1 The communication mechanisms
	22.1.1 Principles of message-based communication
	22.1.2 Principles of procedure-based communication
	22.1.3 Principles of unicast, multicast and broadcast communication
	22.1.4 General format of communication operations
	22.1.4.1 General format of the sending operations
	22.1.4.2 General format of the receiving operations

	22.2 Message-based communication
	22.2.1 The Send operation
	22.2.2 The Receive operation
	22.2.3 The Trigger operation

	22.3 Procedure-based communication
	22.3.1 The Call operation
	22.3.2 The Getcall operation
	22.3.3 The Reply operation
	22.3.4 The Getreply operation
	22.3.5 The Raise operation
	22.3.6 The Catch operation

	22.4 The Check operation
	22.5 Controlling communication ports
	22.5.1 The Clear port operation
	22.5.2 The Start port operation
	22.5.3 The Stop port operation
	22.5.4 The Halt port operation
	22.5.5 The Checkstate port operation

	22.6 Use of any and all with ports

	23 Timer operations
	23.1 The timer mechanism
	23.2 The Start timer operation
	23.3 The Stop timer operation
	23.4 The Read timer operation
	23.5 The Running timer operation
	23.6 The Timeout operation
	23.7 Summary of use of any and all with timers

	24 Test verdict operations
	24.1 The Verdict mechanism
	24.2 The Setverdict operation
	24.3 The Getverdict operation

	25 External actions
	26 Module control
	26.1 The Execute statement
	26.2 The Control part

	27 Specifying attributes
	27.1 The Attribute mechanism
	27.1.1 Scope of attributes
	27.1.2 Overwriting rules for attributes
	27.1.2.1 Additional overwriting rules for variant attributes

	27.1.3 Changing attributes of imported language elements

	27.2 The With statement
	27.3 Display attributes
	27.4 Encoding attributes
	27.5 Variant attributes
	27.6 Extension attributes
	27.7 Optional attributes

	Annex A (normative): BNF and static semantics
	A.1 TTCN-3 BNF
	A.1.1 Conventions for the syntax description
	A.1.2 Statement terminator symbols
	A.1.3 Identifiers
	A.1.4 Comments
	A.1.5 TTCN-3 terminals
	A.1.5.1 Use of whitespaces and newlines

	A.1.6 TTCN-3 syntax BNF productions
	A.1.6.0 TTCN-3 module
	A.1.6.1 Module definitions part
	A.1.6.1.0 General
	A.1.6.1.1 Typedef definitions
	A.1.6.1.2 Constant definitions
	A.1.6.1.3 Template definitions
	A.1.6.1.4 Function definitions
	A.1.6.1.5 Signature definitions
	A.1.6.1.6 Testcase definitions
	A.1.6.1.7 Altstep definitions
	A.1.6.1.8 Import definitions
	A.1.6.1.9 Group definitions
	A.1.6.1.10 External function definitions
	A.1.6.1.11 External constant definitions
	A.1.6.1.12 Module parameter definitions
	A.1.6.1.13 Friend module definitions

	A.1.6.2 Control part
	A.1.6.3 Local definitions
	A.1.6.3.1 Variable instantiation
	A.1.6.3.2 Timer instantiation

	A.1.6.4 Operations
	A.1.6.4.1 Component operations
	A.1.6.4.2 Port operations
	A.1.6.4.3 Timer operations
	A.1.6.4.4 Testcase operation

	A.1.6.5 Type
	A.1.6.6 Value
	A.1.6.7 Parameterization
	A.1.6.8 Statements
	A.1.6.8.1 With statement
	A.1.6.8.2 Behaviour statements
	A.1.6.8.3 Basic statements

	A.1.6.9 Miscellaneous productions

	Annex B (normative): Matching values
	B.1 Template matching mechanisms
	B.1.1 Matching specific values
	B.1.2 Matching mechanisms instead of values
	B.1.2.1 Template list
	B.1.2.2 Complemented template list
	B.1.2.3 Any value
	B.1.2.4 Any value or none
	B.1.2.5 Value range
	B.1.2.6 SuperSet
	B.1.2.7 SubSet
	B.1.2.8 Omitting optional fields

	B.1.3 Matching mechanisms inside values
	B.1.3.1 Any element
	B.1.3.1.1 Using single character wildcards

	B.1.3.2 Any number of elements or no element
	B.1.3.2.1 Using multiple character wildcards

	B.1.3.3 Permutation

	B.1.4 Matching attributes of values
	B.1.4.1 Length restrictions
	B.1.4.2 The IfPresent indicator

	B.1.5 Matching character pattern
	B.1.5.1 Set expression
	B.1.5.2 Reference expression
	B.1.5.3 Match expression n times
	B.1.5.4 Match a referenced character set
	B.1.5.5 Type compatibility rules for patterns

	Annex C (normative): Pre-defined TTCN-3 functions
	C.0 General exception handling procedures
	C.1 Conversion functions
	C.1.1 Integer to character
	C.1.2 Integer to universal character
	C.1.3 Integer to bitstring
	C.1.4 Integer to enumerated
	C.1.5 Integer to hexstring
	C.1.6 Integer to octetstring
	C.1.7 Integer to charstring
	C.1.8 Integer to float
	C.1.9 Float to integer
	C.1.10 Character to integer
	C.1.11 Character to octetstring
	C.1.12 Universal character to integer
	C.1.13 Bitstring to integer
	C.1.14 Bitstring to hexstring
	C.1.15 Bitstring to octetstring
	C.1.16 Bitstring to charstring
	C.1.17 Hexstring to integer
	C.1.18 Hexstring to bitstring
	C.1.19 Hexstring to octetstring
	C.1.20 Hexstring to charstring
	C.1.21 Octetstring to integer
	C.1.22 Octetstring to bitstring
	C.1.23 Octetstring to hexstring
	C.1.24 Octetstring to character string
	C.1.25 Octetstring to character string, version II
	C.1.26 Charstring to integer
	C.1.27 Character string to hexstring
	C.1.28 Character string to octetstring
	C.1.29 Character string to float
	C.1.30 Enumerated to integer

	C.2 Length/size functions
	C.2.1 Length of strings and lists
	C.2.2 Number of elements in a structured value

	C.3 Presence checking functions
	C.3.1 The IsPresent function
	C.3.2 The IsChosen function
	C.3.3 The IsValue function
	C.3.4 The IsBound function

	C.4 String/list handling functions
	C.4.1 The Regexp function
	C.4.2 The Substring function
	C.4.3 The Replace function

	C.5 Codec functions
	C.5.1 The encoding function
	C.5.2 The decoding function

	C.6 Other functions
	C.6.1 The random number generator function
	C.6.2 The testcasename function

	Annex D (normative): Preprocessing macros
	D.1 Preprocessing macro __MODULE__
	D.2 Preprocessing macro __FILE__
	D.3 Preprocessing macro __BFILE__
	D.4 Preprocessing macro __LINE__
	D.5 Preprocessing macro __SCOPE__

	Annex E (informative): Library of Useful Types
	E.1 Limitations
	E.2 Useful TTCN-3 types
	E.2.1 Useful simple basic types
	E.2.1.0 Signed and unsigned single byte integers
	E.2.1.1 Signed and unsigned short integers
	E.2.1.2 Signed and unsigned long integers
	E.2.1.3 Signed and unsigned longlong integers
	E.2.1.4 IEEE 754 floats

	E.2.2 Useful character string types
	E.2.2.0 UTF-8 character string "utf8string"
	E.2.2.1 BMP character string "bmpstring"
	E.2.2.2 UTF-16 character string "utf16string"
	E.2.2.3 ISO/IEC 10646 character string "iso8859string"
	E.2.2.4 Status values for TTCN-3 objects

	E.2.3 Useful structured types
	E.2.3.0 Fixed-point decimal literal

	E.2.4 Useful atomic string types
	E.2.4.1 Single Recommendation ITU-T T.50 character type
	E.2.4.2 Single universal character type
	E.2.4.3 Single bit type
	E.2.4.4 Single hex type
	E.2.4.5 Single octet type

	Annex F (informative): Operations on TTCN-3 active objects
	F.1 Test components
	F.1.1 Test component references
	F.1.2 Dynamic behaviour of PTCs
	F.1.3 Dynamic behaviour of the MTC

	F.2 Timers
	F.3 Ports
	F.3.1 Configuration Operations
	F.3.2 Port Controlling Operations
	F.3.3 Communication Operations

	Annex G (informative): Deprecated language features
	G.1 Group style definition of module parameters
	G.2 Recursive import
	G.3 Using all in port type definitions
	G.4 sizeof for length of lists
	G.5 sizeoftype predefined function
	G.6 Mixed ports
	G.7 External constants
	G.8 Prefixing enumerated values
	G.9 Record of/arrays not compatible to record; set of not compatible with set

	Annex H (informative): Bibliography
	History

